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Abstract 

The determination of the optimal type and placement of a nonconventional 

well in a heterogeneous reservoir represents a challenging optimization 

problem. This determination is significantly more complicated if uncertainty 

in the reservoir geology is included in the optimization. In this study, a genetic 

algorithm is applied to optimize the deployment of nonconventional wells 

under geological uncertainty. In order to reduce the excessive computational 

requirements of the base method, a statistical proxy based on cluster analysis 

is applied into the optimization process. This proxy provides an estimate of 

the cumulative distribution function (cdf) of the scenario performance, which 

enables the quantification of proxy uncertainty. Knowledge of the proxy-

based performance estimate in conjunction with the proxy cdf enables the 

systematic selection of the most appropriate scenarios for full simulation. The 

proxy is extended for application to the optimization of multiple 

nonconventional wells opened at different times. The proxy in this case is 

referred to as dynamic proxy. For optimization of a single nonconventional 

well, it is shown that by simulating only 10 or 20% of the scenarios, 

optimization results very close to those achieved by simulating all cases are 

obtained. For multiple wells drilled at different times, the dynamic proxy is 

effective though a relatively high percentage (e.g., 50%) of the cases must be 

simulated.
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Chapter 1 

1. Introduction 

Oil and gas fields are increasingly developed using nonconventional wells because of 

the increased production obtained when these wells are deployed. Nonconventional 

wells can result in accelerated production, increased cumulative oil/gas recovery and 

delayed production of unwanted fluids (e.g., water from an aquifer).  

Hydrocarbon recovery and/or net present value (NPV) from a field development 

project can be maximized by optimizing the deployment of nonconventional wells. 

The number of wells, type, location and trajectory of each nonconventional well can 

be optimized to maximize an objective function such as NPV or cumulative recovery. 

However, optimization is difficult because of the large dimensional space arising from 

the many parameters required to describe a nonconventional well. Various types of 

nonconventional well configurations are possible and this precludes exhaustive 

evaluation of each well configuration, because each configuration requires a 

simulation run. 

Nonconventional wells are expensive to deploy and their performance can be severely 

impacted by uncertainty in the geological model (Joshi, 1991). The uncertainty in 

geology can be represented by generating multiple, equally probable realizations of the 

geological model. This results in different performance for the same well 

configuration evaluated in different realizations of the geological model. Each well 

configuration must therefore be evaluated for each realization of the geological model, 

which results in a large number of function evaluations (simulations). For practical 

applications, a method to reduce the number of simulations for this optimization is 
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required. The goal of this work is to develop and apply an efficient algorithm, namely 

a statistical proxy, for this optimization.  

 

1.1 Literature review 

Several investigators have applied different algorithms to solve the well deployment 

problem. Bittencourt and Horne (1997), Guyaguler and Horne (2001) and Guyaguler 

et al. (2002) applied genetic algorithms (GA) to optimize the placement of vertical 

wells. Optimization under geological uncertainty was considered by Guyaguler and 

Horne (2001).  Yeten (2003) and Yeten et al. (2003) developed a framework for 

optimization of nonconventional wells using a genetic algorithm under geological 

uncertainty. The proposed procedure can optimize the number, type and trajectory of a 

nonconventional well using a generic parameterization of the variables describing the 

well. 

The use of GAs for optimization of well deployment is computationally intensive, 

requiring many simulations. This is the case because GAs use a generate-and-test 

paradigm (Cox, 2005) where feasible potential solutions are generated and each is 

simulated using the function evaluator (simulator and/or economic model). In the well 

placement optimization, the testing of each solution corresponds to performing a 

simulation for each well configuration over all realizations of the geological model. 

Investigators have proposed algorithms using heuristics to reduce the number of 

simulations required during optimization. Bittencourt and Horne (1997) used a hybrid 

GA involving GA, tabu search and polytope to reduce the number of simulations 

required in vertical well placement applications. Pan and Horne (1998) applied least 

squares and kriging interpolation techniques as proxies to identify promising well 

configurations. The proxies were constructed from previously simulated well 

configurations. Guyaguler et al. (2002) also applied a hybrid algorithm using GA, 

polytope (hill climbing), kriging, and artificial neural networks (ANN) to reduce the 

number of simulations required. This hybrid algorithm was applied to real field cases 
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and performance using kriging was found to be superior to that from ANN. Yeten 

(2003) also used a hybrid algorithm involving GA, polytope and ANN for 

optimization of nonconventional well placement. Polytope was used for the local 

search when the improvement in the best solution was marginal, especially in later 

generations. The use of ANN as a proxy provided reasonable agreement between the 

predicted (prior) and observed (posterior) fitness in the application considered by 

Yeten (2003). 

It is in general difficult to assess the performance of proxies applied in well placement 

optimization. One approach would be to quantify the difference between the optimal 

solution and the best solution found using the proxy. However, GAs do not guarantee 

that the globally optimum solution will be found (Cox, 2005; Duda et al., 2001). 

Hence it is difficult to compare how well a proxy performs during the optimization.  

There are two general applications of proxies and the method for comparing the 

performance of the proxy algorithm depends on how the proxy is used (Litvak, 2005). 

Proxy applications can be grouped into two broad classes: those that accelerate the 

optimization while evaluating all potential solutions and those that reduce the number 

of function evaluations (e.g., simulations) required. Proxies that accelerate the 

optimization process use the proxy to generate solutions that will speed up 

convergence. Proxies that reduce the number of simulations generally do not influence 

the solution generating characteristics of the algorithm but they perform function 

evaluations only for promising cases. The statistical proxy discussed in this work falls 

in the second category. The performance of proxies of this type can be assessed based 

on comparison of the optimum solution found using the proxy to that from the 

exhaustive method. Specifically, comparisons are made of the best solution found, run 

time characteristics, and number of function evaluations for both methods.  
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1.2 Scope of work 

A statistical proxy was developed in Artus et al. (2005) for reducing the number of 

simulations required for the optimization of nonconventional well placement. The 

procedure incorporates uncertainty in estimates of fitness by the proxy, geological 

uncertainty and the decision maker’s attitude to risk.  The proxy used static attributes 

of well configurations to determine the prior performance of well configurations 

before performing full simulation.  The statistical proxy was applied to various 

problems involving optimization of nonconventional well placement.  

The statistical proxy procedure was developed in Artus et al. (2005). In this work, the 

proxy procedure is described and results obtained using synthetic reservoir models are 

presented. Some of the results presented here also appear in Artus et al. (2005). The 

proxy is here extended for application to optimization of multiple nonconventional 

wells when the wells are opened at different times. This modification allows for the 

inclusion of dynamic attributes in the model building and classification steps as is 

necessary for these cases.  

The initial code for the statistical proxy using static attributes was developed by 

Vincent Artus. I performed numerous tests on the code, introduced minor 

enhancements, and generated results for several examples using the static proxy. The 

examples are presented in Artus et al. (2005).  I then modified the code to use dynamic 

attributes for application to cases when the wells are opened at different times. In the 

descriptions that follow, the general approach and proxies will be discussed together, 

though it is important to note that the main contributions of the author are as indicated 

above. 

 



 5 

Chapter 2 

2. Nonconventional well optimization with GAs 

2.1. Genetic Algorithms 

A Genetic Algorithm (GA) is a nondeterministic search technique based on the principles 

of natural evolution and selection. GAs find solutions to optimization problems by 

generating a large number of possible solutions and then evaluating each solution to 

determine its level of “fitness” (i.e., value of the objective function).  Better solutions are 

evolved by applying GA operators to previous solutions and this process continues until a 

termination criterion is met. 

Some of the standard terminology used in the GA literature is explained below. Its use in 

the well optimization problem is also provided. 

• Individual is a potential feasible solution to an optimization problem. In the well 

optimization application, it refers to a set of parameters defining the configuration of 

well(s). For example, in a case involving placement of N wells, an individual will refer to 

the set of parameters that fully describe all N wells.  

• Chromosome is a representation of the unknowns (parameters) of an individual 

which are encoded as binary or real numbers.  

• Population is a collection of individuals.  

• Generation refers to the population of individuals at a given iteration during the 

optimization. 
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•       Fitness of an individual is the outcome of the fitness (or objective) function with 

the individual as input. Prior fitness refers to fitness computed using some 

proxy/surrogate model while posterior fitness generally refers to fitness computed using 

the actual objective function. 

• Hybridized GA refers to a GA that uses helper or heuristic algorithms to improve 

the performance of a simple GA. 

 

2.2        Optimization of nonconventional wells using GA 

As discussed in Chapter 1, Yeten et al. (2003) proposed a procedure using a hybridized 

GA to optimize the number, type, location and trajectory of nonconventional wells. They 

used a general parameterization of the unknowns describing a nonconventional well 

where the type, location, trajectory and status (open or closed) were considered as 

unknowns. The method was applied to several cases involving deployment of 

nonconventional wells. The GA for optimization of nonconventional well placement used 

here is based on the procedure described in Yeten et al. (2003).  The parameterization of 

the unknowns employed by Yeten et al. (2003) and in the current study is briefly 

described in the next section. 

Yeten et al. (2003) used binary numbers to encode the parameters to be optimized for 

each nonconventional well. The chromosomal representation of each nonconventional 

well configuration is longer than that for vertical wells because of the higher number of 

parameters required to describe a nonconventional well (e.g., heel and toe for each 

lateral). As a result, the search space is large compared to applications involving 

placement of vertical wells (Yeten, 2003; Artus, et al., 2005). Figure 2.1 shows an 

adaptation of the binary encoding of the unknowns in Yeten (2003) used to represent a 

dual lateral well. 
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Figure 2.1: Chromosome representation of a dual lateral well (Figure generated by 
Vincent Artus). 

 

In the binary coding scheme, the parameters describing each nonconventional well are 

converted to binary bits to form a binary string. The binary strings are concatenated to 

form the chromosome for each well. The procedure is repeated for multiple wells and 

concatenation of each well chromosome results in the full chromosome of the individual 

(Yeten, 2003; Yeten et al., 2003). As noted above, an individual refers to all the wells 

that define a development scenario. For example, if we consider a case involving 

placement of 3 wells, an individual then refers to a chromosome consisting of all 

parameters defining the configuration of the 3 wells. 

 

 

101011011010110101111101100010110011010011010... 

I1        J1      K1      lxy      θθθθ       hz   Jn     lxy     θθθθ         hz 

Heel                     Toe                     Jn                    Toe                     
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2.3        GA optimization in the absence of proxies 

The use of the basic GA to optimize the deployment of nonconventional wells is 

described as follows:  

1. The GA generates randomly a set of individuals (feasible solutions), each 

corresponding to a development scenario. The number of solutions generated, designated 

N, determines the population size (Figure 2.2, left). 

2. The fitness of each solution is evaluated by performing a reservoir simulation to 

obtain production profiles which may then be input to an economic model, if the fitness is 

NPV. Where uncertainty in the geological model is considered, the simulation is repeated 

using the same well configurations for all realizations of the geological model. In this 

case, the individual fitness is defined as some function of the performance (cumulative oil 

or NPV) over all of the realizations; for example, the fitness of the individual can simply 

be defined as the average of the performance across all realizations. 

3. A set of individuals in the present generation is selected based on their fitness to 

act as parents. The selected individuals or parents are placed in a ‘mating pool’ (Figure 

2.2, right). GA uses a binary operator called crossover to combine two individuals from 

the mating pool to generate two new offspring (Figure 2.3, Figure 2.4).  Single point 

crossover was used in all investigations here, though it is possible to use other types of 

crossover (2 point, uniform, etc.). The crossover operator is applied according to a 

predefined crossover probability pc. 

4. A mutation operator is applied to each of the newly generated offspring according 

to some pre-specified mutation probability. The implementation used in this work applies 

a bitwise mutation, by randomly flipping the bits in the chromosome of the offspring 

(Figure 2.3, Figure 2.4). The mutation operator is applied according to a predefined 

mutation operator pm. 
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5. Application of the crossover and mutation operators leads to new individuals or 

well configurations and these constitute the members of the population in a new 

generation. Step 2 is repeated for all feasible individuals. If a new individual is infeasible; 

i.e., it describes a non-physical well configuration such as wells/laterals intersecting or 

extending beyond reservoir boundaries, the individual is not simulated and is assigned a 

zero or negative fitness. This results in the removal of the infeasible well configuration(s) 

when the selection operator is applied. 

6. The above steps are continued with the solutions evolving from generation to 

generation. The algorithm terminates when a stopping criterion is reached. There are 

several criteria that can be used to stop the GA (Cox, 2005). The maximum number of 

generations is used as the stopping criterion in this work.  

 

 

 

 

 

 

 

Figure 2.2: N individuals of chromosome length L in generation i. 
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Figure 2.3: Creating new population from old population by applying selection, crossover 
and mutation operators. 

 

 

 

 

 

 

 

Figure 2.4: Illustration of single point crossover and bitwise mutation operators. 
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In order to introduce financial considerations into the optimization process, the objective 

function can be prescribed as the net present value (NPV), defined as the current value of 

a stream of future payments. The economic model presented below is based on the work 

of Yeten et al. (2003). The NPV is given by: 

 

( )�
= +

=
N

i
i

i

r
CF

NPV
1 1

       (2.1) 

 
where N is the total number of discount periods (years), r is the discount rate and CFi is 

the cash flow for the period i, defined as: 

 

iii ERCF −=       (2.2) 

 
where Ri and Ei are the revenue and expenses. The revenue is directly proportional to the 

production during the considered period. The cost of a particular development scenario is 

highly case specific and is influenced by many parameters (Cho, 2003). We define the 

revenues and expenses due to production during a discount period as: 

 
OPEXL

i
OPEX
i CQE =                                                   (2.3) 

 
where L

iQ  is the total production of oil, water and gas (in STB or SCF) and OPEXC  are 

operation costs ($/STB or $/SCF). The cost of the scenario at the beginning of the project 

(prior to any production) is given by: 

 

� �
= = �

�
�

�

�
�
�

�
++=

WELL JUNC
nN

n

N

j

JUNCDRILL
n

CAPEXSCEN CCLCE
1 1

  (2.4) 

 

where NWELL is the number of wells, JUNC
nN is the number of junctions for the nth well, 

CAPEXC is a fixed cost per well, including the cost of the platform and the cost of drilling 
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to the top of the reservoir, JUNCC  is the cost of a junction, Ln is the length of the nth well 

(in feet) and DRILLC  is the cost per unit length of drilling the well. Although the cost of 

drilling varies depending on the type of the segment, the orientation and the well length, 

we chose to use a constant price in this study. A more general cost function could be 

easily implemented in this formulation. 

 

In order to account for economic variability, time-dependent discount rates can be 

applied to production costs and revenues (dual discount NPV model). This introduces 

another kind of uncertainty, as it can be used to introduce optimistic or pessimistic 

economic scenarios in the optimization process.  
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Chapter 3 

3. Statistical proxy 

The basic genetic algorithm (GA) uses a generate-and-test paradigm where solutions 

are generated and tested for feasibility and optimality. Using this form of GA for 

optimization of nonconventional wells will require many simulation runs. The total 

number of simulations is increased further if the optimization is performed under 

geological uncertainty. Using the simple GA the number of simulations simN  required 

for an optimization run is given by: 

                                           realindgensim NNNN ××=                                                  (3.1) 

where genN  is the number of generations or iterations, indN  is the number of individuals 

in a generation (population size) and realN  is the number of geological realizations. 

Equation 3.1 shows that performing the optimization of well placement under 

geological uncertainty increases the number of simulations by a factor realN . Proxies can 

be applied to predict the fitness a priori of new individuals. The prior fitness is ranked 

and a fraction of cases are selected. The posterior fitness of the selected individuals will 

be evaluated using the reservoir simulator and/or economic model while for the other 

individuals, the posterior estimate of fitness is taken as the prior estimate.   

 

3.1   Proxy model development 

Proxy models use attributes from the well and reservoir and the posterior fitness from all 

previously simulated individuals. The attributes are the independent variables while the 

posterior fitness is the target or dependent variable, which is to be estimated. The 
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attributes can be grouped into two main categories: well configuration(s) attributes and 

well-reservoir attributes. The former describes attributes that are derived solely from the 

well configuration(s) while the latter describes attributes derived from the well and 

reservoir interaction. Examples of well configuration(s) attributes are well length, well 

diameter and number of laterals. Attributes derived from the well-reservoir model 

interaction include average permeability along the well and volume of channels 

intersected. For optimizations of nonconventional well placement involving multiple 

realizations, well configuration attributes will be the same over all realizations while the 

well-reservoir attributes will be different for each realization. 

For a given optimization run, proxy models are built from the attributes and target 

variables from previously simulated cases. A database consisting of the attributes and 

targets is constructed from these simulated cases and is continually updated during the 

optimization. Equation 3.2 describes a model to estimate the fitness of a new individual I 

in realization n, denoted ( )nIf , , in terms of the well and well-reservoir attributes of 

previously simulated cases: 

                                       ( ) ( ) ( )( )res
static

well nIXIXfnIf ,,, =                                    (3.2) 

 where ( )wellIX  describe the set of attributes derived from the well(s) in individual I and 

( )res
staticnIX ,  is the set of static attributes derived from the nth realization and individual I.   

Artus et al. (2005) applied a clustering procedure to determine the relationship between 

the attributes and fitness value.  The clustering procedure is based on the fact that similar 

individuals will tend to have similar performance or fitness. It is then possible to partition 

the space of attributes into several clusters. The cluster analysis procedure is described in 

the next section. 
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3.2 Cluster analysis 

Cluster analysis is an unsupervised learning technique that groups data objects based on 

the data values and the data to data relationship inherent in the data points (Tan et al., 

2005).  Cluster analysis partitions the data attribute space into different groups so that 

objects within the same group are more similar to one another and different or dissimilar 

to objects in other groups. Each group of data objects is called a cluster. The point that 

minimizes the mean squared error between all data objects in a cluster is called the 

centroid of the cluster (Duda et al., 2001; Tan et al., 2005). 

Artus et al. (2005) used a K-means clustering procedure to perform the cluster analysis of 

data attributes in the data base. A K-means clustering procedure partitions the data into K 

clusters, where K is user specified. The centroid of each cluster will not in general 

coincide with an actual data point in the cluster (Tan et al., 2005). The K-means 

clustering procedure is summarized below: 

1. Select K points as the initial centroids, where K is user specified. 

2. K clusters are formed by assigning each data object to the closest cluster using a 

distance metric (e.g., Euclidean). 

3. Update the centroid of each cluster. 

4. Steps 2-3 are repeated until the centroids do not change. 

After the clustering procedure, each data point in the database has been assigned to the 

nearest cluster. Within each cluster, each data point corresponds to an observation with a 

fitness value. From the fitness values in each cluster, an experimental cumulative 

distribution function of the fitness values in that cluster can be derived. For example, 

Figure 3.1 shows the cumulative distribution of fitness (defined as cumulative oil 

produced) in 6 clusters, for a test case that involved a total of 13 clusters, at the end of the 

10th generation. This example involved the optimization of 3 producers and is discussed 

further in Section 4.2.1. The dashed line shows the P10, P50 and P90 values of fitness 
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from the distribution. F(x) denotes the probability that the fitness is equal to or less than 

x. Figure 3.2 shows the P10, P50 and P90 values for 12 clusters.  

 

Figure 3.1: Cumulative distribution of fitness in 6 clusters  
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Figure 3.2: P10, P50 and P90 values of 12 clusters  

The distribution of fitness in a cluster is used to estimate the prior fitness of new 

individuals assigned to that cluster. The new individual is assigned to the ‘closest’ cluster 

by computing the Euclidean distance between the centroid of the clusters and the new 

attributes derived from the new individual. The cumulative distribution function (cdf) of 

the assigned cluster is used to estimate the prior fitness of the new individual using a 

procedure described in the next section.  

 

3.3        Estimation of prior fitness  

For each realization, the prior fitness ( )priornIf , of a new individual I in realization n can 

be estimated using the distribution of fitness in the cluster where the case (I,n)  is 

assigned. As indicated above, attributes for a new individual consist of well attributes 

( )wellIX  and well-reservoir attributes ( )res
staticnIX , . The well attributes will be constant over 

all realizations while the well-reservoir attributes will vary from one realization to the 

other. Both attributes are used to estimate ( )priornIf ,  for each realization. Since the well-

reservoir attributes vary, each individual-realization case (I,n) is likely to be assigned to a 

different cluster. For each individual-realization case (I,n), the cdf of the assigned cluster 

is used to estimate the prior fitness ( )priornIf ,  for that case. Thus, different cdfs with 

different levels of uncertainty are used in the estimation of the prior fitness for each 

individual. For Nreal realizations, there are Nreal  estimates of ( )priornIf , which are used to 

construct an experimental cdf that describes the distribution of fitness in the new 

individual across Nreal realizations. From this distribution, we can obtain ( )priorIf 10 , 

( )priorIf 50 and ( )priorIf 90  values (these correspond to P10, P50 and P90), which can then be 

combined (as described below) to define an overall prior fitness F(I) of the individual I. 
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Two different uncertainties enter into this estimate of prior fitness. These are the proxy 

uncertainty and the geological uncertainty. Proxy uncertainty enters because we use the 

target cluster cdf to estimate ( )priornIf , for each realization. The degree of uncertainty in 

estimates of ( )priornIf , depends on the distribution of fitness in the cluster. If the cluster 

is tightly packed, the standard deviation of fitness in the cluster will be smaller compared 

to loosely packed clusters. Aggregation of the Nreal values of ( )priornIf ,  incorporates the 

geological uncertainty, which captures the variation of the performance of individual I 

over all Nreal realizations.  

The method for combining the different cdfs of the clusters to define an overall prior 

cumulative distribution function of a new individual is now described. A prior cumulative 

distribution of fitness for a new individual is obtained by combining the cluster cdfs 

corresponding to each case (I,n) as follows:  

                                   ( ){ } ( ){ }�
=

=
realN

n

prior

real

prior nIfcdf
N

Ifcdf
1

,
1

                                  (3.3) 

Figure 3.3 illustrates the above concepts. The plots on the left represent the distribution of 

fitness in the cluster used to estimate ( )priornIf , . The vertical bar represents the P10 and 

P90 values in each cluster. The blue circles represent the P50 values of the cluster 

distribution. The plots on the right in the top and bottom panels of Figure 3.3 represent 

the cumulative distribution function obtained by combining the cdfs of the Nreal clusters 

using equation 3.3. The fitness in this case is cumulative oil produced. The upper and 

lower set of plots corresponds to two different individuals. 
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Figure 3.3: Construction of prior cumulative distribution function for new individuals I1 

(upper plots) and I2 (lower plots). 

For each new individual, values of ( )priorIf 10 , ( )priorIf 50  and ( )priorIf 90 can be read from the 

prior cumulative distribution function (right plots of Figure 3.3). The prior value of 

fitness ( )priorIF for each new individual can be estimated using  

                      ( ) ( ) ( ) ( )priorpriorpriorprior IfrIfrIfrIF 909050501010 ++=                                     (3.4) 

where 10r  , 50r and 90r represent weights which take values between 0 and 1 depending on 

the decision maker’s risk attitude.  
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3.4        Estimation of posterior fitness  

The posterior fitness of an individual ( )postIF is the fitness obtained after simulations 

have been performed on selected individuals. We wish to identify cases (I,n) in which the 

prior fitness is high but the proxy estimate is uncertain. These cases are the most 

appropriate for simulation. Individual-realization cases (I,n) are selected for simulation 

based on a parameter ( )nIW ,  that combines the prior estimate of fitness and the spread in 

the individual’s prior cumulative distribution function.  ( )nIW ,  is computed for each 

individual I and realization n via: 

                                     ( ) ( ) ( ) ( )( )priorpriorprior nIfnIfIFnIW 1090 ,,, −+= α                               (3.5) 

where F(I)prior is the prior fitness of individual I obtained using equation 3.4 andα is a 

weighting. Specifically, the first term of equation 3.5 represents the prior estimate of 

fitness of individual I while the second term represents the uncertainty in the distribution 

of the fitness in realization n; α sets the relative weightings of these two effects. In this 

work, we use α = 0.50. Equation 3.5 provides a weight ( )nIW ,  to each individual-

realization case (I,n).  If the number of individuals in a population is Nind, then in each 

generation, there are indreal NN × individual-realization cases and simulations that could be 

performed. Each case is ranked according to its ( )nIW ,  value. A fraction of individual-

realization cases is then selected for simulation based on the ( )nIW ,  values. 

The values of ( )nIW ,  computed in equation 3.5 are large for cases with high prior fitness 

and high uncertainty. For individual I, each case (I,n) will have the same ( )priorIF  value 

but different values of  ( ) ( )( )priorprior nIfnIf 1090 ,, −α  since the uncertainties in the cluster 

cdfs are different. Therefore, the ( )nIW ,  values are higher for individual-realization 

cases with higher prior estimate of fitness ( )priorIF  and higher uncertainty in proxy 

estimates. We reiterate that this strategy for selection of simulation cases selects the most 

promising individuals and realizations with higher uncertainty. This selection procedure 

is illustrated in Table 3.1. The values in the table are derived from the plots of Figure 3.3 
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with 50.0=α . Since there are 5 realizations, there are a total of 10 simulation cases that 

can be performed. Table 3.1 shows the results obtained using equation 3.4 for a risk 

neutral case with r10 =r90 = 0 and r50 = 1. Column 5 shows the ranking for the case 

considered and shows that cases with higher prior fitness values (column 2) and higher 

uncertainties (column 3) receive the highest rank.  

    Table 3.1: Example showing the computation of W(I,n) for two individuals 

( )priorIF  
 

( ) ( )( )priorprior nIfnIf 1090 ,, −α  
 

W(I,n) 
 

Individual 
 
 (1e6 bbl) (1e5 bbl) (1e6 bbl) 

Rank 
 

5.95 3.298 4 
6.20 3.310 1 
6.10 3.305 2 
4.65 3.233 5 

1 3.00 

6.05 3.303 3 
5.20 2.560 7 
6.10 2.605 6 
4.65 2.533 10 
5.19 2.560 8 

2 2.30 

5.19 2.560 9 
 

After some cases are selected for simulation, the prior cdfs are updated based on results 

from individual-realization cases (I,n) which are simulated. The resulting fitness is called 

posterior fitness ( )postIF and the resulting distribution is called the posterior cumulative 

distribution function of fitness ( ){ }postIfcdf . ( )postIF  is computed as:  

                                ( ) ( ) ( ) ( )postpostpostpost IfrIfrIfrIF 909050501010 ++=           (3.6) 

where ( )postIf 10 , ( )postIf 50 and ( )postIf 90  are computed from ( ){ }postIfcdf . The posterior 

cumulative distribution function ( ){ }postIfcdf is given by equation 3.7: 

                                 ( ){ } ( ){ }�
=

=
realN

n

post

real

post nIfcdf
N

Ifcdf
1

,
1

                                      (3.7) 
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where ( ){ }postnIfcdf ,  is the posterior fitness value of individual I and realization n. If 

simulation is performed for case (I,n) then ( ){ }postnIfcdf ,  has no  uncertainty because 

the fitness for case (I,n) is known with certainty after simulation. However, if case (I,n) is 

not selected for simulation, then ( ){ }postnIfcdf ,  is simply equal to ( ){ }priornIfcdf , . 

Using equations 3.6 and 3.7, the posterior fitness is defined for all individuals. The 

selection, crossover and mutation operators described earlier are then applied to create 

the individuals in the next generation.  

 

3.5        Dynamic statistical proxy 

The statistical proxy described earlier uses static attributes in the clustering procedure. 

This means that all attributes necessary for estimation of prior fitness are obtained before 

the start of the simulation. This approach is directly applicable to optimization of 

nonconventional well placement when all the wells are opened at initial time. This form 

of the proxy is called ‘static proxy’ henceforth.  

In field development projects, the wells are typically drilled in phases. This introduces a 

time domain into the optimization problem. In other words, the performance of a well 

will depend on the time it is opened and the oil saturation and pressure in the vicinity of 

the well when it is put on production. The use of the static proxy in this type of 

optimization will be limited because the static attributes do not incorporate these types of 

data.  For example, when all the wells are opened at the same time, wells in high 

permeability regions will tend to have improved performance (e.g., cumulative oil) 

compared to wells in low permeability regions. When the wells are opened at different 

times, this will not be the case if new wells are drilled very close to existing wells.  

Therefore, the static proxy is of limited use for optimization of multiple nonconventional 

wells when the wells are opened at different times.  
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When the wells are opened at different times, their performance is affected by dynamic 

properties (e.g., oil/water saturation, pressure) around the wells at the start of production. 

The existing proxy procedure is modified to account for this and the new proxy shall be 

called ‘dynamic proxy’ because it includes dynamic attributes in the model relating 

fitness and attributes. The static and dynamic proxies are similar in that the locations of 

all wells in each individual are known before the start of production. The proxies differ in 

terms of the set of attributes used for model building (static versus static and dynamic) 

and how new individual-realization cases are assigned to clusters. The dynamic proxy 

model development is explained in the next section. 

 

3.6        Dynamic proxy model development 

In general, the procedure for estimation of prior fitness and posterior fitness is the same 

for the static and dynamic proxy. However, a different approach is used for classification 

of new individual-realization cases (I,n) to a given cluster. In the static proxy procedure, 

estimation of prior fitness f(I,n)prior
 is direct once the individual-realization case is 

assigned to a cluster. In the dynamic proxy procedure, the test pattern is first assigned to a 

cluster using the Euclidean distance of the centroids and attributes derived from case 

(I,n). Next, within the assigned cluster, we find the ‘closest well pattern’ and then use the 

dynamic attributes of this well pattern as an estimate of the dynamic attributes of the 

individual-realization case (I,n). 

The application of the dynamic proxy is similar to that for static proxy, i.e., we aim to 

estimate the prior fitness of any new individual prior to the simulation step. The main 

challenge in the application of the dynamic proxy is that it requires dynamic attributes 

which are not available at the time of the estimation of the prior fitness. The relationship 

between the prior fitness of an individual-realization case (I,n) denoted f(I,n)prior in terms 

of the well and reservoir attributes can be written as: 

                                 ( ) ( ) ( ) ( )( )res
dynamic

res
static

wellprior nIXnIXIXfnIf ,,,,, =                 (3.8) 
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where ( )wellIX is the set of well attributes for individual I, ( )res
staticnIX , is the set of static 

attributes derived for individual I and realization n, and ( )res
dynamicnIX , is the  set of 

dynamic attributes derived for individual I and realization n. 

The set of attributes that can be used in the estimation of f(I,n)prior is limited because the 

dynamic attributes are not known.  Therefore, we build the model with the full set of 

attributes (static and dynamic) and use a subset of attributes (static) to classify new 

individuals. 

The method is similar to the method of classification using partial distance discussed in 

Duda et al. (2001). The partial distance method is applied to reduce the computational 

complexity of the k-Nearest-Neighbor rule by using only a subset r of the full d 

dimensions to compute the Euclidean distance between two d-dimensional data vectors a 

and b. Partial Euclidean distance Dr is computed using  (Duda et al., 2001 ) : 

                                            Dr(a,b) ( )
2/1

1

2
�
	



�
�

 −= �
=

r

k
kk ba                                                  (3.9) 

where r < d.  The partial distance method assumes that classification with the Euclidean 

distance computed using a subset of features Dr(a,b)  is indicative of the classification 

with the Euclidean distance computed using the full d dimensions Dd(a,b). In Duda et al. 

(2001), the partial distance was applied to classification where the remaining d-r features 

or attributes are known. In this work, the partial distance was applied with r defining the 

size of the static attributes, which are known at the time of classification. The size of the 

dynamic attributes is d-r and these are unknown at the time of classification of a new 

individual-realization case (I,n). 

In applying the dynamic proxy to optimization problems, some number of simulations is 

first performed and the static and dynamic attributes and objective function values for 

each simulated case are saved in a database. The K-means algorithm is used to partition 

the database into a predefined number of clusters. The database is updated at each 
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generation with information from simulated individual-realization cases and the 

clustering step is repeated again. 

 The detailed procedure for estimation of f(I)prior for individual I using the dynamic proxy 

is listed below. Steps 1-4 are performed prior to the classification and estimation step. A 

database of fitness and attributes is built from previously simulated cases during these 

steps. This ensures that there are enough data points in the clusters during the 

classification and estimation step. After the database is built, steps 4-14 are repeated in 

each generation and the database is continually updated. 

1. For each individual-realization case (I,n), derive static attributes.  

2. After simulation is performed for case (I,n), derive the dynamic attributes. 

3. Save static attributes, dynamic attributes and objective function value (cumulative 

oil or NPV) in a database. 

4. Perform K-means clustering of the database using both the static and dynamic 

attributes. 

5. For each new individual I and realization n, derive all the static attributes for each 

case (I,n).  

6. Compute the partial Euclidean distance between the static attributes of this case 

and the centroid of each cluster. 

7. Assign the individual-realization case (I,n) to the cluster with the smallest partial 

Euclidean distance (Figure 3.4). In Figure 3.4, X represents a new point defined 

by two attributes. Figure 3.4 shows a hypothetical partition of the attribute space 

into two clusters with the point X assigned to cluster 1. 

8. Within the target cluster in step 7, perform a similarity search between the new 

individual I and previously simulated cases that fall within this cluster using some 

distance metric, e.g., Euclidean or cosine similarity index (Ross, 2005; Tan et al., 
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2005). Select the closest case in terms of the distance metric selected. This step is 

illustrated in Figure 3.5, where two previously simulated cases are compared to 

the new individual. The well template that most closely matches the new 

individual is indicated in the red box.  

9. Approximate the dynamic attributes for the new case (I,n) with the closest case 

found in step 8 above (Figure 3.5). 

10. Use the static attributes (exact) and the dynamic attributes (approximate) to 

estimate the prior fitness of the new individual-realization case (I,n) denoted 

f(I,n)prior . 

11. Assign weights to individual-realization cases and select a fraction for full 

simulation.  Obtain F(I)prior for all individuals using equation 3.4. 

12. Update database of fitness and attributes with results from the simulated cases in 

step 11.  

13. Use equation 3.6 to obtain F(I)post for all individuals. 

14. Apply GA operators (selection, crossover, mutation) to create next population. 

15. Repeat steps 4-14 for each generation. 
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Figure 3.4: Hypothetical partition of attributes 1 and 2 into two clusters.

Cluster 1 

Cluster 2 

X 
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Figure 3.5: Illustration of search procedure to find matching well configurations.  
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 Chapter 4 

4.  Examples 

In this chapter, a series of examples are considered that illustrate the capabilities of the 

static and dynamic proxy. The examples are divided into two broad categories: examples 

using the static proxy alone and an example using the static and dynamic proxy. The 

performance of the proxies is based on a comparison of the best solution found, run time 

characteristics and the number of simulations required. These metrics are used to 

compare the performance of the proxy and no-proxy (i.e., simple GA) cases where 

applicable.  

The first three examples in Section 4.1 were presented in Artus et al. (2005).  The first 

three examples using the static proxy were performed using the ECLIPSE simulator 

(GeoQuest, 2004a) while the example using the dynamic proxy was performed using the 

IMEX simulator (CMG, 2004). 

4.1 Static proxy examples 

Four examples are presented that illustrate the use of the static proxy described in  

Chapter 3. These examples involved the optimization of monobore or dual-lateral wells 

under geological uncertainty. 

4.1.1 Example A: Sensitivity to proxy selection 

In this example we illustrate the sensitivity of the optimization result to the percentage of 

scenarios simulated. The well is constrained to be a monobore. The reservoir model is a 

channelized system. Five realizations constrained to data from three observation wells 

were randomly generated (Figure 4.1 and Figure 4.2). The key properties of the reservoir 

are summarized in Table 4.1. Reservoir flow in this case involves only a single phase 
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(oil) and frictional pressure losses in the well are neglected. Permeability is highly 

heterogeneous but locally isotropic (kx=ky=kz). 

 

Table 4.1: Example A – Reservoir and fluid properties 

 
 

 

 

 

 

                       

Figure 4.1: Histogram of the logarithm of the permeability field. 
 

grid dimensions 40 × 40 × 7  
field dimension 6000 × 6000 × 210 ft3 
φ 0.2 
NTG 10 % 

1k   90 mD 

2k  1 mD 

c 3 × 10-5 psi-1 
Bo 1.3 
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Figure 4.2: Four realizations of the channelized permeability field. 
 
 
The goal is to determine the placement of a monobore production well to maximize the 

cumulative oil produced over 500 days of primary depletion. The initial pressure at the 

top of the reservoir is 3500 psi and the BHP constraint is 3200 psi. The mainbore can be 

oriented in any direction, but is limited in horizontal extent to a maximum of 1500 ft. We 

optimize under a risk neutral attitude, which means that we seek to maximize the 

expected cumulative oil production over the 5 realizations, regardless of the variance.  

 

We base the proxy estimate on 3 attributes expected to correlate with cumulative oil 

production – well length, volume of channels intersected by the well and average 

permeability along the well. For a given individual, the determination of the proxy 

estimate required about 2 seconds CPU for each realization, while each reservoir 

simulation consumed about 30 seconds. The simulations are very fast for this small 
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problem (11200 cells) so there is only a factor of 15 difference between the proxy 

calculations and the simulation runs. However, because the CPU time required to 

determine the attribute values is largely independent of the model size, much greater 

differences between the times required for deriving attributes and for performing 

simulations are expected for larger problems. 

 

In this example, we used 30 individuals and 50 generations in the genetic algorithm. The 

calibration pool was initiated by simulating all of the individuals in each realization in the 

first generation (for a total of 150 simulations) and was updated at each generation using 

the simulated cases. Twenty clusters were used to determine the prior fitness of each 

individual. Prior predictions obtained from a given cluster were used only if the cluster 

contained more than 10 data points, otherwise a simulation was performed. 

Three cases were tested in order to quantify the sensitivity of the optimization results to 

the percentage of (valid) scenarios simulated. These cases correspond to 5% (case A.1), 

10% (case A.2) and 20% (case A.3) simulated, with the remainder estimated using the 

proxy. Figure 4.3 shows the data in the three-dimensional attribute space after 2 

generations. It is evident from the figure that the data tend to cluster based on fitness, 

which suggests that the variability within a cluster will not be excessive. At the end of the 

2nd generation, there are about 300 individuals in the calibration pool (most of the cases 

in the 2nd generation were also simulated because the clusters did not yet contain enough 

points). The fitness of all individuals in the calibration pool was then partitioned into 20 

clusters using the selected attributes.  

 

The cumulative distribution function of the fitness in all of the clusters is now readily 

determined. Figure 4.4 depicts the ),(10 nf prior I , ),(50 nf prior I and ),(90 nf prior I  values of the 

performance for the 20 clusters (the clusters are now ordered in terms of increasing 
priorf50 ). For subsequent generations, we compute the attributes for all new cases and then 

determine the prior fitness. A subset of cases is then simulated as determined by the 

procedure described in Section 3.3. In general, there are 8, 15 and 30 actual simulations 

for case A.1 (5%), case A.2 (10%) and case A.3 (20%) respectively for each generation 
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of the optimization. A comparison of the posterior and actual fitness for case A.1 (from 

crossvalidation of the calibration pool at generation 10) is shown in Figure 4.5. We see 

from Figure 4.5 that, although only about 8 simulations are performed at each generation, 

there is little difference between the prior and posterior fitness. Using cross-validations of 

the calibration pool, updated after each generation, we compute the correlations between 

the prior and posterior fitness values with the actual fitness. The regression coefficient 

between the prior fitness and the actual fitness is seen to be quite high – greater than 0.9 

at all generations of the optimization.  

In Figure 4.6, we present the fitness of the best individual as a function of generation, 

while in Figure 4.7 we present the fitness of the best individual as a function of the 

number of simulations performed. From Figure 4.6 it is evident that cases A.2 and A.3 

(10% and 20% simulated) provide very similar results in terms of best fitness, while case 

A.1 (5% simulated) provides a somewhat lower fitness. However, using only 630 

simulations, the best individual in case A.1 is over 90% of the fitness in case A.2 and 

case A.3 (Figure 4.6).  

 

The key results from Figures 4.6 and 4.7 are summarized in Table 4.2. These results 

suggest that once a “threshold” percentage of the cases are simulated, the optimization 

result is relatively insensitive to higher percentages of simulated cases. Note that the 

number of simulations does not decrease by a factor of 2 when the percent simulated is 

halved. This is due to the fact that much more than the specified percentage of cases must 

be simulated in early generations to build clusters with 10 points or more. In more 

extensive optimizations, halving the percent simulated will result in about half the 

number of simulations as expected.  
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Figure 4.3: Example A – Repartition of the calibration data in the space of the attributes 
after 2 generations for Case A.2. Color corresponds to the performance. Attributes are 
well length, volume of channels intersected by the well, and average permeability along 
the well. 
 
 

                                  
                           
Figure 4.4: Example A – Mean value of the performances for each cluster (solid line). 
Dashed lines correspond to the confidence interval. 
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Figure 4.5:  Example A – Result of the cross-validation of the calibration pool for case 
A.1 after 10 generations. Only a priori best cases are updated for posterior estimation of 
the fitness. 
                                                    
     

                              

Figure 4.6: Example A – Evolution of the best individual in the population with the 
number of generations. 
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Figure 4.7: Example A – Evolution of the best individual in the population with the total 
number of simulations. 
 

 
Table 4.2: Example A – Results with different percentages of cases simulated. 
 

 5% 10% 20% 

Fitness of the best 
scenario (bbl) 2,809,000 3,066,000 3,060,000 

Number of simulations 630 918 1520 

 

4.1.2 Example B: Optimization of a monobore production well 

In this example, we again optimize the placement of a monobore producer in order to 

maximize the cumulative oil production after 500 days of primary depletion. We consider 

the same reservoir properties and constraints as in Example A (Table 4.1), except here we 

consider 10 realizations constrained to the 3 vertical observation wells. Our goal here is 

to assess the proxy by comparing optimization results obtained by simulating all cases 
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with those achieved through use of the statistical proxy. Maximum well length is again 

1500 ft and the optimization was again performed with 30 individuals (50 generations) 

under a neutral risk attitude. Following the initial generations (in which high percentages 

of individuals were simulated to generate 20 clusters with at least 10 data points per 

cluster), the proxy was applied to select 10% of the valid population for simulation at 

each generation (with the remainder of the individuals assessed through use of the proxy). 

 
 

                          

Figure 4.8: Example B – Evolution of the best individual in the population with the   
number of generations. 
 

Figure 4.8 presents the evolution of the best individual over the course of the 

optimization. The solid line shows the result when all cases are simulated (no proxy) and 

the dashed line the result when the proxy is applied. From Figure 4.8, we see that the no 

proxy case provides a slightly better fitness (see also Table 4.3). It is apparent from 

Figure 4.9, however, that the proxy result is achieved using more than a factor of 7 fewer 

simulations. It is thus apparent that the use of the proxy is able to greatly reduce the 

number of simulation runs while impacting only slightly the optimal fitness. 
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Figure 4.9: Example B – Evolution of the best individual in the population with the total 
number of simulations. 
 

Table 4.3: Example B – Comparison of the performances of the best wells found with and 
without proxy. 

 With proxy Without proxy 

Average performance (bbl) 2,831,000 2,872,000 

Standard deviation (bbl) 219,300 279,100 

Number of simulations 1,873 13,597 

 
 

The positions of the optimal wells, as determined by the optimizations with and without 

the proxy, are shown in Figure 4.10. The optimal wells clearly differ between the two 

optimizations, though in both cases they lie near the center of the reservoir and contact 

several channels. This figure suggests that a number of different wells may provide 

comparable optimums, though it is interesting to see that in this case the two 

optimizations result in wells that are similar. 
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Figure 4.10: Example B – Optimal well locations found with and without proxy. 

 
 
4.1.3 Example C: Optimization of a dual-lateral producer 

In this example, we optimize the placement of a dual-lateral production well. We again 

seek to maximize the cumulative oil production over 500 days of primary depletion. We 

consider the same reservoir properties as in Example A (Table 4.1), using 5 realizations 

constrained to 3 vertical observation wells. We again specify a BHP constraint of 3200 

psi with an initial reservoir pressure of 3500 psi. The well in this case is required to have 

two laterals. The mainbore and the laterals can be oriented in any direction, and their 

horizontal lengths can take values from zero (for a vertical segment) to a maximum of 

1500 feet. We again used populations of 30 individuals and ran the optimization for 50 

generations. The strategy toward uncertainty was risk neutral. In the optimizations using 

the proxy we populated the clusters as described in the previous examples. When the 

proxy was applied, 20% of the cases were simulated. 
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Figure 4.11 compares the fitness of the best individual over the course of the optimization 

when all cases are simulated and when the proxy is applied. The optimization results are 

also summarized in Table 4.4. It is evident that the proxy optimizations actually achieve a 

slightly better solution than the optimization without the proxy, in which all cases are 

simulated. This would not be expected in general and is likely due to the stochastic nature 

of the GA. The proxy optimizations require about a factor of 4 fewer simulations (Figure 

4.12). The optimum well locations for both cases are shown in Figure 4.13. Although the 

locations differ, it is clear that the wells in both cases contact several channels and are 

located around the middle of the reservoir. 

 

                                       

 Figure 4.11: Example C – Evolution of the best individual in the population with the 
number of generations. 
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Figure 4.12: Example C - Evolution of the best individual in the population with the total 
number of simulations. 
 

Table 4.4: Example C – Comparison of the performances with and without proxy. 
 

 
 

 

 

 With proxy Without proxy 

Average performance (bbl) 3,269,000 3,067,000 

Standard deviation (bbl) 164,300 463,100 

Number of simulations 1,626 6,677 
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Figure 4.13: Example C – Comparison of the best wells found with and without proxy. 
 

4.1.4 Example D: Optimization of a monobore under varying risk attitudes 

In this example, we investigate the effect of varying risk attitudes in the optimization of a 

monobore producer. The same reservoir model is used here as in previous examples. The 

proxy was used in these optimizations, with 10% of the cases simulated. Different risk 

attitudes are considered and we study their effect on the optimization result. Five 

realizations of the channelized reservoir are used in this example. Three different runs are 

performed for a risk averse (r10=0.7, r50=0.3, r90=0), risk neutral (r10=0, r50=1, r90=0) 

and risk seeking (r10=0, r50=0.3, r90=0.7) decision maker and we aim to optimize the 

cumulative oil produced for each case. As pointed out in Section 3.3, the risk attitude 

affects how the fitness of an individual is defined. Optimizing under risk averse 

conditions, for example, favors individuals with low variability in fitness across all 

realizations. Under risk neutral conditions, the mean of the fitness across all realizations 

is optimized.  



 43 

Figure 4.14 shows the evolution of the best solution versus the number of generations of 

the GA. The fitness of the optimal solution found under risk seeking conditions is the 

highest while the solution under risk averse conditions is the lowest, as would be 

expected. 

 

 

 

 

                

 

                          

Figure 4.14: Example D - Evolution of best solution with the number of generations.  

Figure 4.15 shows the performance (cumulative oil produced) of the best solution across 

the five realizations. Table 4.5 summarizes the results obtained in this example. 

Generations 

Fitness 

  risk seeking 
  risk neutral 
  risk averse 
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Figure 4.15:  Example D – Performance of best solution across the five realizations. 

Although the solution for the risk seeking case has the highest performance, the 

variability of the performance (standard deviation) across all realizations is the highest. 

The solution for the risk averse case has the lowest fitness but also displays the least 

variability of performance across the five realizations. The result for the risk neutral case 

lies between those of the risk seeking and risk averse solutions.   
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Table 4.5: Comparison of the performance the optimization of under different risk 
attitudes. 

 

 

 

 

Figure 4.16 shows the location of the best well using the three risk attitudes. Although the 

wells are located at about the same location in the model, the well lengths and 

orientations differ. The risk attitude of the decision maker clearly affects the variability of 

the fitness of the best well across all realizations, as demonstrated in this example.   

Risk attitude Mean fitness 
(bbl) 

Std. Fitness 

 (bbl) 

Seeking 3,076,270 397,345 

Neutral 2,984,652 184,753 

Averse 827,473 77,683 
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Figure 4.16: Example D – Comparison of the best well locations for three different risk 
attitudes: risk averse, risk neutral and risk seeking. 

  risk seeking 
  risk neutral 
  risk averse 
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4.2   Dynamic proxy example 

4.2.1 Example E: Optimization of multiple wells drilled at different times using 

the dynamic proxy 

The previous examples involved use of only the static proxy. This example involves the 

optimization of 3 monobore production wells drilled at different times during the 

production life of the field, and we apply the dynamic proxy. Three phases are 

considered, with each phase corresponding to the drilling and opening of one well. 

Phases are separated by a period of 200 days and the total production time is 1000 days. 

Figure 4.17 shows a production rate profile for 3 producers that are opened at the 

specified times. In Figure 4.17, production starts with Well-1 (red line) which produces 

for 1000 days. Well-2 (blue line) is assumed to be drilled and opened instantaneously at 

day 200 and produces for 800 days. Similarly, Well-3 (green line) starts production at day 

400 and produces for 600 days.  

The reservoir and well parameters used for this example are as described in the previous 

examples.  The genetic algorithm has 30 individuals in each generation and the algorithm 

was run for 50 generations. Three optimization runs were performed for this case with the 

following proxy options: no-proxy, static proxy (using only static attributes) and dynamic 

proxy (using static and dynamic attributes). The results obtained from the optimization 

with each proxy option are compared. When the proxy is used (static or dynamic), 50% 

of the individuals in each generation are simulated.  
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Figure 4.17: Example of production profile for 3 wells drilled at 200 day interval. 

The objective is to find the optimal location of the three producers by maximizing the 

NPV. The NPV is computed using equations 2.1 to 2.4. Table 4.6 summarizes the 

parameters that are used in the NPV calculation. 

Table 4.6: Example E – Parameters used for NPV calculation. 

Discount rate (%) 10 
junction cost ($) 300,000 
Oil price ($/bbl) 40 
Opex ($/bbl) 3 
Capex ($) 2,000,000 
drilling cost ($/ft) 500 
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The static attributes that are used are well length, volume of channels intersected and 

average permeability along the each well (these are the same as in previous examples). 

Dynamic attributes include average saturation along the well, average pressure along the 

well, average change in saturation along the well, average change in pressure along the 

well and change in oil volume around the well. The dynamic attributes are derived as 

described in Section 3.6. The average saturation and pressure are determined at the start 

of the simulation while the average change in saturation and average change in pressure 

are determined by taking the difference between the saturation and pressure at the start of 

production and at the end of the simulation run time, which is 1000 days. These dynamic 

attributes are combined with the static attributes for the dynamic proxy case, while in the 

static proxy case, only the static attributes are used. In the clustering procedure, 20 

clusters were used.  

The best solution found using the static proxy was ~ 72% of that found by the no proxy 

optimization, while the dynamic proxy found a solution with fitness that is about 90% of 

the fitness found by the no proxy case. The dynamic proxy case required only about half 

as much the number of simulations as the no proxy case. Figure 4.18 demonstrates that 

the dynamic proxy has better performance for early generations but it stalls after about 15 

generations, compared to the other cases. The dynamic proxy is therefore essential for 

this case, though there is still room for improvement. 

Figure 4.19 shows a comparison of the cumulative oil produced for the optimization 

using the three options. The cumulative oil produced for the solution with the dynamic 

proxy accelerated production compared to that from the static proxy, though production 

is less than in the no proxy case. These results are of course consistent with those in 

Figure 4.18.  
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Figure 4.18: Example E – Evolution of the fitness of best solution versus number of 
generations. 
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Figure 4.19: Example E - Cumulative oil produced for the best individual found in each 
case.  

 

Tests were performed to investigate the performance of the dynamic proxy using smaller 

percentages simulated. Simulating 10-20%, the solution found for the dynamic proxy was 

only around 40-50% of the solution found from the exhaustive run. The static proxy 

performed very poorly when smaller percentages were simulated.  Further development is 

required to improve the performance of the dynamic proxy when low percentages of 

cases are simulated.  
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Chapter 5 

5. Conclusions and future work 

5.1 Conclusions 

In this work, a statistical proxy was applied for the optimization of the deployment of 

nonconventional wells under geological uncertainty. The conclusions from this study are:  

• Cluster analysis based on calibrating simply computed attributes (e.g., well 

length, number of channels intersected) to simulation results provides a means for 

forming prior cdfs for the performance of a well in a particular geological model. 

By combining these proxy estimates for multiple geological realizations, a prior 

cdf for well performance, which accounts for both geological and proxy 

uncertainty, can be developed.    

• The prior performance estimate, in conjunction with the proxy uncertainty, can be 

used to select a subset of cases most appropriate for full simulation. The fitness of 

the remainder of the cases is determined using the proxy. It was demonstrated that 

the proxy is effective in terms of identifying appropriate cases for simulation and 

that a high degree of correlation exists between the proxy estimate and the 

simulated result. 

• In examples involving the optimization of a single monobore or dual-lateral well, 

the use of the static proxy was shown to provide excellent results. Specifically, by 

simulating only 10% of the cases (as determined by application of the proxy), 

optimums very close to those achieved by the full procedure were attained. 

• The decision maker’s risk attitude can be incorporated into the optimizations 

involving multiple realizations. The proxy allows a flexible definition of prior 

fitness of individuals by using a cdf of fitness for computing prior fitness of new 

individuals.  An example demonstrated the effect of different risk attitudes on the 

best solution found by the GA using a statistical proxy. 
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• In the example involving multiple nonconventional wells drilled at different 

times, the dynamic proxy improved the solution compared to the static proxy. 

However, a larger percentage (50%) of cases was required to be simulated in each 

generation.   

 

5.2 Future work 

The following items are proposed to improve the use of the statistical proxy for 

optimization of nonconventional well placement.  

• The GA is a stochastic algorithm and results will differ each time the algorithm is 

run.  Therefore, the proxy and no proxy cases should be run several times (with 

different initial populations) and the average behaviors compared. 

• Further tests should be performed using the statistical proxies (static and 

dynamic) to understand the effects of attributes and proxy performance on the 

optimization result. 

• Optimization algorithms other than the GA considered here should be explored 

for nonconventional well optimization. 
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Nomenclature 

C  cost , $/bbl, $/MMSCF or $/junction  

cdf    cumulative distribution function 

CF    cash flow, $ 

E    expenses , $ 

f          objective function value e.g. cumulative oil or NPV 

( )If     expectation of f for scenario I 

F(I)         fitness of individual I computed over Nreal realizations 

I    development scenario, individual 

(I,n)    individual-realization case 

L  chromosome length or length  

N number  

NPV    net present value, $ 

p    probability, fraction 

Q    cumulative production during a period, STB, SCF 

r             weight, fraction 

R    revenue, $ 

W   weight, fraction 

 

�            scaling factor, fraction 

σ        standard deviation 
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φ            porosity, fraction 

Subcripts 

10     probability that true fitness greater than 0.10 

c    crossover, rock compressibility (psi-1) 

gen     generation 

i    index 

I    individual, scenario 

ind    individual 

m    mutation 

n    index 

o    oil  

post        posterior 

prior    prior 

real    realization 

sim    simulation 

 

Superscripts 

DRILL    drilling 

JUNC    junction 

SCEN     scenario 

WELL    well 

 

 

 



 57 

References 
 
[1] Aitokhuehi, I., Durlofsky, L.J., Artus, V., Yeten, B., and Aziz, K.: “Optimization 

of advanced well type and performance”, in Proc. of the 9th European Conf. on 

the Mathe matics of Oil Recovery, Cannes, France, 30 August – 2 September 

2004. 

[2]  Artus, V., Durlofsky, L.J., Onwunalu, J. and Aziz, K.: “Optimization of 

nonconventional wells under uncertainty using statistical proxies”, submitted for 

publication. 

[3] Bittencourt, A.C., and Horne, R.: “Reservoir development and design 

optimization”, paper SPE 38895 presented at the 1997 SPE Annual Technical 

Conference and Exhibition, San Antonio, Texas, 5-8 October. 

[4] Cho, H.: “Integrated optimization on a long horizontal well length”, SPE 

Reservoir Evaluation and Engineering, p. 81-87, April 2003. 

[5] CMG (2004). Computer Modeling Group IMEX simulator, 2004. 

[6] Cox, E.: Fuzzy modeling and genetic algorithms for data mining exploration, first 

edition, Morgan Kaufman, San Francisco (2005). 

[7]     Duda, R.O., Hart, P.E., and Stork, D.G.: Pattern classification, second edition, 

John Wiley and Sons Inc., New York (2001). 

[8]    GeoQuest (2004a). ECLIPSE Reference Manual 2004A. Schlumberger. 

[9] Guyaguler, B.: “Optimization of well placement and assessment of uncertainty”, 

Ph.D. thesis, Stanford University, 2002. 

[10]  Guyaguler, B., and Horne, R.: “Uncertainty assessment of well placement 

optimization”, paper SPE 71625 presented at the 2001 SPE Annual Technical 

Conference and Exhibition, New Orleans, Louisiana, 30 September - 3 October. 



 58 

 [11]    Joshi, S.D.: Horizontal well technology. Pennwell Publishing Company, 

Oklahoma (1991). 

 [12] Pan, Y., and Horne, R.N.:  “Improved methods for multivariate optimization of 

field development scheduling and well placement design”, paper 49055 presented 

at the 1998 SPE Annual Technical Conference and Exhibition, New Orleans, 

Louisiana, 27-30 September. 

[13] Personal communication, Mike Litvak. 

[14] Ross, T.J.: Fuzzy logic for engineering applications, second edition, John Wiley 

and Sons, UK (2004). 

[15] Tan, P., Steinbach, M., and Kumar, V.: Introduction to data mining, Addison-

Wesley, Pearson Education Inc. (2005). 

[16] Yeten, B., Durlofsky, L.J., and Aziz, K.: “Optimization of nonconventional well 

type, location and trajectory”, paper SPE 77565 presented at 2002 SPE Annual 

Technical Conference and Exhibition held in San Antonio, 29 September – 2 

October, 2002. 

[17] Yeten, B.: “Optimum deployment of nonconventional wells”, Ph.D. thesis, 

Stanford University (2003). 


