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Abstract

Production optimization involves the determination of optimum well controls to max-

imize an objective function such as cumulative oil production or net present value.

In practice, this problem additionally requires the satisfaction of physical and eco-

nomic constraints. Thus the overall problem represents a challenging nonlinearly

constrained optimization. This work entails a comparative study of several popu-

lar optimization methods applied to the solution of the fully constrained production

optimization problem. The methods considered include gradient-based methods, a

genetic algorithm, general pattern search and Hooke-Jeeves direct search.

In the application of these methods to bound-constrained problems, it is shown that

derivative-free methods tend to be about an order of magnitude slower than gradient-

based methods that compute gradients using an adjoint procedure. The efficiency of

the derivative-free methods is significantly improved through the use of surrogate-

based optimization and distributed computing. A hybrid implementation combining

the most desirable parts of some of the different methods is presented and shown to

perform better than the individual methods.

In order to address the solution of the fully constrained production optimization prob-

lem, different constraint handling techniques are investigated, including the sequential

quadratic programming approach, penalty function approach, filter method, and a hy-

brid methodology. The results of the application of these methods indicate that the

gradient-based sequential quadratic programming, general pattern search with filter

and a hybrid method combining the genetic algorithm with a robust penalty function

treatment and an efficient local search method are the most promising.
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Chapter 1

Introduction

As a result of economic and population growth, the world total energy demand in

2030 is expected to be approximately 35% higher than it was in 2005, despite gains

in energy efficiency [19]. Oil and natural gas together provided almost 60% of global

energy in 2005, and forecasts indicate that they will continue to be significant contrib-

utors to global energy for decades to come. However, despite increasing demand, oil

production in many fields around the world is reaching a plateau and the number of

significant discoveries is decreasing every year. As a result, in the oil and gas industry,

significant effort is being made to develop effective reservoir management technolo-

gies to optimize oil and gas production. This has led to a great deal of interest in

the idea of efficient closed-loop reservoir management [24, 25], of which production

optimization is a crucial part.

In the context of efficient reservoir management, production optimization implies

maximizing or minimizing a particular objective function, such as cumulative oil or

water production or net present value (NPV) over a specified period of time by find-

ing the optimal set of control variables, such as well rates or bottom-hole pressures

(BHPs). Since the relationship between the reservoir dynamics and the control vari-

ables is in general nonlinear, finding the optimal set of controls is a very challenging

task. In addition, the problem usually needs to be solved subject to operational con-

straints, such as maximum and minimum BHPs, maximum field water injection rates,

surface facility handling capacities, etc. Thus, the problem is most properly viewed

as a constrained optimization problem.

1



2 CHAPTER 1. INTRODUCTION

1.1 Problem Statement and Objectives

The production optimization problem can be formally stated as:

max
u∈Rn

J (u) ,

subject to:

ci (u) ≤ 0 i = 1, · · · , m,

lB ≤ Au ≤ uB, (1.1)

where J (u) is the objective function (e.g., NPV or cumulative oil produced) to be

optimized, u is the vector of control variables (e.g., well BHPs), the ci’s represent the

m nonlinear inequality constraints in the problem (e.g., maximum allowable water

cut in any well) and lB ≤ Au ≤ uB refers to bound and linear constraints (such as

maximum and minimum well BHPs). The objective function is usually computed

using the output from a reservoir simulator, and this makes function evaluations

expensive.

This production optimization problem can be addressed using various gradient-based

optimization approaches. The derivative of the objective function with respect to

the controls, which is required for these gradient-based algorithms, can be computed

using numerical finite-differences, though this requires a high number of function eval-

uations to compute all of the components of the gradient. An efficient adjoint-based

technique for computing the required gradients greatly reduces the computational

effort [9, 24, 25, 43, 45, 46]. However, adjoint-based techniques require extraction of

information from the reservoir simulator during the course of the computations, and

therefore are only feasible with full access to and detailed knowledge of the simulator

source code. Even when such access exists, the effort associated with the development

of the adjoint code is significant. Finally, it is important to note that gradient-based

production optimization techniques, though computationally efficient, converge to

local rather than global optima.

The goals of this study are to implement and assess several optimization methods,
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with emphasis on procedures that do not require gradient information. These tech-

niques are referred to as derivative-free optimization algorithms [15]. As will be shown

in later chapters, these methods are straightforward to implement and most of them

parallelize naturally because the function evaluations do not have to be computed

sequentially.

Consistent with our expectations, the derivative-free methods assessed in this study

typically require about an order of magnitude more function evaluations than adjoint-

based optimization techniques. Therefore, computational cost reduction strategies,

such as surrogate-based optimization and distributed computing, which act to im-

prove the computational efficiency of the derivative-free methods, are also evaluated.

In addition, hybrid methodologies, which combine the positive features of different

algorithms, are investigated.

Many existing derivative-free implementations can readily handle problems with only

bound and linear constraints on the control variables. As stated earlier, however,

the production optimization problem is a generally constrained problem, including

nonlinear inequality constraints. Therefore, we investigate various techniques for

handling these nonlinear constraints with the overall goal of implementing a set of

methods appropriate for fully constrained production optimization problems.

1.2 Literature Survey

A wide variety of optimization algorithms have been used in industrial applications,

including production optimization. The optimization methods that have been applied

to solve the production optimization problem, as reported in the literature, can be

broadly classified as gradient-based and gradient-free methods.

1.2.1 Gradient-based Optimization Methods

The gradient-based optimization methods applied to the production optimization

problem include the steepest ascent/descent method, conjugate gradient method, and

sequential quadratic programming (SQP) [40]. These gradient-based optimization

methods are known to be efficient and show fast convergence when the gradient of
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the objective function with respect to the controls is available. Different methods for

computing the gradient have been used and they can be classified into three categories:

numerical gradients computed using finite-difference (FD) techniques [2, 31, 51, 53],

ensemble-based gradients computed using the ensemble Kalman filter (EnKF) [14],

and adjoint-based techniques from optimal control theory [9, 10, 24, 43, 45, 46]. The

advantage of using the numerical and ensemble-based gradients is that the simulator

can be treated as a “black box” and the gradients computed from function evaluations.

The adjoint method is far more efficient, but requires access to and detailed knowledge

of the reservoir simulator source code, as discussed above.

The available literature on the use of gradient-based optimization methods applied

to problems in the oil and gas industry include the following. Aitokhuehi [2] used

the conjugate gradient and Levenberg-Marquardt algorithms with numerical gradi-

ents for the real-time optimization of smart wells with model updating. Carroll [12]

demonstrated the use of Newton’s method, also with numerical gradients, for the opti-

mization of production systems. Kumar [29] applied the conjugate gradient method,

with numerically computed gradients, to optimize well settings so as to maximize

residually trapped CO2 in geologic carbon sequestration. Wang et al. [50, 51] used

SQP with numerical gradients to solve the production optimization problem, and

Litvak et al. [31] applied the method to the Prudhoe Bay E-field. Yeten et al. [53]

also used SQP for the optimization of smart well controls. Wang et al. [49] compared

the steepest ascent method with FD gradients, simultaneous perturbation stochas-

tic approximation (SPSA) gradients, and ensemble-based gradients for a production

optimization problem. They showed that the steepest ascent method with FD gra-

dients was the most efficient of the three methods, if a small perturbation size was

used. Chaudhri et al. [14] demonstrated the use of an improved ensemble-based gra-

dient computation approach for production optimization using the conjugate gradient

method. The use of numerical gradients decreases the efficiency of these gradient-

based optimization methods because the number of function evaluations (simulations)

typically scales with the dimension of the parameter space, i.e., with the number of

optimization parameters.

The use of adjoint procedures, which derive from optimal control theory, alleviates this
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problem by efficiently providing the gradient of the objective function with respect to

the controls. These gradients are obtained by solving an adjoint model using Jacobian

and other information extracted during the forward simulation. Sarma et al. [45, 46]

and Jansen and Brouwer [9, 10, 25] have demonstrated the effectiveness of adjoint

procedures for production optimization and closed-loop reservoir management. Ear-

lier investigators who applied optimal control theory for enhanced oil recovery include

Ramirez and co-workers [32, 38, 43], Asheim [4] and Virnovsky [48].

The preceding authors did not include consideration of nonlinear constraints. Sarma

et al. [45, 47] described a feasible direction algorithm for handling nonlinear path

constraints. The nonlinear inequality constraints in production optimization are path

constraints because they need to be satisfied at every time step during the reservoir

simulation. Sarma distinguished between two types of algorithms for dealing with

nonlinear path constraints: algorithms that solve the path constraints implicitly to-

gether with the dynamic system (presupposes full access to the forward model or

simulator), and algorithms that calculate the path constraints explicitly after the dy-

namic system has been solved. The algorithm in [45] and [47] is a constraint handling

method of the first type. It entails a feasible direction algorithm that uses lumped con-

straints and a feasible line search. Some iteration to achieve feasible controls at each

time step of the forward simulation is also required. Sarma et al. presented promising

results for certain types of nonlinearly constrained problems, but the method can-

not yet handle all types of relevant nonlinear constraints. The nonlinear constraint

handling techniques presented in this work are of the second type, which treat the

simulator as a black box. This enables us to handle any type of nonlinear constraint,

though the computational demands will significantly exceed those of Sarma et al.

1.2.2 Gradient-Free Optimization Methods

The gradient-free methods do not require the explicit calculation of objective function

gradients and use just the objective function values obtained from function evaluations

(reservoir simulation plus economic model evaluation). These gradient-free methods

can be further classified into deterministic (e.g., polytope or Nelder-Mead simplex

method [30, 39]) and stochastic methods, including genetic algorithms (GAs) and tabu
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search. Carroll [12] used the polytope method for production systems optimization

and showed that it is an effective alternative to gradient-based methods. Of the

stochastic algorithms, GAs appear to be the most commonly used and have been

applied for the solution of the well placement problem, where the objective is to

optimize well type, location and trajectory [21, 41, 44]. Cullick et al. [16] used a global

optimizer based on tabu search to optimize production strategies while accounting

for risk. Harding et al. [22] used a GA with problem-specific crossover operators to

select optimal well rates for the maximization of NPV. Almeida et al. [3] used the GA

for production optimization of smart wells, where they also accounted for technical

uncertainties, such as the risk of valve failure. It should be noted that none of this

work addressed nonlinear constraint handling.

There are many other derivative-free methods that have been applied in other con-

texts. Of particular note are the so-called direct search methods, which are stencil or

frame-based optimization techniques. Kolda et al. [28] and Conn et al. [15] presented

excellent reviews of these methods, including their history and convergence theory.

Direct search algorithms have been in existence for a long time. Hooke and Jeeves

[23] introduced their direct search method in 1961. Audet and Dennis [5] introduced

a more general version of pattern search methods and Marsden et al. applied these

methods to optimization problems in aeroacoustics [35] and medicine [34].

1.3 Thesis Outline

This project entails a comparative study of optimization methods, with an emphasis

on derivative-free methods, to solve generally constrained production optimization

problems. In Chapter 2, brief descriptions of the different optimization methods con-

sidered in this study are presented. First, a gradient-based method is presented,

with gradients obtained through numerical finite difference and using adjoint mod-

els. Next, the derivative-free methods are discussed. These include the GA and two

direct search methods, general pattern search (GPS) and Hooke-Jeeves direct search

(HJDS), which can be seen as a subset of GPS methods. The advantages and dis-

advantages of these methods are discussed, and a hybrid methodology that takes
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advantage of the positive features of different methods is presented. Strategies to re-

duce the computational cost of the derivative-free methods, including surrogate-based

optimization and distributed computing, are also discussed. The basic optimization

methods presented in Chapter 2 can only handle bound and linearly constrained

problems.

Chapter 3 presents techniques for nonlinear constraint handling. Such procedures

enable the methods presented in Chapter 2 to handle the fully constrained production

optimization problem, with bound, linear and nonlinear inequality constraints. The

use of sequential quadratic programming (SQP) to handle nonlinear constraints in

gradient-based optimization is described. This method is a very popular nonlinear

programming method because of its efficiency in searching for a constrained optimal

solution. The traditional penalty function methods are presented and it is noted

that these methods can be used with any base optimization algorithm because they

only modify the objective function. However, they may display a lack of robustness,

as shown by some of the results in Chapter 4. A variant of the traditional penalty

function for use with the GA is presented and is shown to improve the robustness

of the traditional method. The filter method for nonlinear constraint handling is

presented next and an implementation for use with the GPS algorithm is described.

A hybrid methodology, which combines the GA with robust penalty function and an

efficient local method, is also presented.

Chapter 4 presents results using the methods described in Chapters 2 and 3. First

the base methods presented in Chapter 2 are used to solve two production optimiza-

tion cases (subject only to bound constraints) with heterogeneous reservoir models.

The results highlight the characteristics of the different methods. From the results,

the efficiency of the adjoint-based method is apparent. The significant improvement

achieved when the derivative-free methods are used with surrogates, and the speedup

obtained using distributed computing, are demonstrated. Next, nonlinear constraints

are introduced in the production optimization problem and the different constraint

handling techniques are evaluated using two different heterogeneous reservoir mod-

els. From the results of these cases, it is seen that the SQP constraint handling, the

filter method for GPS, and a hybrid of the robust penalty function GA and a local
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optimization method with traditional penalty, are the most promising methods for

the solution of the fully constrained production optimization problem.

The thesis concludes in Chapter 5, where the methods and findings are summarized

and recommendations for future work are provided.



Chapter 2

Optimization Methods Considered

The derivative-free methods considered in this study are the genetic algorithm (GA),

general pattern search (GPS) and Hooke-Jeeves direct search (HJDS). In this chapter,

brief descriptions of these methods, together with the gradient-based method used for

comparison, are provided. A hybrid methodology involving the robust exploratory

GA and the more efficient local gradient-based procedure is described. Strategies

for improving the computational efficiency of the derivative-free methods are also

discussed.

2.1 Gradient-based Methods

Optimization methods are basically prescribed procedures for searching the solu-

tion space with the goal of finding the optimum point. Gradient-based optimization

methods utilize the gradient of the objective function with respect to the control

variables to guide the search. A good example is the steepest ascent/descent (maxi-

mize/minimize) method which searches using

uk+1 = uk + αk (∇J)k , (2.1)

where αk is the step size for the kth iteration (found using a line search [40]) and

(∇J)k is the gradient of the objective function with respect to the control vector u

evaluated at iteration k. A typical gradient based optimization process is illustrated

9
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in Figure 2.1 for a problem with two control variables. Here u0 designates the initial

guess, u∗ is the optimum point, and the closed curves are contours of the objective

function. Equation 2.1 and Figure 2.1 show that an iteration in a gradient-based

optimization method usually entails the computation of a gradient, the use of the

gradient to determine a search direction, and a line search in this direction to improve

the objective function.

u0

u*

Figure 2.1: Illustration of gradient-based optimization procedure

The actual gradient-based optimization algorithm used in this study is the sequential

quadratic programming approach (SQP) [40]. This procedure will be discussed in

more detail in Chapter 3 where we present gradient-based optimization for the fully

constrained problem. The objective function gradients used in gradient-based meth-

ods can be obtained using either an adjoint procedure or numerical finite differences.

We now briefly describe these two approaches.

2.1.1 Gradient Computation from Adjoint Model

This description of the adjoint model for gradient computation follows that of Sarma

et al. [46]. In the adjoint formulation, the objective function to be optimized is given

by:

J (u) =

N−1
∑

n=0

Ln
(

xn+1,un
)

, (2.2)
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where x refers to the dynamic states of the system, L is a kernel known as the La-

grangian, n designates time step and N is the total number of time steps. In addition

to the linear and nonlinear constraints presented in Equation 1.1, this objective func-

tion is optimized subject to two additional sets of constraints given by:

gn (xn+1,xn,un) = 0 ∀n ∈ (0, · · · , N − 1) ,

x0 = x0 (Initial Condition) , (2.3)

where the set of equations gn, together with the initial condition, define the dynamic

system (reservoir simulation equations for each grid block at each time step). In

order to obtain the adjoint model, an augmented objective function, JA, consisting of

a combination of the original objective function and the constraints in Equation 2.3

is constructed. The form of this augmented objective function is:

JA =

N−1
∑

n=0

Ln
(

xn+1,un
)

+ λ
T0

(

x0 − x0

)

+

N−1
∑

n=0

λ
T (n+1)gn

(

xn+1,xn,un
)

, (2.4)

where the vectors λ
n are known as Lagrange multipliers and superscript T designates

transpose. For optimality of the original problem, as well as the augmented problem,

the first variation of JA must equal zero. The first variation of JA is given by:

δJA =

[

∂LN−1

∂xN
+ λ

TN ∂gN−1

∂xN

]

δxN +
N−1
∑

n=1

[

∂Ln−1

∂xn
+ λ

T (n+1) ∂gn

∂xn
+ λ

Tn ∂gn−1

∂xn

]

δxn

+
N−1
∑

n=0

[

∂Ln

∂un
+ λ

T (n+1) ∂gn

∂un

]

δun. (2.5)

The terms involving δxn can be set to zero by choosing λ
n such that:

λ
Tn = −

[

∂Ln−1

∂xn
+ λ

T (n+1) ∂gn

∂xn

] [

∂gn−1

∂xn

]−1

∀n = 1, . . . , N − 1

λ
TN = −

[

∂LN−1

∂xN

] [

∂gN−1

∂xN

]−1

(Final Condition). (2.6)



12 CHAPTER 2. OPTIMIZATION METHODS CONSIDERED

This equation constitutes the adjoint model. Note that λ
n depends on λ

n+1, therefore

the adjoint problem is solved backwards in time. With the λ
n’s calculated from

solving the adjoint model, Equation 2.5 reduces to:

δJA =
N−1
∑

n=0

[

∂Ln

∂un
+ λ

T (n+1) ∂gn

∂un

]

δun. (2.7)

Therefore, the required gradients of the objective function with respect to the controls

are given as:

dJ

dun
=

dJA

dun
=

[

∂Ln

∂un
+ λT (n+1) ∂gn

∂un

]

∀n ∈ (0, . . . , N − 1) . (2.8)

The ∂gn−1/∂xn term corresponds to the Jacobian matrix of the forward problem.

Other terms in Equations 2.6 and 2.8 are also computed during the flow simulations.

This is why access to the source code of the reservoir simulator is needed.

The gradients from Equation 2.8 are used to guide the search using any suitable

gradient-based optimizer. The advantage of the adjoint method is that it is very

efficient since each gradient computation consists of one forward reservoir simulation

and one (backward) solution of Equation 2.6. In addition to requiring access to the

simulator source code, another complication of using adjoints is that in order to handle

nonlinear constraints, gradients of all the constraints with respect to the controls are,

in general, required. Sarma et al. [45, 47] showed, however, that a constraint lumping

procedure was quite effective. For the full description of the adjoint technique and

its implementation in GPRS (Stanford’s general purpose research simulator [11, 26]),

see Sarma [45].

2.1.2 Gradient Computation from Finite Differences

Finite difference methods can also be used to compute gradients, and this was done as

part of this study. It was found that using the second-order central difference stencil

provided better results than the first-order forward difference. The central difference

formula to approximate the components of the gradient is:
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∂J

∂ui

=
J (ui + δui) − J (ui − δui)

2δui

, i = 1, . . . , Nu, (2.9)

where Nu is the total number of control variables and δui is the perturbation size. The

advantage of this method is that it is easy to couple to any simulator because only

function evaluations are needed in order to compute the gradient. The disadvantage

is that for each gradient computation, 2Nu simulation runs are required. This implies

that the method will not be practical for a large number of controls and expensive

simulation runs, which is often the case in production optimization because simulation

runs can require minutes or hours of computation. An additional disadvantage of this

method is that the perturbation size, δui, must be selected carefully for the method

to yield reasonable results.

We next consider derivative-free methods, which do not need gradient information to

search the solution space for an optimal solution.

2.2 Derivative-Free Methods

2.2.1 Genetic Algorithms

Genetic algorithms (GAs) are stochastic search techniques that are based on the

theory of natural selection. GAs find solutions to optimization problems by generating

a set of possible solutions called a population, evaluating the fitness (i.e., objective

function value) of all the “individuals” in the population, ranking these individuals,

and then applying certain GA operators to generate a new set of solutions (a new

population). An individual refers to a potential solution to the optimization problem

(a vector of control variables in the production optimization problem).

In the GA optimization process, the population of individuals evolves from generation

(iteration level) to generation mainly using the GA operators of selection, crossover

and mutation. The way these operators work is illustrated in Figure 2.2.

In a particular generation, the selection operator chooses the fittest individuals (in-

dividuals with the best objective function values) in the population to be parents,
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Figure 2.2: Illustration of main GA operators

which will produce the next generation of individuals. The selection operator mimics

the survival of the fittest evolution strategy in nature. It is the operator that ensures

that the population moves towards a better region of the solution space during the

optimization process. There are different kinds of selection including stochastic uni-

form, roulette wheel and tournament, among others. Refer to [42] for a more detailed

description of these different selection techniques. In the GA implementation used for

this study (GA available in the Matlab Genetic Algorithm and Direct Search Toolbox

[36]), the user can specify the type of selection used. For example, in Chapter 3, it

will be shown that using the tournament selection technique enables the use of a

robust penalty function method with the GA for solving the nonlinearly constrained

problem.

After selecting the best individuals as parents, the crossover operator combines these

parents to produce children (population of individuals for the next generation). Figure

2.2 illustrates the two-point crossover technique where the elements of two parents

are crossed over at two points to produce two children. Other kinds of crossover

include the single-point and arithmetic for vectors with real (not binary) bits. More

details of the different kinds of crossover methods can be found in [36, 42]. The

crossover operator is responsible for probabilistically combining fit individuals with

the possibility of producing better children. Thus the objective function tends to

improve as the optimization progresses.
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Another major GA operator is the mutation operator. In mutation, a specific bit

or element of a parent or control vector is probabilistically changed to a new value

(see Figure 2.2). The mutation is governed by the mutation rate and it gives the GA

its exploratory nature because it is possible to mutate an individual into any region

of the search space. Specifying the selection method, crossover method and rate, as

well as the mutation type and rate, can make the GA applicable for many types of

optimization problems. For this reason, GAs are regarded as robust optimizers.

Another GA feature that can be useful is elitism, where one or more of the best

individuals in a population always proceed to the next generation. This option as-

sures that the best individuals are not lost to crossover and mutation. By using the

elitism option, the user ensures monotonicity in the evolution of the best individual

throughout the optimization process.

Since the GA is a population-based optimization algorithm, one of the most important

parameters for the GA is the population size. If the population size is too small,

the GA may exhibit premature convergence because the population loses diversity

quickly (the individuals become too much alike). Diversity is here defined as the

average Euclidean distance between individuals in the population. On the other

hand, if the population size is too large, the GA may waste computational resources,

which implies that many simulations must be performed for improvement. See [42]

for further assessment of this issue. In this work, a constant GA population size is

used. The workflow for the GA applied here is presented in Figure 2.3.

In Figure 2.3, the box highlighted in red shows how the simulator is coupled to the

GA code. Here the simulator represents the fitness function evaluation module. It is

in this module that further enhancements, presented in Section 2.4, for improvement

of the GA’s performance will be implemented. The stopping/convergence criteria

used in the GA workflow include the user defined maximum number of generations

(which is typically constrained by the amount of time and computational resources

available) and the number of generations without an improvement in the objective

function. More details about the GA implementation can be found in [36].
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Figure 2.3: Workflow of the GA optimization process

GAs are particularly useful for exploring complex nonsmooth search spaces with mul-

tiple local optima and are able to identify promising regions in the search space.

However, the GA often shows slow convergence to an actual optimal value. In other

words, the GA can get close to an optimal solution, but may be slow to achieve the

exact optimum. For this reason, a hybrid implementation of the exploratory GA with

a more efficient local search was implemented. This hybrid methodology is presented

in Section 2.3.

2.2.2 General Pattern Search

The general pattern search (GPS) optimization method is a subset of direct search

methods. These techniques have become increasingly popular in various applications

where objective function gradients are not readily available or the objective function

is noisy and gradients (especially approximate gradients) can be misleading. The pop-

ularity of these methods is driven in part by the fact that there is recently developed

theory that proves convergence of the direct search methods to optimal solutions.

The direct search methods are frame or stencil-based optimization procedures that

work only with objective function evaluations (no gradient information required).

The GPS algorithm at each iteration can be divided into two steps: an optional search



2.2. DERIVATIVE-FREE METHODS 17

step and a required poll step. The search step applies user-defined search strategies

and can lead to a great increase in the efficiency of the algorithm. This gives the

user quite a bit of flexibility, because any other suitable optimization method can be

used to search the solution space for a better point in any iteration. The algorithm

goes into the poll step only when the search step is unsuccessful. It will be shown

later that using a surrogate-based search step can improve the efficiency of the GPS

algorithm. The poll step is required to provide convergence to an optimal solution

[28]. In any particular iteration k, polling is performed by defining a set of poll points,

obtained by building a frame consisting of a set of poll directions, Dk, and step-size

∆k, and evaluating the objective function at each of these poll points. Dk is a matrix

whose columns form a positive spanning basis set of R
n, where n is the number of

optimization variables and the dimension of the solution space. Figure 2.4 presents

two types of frames that positively span R
2.

Figure 2.4: Examples of positive spanning frames for R
n with n+1 and 2n poll points

(from [28])

The use of positive spanning directions is important in the convergence theory because

it ensures that at least one of the poll directions is an ascent/descent direction. This

implies that as long as the current iterate is not an optimum point, one of the poll

directions in the frame will lead to an improvement in the objective function value.

Figure 2.5 illustrates a sequence of polls for a simple version of the GPS algorithm

with 2n poll directions in R
2. Typical production optimization problems will of course

entail many more than two control parameters, so the dimensionality of the search

space will be much higher (e.g., 100 for the example case considered in Section 4.2.2).

From Figure 2.5 it can be seen that the basic idea for the GPS method, and most direct

search methods in general, is to traverse the solution space from an initial point to
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Figure 2.5: Illustration of a sequence of polls in R
n with 2n poll frame (from [28])

the optimal point using a sequence of poll steps based on frame/stencil directions and

a step-size defined on an underlying mesh. A successful iteration occurs when a poll

point with a better function value than the current iterate is found. An unsuccessful

iteration occurs when no improvement is obtained with the current step size. When

this occurs, the poll step size is reduced, unless a stopping criterion, i.e., a minimum

step size, prevents this. In Figure 2.5, as the optimization progresses, the polling

stencil remains the same, but this does not have to be the case.

There is also a generalized version of the GPS algorithm called the Mesh Adaptive

Direct Search (MADS) algorithm. MADS uses variable direction vectors to build the

polling stencil [7]. The performance of both GPS and MADS were found to be similar
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for the set of problems considered in this study, hence only the GPS results will be

presented in Chapter 4. Refer to [36] for more details of the implementation of GPS

and MADS and [28] for more algorithmic details and convergence theory for the GPS

method.

The advantages of using the GPS method include the obvious fact that gradients of

the objective function are not required in the optimization process. Also, the method

parallelizes naturally since the objective function evaluations of the poll points in

a particular iteration can be accomplished in a distributed fashion over multiple

processors. The disadvantage is that in the absence of multiple processors, the method

can be very slow since it requires O(n) function evaluations (reservoir simulations in

our case) at each iteration. In Section 2.4, a surrogate-based approach for improving

the efficiency of this method will be introduced.

2.2.3 Hooke-Jeeves Direct Search

The Hooke-Jeeves Direct Search (HJDS) algorithm is also a stencil-based method,

but it traverses the solution space in a different fashion than the GPS method. The

HJDS optimization strategy is based on two types of moves: exploratory moves and

pattern moves. These moves are illustrated in Figure 2.6 for an optimization sequence

in R
2.

Figure 2.6: Illustration of exploratory and pattern moves in HJDS
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The algorithm begins with a base point u and step size ∆. During the exploratory

move, the objective function is evaluated at successive perturbations of the base point

in the search directions {dj}, where dj is the jth column of the direction matrix D

(which is equal to the identity matrix I for the implementation used in this study).

The best value Jb = J(ub) and the best point ub are recorded, and ub is then set

to u. In the exploratory sampling, each coordinate direction is searched by first

evaluating J(ub + dj) and only evaluating J(ub − dj) if J(ub + dj) is less than Jb

(for a maximization problem). The exploratory phase will either produce a new base

point or it will fail, meaning that no improving point was found, in which case the

step size will be reduced.

This HJDS algorithm is inherently serial in nature since the perturbations of element

ui depend on the results of the perturbations of element ui−1. If the exploratory

phase succeeds in finding an improving point, ub, then the underlying successful search

direction db (dotted arrow in Figure 2.6) is given by db = ub−u. At this point, rather

than center the next exploration at ub, the algorithm performs the pattern move,

which is an aggressive step that tries to move further in the underlying successful

direction. The algorithm centers the next exploratory move at uc = u+2db = ub+db.

If the second exploratory move centered at uc fails to improve upon Jb, then the

exploratory move centered at ub is tried. If that fails, then ∆ is reduced, u is set to

ub and the process is repeated.

In the implementation used in this study, the optimization is stopped either after a

predefined number of iterations or if a certain number of iterations occurs without any

improvement in the objective function, or if convergence is achieved. Convergence in

this case is defined as ∆ decreasing below a user-defined tolerance. For more details

about the HJDS method, see [23, 27].

The advantage of the HJDS method is that it uses a very efficient search strat-

egy in traversing the solution space. This search strategy is only based on function

evaluations and does not require gradient computation, even though it moves along

gradient-like search directions. The main drawback of the HJDS method is that it

is inherently serial because of its search strategy and thus cannot be improved by

straightforward distributed computing.
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The HJDS, GPS and gradient-based methods are considered to be local optimizers

that are dependent on the initial guess needed to begin the optimization process.

However, in situations where the objective function surface contains multiple local

optima, both the HJDS and GPS algorithms have the advantage over the gradient-

based methods that, with a large enough initial step size, they can avoid many of the

local optima that would trap gradient-based methods, enabling them to move into

better regions of the solution space. This does not mean that these direct search

methods will find the global optimum, but that they can provide better solutions

than gradient-based optimizers in some cases.

2.3 Hybrid Methodology

Each of the methods presented has advantages and disadvantages. It is possible to

combine some of the methods so as to mitigate some of the disadvantages. The hybrid

methodology consists of two phases. The first phase is the more exploratory phase of

the algorithm, while the second phase represents a more efficient local search. The

hybrid implementation used in this study consists of the first phase optimization with

the GA and the second phase optimization with the SQP method with adjoint-based

gradient computation, using the result from the first phase as the initial guess.

The GA was chosen for the first phase because of its robustness, ability to broadly

search the solution space (exploration) and the fact that it does not require a user-

specified initial guess since the initial population is generated randomly. Also, the

GA is population-based and generates a set of possible solutions that can be used

as different initial guesses for the second phase. For the second phase, the SQP

method with adjoint-based gradient computation was chosen for its efficiency and

fast convergence to a local optimum. The idea is that the GA will generate a point

in the vicinity of the optimal solution, and the SQP method will quickly converge to

this solution.
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2.4 Computational Enhancement Strategies

One of the main drawbacks that all the derivative-free methods have is that the

computational cost (number of function evaluations) scales with the number of op-

timization variables. So, for production optimization problems with a large number

of variables (≥ 100), these methods become impractical in their basic form. Several

researchers have addressed this issue and have devised various strategies to reduce

the computational cost of derivative-free methods [15, 27]. We now discuss some of

these strategies.

2.4.1 Surrogate-based Optimization

By far the most expensive part of the production optimization process is the evalua-

tion of the objective function because this requires computationally expensive reser-

voir simulations to be performed. One way to reduce this high computational cost is

by using surrogates or proxies for the reservoir simulator. Two such approaches are

the use of computationally efficient reduced numerics or reduced physics models, such

as reduced order models and streamline simulators, and the use of functional surro-

gates or response surfaces obtained from some kind of interpolation of the function

values found in previous iterations.

The use of functional surrogates such as artificial neural networks (ANN), kriging

response surfaces and statistical proxies with GAs has been investigated by several

researchers within the context of the well placement problem [21, 41, 52]. In this

study, the use of ANN with the GA and the use of the kriging surrogate with GPS

will be investigated for the production optimization problem.

Genetic Algorithm with Artificial Neural Networks

Artificial neural networks (ANNs) are composed of simple elements inspired by bi-

ological nervous systems. A neural network can be trained to perform a particular

function by adjusting the values of the connections (weights) between elements. Typ-

ically, neural networks are adjusted, or trained, so that a particular input leads to a

specific target output. This training situation is illustrated in Figure 2.7. See [18] for
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a more detailed description of ANNs and their implementation.

Figure 2.7: Illustration of the workflow for training an ANN (from [18])

In this study, we apply ANNs to improve the efficiency of the GA used to solve

the production optimization problem. Recall from Figure 2.3 that the simulator is

coupled to the GA at the function evaluation module (pictured in red). This is the

module where we can include the ANN. The basic idea is to run and save simulated

individuals with their corresponding objective function values for a few generations

of the GA, and to then use these points to train an ANN. At subsequent generations,

instead of evaluating the fitness of all of the individuals in the population using the

reservoir simulator, only a user-defined fraction of the population will have their

fitness evaluated by the simulator. For the remainder of the population, fitness will

be evaluated using the trained ANN.

With the ANN surrogate, expensive function evaluations will not be wasted on por-

tions of the GA population that are not expected to be used as parents for the next

generation. By only simulating a small portion of the population, as opposed to the

full population, significant computational savings can be achieved. The disadvantage

of using this method is that in order to construct sufficiently accurate ANN approx-

imations to the objective function, a large set of inputs and corresponding fitnesses

are required. This means we may need to simulate many generations in the beginning

of the optimization process to adequately train the ANN.
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General Pattern Search with DACE Surrogate

Recall from Section 2.2.2 that the GPS method is divided into search and poll steps.

Booker et al. [8] used this two-step characteristic of the GPS method to develop the

Surrogate Management Framework (SMF) where a surrogate is created and calibrated

in the beginning of the optimization process and then used in the GPS search steps.

For a surrogate-based search step, an approximation S(u) to the objective function

J(u) is optimized and the resulting point evaluated with the simulator. If the solution

from the surrogate model gives an improvement in the objective function, the search

is declared successful, the surrogate model is updated, and the algorithm moves to

the next iteration without going into the poll step. In the implementation used here,

a response surface obtained by the Matlab kriging toolbox, DACE, is used as the

surrogate. See [33] for a detailed description of the theory and implementation of the

DACE kriging toolbox. Figure 2.8 presents a kriging response surface generated by

this Matlab toolbox for a 2D problem.

Figure 2.8: Kriging response surface for 2D problem with data points shown in black
(from [33])

The inclusion of the surrogate-based search step in the GPS algorithm leads to a

significant reduction in computational expense. As will be shown later in the results
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section, the GPS algorithm with a surrogate-based search step shows very large im-

provement within the first few iterations/function evaluations because efficient search-

ing of the solution space is first accomplished using the computationally inexpensive

surrogate model.

2.4.2 Distributed Computing

The computational efficiency of some of the optimization techniques presented above

can be significantly enhanced by distributing the objective function evaluations (reser-

voir simulations) over several computer processors; i.e., by running each simulation on

a different processor. If a parallel reservoir simulator is available, a given simulation

run could be distributed over many processors, though this degree of parallelization

is not considered here. The speedup obtained by the straightforward distribution of

the objective function evaluations will depend on the number of processors available,

but we have found that even with as few as 10 processors, significant speedup can be

achieved.

Of the optimization methods presented, the gradient-based methods with finite dif-

ference gradients (using Equation 2.9), the GA, and the GPS algorithms can be run

in a straightforward distributed fashion. This is because for all these techniques, a

number of independent simulations can be performed simultaneously. Another time-

saving strategy implemented in the algorithms considered in this work is caching.

This means that some number of function evaluations are saved so that none is re-

peated. This plays a significant role in the direct search methods where points may

be re-evaluated due to the regular nature of the polling stencils.

This concludes the basic description of the optimization methods considered in this

study, together with some strategies for improving efficiency. We note that, as de-

scribed here, these methods handle unconstrained optimization problems. The ex-

tension to bound and linearly constrained problems is straightforward. For the GA,

crossover and mutation operations are performed such that the generated individuals

stay within the boundaries. For the direct search methods, the poll directions are

chosen such that for bound constraints, the poll step is modified to keep poll points
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either on or within the bounds. For linear constraints, the poll directions are chosen

to be parallel to the active linear constraints at the current iterate. Refer to the

references presented throughout this chapter for more detailed descriptions of how

the respective algorithms perform linear constraint handling.

The actual implementations of all the algorithms described in this chapter handle

bound and linearly constrained optimization problems. The results presented in Sec-

tion 4.1 are for bound-constrained production optimization problems. The following

chapter presents nonlinear constraint handling techniques that enable the methods

to handle fully constrained production optimization problems.



Chapter 3

Optimization with Nonlinear

Constraints

The previous chapter presented descriptions of the basic optimization methods consid-

ered in this study. Additional treatments are required to handle nonlinear constraints,

which commonly arise in practical production optimization problems. For instance

there could be a field wide maximum water injection constraint or a minimum field oil

rate constraint with wells that are BHP controlled. The following sections describe

nonlinear constraint handling techniques for the optimization methods presented in

Chapter 2.

3.1 Sequential Quadratic Programming

The sequential quadratic programming (SQP) method represents the state-of-the-

art in gradient-based nonlinear programming methods. The development of the SQP

method presented here follows that of [40]. The method focuses on the solution of the

Karush-Kuhn-Tucker (KKT) equations. Referring to Equation 1.1, the KKT equa-

tions, which are necessary conditions for optimality for a constrained optimization

problem [40], can be stated as:

27
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∇J (u∗) +
m

∑

i=1

λ∗

i · ∇ci (u
∗) = 0,

ci (u
∗) ≤ 0 i = 1, · · · , m,

λ∗

i ≥ 0 i = 1, · · · , m, (3.1)

where m is the total number of inequality constraints in the problem, u∗ represents

the constrained optimal point, and the λ∗

i ’s are the optimal Lagrange multipliers. In

Equation 3.1, we consider only the maximum constraint violation for each type of

constraint. When the maximum constraint violation is satisfied, constraints at all

time steps will be honored. The first equation describes a canceling of the gradients

between the objective function and the active constraints at the solution point, u∗. For

the gradients to be canceled, Lagrange multipliers, λi, i = 1, · · · , m, are necessary to

balance the magnitudes of the objective function and constraint gradients. The idea of

the SQP method is to closely mimic Newton’s method for unconstrained optimization,

within the context of constrained optimization. At each iteration, an approximation

is made of the Hessian of the Lagrangian function using a quasi-Newton updating

method, and this Hessian is used to generate a QP subproblem whose solution is

used to form a search direction for a line search procedure.

Given the general fully constrained production optimization formulation, Equation

1.1, SQP involves the formulation of a QP subproblem based on a quadratic approx-

imation of the following Lagrangian function:

L (u, λ) = J (u) +

m
∑

i=1

λi · ∇ci (u). (3.2)

The resulting QP subproblem to be solved at each iteration of the SQP method is:

min
d∈Rn

1

2
dT Hkd + ∇J (uk)

T
d,

subject to:

∇ci (uk)
T
d + ci (uk) ≤ 0 i = 1, · · · , m, (3.3)
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where Hk is the approximation of the Hessian of the Lagrange function at iteration k

and d is the desired search direction. This subproblem can be solved using any QP

algorithm (see [40] for a description of some QP algorithms). The solution is then

used to form a new iterate:

uk+1 = uk + αkdk. (3.4)

The step length parameter, αk, is determined by an appropriate line search procedure

so that a sufficient decrease in a merit function is obtained. Refer to [37, 40] for

more detailed descriptions of the SQP method, including the updating of the Hessian

matrix, solution of the QP subproblem, and the line search using a merit function.

The SQP implementation used in this work is available in the Matlab optimization

toolbox. In the current implementation, the gradients required in Equations 3.2 and

3.3 are provided by adjoint models or finite differences for the objective function

gradients and by finite differences (using an equation similar to Equation 2.9) for

each of the constraint gradients.

3.2 Penalty Functions

The penalty function method for constraint handling is a generic method that can be

used with most optimization algorithms. Its performance, however, is not satisfactory

in some cases. This section introduces penalty functions, discusses their advantages

and disadvantages, and describes a more robust formulation for use with the GA.

3.2.1 Basic Description

The penalty function method for handling inequality constraints in optimization prob-

lems involves modifying the objective function by including a penalty term which

depends on the constraint violation. By modifying the objective function in this way,

the production optimization problem (Equation 1.1) can be expressed as:
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max
u∈Rn

F (u) = J (u) − ρh (u) ,

subject to:

lB ≤ Au ≤ uB,

where h (u) =

m
∑

i=1

max (0, ci (u))2. (3.5)

In this equation, h (u) is the lumped constraint violation function, which is zero when

all the constraints are satisfied and has a positive value when any of the constraints

are violated, F is the modified objective function, and ρ > 0 is called the penalty

parameter. From Equation 3.5 it can be seen that the penalty function approach

changes the original problem with nonlinear inequality constraints to a problem with

only bound and linear constraints, which can be handled by any of the optimization

methods presented in Chapter 2. In the above equation, a single penalty parameter

is used because the constraints are normalized. The penalty parameter acts to ensure

that the constraint violation is about the same order of magnitude as the objective

function value.

The optimal solution of F (u) depends on the choice of the penalty parameter ρ. If

ρ is chosen correctly, the solution of the optimization problem can be efficient and

accurate. On the other hand, a poor choice of ρ could lead to poor performance and

inaccurate solutions. If ρ is too small, the distortion of the objective function is small,

but the optimum of F (u) may not be near the true constrained optimum. If ρ is

too large, the distortion of the objective function might be so severe that F (u) may

have artificial locally optimal solutions not present in the original problem [17]. In

addition, if ρ is too large, then any monotonic method would be forced to follow the

nonlinear constraint manifold very closely, resulting in slow convergence.

In order to avoid a poor choice of ρ, iteration is usually performed. This involves

starting with an initial guess for ρ, solving a subproblem, and then updating ρ at

every iteration. This method may work well but has limitations in practice because it

requires a lot of function evaluations. Another way to obtain a reasonable choice for
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ρ is by tuning, where different intuitive choices of ρ are used to solve the optimization

problem and the one with the best result is selected. Again, this method could require

many function evaluations. Since in solving the production optimization problem the

function evaluations involve running a reservoir simulator, these evaluations can be

very expensive. There have been different adaptations of the basic penalty function

method for specific use with particular optimization algorithms. The following sub-

section presents a more robust penalty function formulation, proposed by [17], for use

with the GA.

3.2.2 Parameterless Penalty Function for GAs

In this method, a penalty term is included in the objective function in order to

penalize infeasible solutions, but this term differs from that appearing in Equation

3.5. Our description here follows that presented by Deb in [17].

The parameterless penalty method uses a tournament GA selection operator, where

individuals in a randomly selected portion of the current population are compared.

During the tournaments, the parameterless penalty function formulation enforces the

following criteria:

1. Any feasible solution is preferred over any infeasible solution.

2. When comparing a set of feasible solutions, the one with the better objective

function value, J (u), is preferred.

3. When comparing a set of infeasible solutions, the one with the smaller constraint

violation, h (u), is preferred.

Recall from the previous section that the penalty parameter is needed to make the

constraint violation and objective function about the same magnitude. In this param-

eterless penalty formulation, the penalty parameter is not needed because individuals

are never compared in terms of both objective function and constraint violation in the

three tournament scenarios presented above. The modified objective function based

on the parameterless penalty function for use in production optimization using the

GA with tournament selection is:
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F (u) =











J (u) if ci (u) ≤ 0 ∀i = 1, 2, · · · , m,

Jmin −

m
∑

i=1

max (0, ci (u))2 otherwise,
(3.6)

where the parameter Jmin is the objective function value of the feasible solution

with the smallest value of J in the population (for a maximization problem). Thus,

the fitness of an infeasible solution depends not only on the amount of constraint

violation, but also on the current population of solutions. However, the fitness of a

feasible solution is simply equal to its objective function value.

This parameterless penalty function constraint handling technique is illustrated in

Figure 3.1 using a minimization example presented in [17]. The first plot shows the

objective function contours, constraint boundary, and the unconstrained (green star)

and constrained (red star) optima. The second plot shows the original objective

function contours within the constraint boundary and the modified function contours

outside this boundary.

Figure 3.1: Illustration of how parameterless penalty function modifies original prob-
lem (from [17])

We see in Figure 3.1 that the parameterless penalty formulation modifies the problem

such that the contours are unchanged inside the feasible region, whereas they become
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parallel to the constraint surface outside the feasible region. Thus, when most solu-

tions in a population are infeasible, the search forces solutions to move towards the

feasible region. Once sufficient solutions exist inside the feasible region, the search is

directed by the objective function alone. In other words, through the course of the

GA optimization, individuals are attracted to feasible regions. Then, the selection

operator works with the true objective function value to focus the search in the iden-

tified feasible region. This leads to a high degree of robustness for this parameterless

penalty function approach since a feasible output is generally obtained.

3.3 The Filter Method

Filter methods are step acceptance mechanisms that avoid the robustness issues

present in the traditional penalty function methods. Instead of combining the objec-

tive function and constraint violation into a single function, Equation 1.1 is viewed

as a bi-objective optimization in which we seek to maximize/minimize J (u) and

minimize h (u). The second objective is more important because the solution deter-

mined by the optimization algorithm must be feasible. For the case of minimization,

a point ua is said to dominate another point ub if and only if J (ua) ≤ J (ub) and

h (ua) ≤ h (ub). A filter is defined as a list of pairs (h (uf ) , J (uf )) such that no pair

dominates another pair. An iterate uk is acceptable to a filter if (h (uk) , J (uk)) is not

dominated by any pair in the filter. Refer to [20, 40] for a more detailed introduction

to and history of filter methods. The following presents the use of the filter method

with GPS (this description follows that given by Audet and Dennis in [6]).

In adapting the filter method for use in GPS, two types of solutions are defined:

the best feasible solution and the closest-to-feasible infeasible solution. These are

presented in objective function-constraint violation space in Figure 3.2, together with

a filter at some iteration k, for a minimization problem. In this figure, fF
k represents

the best feasible solution up to iteration k. The point
(

hI
k, f

I
k

)

represents the closest-

to-feasible infeasible solution, which is the least infeasible filter point. During polling

in the GPS algorithm, either one of these solutions can be used as the poll center.

Even if there is a best feasible solution, it may still be useful to poll around the least

infeasible point, which might have a lower objective function value, in order to explore
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a different part of the parameter space [20]. In the GPS filter algorithm, an iteration

that generates an unfiltered point, i.e., a point below the filter envelope defined in

Figure 3.2, is considered a successful iteration.

Figure 3.2: Illustration of a filter at iteration k (from [6])

The most useful successful iterations are those that produce an unfiltered feasible

iterate, uk+1, which improves on the objective function value of the best feasible

point. There are also successful iterations that do not produce a feasible iterate but

improve the closest-to-feasible infeasible solution or add extra elements to the filter.

When unfiltered points are found at successful iterations, the filter is updated. At

unsuccessful iterations, the poll size parameter ∆ is decreased, as well as hmax, the

maximum allowable constraint violation for any particular iteration. It is evident

from this description that the GPS filter method accepts points that are infeasible,

as long as they are unfiltered. This is done because a better feasible point may be

found at later iterations of the search process. This implies that the GPS with filter

method produces a non-monotonic search of the constrained solution space. See [1, 6]

for more discussion on the GPS with filter algorithm used in this work.
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3.4 Hybrid Methodologies

Hybridization of the derivative-free methods with general constraint handling is also

considered in this work. The hybrid methodology consists of two phases. First, an

exploratory search algorithm with a robust constraint handling strategy is used to

obtain an appropriate initial guess for the second phase, in which an efficient local

optimizer is applied.

For the first phase of the hybrid method, the GA with the parameterless penalty

function was chosen. This algorithm was used because it is a robust global search

algorithm that can explore the solution space, identify feasible regions, and output

solutions that are not only feasible, but also display high fitness. The advantage of

hybridizing the GA with a local optimization method is that the GA then does not

require a very large population because convergence to an optimum is not required.

All that is required of the GA is to search and identify favorable regions within

the feasible area of the solution space, which can be accomplished with a smaller

population size.

For the second phase of the method, one of the other derivative-free optimization tech-

niques with traditional penalty function handling can be used. It is recommended to

use HJDS if running serially and GPS if running in a distributed computing environ-

ment. The penalty parameter for this second phase of the hybrid method is obtained

from the result provided by the GA in the first phase. In the implementation used in

this study, the penalty parameter is prescribed to be an order of magnitude higher

than the objective function value of the solution obtained from the first step. Fur-

ther tuning of this parameter is possible (though potentially costly) and could lead to

improved solutions. As we will see in Chapter 4, this hybridization strategy is very ef-

fective in solving nonlinear inequality constrained production optimization problems.
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Chapter 4

Example Applications

The methods described in the preceding chapters will now be applied to some syn-

thetic production optimization problems. First, the basic methods without nonlinear

constraint handling are applied to cases with only bound constraints. The results

for both derivative-free and gradient-based methods are compared. Next, the opti-

mization methods with nonlinear constraint handling techniques are applied to fully

constrained production optimization cases. For these cases, the benefits of using the

parameterless penalty function, filter and hybrid methods are demonstrated.

In all the production optimization cases presented, the problem involves the max-

imization of undiscounted net present value (NPV) by adjusting the injector and

producer BHPs. Specifically, we seek to maximize the objective function J (u), where

J (u) = roQo (u) − cwpQwp (u) − cwiQwi (u) . (4.1)

Here ro is the price of oil ($/STB), cwp and cwi are the cost of handling produced water

and the cost of water injection ($/STB), and Qo, Qwp and Qwi are the cumulative oil

production, water production and water injection (STB) obtained from the reservoir

simulator. The reservoir simulator used in all these cases was Stanford’s general

purpose research simulator (GPRS) [11, 26].

37
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4.1 Optimization Cases With Bound Constraints

The two cases presented in this section are bound-constrained problems that are

solved using the base optimization algorithms, without any modifications for nonlinear

constraint handling. Since the problems involve maximizing the undiscounted NPV

by optimizing the well BHPs, the only constraints are bounds on the injector and

producer BHPs.

4.1.1 Case 1: Section of Stanford VI Reservoir Model

Optimization Problem Description

The reservoir model used in this case is a 30 × 40 × 10 portion of the Stanford VI

reservoir model. See Castro [13] for a detailed description of the Stanford VI reservoir

model. Figure 4.1 shows the x-direction permeability field, together with the injector

and producer well locations, for the portion of the model used in this study.

Figure 4.1: Section of Stanford VI reservoir model, showing permeability field and
wells

The simulation model involves two-phase oil-water flow. Figure 4.2 presents the oil

and water relative permeability curves. Capillary pressure effects were not included
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in the simulation model. The reservoir simulation and production optimization pa-

rameters for this case are summarized in Table 4.1. The reservoir simulation time

was 1000 days, with BHPs updated every 100 days (10 control periods). As there are

4 injectors and 5 producers in the reservoir model, the total number of optimization

variables in this problem is 90 (9 wells × 10 control periods).
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Figure 4.2: Relative permeability curves for the oil and water phases (Case 1)

Table 4.1: Case 1 simulation and optimization parameters
Grid cell dimensions 50 × 50 × 15 ft3

Initial pressure, pi 5080 psi
cR at ref. pressure 5 × 10−6 psi−1

µo at pi 1.18 cp
µw at pi 0.325 cp
ρo 54 lbm/ft3

ρw 58 lbm/ft3

Bo and Bw at pi 1.00 RB/STB
ro $90/STB
cwp $18/STB
cwi $9/STB
Injector BHP range 6000 - 8000 psi
Producer BHP range 2000 - 4000 psi
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Production Optimization Results

The optimization algorithms described in Chapter 2 were applied to this production

optimization problem. The performance of the algorithms is compared in Figure 4.3,

which presents the evolution of the NPV throughout the optimization as a function

of the number of simulations. The results presented in Figure 4.3 are summarized in

Table 4.2.

0 500 1000 1500 2000 2500
180

200

220

240

260

280

300

320

Number of simulations

N
P

V
 [
$

 M
M

]

 

 

SQP+adjoint

SQP+FD

HJDS

GA

GPS

Figure 4.3: Comparison of the performance of gradient-based and derivative-free
algorithms (Case 1)

Table 4.2: Summary of performance of different optimizers for Case 1
Optimization algorithm Number of simulations Max. NPV [$ MM]

SQP+adjoint 6 284.7
SQP+FD 364 284.7

HJDS 452 295.0
GPS 2500 283.9
GA 2500 255.2
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The same initial guess was used for the SQP+adjoint, SQP+FD, GPS and HJDS

methods. This initial guess (or base case) was constant BHP control of 7000 psi

in all injectors and 3000 psi in all producers. The initial population of the GA

was generated randomly. Figure 4.3 highlights the characteristics of the respective

optimization methods. These characteristics include the efficiency of the gradient-

based techniques and their convergence to a local optimum. The GA was run with a

population of 50 individuals, which can be considered to be small given the size of the

problem (90 control variables). Recall that population size is limited by the available

time and computing resources. The GA exhibits premature convergence because the

diversity of the individuals decreases rapidly in the high dimensional space. This is

likely due to the small population size used for this high dimensional search.

Even though the GPS and HJDS methods belong to the same family of pattern search

optimizers, HJDS displays great efficiency for a derivative-free method because of the

gradient-like manner in which it conducts its search of the solution space. Also, even

though they are regarded as local optimizers, if one seeds the algorithms with a large

enough initial step size, these pattern search methods can avoid some local optima

that will trap the gradient-based methods, and thus obtain better solutions. This

behavior is observed in this example. The use of a large initial step size in the pattern

search methods is akin to performing an initial, though very coarse, exploration of

the search space before focusing on a local region and converging within that region.

Figure 4.4 compares some of the resulting optimum BHP profiles from the efficient

gradient-based method (SQP+adjoint) and HJDS. From this figure it can be seen that

both algorithms give very different “optimal” solutions with the same initial guess.

Again this is due to the fact that the HJDS method (and pattern search methods in

general) seeded with a large initial step size is able to avoid some local optima.

Figure 4.5 presents plots comparing the cumulative injection and production profiles

of the base case and two optimized cases. Here we see that even though the optimized

solutions produce about 10% less oil than the base case, the improvement in NPV

comes from the more efficient water handling. Both the SQP+adjoint and HJDS

algorithms provide BHP controls that reduce the cumulative water injection by about

45%. The SQP+adjoint controls reduce the cumulative water production by 65%
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and the HJDS solution provides a 67% reduction in cumulative water produced. This

accounts for the higher NPV from the HJDS solution (evident in Figure 4.3 and Table

4.2).
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Figure 4.4: Comparison of the resulting BHP profiles for two injectors and two pro-
ducers from SQP+adjoint and HJDS optimization algorithms
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(a) Cumulative oil (red) and water (blue) produc-
tion
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(b) Cumulative water injection

Figure 4.5: Comparison of Case 1 cumulative production and injection profiles for
the base case, SQP+adjoint and HJDS solutions
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Hybrid Optimization Results

Recall that in Section 2.3 a hybrid method combining the GA and the adjoint-based

optimization procedure was presented. Here, the first phase of the method was run

with the GA with a population of 50 individuals until convergence (sufficient re-

duction in population diversity). The individuals in the final GA population were

then divided into five clusters. The individuals closest to the cluster centroids were

used as five initial guesses for the second phase of the hybrid method, optimization

with SQP+adjoint. The results from the second phase of this hybrid procedure are

presented in Figure 4.6.
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Figure 4.6: Comparison of the five SQP+adjoint runs using initial guesses from the
final population of the GA

The efficiency of the SQP+adjoint algorithm is again evident in Figure 4.6, as all of

the runs converge within four simulations. Also note that the run with initial guess

2 converges to a local maximum different from those obtained using the other initial

guesses. This illustrates that this gradient-based optimizer is dependent on the choice

of the initial guess.

Figure 4.7 presents the five hybrid solutions obtained for a particular producer. From

Figures 4.6 and 4.7, we observe that even though four of the runs with different initial

guesses converge to solutions with essentially identical NPVs, the actual solutions can
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Figure 4.7: Comparison of the five hybrid solutions for one of the production wells

be very different. This indicates that the optimal solutions are not a specific point

in the high dimensional solution space, as one might expect. Rather, the solutions

represent specific local optima, perhaps arranged along ridges/valleys in the solution

space. This is of potential interest as it suggests that, because multiple solutions with

similar NPVs exist, the user can select the solution that is easiest to implement or

that best satisfies some other criteria.

4.1.2 Case 2: Two-dimensional Heterogeneous Model

Optimization Problem Description

The reservoir model used in this case is a 40 × 40 2D model with four injectors and

four producers. The wells and x-direction permeability are shown in Figure 4.8. This

model also involves two-phase oil-water flow, with the same relative permeability

curves presented in Figure 4.2. Most of the reservoir simulation parameters are the

same as those used in Case 1. The parameters that differ for this case are summarized

in Table 4.3. The reservoir simulation time was 3000 days, with the well BHPs

updated every 300 days (10 control periods). The total number of optimization

variables in this problem is 80 (8 wells × 10 control periods).
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Figure 4.8: Two-dimensional reservoir model (x-permeability field shown) with four
production (red) and four injection (blue) wells arranged in a line drive pattern

Table 4.3: Case 2 simulation and optimization parameters
constant φ 0.3
kx/ky 1.0
ro $80/STB
cwp $36/STB
cwi $18/STB
Injector BHP range 6000 - 9000 psi
Producer BHP range 2500 - 4500 psi

Production Optimization Results

The performance of the various optimization algorithms is compared in Figure 4.9,

which presents the evolution of the NPV as a function of the number of simulations.

The results presented in Figure 4.9 are summarized in Table 4.4.

The same initial guess was used for the SQP+adjoint, SQP+FD, GPS and HJDS

methods. This initial guess (base case) was constant BHP control of 7500 psi for all

injectors and 3000 psi for all producers. Figure 4.9 again illustrates the efficiency of the

adjoint-based technique over the other methods considered. It is interesting to note
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Figure 4.9: Comparison of the performance of the gradient-based and derivative-free
algorithms (Case 2)

Table 4.4: Summary of performance of different optimizers for Case 2
Optimization algorithm Number of simulations Max. NPV [$ MM]

SQP+adjoint 142 39.14
HJDS 891 39.14

SQP+FD 5841 39.09
GPS 5041 39.14
GA 6000 37.73

that the derivative-free HJDS method is significantly more efficient than the gradient-

based SQP with numerical finite difference gradient computation. This suggests that,

in the absence of an adjoint-based implementation, HJDS may be preferable over a

numerical gradient computation technique since it is not only more efficient, but also

may be more robust in avoiding local optima (refer to Case 1 results).

The general performance of the algorithms is consistent with that observed for Case

1. The GPS and SQP+FD algorithms converge to essentially the same NPV as the

SQP+adjoint and HJDS algorithms, but they require significantly more simulations.

After 6000 simulations, the GA, with a population size of 200, finds a solution with
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a lower NPV than any of the other methods. As discussed in Section 2.4, the com-

putational efficiency of GA and GPS can be significantly improved with the use of

enhancement strategies. These results are presented later.

In this case, the optimal BHP profiles (the optimization results) for all algorithms

except the GA are very similar. The resulting optimal BHP profiles for some of the

wells are displayed in Figure 4.10. In this figure, in cases where multiple lines are not

apparent, results for SQP+adjoint, SQP+FD, HJDS and GPS coincide. The figure

shows that the GA results are significantly different from the results of the other

methods. Also, even though the results from the other methods are similar for the

most part, there are some slight differences, e.g., in INJ2 and PROD3.
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Figure 4.10: Comparison of the resulting BHP profiles for two injectors and two
producers for all optimization methods considered

Figure 4.11 presents plots comparing the cumulative injection and production profiles

of the base case and the SQP+adjoint optimized case. From this figure, it can be

seen that the increase in NPV provided by the optimized solutions over the base case
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is due mainly to the 14% increase in cumulative oil produced and a 20% decrease in

cumulative water produced, even with a corresponding 5% increase in water injected.

Thus the “strategy” determined by the optimization algorithm is quite different here

than it was for Case 1.
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(a) Cumulative oil (red) and water (blue) produc-
tion
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(b) Cumulative water injection

Figure 4.11: Comparison of Case 2 cumulative production and injection profiles of
the base case and SQP+adjoint solution

Results with Computational Enhancements for GA and GPS

As discussed in Section 2.4, the computational efficiency of the GA and GPS methods

can be improved using computational enhancements such as surrogates (or proxies)

and distributed computing. Results for the GA with an artificial neural network

(ANN) surrogate are presented in Figure 4.12 and Table 4.5.

Table 4.5: Summary of performance of GA with ANN surrogate (Case 2)
% of population simulated Number of simulations Max. NPV [$ MM]

100% 6200 37.53
50% 3500 37.68
20% 1880 37.27
10% 1340 37.56
5% 1070 36.81
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Figure 4.12: Results using GA with ANN surrogate (Case 2)

For these runs, the entire GA population was simulated for the first three generations

and all individuals and fitness values were saved. These saved individuals were then

used to train an ANN. This ANN was retrained using the individuals simulated at each

subsequent generation. The values in the first column of Table 4.5 are the percentage

of the GA population whose fitness (objective function value) was obtained using the

reservoir simulator, after the first three generations. The fitness of the rest of the

population was evaluated by the trained ANN. Figure 4.12 and Table 4.5 show that

significant savings in computational effort can be obtained through use of the ANN

surrogate, while still providing reasonable solutions to the production optimization

problem. We reiterate, however, that the GA underperforms the other optimization

techniques for this problem.

Results using GPS with the DACE kriging surrogate are presented in Figure 4.13, to-

gether with the basic GPS, HJDS and SQP+adjoint results for comparison purposes.

From the figure, the benefit of using the DACE surrogate in the GPS search step is

evident. Recall from Section 2.2.2 that the GPS algorithm is divided into search and

poll steps. Also recall that in a particular iteration, if the search step is successful
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in identifying a point that improves the objective function, the poll step is not per-

formed. In Figure 4.13, the rapid initial increase in NPV is due to the success of

the surrogate-based search steps in the first few iterations of the optimization. With

this enhancement of the GPS algorithm, its performance approaches that of HJDS

for this case.
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Figure 4.13: Comparison of GPS with DACE kriging surrogate with other algorithms
(Case 2)

Results obtained when the function evaluations of the GPS, GA and SQP+FD algo-

rithms are distributed over 40 processors are presented in Figure 4.14 and summarized

in Table 4.6. Equivalent simulations here are defined as:

Equivalent simulations =
Number of actual simulations

Number of processors used
. (4.2)

In the SQP+FD implementation, this formula was used to calculate the equivalent

simulations during the gradient evaluation using finite differences. The simulations

performed during the line search were counted as one equivalent simulation because

the line search is a serial operation. The results in Figure 4.14 and Table 4.6, com-

pared with those in Figure 4.9 and Table 4.4, clearly display the benefit of distributed

computing. The computational savings are obtained by distributing the gradient
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computation in SQP+FD, the fitness evaluation of the GA population and the eval-

uation of the poll points in an iteration of GPS. Greater computational savings can

be achieved if more processors are available. We reiterate that each simulation runs

on only one processor; i.e., we are not running a parallel reservoir simulation code.
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Figure 4.14: Comparison of the Case 2 results with distributed computing

Table 4.6: Summary of performance of different optimizers for Case 2, with distributed
computing
Optimization algorithm Number of equivalent simulations Max. NPV [$ MM]

SQP+adjoint 142 39.14
SQP+FD 326 39.14

HJDS 891 39.14
GPS 772 39.14
GA 305 38.12
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4.2 Optimization Cases Including Nonlinear Con-

straints

We now consider fully constrained production optimization problems, which include

both bound and nonlinear inequality constraints. The problems involve maximizing

the undiscounted NPV by optimizing the well BHPs, while honoring the bounds

on injector and producer BHPs, as well as field constraints. The latter include a

maximum field injection constraint, a minimum field oil production constraint, a

maximum field liquid production constraint, and a maximum water cut constraint on

all production wells.

4.2.1 Case 3: Two-dimensional Heterogeneous Model

Optimization Problem Description

The reservoir model used in this case is the same 40 × 40 2D model used in Case 2,

except here there are two injectors and two producers, as shown in Figure 4.15, and

the cell dimensions are different. The different reservoir simulation and production

optimization parameters for this case are summarized in Table 4.7. The reservoir

simulation time was 3650 days, which was divided into five control periods of 730

days each. The total number of optimization variables in this problem is 20.

Table 4.7: Case 3 simulation and optimization parameters
Grid cell dimensions 100 × 100 × 20 ft3

ro $50/STB
cwp $10/STB
cwi $5/STB
Injector BHP range 6000 - 10000 psi
Producer BHP range 500 - 4500 psi
Max. field water injection rate 1000 STB/day
Min. field oil production rate 450 STB/day
Max. field liquid production rate 1500 STB/day
Max. water cut in any production well 0.5
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Figure 4.15: Two-dimensional reservoir model with two production (red) and two
injection (blue) wells (x-direction permeability displayed)

Production Optimization Results

The problem was first solved with the SQP+adjoint method (most efficient bound

constrained method) without considering the nonlinear inequality constraints spec-

ified in Table 4.7. The initial guess (base case) was constant BHP of 8000 psi for

all injectors and 2500 psi for all producers. The result of this optimization was a

bound-constrained maximum NPV of $95.89 million, obtained after 21 simulations.

Figure 4.16 presents the field water injection rate and water cut for one of the pro-

ducers. The maximum constraints for each (indicated by the dotted red lines) were

not enforced during the optimization. Since these constraints are violated, it is clear

that the nonlinear constraints need to be incorporated into the optimization.

The problem is now solved using the nonlinear constraint handling techniques pre-

sented in Chapter 3. All the methods, except the GA and hybrid methods, use

the same initial guess as that used for the SQP+adjoint bound-constrained solution.

First, the results obtained with the three derivative-free methods using the traditional

penalty function constraint handling are presented. Since the correct value for the

penalty parameter (ρ) was not known a priori, a tuning process was performed where
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Figure 4.16: SQP+adjoint results excluding nonlinear constraint enforcement, show-
ing constraint violation

the optimization methods were run with different values for ρ, and an “optimal” ρ

value was obtained. The results of this tuning process are presented in Figure 4.17.
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Figure 4.17: Results of tuning penalty parameter (Case 3)

This figure presents the maximum NPV obtained by each optimization algorithm

as a function of ρ. Since the GA is stochastic in nature, the results presented in

Figure 4.17 are average results from several GA runs that produced solutions. From
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the tuning results, it can be seen that the final solutions are sensitive to ρ, and the

optimal ρ is about 109. No results are available for HJDS with a ρ of 108 because for

this value of ρ, no feasible point was found during the HJDS optimization process,

meaning that the HJDS algorithm failed to locate a point in the solution space that

satisfied all of the prescribed nonlinear inequality constraints. Similar issues were

observed when running the GA, i.e., during some of the GA runs, no feasible solution

was found. The results presented in Figure 4.17 are averages of runs that did produce

feasible solutions. These observations highlight the robustness issues associated with

the traditional penalty function methods, mentioned in Section 3.2.1.

Figure 4.18 presents results using the GA with the more robust parameterless penalty

function and the traditional penalty function. These plots present the fraction of the

GA population that is feasible as the optimization progresses. Note that the param-

eterless penalty function GA has a high feasible fraction after about ten generations,

implying that it successfully identifies the feasible region and then moves most of the

individuals into it to search for the constrained optimum. The traditional penalty

function GA only has a few generations where some individuals are feasible. Some

of these traditional penalty GA runs fail because during the course of the optimiza-

tion, none of the individuals are ever moved into the feasible region because of a poor

choice for ρ. From Figure 4.18 it can be seen that with tuning, the traditional penalty

function GA produces a better solution than the parameterless penalty function GA.

On the other hand the parameterless penalty function GA did not require any tuning

and, given a large enough population, always generates feasible solutions.

Figure 4.19 presents results for the more robust GPS with filter constraint handling

and GPS with the traditional penalty function. Equivalent simulations are used

because the runs were distributed over 40 processors. The plots in Figure 4.19 start

after a few equivalent simulations because the initial guess of constant BHPs is not

feasible, and it takes the algorithm a few iterations to locate a feasible solution.

Again, note that even though better results are obtained with the traditional penalty

function approach, tuning is required. On the other hand, the GPS with filter avoids

tuning and gets to within 3% of the solution found by the tuned penalty approach.

This suggests that the GPS with filter may be useful for practical applications.
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Figure 4.18: Comparison of results for GA with parameterless and traditional penalty
functions (Case 3)
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Figure 4.19: Comparison of results for GPS with filter and GPS with traditional
penalty function (Case 3)

Results for the hybridization strategy, with parameterless penalty GA and HJDS

with traditional penalty function, as discussed in Section 3.4, are presented in Figure

4.20. The penalty parameter used in the traditional penalty function is chosen to be
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an order of magnitude higher than the objective function value of the GA solution.

It is apparent from Figure 4.20 that the hybrid method outperforms the standalone

HJDS in terms of both efficiency and the quality of the final solution. This validates

the hybridization idea of starting with a robust global search algorithm for initial

exploration of the solution space and then using a more efficient local search algorithm

to quickly converge to an optimal solution.
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Figure 4.20: Comparison of results for parameterless penalty GA hybridized with
HJDS with traditional penalty function and HJDS with traditional penalty function
alone

Of all the methods considered, one of the best solutions was obtained using the SQP

algorithm with numerical FD used to compute gradients of both the objective func-

tion and constraints with respect to controls. The objective function and constraint

violation gradients for SQP+FD were computed in a distributed manner over 40 pro-

cessors. The SQP+FD solution had a maximum NPV of $92.88 million obtained after

538 equivalent simulations. This value is less than that obtained by SQP+adjoint

without considering the constraints. This is intuitive because one would expect the

problem to be more restrictive with the nonlinear constraints specified. Figure 4.21

presents the field water injection rate and water cut for one of the producers, together

with specified maximum constraints for each (indicated by the dotted red lines). It



58 CHAPTER 4. EXAMPLE APPLICATIONS

is clear from the figure that these nonlinear constraints are indeed satisfied.
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Figure 4.21: SQP+FD results showing constraint satisfaction (Case 3)

The solutions from the other methods with nonlinear constraint handling are quali-

tatively similar to those in Figure 4.21 as they too satisfy the specified constraints.

Table 4.8 presents a summary of the performance of all the methods with nonlinear

constraint handling considered. In this table, ∆J∗ designates the percentage differ-

ence between the best NPV found for all the methods ($92.90 million, the NPV found

by the GPS with tuned penalty) and that found by the particular method.

Table 4.8: Case 3 results summary
Methods considered ∆J∗(%) # of simulations # of equivalent simulations
GPS+tuned penalty 0.00 1534 52
SQP+FD 0.02 8059 538
Parameterless GA+GPS 0.22 5891 166
Parameterless GA+HJDS 1.39 4334 239
HJDS+tuned penalty 2.46 535 535
GPS+filter 3.06 1236 33
GA+tuned penalty 6.13 1720 43
Parameterless GA 7.97 4200 105

It is evident that, although the best result for this case is achieved with GPS with
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a tuned penalty parameter, the results from several other methods are promising

because they do not require any tuning. This could be especially useful for complex

problems that require very expensive simulations. Of note are the SQP, GPS with

filter and hybrid methods. The SQP+FD method achieves a solution within 0.02%

of the best solution, but requires a large number of simulations (even when run on

multiple processors). This demonstrates the applicability of an adjoint formulation

for obtaining the objective function and individual (or lumped) constraint gradients.

The GPS with filter method could be favored in practice because of its efficiency in

obtaining a reasonable solution. The hybrid methods are also recommended because

they are efficient and achieve close to optimal results when run either in a serial

(parameterless GA+HJDS) or fully parallel (parameterless GA+GPS) fashion.
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(a) Cumulative oil (red) and water (blue) produc-
tion
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Figure 4.22: Comparison of Case 3 cumulative production and injection profiles of
the base case, bound-constrained solution for SQP+adjoint, and the best nonlinearly
constrained solution from GPS+tuned penalty.

Figure 4.22 presents the cumulative production and injection profiles for the base

case, bound-constrained solution from SQP+adjoint and the best solution accounting

for nonlinear constraints from GPS+tuned penalty. From this figure it can be seen

that the improvement in NPV over the base case for the bound-constrained solution

comes from injecting significantly more water to produce significantly more oil. The
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specification of maximum field water injection and maximum production well water

cut constraints (i.e., nonlinear constraints) leads to solutions with more efficient use

of water and hence less injected and produced water than the bound-constrained

solution. The specification of a minimum field oil rate ensures that the produced oil is

still sufficient. This, together with the more efficient use of water, leads to an increase

in NPV over the base case and an NPV that is quite close to the bound-constrained

case. The specific NPVs are $72.90 million for the base case, $95.89 million for the

bound-constrained case and $92.90 million for the nonlinearly constrained case.

4.2.2 Case 4: Section of SPE 10 Model

Optimization Problem Description

The reservoir model used in this case is a 60 × 60 × 5 section from the channelized

portion of the 3D SPE 10 comparative solution model. Figure 4.23 shows the porosity

of the first layer (layer 76 of the full model) for the section of the SPE 10 model used

here, as well as the injector and producer well locations. There are a total of 25 wells

in this model.
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Figure 4.23: Section of SPE 10 reservoir model, showing porosity of top layer. Model
contains 16 injection (blue) and 9 production (red) wells

The simulation model involves two-phase oil-water flow. Figure 4.24 presents the
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relative permeability curves for oil and water used in the simulation model. The

remaining reservoir simulation and production optimization parameters for this case

are summarized in Table 4.9. The reservoir simulation time was 1460 days, which

was divided into four control periods of 365 days each. This production optimization

problem therefore has 100 control variables.
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Figure 4.24: Relative permeability curves for the oil and water phases (Case 4)

Table 4.9: Case 4 simulation and optimization parameters
Grid cell dimensions 500 × 500 × 2 ft3

Initial pressure, pi 6000 psi
cR at ref. pressure 5 × 10−6 psi−1

µo at pi 3.0 cp
µw at pi 0.3 cp
ρo 53 lbm/ft3

ρw 64 lbm/ft3

Bo and Bw at pi 1.01 RB/STB
ro $50/STB
cwp $10/STB
cwi $5/STB
Injector BHP range 6500 - 12000 psi
Producer BHP range 500 - 5500 psi
Max. field water injection rate 15000 STB/day
Min. field oil production rate 3000 STB/day
Max. field liquid production rate 10000 STB/day
Max. water cut in any production well 0.7
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Production Optimization Results

The problem was first solved with the SQP+adjoint method without considering the

nonlinear inequality constraints specified in Table 4.9. The initial guess (base case)

was constant BHP of 9250 psi for all the injectors and 3000 psi for all the producers.

The SQP+adjoint solution provided a bound-constrained maximum NPV of $270.0

million obtained after 211 simulations. Figure 4.25 presents one of the constraints,

the field liquid production rate, for this bound-constrained solution. Note the clear

constraint violation.
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Figure 4.25: SQP+adjoint result for total liquid production rate, excluding nonlinear
constraints (Case 4)

Solution of the fully constrained problem was first attempted using the SQP algorithm

with numerical FD gradients. The initial guess was the same used to obtain the

bound-constrained SQP+adjoint solution presented above. After 11000 simulations,

this SQP+FD algorithm could not find a feasible solution and stalled at an infeasible

local optimum. This probably occurred because we have a very complex problem in

a high dimensional search space.

The problem was then approached using the hybrid method combining the parame-

terless penalty function GA with the HJDS with traditional penalty. For the GA part

of the run, the fraction of the population that is feasible as a function of the number



4.2. OPTIMIZATION CASES INCLUDING NONLINEAR CONSTRAINTS 63

of generations is presented in Figure 4.26. Note from this figure that the robust pa-

rameterless penalty GA successfully identifies a feasible region of the solution space.

The second phase of the hybrid method is started using the best solution found by the

GA and it acts to provide further improvement of the GA solution. This second phase

entails using the HJDS algorithm with the (untuned) penalty constraint handling. As

in Case 3, the penalty parameter used for this phase is an order of magnitude higher

than the objective function value of the GA solution.
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Figure 4.26: Plot of feasible fraction of GA showing that the first phase of hybrid
procedure successfully identifies the feasible region (Case 4)

Figure 4.27 compares the hybrid result with that from the SQP+adjoint without non-

linear constraint handling. These results are very interesting because they show that

the bound-constrained solution obtained with a local gradient-based optimizer can be

worse than the solution obtained for a fully constrained problem optimized using an

initial exploration followed by local exploitation. This result clearly demonstrates the

potential impact of this two step formulation in tackling complex nonlinear produc-

tion optimization problems. We reiterate that the solution from the hybrid method

satisfies all the specified constraints. Figure 4.28 illustrates satisfaction of the total

liquid production constraint.

Figure 4.29 displays cumulative production and injection results for this case. From

this figure, the disparity in the cumulative injection and production profiles of the
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Figure 4.27: Nonlinearly constrained hybrid results compared with SQP+adjoint
bound-constrained results (Case 4)
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Figure 4.28: Plot of total liquid production rate of hybrid solution showing constraint
satisfaction (Case 4)

three cases is apparent. Of special interest is the much better solution obtained by

the more robust hybrid method including nonlinear constraints when compared to

that obtained by the local gradient-based optimizer without nonlinear constraints.

This is due to the fact that the initial guess used in the local optimizer turned out to
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be quite poor. This can occur in practice as it may be difficult to identify a feasible

and high-quality initial guess. For this reason, the use of a global search algorithm

such as the GA to obtain one or more reasonable starting points for a local optimizer

is a sound idea.
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(a) Cumulative oil (red) and water (blue) produc-
tion
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Figure 4.29: Comparison of Case 4 cumulative production and injection profiles of the
base case, bound-constrained solution for SQP+adjoint, and the hybrid nonlinearly
constrained solution
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

This work involved a comparative study of several optimization methods with the

goal of identifying the most capable methods for use in solving generally constrained

production optimization problems. The methods evaluated include the gradient-

based sequential quadratic programming (SQP) method and derivative-free genetic

algorithm (GA), general pattern search (GPS) and Hooke-Jeeves direct search (HJDS)

procedures. These methods were applied to the solution of production optimization

problems with only bound constraints and to the solution of problems involving both

bound and nonlinear constraints.

From the optimization results for the bound-constrained problems, it was shown

that, as expected, the use of adjoint procedures provided highly efficient gradient-

based optimization. The HJDS method was found to be the most efficient of the

derivative-free methods when these methods were run serially. The GA and GPS

methods displayed slower convergence properties and required many simulations to

attain an optimal solution. In order to improve the efficiency of these procedures,

several computational enhancement strategies were investigated. It was shown that

the use of surrogates and distributed computing significantly increased the efficiency

of the methods. A hybrid implementation combining the global search nature of the

GA with the efficiency of the SQP with adjoint gradient computation was shown to

67
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perform well. This approach is able to provide multiple solutions to the problem,

though many were observed to have essentially the same objective function value.

In practice, the solution of production optimization problems is usually subject to

physical and economic constraints. These constraints can be nonlinearly related to

the optimization variables. Different constraint handling techniques for such prob-

lems were investigated, including the SQP approach for constraint handling, penalty

function approach, filter method, and a hybrid methodology. Traditional penalty

function approaches may require extensive tuning and lack robustness in some cases.

From the results for two nonlinearly constrained production optimization cases, it

was shown that the SQP, GPS with filter and hybrid methods combining GA with

a robust penalty function treatment and an efficient local search method appear to

hold the most promise for practical applications.

5.2 Future Work

The following areas are suggested for future investigations:

• Further evaluation of the hybridization strategies to determine clear guidelines

for switching from one phase to another.

• Use of reduced order models as surrogates to further improve the computational

efficiency of the methods considered in this study. Reduced order models are

based on the physics and numerics of the problem so they can be expected to

be more robust than artificial neural networks or kriging surrogates.

• Use of the methods considered here in a multi-objective framework to optimize

multiple objectives and provide a Pareto front. This could be very useful for

practical business decisions.

• Use of some of the procedures presented here to address the coupled well place-

ment and production optimization problems. This would enable very general

optimization of oil field problems.



Nomenclature

Abbreviations

ANN artificial neural network

BHP well bottom-hole pressure

DACE design and analysis of computer experiments

FD finite difference

GA genetic algorithm

GPS general pattern search

HJDS Hooke-Jeeves direct search

KKT Karush-Kuhn-Tucker

MM million

NPV net present value

SQP sequential quadratic programming

Variables

A matrix for specification of bound and linear constraints

B formation volume factor

c normalized nonlinear inequality constraint or cost

F modified objective function

h constraint violation function

J production optimization objective function

k permeability

L Lagrangian

m number of nonlinear inequality constraints

p pressure
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70 NOMENCLATURE

Q cumulative injection or production

r price

S surrogate approximation to objective function

d search direction

g reservoir simulation equations

u vector of control variables

x vector of dynamic state variables

Superscripts

∗ optimal point

0 initial point or condition

F feasible

I infeasible

k iteration index

N total number of time steps

n time step or dimension of optimization parameter space

T transpose

Subscripts

B bound

i index

k iteration index

o oil

w water

wi injected water

wp produced water

Greek Symbols

α step size in search direction

∆ poll step size

λ Lagrange multiplier

µ viscosity

φ porosity

ρ penalty parameter or density
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