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Abstract

Many reservoir simulation applications, such as optimization of well settings and his-

tory matching, require a large number of runs. Using traditional simulators for such

problems is often very expensive computationally. In this thesis we extend and en-

hance the trajectory piecewise linearization (TPWL) method for accurate and efficient

reduced-order modeling for such applications. In this approach, the reservoir equa-

tions are linearized around previously simulated training runs and the high-dimension

state space is projected into a low-dimension space using proper orthogonal decom-

position (POD). With linearization and reduction, simulations that require hours

to run can now be completed within a few seconds. TPWL does require overhead

computations that correspond to the time required for a few full-order simulations.

In this work, both the accuracy and stability of the TPWL method are considered.

A local resolution treatment, in which we preserve high resolution in well blocks and

other important flow regions, is proposed to improve the accuracy of the method.

Stability analysis shows that, particularly for cases with density differences between

phases, the TPWL method can be unstable. The stability of the method can be

quantified in terms of the spectral radius of an amplification matrix appearing in

the TPWL model equation. Two different stabilizing methods are proposed. The

first method seeks to minimize the spectral radius of the amplification matrix by

choosing the optimized number of reduced variables. The second method stabilizes

cases with density differences using a basis constructed from the same case without

density differences. Both methods are tested on two reservoir problems of practical

size with significant density differences. Results demonstrate that both methods are

able to provide stabilized and accurate solutions for these cases.
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The stabilized TPWL method is then implemented as a surrogate model within

a generalized pattern search (GPS) optimization procedure. Two production opti-

mization problems are considered. In the first problem, optimization of 36 bottom

hole pressure (BHP) variables under linear constraints is performed on a model con-

taining 4800 grid blocks. Comparison with the results from full-order simulations

is possible in this case and demonstrates the accuracy and applicability of TPWL

for this problem. In the second production optimization example, 54 BHP variables

under nonlinear constraints are optimized for a model containing 20,400 grid blocks.

The TPWL method is shown to provide a feasible solution with much improved net

present value. The equivalent of only around 20 full-order training simulations are

needed for this problem, even though the optimization requires more than 4000 func-

tion evaluations (which are provided by the TPWL model).

Finally, the potential use of TPWL for history matching is investigated. Pre-

liminary results show that the TPWL approach is able to provide a reasonable ap-

proximation to the true solution even when the geological model for the test case is

considerably different than that for the training case. This capability is very useful

for history matching and suggests that further study of TPWL in this application

area is warranted.
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Chapter 1

Introduction

Optimization and uncertainty quantification are essential components in many model-

based design procedures. The associated computations, which typically require large

numbers of simulations, can be extremely time-consuming if highly resolved models

are used. This may be the case even if parallel processing is applied, as multiobjective

optimization and optimization under uncertainty, in which simulations are performed

over a large number of models, can quickly occupy multiple cores.

The use of reduced-order models provides a means for accelerating these simula-

tions. Our interest here is in subsurface flow modeling, which includes simulation of

oil reservoirs, aquifers, and carbon sequestration operations. Several reduced-order

modeling procedures based on proper orthogonal decomposition have been previously

applied within this context; see, e.g., [1–4]. For the nonlinear problems associated

with oil reservoir simulation, the speedups achieved by these procedures were, how-

ever, relatively modest, at most about a factor of 10.

Trajectory piecewise linearization (TPWL) is a promising approach for model-

order reduction that can potentially provide much larger speedups. TPWL repre-

sents new solutions of the governing equations in terms of linear expansions around

previously simulated (saved) states. This requires that one or more training simu-

lations be performed, during which the states and converged Jacobian matrices at

each time step are saved. High degrees of efficiency are achieved by projecting the

saved states and matrices into a low-dimensional subspace. This projection can be

2



CHAPTER 1. INTRODUCTION 3

accomplished in different ways. In the implementation discussed in this paper, the

projection matrix is constructed by proper orthogonal decomposition (POD) of the

saved states. The TPWL approach was first introduced by Rewienski and White [5, 6]

for the modeling of nonlinear circuits and micromachined devices. Since then it has

been applied in a number of disciplines including computational fluid dynamics [7],

nonlinear heat-transfer modeling [8] and electromechanical systems [9, 10].

In recent work Cardoso and Durlofsky [11] applied trajectory piecewise lineariza-

tion (TPWL) procedures for oil reservoir simulation. Systems involving two fluid

components and two phases – oil and water – were considered. For test runs involv-

ing equal density fluids, TPWL results were shown to be in close agreement with

reference (full-order) simulations for control schedules that were within the general

range of those used in the training runs. Runtime speedups of a factor of 200-1000

were observed for the examples considered. For cases in which the fluid densities

differed significantly, however, instabilities were observed in some runs. This can

lead to inaccuracy or, in some instances, to the blowup of the TPWL solution. This

is of concern as oil and water phases often display significant density differences in

practical cases.

Our goal in this work is to enhance the TPWL procedure presented in [11] to

address the limitations noted above. We proceed in two important directions. First,

we introduce a localization treatment in which key grid blocks, such as those contain-

ing injection or production wells, are represented at full resolution; i.e., the states in

these blocks are not projected into the reduced subspace. A missing point estimation

procedure [12] is used to determine which grid blocks (in addition to well blocks)

to represent explicitly. This localization will be shown to improve the accuracy of

the overall TPWL representation and to have relatively little impact on run times

(assuming the number of resolved blocks is not too large). The second enhancement

is the use of stabilization procedures. Two such approaches are investigated. In one

approach, a stabilized basis is determined in a preprocessing step in which various

combinations of basis vectors are considered with the goal of minimizing the spectral

radius of an amplification matrix that appears in the TPWL representation. In the

other approach, the POD basis is determined based on simulations involving equal
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density fluids. Accuracy is restored through use of the localization treatment. Both

procedures will be shown to improve TPWL stability and performance significantly.

The stability of TPWL models has been studied previously and our development

here builds on earlier work. Rather than use the traditional Galerkin projection, Bond

and Daniel [13–15] computed a left projection matrix that stabilizes the system. This

new left projection matrix is based on Lyapunov stability theory. However, if only

stability is considered, the accuracy of the reduced-order model can degrade consid-

erably. Thus, in [14], a stabilizing procedure was proposed where the left projection

matrix is constrained by Lyapunov theory to guarantee stability and the difference

between the basis matrix and this new left projection matrix is optimized to recover

accuracy. Bui-Thanh et al. [16, 17] formulated a goal-oriented, model-constrained op-

timization problem to determine the optimal basis under Galerkin projection. This

approach was also shown to improve stability. This method differs from that of [14]

in that it retains the Galerkin projection and optimizes both the basis matrix and the

left projection matrix. However, when both accuracy and stability are considered,

both of these approaches can become very expensive computationally.

This thesis proceeds as follows. In Chapter 2, the equations for the subsurface

flow of oil and water are presented, followed by a brief description of the finite vol-

ume approach used for their solution. The POD-based TPWL representation is then

described. In Chapter 3 we present the local resolution approach in which key grid

blocks are resolved explicitly. The enhanced accuracy provided by this treatment is

illustrated with an example. The two approaches for stabilizing the TPWL represen-

tation are presented in Chapter 4. The impact of the local resolution and stabilization

procedures is demonstrated through two examples, both of which contain O(105) grid

blocks, in Chapter 5. Next, in Chapter 6, the enhanced TPWL method is combined

with a generalized pattern search (GPS) optimization technique and applied to two

production optimization problems. Finally, in Chapter 7, we present conclusions and

suggestions for future work.

Much of the work presented in this thesis was preformed in collaboration with

Jon Sætrom, a Ph.D. student at NTNU (Trondheim, Norway) who spent the 2008-

2009 academic year at Stanford as a visiting researcher. Specifically, Jon Sætrom
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initiated the work on the local resolution method and developed the EDP method.

The work on basis optimization and the use of TPWL for production optimization

were performed by the author.



Chapter 2

Problem Formulation

The governing equations for oil-water flow and the basic TPWL formulation were

presented in detail in [11]. For the sake of completeness, an abbreviated description

is also included here.

2.1 Oil-Water Flow Equations

The equations governing the two-phase flow of oil and water in porous formations

are derived by combining expressions for mass conservation with Darcy’s law. Using

the subscript j to designate component/phase (j=o for oil and w for water), these

equations can be written as:

∂

∂t
(φρjSj)−∇ · [ρjλjk (∇pj − ρjg∇D)] + qwj = 0, (2.1)

where k is the (diagonal) absolute permeability tensor, λj = krj/µj is the phase

mobility, with krj the relative permeability to phase j and µj the phase viscosity, pj

is phase pressure, ρj is the phase density, g is gravitational acceleration, D is depth,

t is time, φ is porosity, Sj is saturation and qwj is the source/sink term. Eq. 2.1 is

written slightly differently here than in [11]. Specifically, the source term qwj here

differs by a constant factor of ρ0
j (where ρ0

j is the reference density of phase j) from

6



CHAPTER 2. PROBLEM FORMULATION 7

that in [11], and the definition of λj differs by a factor of ρj/ρ
0
j . The general oil-

water model is completed by enforcing the saturation constraint (So + Sw = 1) and

by specifying a capillary pressure relationship pc(Sw) = po − pw. Eq. 2.1 is nonlinear

since functions of unknowns (e.g., krj(Sj)) multiply unknowns.

We take po and Sw to be primary variables (pw and So can be immediately com-

puted once these are known). Eq. 2.1 is solved numerically using a fully-implicit finite

volume procedure. Discretized forms for all terms are discussed in [11, 18]. Basically,

the flow from block to block is given by the interface transmissibility multiplied by

the difference in block pressures, the accumulation term is handled using a first-order

implicit (backward Euler) method, and the source term is treated using a well index

representation, in which well rates are expressed in terms of an appropriately defined

transmissibility times the pressure difference between the well block and the well.

Using these representations, and defining x = [po, Sw] as the state vector and u as the

well controls (in this case the wells are controlled by specifying bottom hole pressure

or BHP), the discrete system for the fully-implicit formulation can be written as:

g
(
xn+1,xn,un+1

)
= A

(
xn+1,xn

)
+ F

(
xn+1

)
+ Q

(
xn+1,un+1

)
. (2.2)

Here g is the residual we seek to drive to zero, n and n+1 designate time level, and A,

F and Q are the discretized accumulation, flux and source/sink terms, respectively.

Typically, a full-order reservoir simulator is used to solve Eq. 2.2. Newton’s

method, with the Jacobian matrix given by ∂g/∂x, is applied. This is computa-

tionally expensive because Eq. 2.2 can be highly nonlinear and practical models may

contain on the order of 105 or 106 grid blocks. We now describe the application of

the TPWL approach for the efficient solution of Eq. 2.2.

2.2 Solution of Discretized System using TPWL

The idea of trajectory piecewise linearization is to linearize the residual equation

around states saved from previous (training) simulations. Here, at any given time,

we linearize around a single point on the training trajectory. Methods that involve
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weighted linearizations around multiple points also exist (e.g., [6]), though optimal

weights can be difficult to determine and improper weighting can lead to stability

problems.

Given the current state xn, we designate the closest saved state encountered during

the training run as xi. To determine xn+1, we linearize Eq. 2.2 around the state

(xi+1,xi,ui+1). This gives

gn+1 = gi+1 +
∂gi+1

∂xi+1

(
xn+1 − xi+1

)
+
∂gi+1

∂xi
(
xn − xi

)
+
∂gi+1

∂ui+1

(
un+1 − ui+1

)
, (2.3)

where gn+1 = g(xn+1,xn,un+1) and gi+1 = g(xi+1,xi,ui+1). Here gi+1 = 0 because

it is the residual of the training simulation. Defining the Jacobian matrix as the

derivative of the residual with respect to the state,

Ji+1 =
∂gi+1

∂xi+1
, (2.4)

and using the fact that, upon solution gn+1 = 0, Eq. 2.3 can be expressed as

Ji+1
(
xn+1 − xi+1

)
= −

[
∂Ai+1

∂xi
(
xn − xi

)
+
∂Qi+1

∂ui+1

(
un+1 − ui+1

)]
. (2.5)

Given xn and saved information, Eq. 2.5 allows us to linearly compute xn+1; i.e., no

iteration is required. This equation is, however, still in a high-dimensional space.

In order to reduce the dimension of Eq. 2.5, we employ linear order reduction.

This entails representing the state x in terms of a reduced state z and a basis matrix

Φ using

x ≈ Φz. (2.6)

There are many ways to construct Φ including optimal Hankel model [19, 20], bal-

anced truncation [21], Krylov subspace methods [22], and proper orthogonal decom-

position (POD) [23]. Within the context of TPWL, previous researchers have used

Krylov subspace methods for electrical engineering applications [24] and POD for

computational fluid dynamics applications [7]. The POD method was applied suc-

cessfully for our problem in [11] and will be used again here.
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In POD, the high-dimension space is represented by a set of orthogonal basis

vectors, which are the singular vectors of a “snapshot” matrix X. Each column of

X is simply the pressure or saturation state at a particular time step saved from a

training simulation. POD is optimal in the sense that it minimizes the mean squared

reconstruction error for the snapshots [25]. Therefore, it is reasonable to assume that

POD can represent the states of other (test) simulations if these states are somewhat

similar to those encountered during training runs. In this work, consistent with

[2, 11, 26], POD is used to reduce pressure and saturation separately. As discussed

in [11], in the actual implementation of forming the pressure basis matrix, we use

oil potential ϕo (ϕo = po/ρo − gD) rather than pressure. This was found to improve

TPWL stability in [11].

If we denote the number of simulation grid blocks as Nc and the number of reduced

pressure and saturation basis vectors as lp and ls respectively, then the dimension of

the problem can be reduced from 2Nc to lp + ls. This is accomplished by expressing

x in Eq. 2.5 using Eq. 2.6 and by premultiplying both sides of Eq. 2.5 by ΦT (also

called Galerkin projection [27]), which gives

Ji+1
r

(
zn+1 − zi+1

)
= −

[(
∂Ai+1

r

∂xi

)
r

(
zn − zi

)
+

(
∂Qi+1

r

∂ui+1

)
r

(
un+1 − ui+1

)]
, (2.7)

where

Ji+1
r = ΦTJi+1Φ,

(
∂Ai+1

∂xi

)
r

= ΦT

(
∂Ai+1

∂xi

)
Φ,

(
∂Qi+1

∂ui+1

)
r

= ΦT

(
∂Qi+1

∂ui+1

)
. (2.8)

Rearranging Eq. 2.7 we have

zn+1 = zi+1 −
(
Ji+1
r

)−1
[(

∂Ai+1

∂xi

)
r

(
zn − zi

)
+

(
∂Qi+1

∂ui+1

)
r

(
un+1 − ui+1

)]
. (2.9)

Eq. 2.9 can be solved very efficiently for two reasons. First, as a result of linearization,

the new reduced state zn+1 can be calculated directly from zn without any iteration.

Second, all of the terms in Eq. 2.9 are in low-dimension space, which means that the

matrix operations are very fast. Specifically, the evaluation of Eq. 2.9 only involves



CHAPTER 2. PROBLEM FORMULATION 10

two matrix-vector products and four vector additions in the reduced space, which can

theoretically be done in a fraction of a second for typical dimension of the reduced

space (∼ 300) and typical number of time steps (∼ 300). Therefore, most of the total

TPWL computation time is spent on training simulations and projection, which only

need to be done once during preprocessing.

This completes our description of the basic TPWL formulation. See [11] for addi-

tional details and algorithms and a discussion of some implementation issues. In the

following section we will present an application example of the basic TPWL method

and discuss some of its limitations, which we will address in the next chapter.

2.3 Application Example: Reservoir Model 1

We now apply the basic TPWL procedure described in Section 2.2 to a realistic

reservoir simulation model. The simulation model, shown in Figure 2.1, is part of

the so-called Stanford VI geological model developed by [28]. The model represents

a fluvial system with high-permeability channels embedded in a low-permeability

background region. The portion of the model considered here contains 20,400 grid

blocks (with nx = 30, ny = 40, nz = 17, where nx, ny and nz indicate the number

of blocks in each coordinate direction). The dimension of the full-order problem is

40,800 (pressure and saturation unknowns in each grid block). In this model the

fluid and rock compressibility and the capillary pressure between the two phases are

neglected. We specify oil and water viscosities as µo = 3 cp, µw = 0.5 cp. The

fluids are here specified to have equal densities (ρo = ρw = 55 lb/ft3). The relative

permeability relationships are given by

kro(Sw) = k0
ro

(
1− Sw − Sor
1− Swr − Sor

)a
, krw(Sw) = k0

rw

(
Sw − Swr

1− Swr − Sor

)b
. (2.10)

We set k0
ro = k0

rw = 1, Swr = Sor = 0.2 and a = b = 2, as was used in [11].

To systematically investigate the performance of TPWL, we define test cases based

on the level of perturbation from the training run. Shown on the left in Figure 2.2

is the bottom hole pressure (BHP) control schedule for the production wells in the



CHAPTER 2. PROBLEM FORMULATION 11

Figure 2.1: Model 1 with four production wells and two injection wells. Permeability
in the x-direction (in mD) is shown.

training simulation, which we designate as utraining. This schedule is generated ran-

domly, with BHPs between 1000 psi and 3000 psi, and is updated every 200 days.

On the right is a different (target) schedule also generated randomly with the same

update frequency as the training schedule, though this schedule varies between 2000

psi and 4000 psi. Test cases are specified as a weighted combination of these two

schedules; i.e.,

utest = (1− α)utraining + αutarget, (2.11)

where α represents the “distance” of the test controls from the training controls.

When α is near zero, test cases are close to the training run and TPWL would be

expected to provide accurate results. As α increases toward 1, test cases are further

from the training run and larger errors are expected. For this example, the BHPs of

the two injection wells are held constant at 6000 psi throughout the simulations.

In this work, errors are quantified in terms of the mismatch of the production

rates (for both oil and water) and water injection rates between the full-order solution

(Qfull) and TPWL simulations (Qtpwl). For example, for oil production rate, the error
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Figure 2.2: Training (left) and target (right) producer BHP schedules for Model 1.

for the jth well (Ej
o) is calculated as:

Ej
o =

∫ T
0
|Qj

o,full −Q
j
o,tpwl| dt∫ T

0
Qj
o,full

, (2.12)

where subscript o designates oil and T is the total simulation time. The overall

average error of the oil production rates, designated Eo, is computing by averaging

Ej
o over all wells:

Eo =
1

nw

npw∑
j=1

Ej
o , (2.13)

where npw is the total number of production wells. Similar expressions are used

to compute average water production error and water injection error (Ew and Ei,

respectively).

We now compare full-order simulation results, generated using Stanford’s General

Purpose Research Simulator GPRS [29, 30], with TPWL results. For the TPWL

model we use lp = 40 and ls = 60. Results for α = 1.0 for oil and water production

rates are shown in Figure 2.3, while results for water injection rates appear in Fig-

ure 2.4. The errors in the TPWL solution for other levels of perturbation are shown

in Table 2.1. Discrepancies are evident between the full-order and TPWL results

especially for water production and water injection rates. In Chapter 3 these discrep-

ancies are discussed in detail and a local resolution method is proposed to improve
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Figure 2.3: Model 1 production rates for α = 1.0 using basic TPWL (lp = 40, ls = 60).

the accuracy. However, it should be noted here that this inaccuracy results from the

use of α = 1.0, which means that the test case is quite different from the training

run. As shown in Table 2.1, the use of smaller values of α leads to TPWL results

that are much more accurate.



CHAPTER 2. PROBLEM FORMULATION 14

Figure 2.4: Model 1 injection rates for α = 1.0 using basic TPWL (lp = 40, ls = 60).

Table 2.1: Relative error in TPWL solutions for various test schedules for Model 1
for basic TPWL with lp = 40 and ls = 60.

α = 0 α = 0.2 α = 0.4 α = 0.6 α = 0.8 α = 1.0

TPWL(40,60), Eo 0.0039 0.0047 0.0071 0.0108 0.0144 0.0193
TPWL(40,60), Ew 0.0024 0.0110 0.0246 0.0441 0.0733 0.1266
TPWL(40,60), Ei 0.0121 0.0156 0.0209 0.0272 0.0354 0.0456



Chapter 3

Local Resolution TPWL

As shown in Section 2.3, the basic TPWL method can display inaccuracy for cases

with large perturbations. In this chapter we will first analyze the problem of under-

fitting and overfitting. We then propose the local resolution method to enhance the

accuracy of the basic TPWL.

3.1 Underfitting and Overfitting

Since Φ is orthonormal, we have z = ΦTx. POD will by construction minimize the

mean squared reconstruction error of the training snapshots (1/S)ΣS
i=1|Φ(ΦTxi) −

xi|2, where S is the number of snapshots [25]. Thus, if we consider TPWL solutions

based on the full-order model (Eq. 2.5) and the reduced-order model (Eq. 2.9) for

un = ui, and if we take the number of basis vectors stored in Φ equal to the number

of snapshots, both approaches will reproduce the training states exactly (for Eq. 2.9

we need to apply x = Φz). However, this will not be the case for states from a new

set of target well controls un 6= ui.

The POD dimension reduction technique is based on the assumption that most of

the variability in the snapshot matrices can be represented using a limited number of

orthonormal basis vectors Φ = [φ1, . . . ,φl] [31]. We therefore expect that selecting

too few basis vectors will potentially lead to the problem of model underfitting, which

can result in large errors in the TPWL solution, both for un = ui and un 6= ui. On the

15
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other hand, including too many basis vectors will potentially cause model overfitting

[32], leading to large errors in the TPWL solution for un 6= ui. This can occur because

in the basis matrix obtained from POD, the basis vectors that correspond to smaller

eigenvalues are more subject to noise in the training snapshots. Thus, including them

in Φ can lead to a deterioration of the representation of x stored in z.

These effects can be observed through an assessment of the sensitivity of the

TPWL results to different numbers of basis vectors in Φ. Errors in injection rate

(Ei) for various α are presented in Table 3.1. The smallest error at each value of α is

shown in bold. The other errors (Eo and Ew) display generally similar behavior and

are not shown. It is apparent from the table that selecting a small number of basis

vectors (lp = 5, ls = 5) leads to large errors in the TPWL solution, particularly as α

increases. Interestingly, however, error does not necessarily decrease monotonically

as we include more basis vectors in Φ. Consistent with this, the use of the largest lp

and ls does not provide the most accurate results for water injection for any value of

α.

This is in part due to error introduced through overfitting. It is additionally

because the POD reduction scheme focuses on the global reconstruction error, not the

reconstruction error at the well blocks. Note also that the reason we do not observe

a monotonic decrease in the error for the training schedule (α = 0) is because, as

noted earlier, we use oil potential rather than pressure snapshots to compute the

pressure basis matrix. This results in improved accuracy in the TPWL solution for

test schedules that differ from the training schedule [11], although it leads to an

increase in the reconstruction error for the training schedule.

3.2 Description of Local Resolution Scheme

For our applications, we are mainly interested in the pressure and saturation at well

locations because they directly affect injection and production rates, which are the

key quantities needed for production optimization. To compute these quantities, we

construct xn+1
w = Φwzn+1, where Φw includes only the rows of Φ corresponding to

the grid blocks containing wells (subscript w here denotes well). Although we are
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Table 3.1: Relative error in TPWL solutions for various test schedules for Model 1
with equal density. The notation TPWL(lp,ls) in this and subsequent tables denotes
the numbers of pressure and saturation basis vectors retained in Φ. The smallest
error at each value of α is shown in bold.

α = 0 α = 0.2 α = 0.4 α = 0.6 α = 0.8 α = 1.0

TPWL(5,5), Ei 0.0513 0.1245 0.1521 0.2078 0.2602 0.2921
TPWL(20,30), Ei 0.0298 0.0355 0.0423 0.0494 0.0564 0.0664
TPWL(40,60), Ei 0.0121 0.0156 0.0209 0.0272 0.0354 0.0456
TPWL(70,90), Ei 0.0183 0.0177 0.0187 0.0215 0.0281 0.0381
TPWL(120,120), Ei 0.0326 0.0332 0.0351 0.0367 0.0383 0.0416

particularly interested in maintaining accuracy in Φw, the POD dimension reduction

technique, by construction, minimizes the global reconstruction error of the training

snapshots – it does not preferentially weight information at well locations. We can

therefore expect reconstruction of the saturation and pressure at well locations to be

suboptimal.

This effect is illustrated in Figure 3.1, where we plot the maximum reconstruction

error (relative to the full-order solution) of the saturation and pressure snapshots at

the injection and production wells for α = 1.0. From this figure we see that recon-

struction of saturation at the production wells is problematic, and that increasing the

number of basis vectors included in Φ can lead to a clear increase in the reconstruction

error.

It is thus evident that reconstruction error at well locations can significantly im-

pact the accuracy of TPWL results for production and injection rates. To eliminate

reconstruction error at the well locations, we therefore propose a TPWL procedure in

which selected key grid blocks are represented using the full-order (linearized) model.

We let xLR designate the full-order states for nLR selected grid blocks and xG the

full-order states for the remaining grid blocks. Then, in place of Eq. 2.6, we write:[
xLR

xG

]
≈

[
ΦLR 0

0 ΦG

][
zLR

zG

]
, (3.1)
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Figure 3.1: Log plot of the maximum reconstruction error for saturation and pressure
at production and injection wells for Model 1 with α = 1.0.
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where ΦLR is taken to be the identity matrix (thus zLR = xLR). This means that the

grid blocks associated with xLR are not subject to reduction, so high local resolution

is maintained. Note that, although the local and global grid blocks are decoupled in

Eq. 3.1, they do couple in the TPWL scheme defined in Eq. 2.9 through (Jir)
−1.

In our implementation, the nLR locally-resolved blocks include the well blocks

and possibly additional blocks that are important for the flow solution. To determine

these additional blocks, we apply the missing point estimation (MPE) procedure

suggested by [12]. In this approach we retain blocks that have the largest impact

on the condition number of ΦTΦ, which are blocks that strongly affect the flow

solution. A computationally efficient algorithm for MPE is described in [4]. In our

implementation, locally resolved blocks are determined separately for the saturation

and pressure portions of Φ. The final set of nLR locally-resolved blocks is the union

of these two sets of blocks.

The local resolution method provides flexibility for improving the accuracy of

the TPWL representation. As is evident in Figure 3.1 and Table 3.1, this cannot

necessarily be accomplished by adding more basis vectors. Even if it could, the

maximum number of basis vectors is limited by the number of snapshots. The local

resolution method does not have these limitations, and the TPWL model thus defined

approaches the full-order model as nLR is increased. Thus, the local resolution method

enables us to achieve a balance between accuracy and efficiency.

3.3 Numerical Results using TPWL(LR)

We now apply the local resolution TPWL scheme, designated TPWL(LR), to the

case considered earlier (Model 1 with α = 1.0). For these runs we use lp = 40, ls = 60

and nLR = 26 (local resolution only at well blocks), which corresponds to a total of

152 unknowns. Results are shown in Figures 3.2 and 3.3. Comparing these results

with those from the basic TPWL scheme using lp = 40, ls = 60 (Figures 2.3 and 2.4),

we see that by eliminating the reconstruction error at wells, the TPWL results are

improved significantly, particularly the water injection rates.

Results for flow rate errors for a range of α are shown in Table 3.2. Errors are
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shown for TPWL(LR) (with lp = 40, ls = 60, nLR = 26) as well as for the basic

method for two different sets of (lp, ls). The smallest errors for each value of α are

shown in bold. TPWL(LR) is the most accurate in all cases, and for some quantities

the improvement over the basic TPWL is very significant. These results clearly

demonstrate the efficacy of the use of local resolution within a TPWL model.

Figure 3.2: Model 1 production rates for α = 1.0 using local resolution TPWL
(lp = 40, ls = 60, nLR = 26).
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Figure 3.3: Model 1 injection rates for α = 1.0 using local resolution TPWL (lp = 40,
ls = 60, nLR = 26).

Table 3.2: Relative error in TPWL solutions for various test schedules for Model
1. Basic TPWL and local resolution TPWL with lp = 40, ls = 60, nLR = 26 are
compared. The smallest error at each value of α is shown in bold.

α = 0 α = 0.2 α = 0.4 α = 0.6 α = 0.8 α = 1.0

TPWL(40,60), Eo 0.0039 0.0047 0.0071 0.0108 0.0144 0.0193
TPWL(70,90), Eo 0.0099 0.0113 0.0154 0.0212 0.0281 0.0357
TPWL(LR), Eo 0.0002 0.0020 0.0041 0.0065 0.0089 0.0121
TPWL(40,60), Ew 0.0024 0.0110 0.0246 0.0441 0.0733 0.1266
TPWL(70,90), Ew 0.0128 0.0229 0.0529 0.1106 0.2135 0.4126
TPWL(LR), Ew 0.0002 0.0090 0.0193 0.0350 0.0547 0.1032
TPWL(40,60), Ei 0.0121 0.0156 0.0209 0.0272 0.0354 0.0456
TPWL(70,90), Ei 0.0183 0.0177 0.0187 0.0215 0.0281 0.0381
TPWL(LR), Ei 0.0003 0.0013 0.0025 0.0037 0.0049 0.0067



Chapter 4

Stability of TPWL Models

As demonstrated through extensive examples in [11, 26], the TPWL procedure can

provide reasonable accuracy and robustness for cases with equal phase densities. It

was, however, also reported in [11] that the method can become unstable when sig-

nificant density differences between the two phases exist. In this chapter we will first

show an example of this instability. We will then discuss stability criteria and present

two methods for stabilizing TPWL.

4.1 Example Showing Instability of TPWL

We consider a model that is the same as that used in Chapter 3, except that now

the densities for the two phases are different (here we set ρo = 45 lb/ft3 and ρw =

55 lb/ft3). Figure 4.1 (upper) displays the oil production rate for well P1 for α = 0.3.

Small spikes in the solution can be observed at around 500 days and 900 days. Shortly

after 2000 days the solution becomes completely unstable and blows up. Results for

all other wells display similar behaviors and are not shown here. Clearly, the method

requires improvement if it is to be applied to problems of this type. We now consider

the stability of the TPWL model.

22
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Figure 4.1: Upper: production rate for well P1 using basic TPWL with different
phase densities (Model 1, α = 0.3, lp = 70, ls = 100). Lower: log of spectral radius
of amplification matrix.
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4.2 Stability Analysis

We first consider the linearized full-order system, Eq. 2.5. This equation can be

viewed as a piecewise linear discrete-time system,

xn+1 = Mi+1xn + bi+1, (4.1)

where b is a vector that involves the source term and M is the amplification matrix

given by

Mi+1 = −
(
Ji+1

)−1 ∂Ai+1

∂xi
. (4.2)

For a constant M, the system defined in Eq. 4.1 is stable if and only if the spectral

radius of M (γ(M)) is less than or equal to 1. Here, stability means that the error

in zn will not be amplified in zn+1.

As can be seen from Eq. 4.2, the amplification matrix Mi+1 of Eq. 4.1 is the

same as that for the training simulation. Therefore, the full-order linearized system

(Eq. 4.1) displays the same numerical stability properties as the original system. This

is not the case, however, for the reduced-order model. In this case, the counterpart

to Eq. 2.9 is

zn+1 = Mi+1
r zn + bi+1

r , (4.3)

where the amplification matrix is given by

Mi+1
r = −

(
ΦTJi+1Φ

)−1
ΦT

(
∂Ai+1

∂xi

)
Φ. (4.4)

For general matrices Ji+1 and ∂Ai+1/∂xi, γ(Mi+1
r ) can be greater than 1 even when

γ(Mi+1) ≤ 1. In general, only special choices of Φ can maintain the stability of the

system. We note that the spectral radius of Mi+1
r affects the stability of the linearized

system at the time step when it is used. An isolated unstable Mi+1
r will amplify the

error at a specific time step and may create a spike in the solution. The solution may

still be able to recover if the perturbation is not too large and if subsequent Mi+1
r are

stable. However, if we have several consecutive time steps with unstable Mi+1
r , the

error will amplify and the solution may blow up. Therefore, to ensure that the error
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does not accumulate over time, it is necessary to require the linearized system to be

stable for all time steps.

Figure 4.1 (lower) presents the log of the spectral radius of the amplification matrix

at each time step. Instability occurs for log γ > 0. It is apparent that the spikes and

eventual blowup of the solution correspond to values of log γ that are significantly

greater than zero and thus unstable. The isolated unstable points at around 500 days

and 900 days produce small spikes in the solution, while the consecutive unstable

points starting at around 2200 days lead to solution blowup. Thus it is clear that the

use of the TPWL method with a POD basis and Galerkin projection can result in

instability for this problem.

The loss of stability for reduced-order models, especially those based on POD and

Galerkin projection, has been studied previously and several methods to enhance sta-

bility have been proposed [14, 17]. Two basic types of stabilization procedures have

been considered. The idea of the first set of methods is to compute a left projec-

tion matrix that stabilizes the system, rather than use ΦT as in Galerkin projection.

In [13–15], this new left projection matrix was based on Lyapunov stability theory.

However, if only stability is considered, the accuracy of the reduced-order model can

degrade considerably. If accuracy is also taken into account, a matrix optimization

has to be solved to obtain an optimal left projection matrix, which is very expensive

computationally for large systems. The other group of methods focuses on finding

a basis other than POD that can guarantee stability under Galerkin projection. In

[17], a goal-oriented, model-constrained optimization problem was formulated to de-

termine the optimal Φ. However, the procedure involves calculation in the full-order

space. Even when the basis matrix is parameterized by the snapshots, as in [17], the

optimization can still be very computationally expensive.

Neither of the approaches described above maintains both POD and Galerkin

projection while stabilizing the result. We will present two relatively efficient ways

to stabilize TPWL in the following sections. Both apply a POD basis and Galerkin

projection.
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4.3 Stabilizing TPWL

4.3.1 Stabilization using Optimized Basis

The goal of this method is to improve stability while maintaining POD and Galerkin

projection. The method is based on the observation that the stability of the reduced-

order model is sensitive to lp and ls, which define the number of columns in Φ. The

dependence of Mr on Φ is evident in Eq. 4.4.

Figure 4.2 depicts log(γ(Mr)) for different values of lp and ls for two particular

saved points, i = 70 and i = 100, for the problem with different phase densities

defined in Section 4.1. In the figure, the lower bound of the color bar is the linear

stability limit. Therefore the dark blue regions indicate combinations of lp and ls that

give a stable linearized reduced system while other colors represent different levels of

instability. It can be seen that the relation between stability and the number of

basis vectors is somewhat random and that the use of more basis vectors does not

necessarily lead to improved stability. This demonstrates that the widely used energy

criterion (see, e.g., [26]) for selecting the number of basis vectors based on singular

values may lead to stability problems. However, it can also be seen that for many

of the (lp, ls) combinations, the spectral radius is less than 1. This means that if

these combinations are used to generate the basis, the resulting reduced system will

be stable.

Figure 4.2: log10 Mi
r for i = 70 and i = 100.



CHAPTER 4. STABILITY OF TPWL MODELS 27

The idea of basis optimization is to define a range of lp and ls and to determine

values (designated lip and lis) that minimize γ(Mr); i.e.,

(lip, l
i
s) = arg min

lip,l
i
s

γ(Mi
r). (4.5)

This is accomplished using an exhaustive search over the allowable range of lp and ls

(with prescribed increments in lp and ls). If we select different lp and ls for different

time steps, which may be necessary in some cases, the reduced space changes in time.

It is therefore necessary to map z in one reduced space to z in another reduced space.

This is accomplished using

zβ = ΦβΦαzα, (4.6)

where subscripts α and β indicate the two reduced spaces.

The optimized basis (OB) procedure is summarized in Algorithm 1. First, a

range for lp and ls is specified. Then the spectral radius is calculated for selected

combinations of lp and ls. The combination that gives the smallest γ is selected.

This method takes into account both accuracy and stability. Accuracy is controlled

approximately by the search range, and stability is improved by choosing the optimal

(lp, ls) combinations.

The optimization procedure is reasonably efficient because Jir and (∂Ai+1/∂xi)r

only need to be calculated once, for lp,max and ls,max. Denoting these matrices as

Jir,max and (∂Ai+1/∂xi)r,max, Jir and (∂Ai+1/∂xi)r for any other (lip, l
i
s) combination

are just submatrices of Jir,max and (∂Ai+1/∂xi)r,max and can be extracted directly.

Therefore the matrix operations inside the optimization loop are all in reduced space.

Furthermore, the optimal (lip, l
i
s) combinations only need to be determined once during

the preprocessing and will not add to the runtime of TPWL. Thus this optimization

does not overly affect the efficiency of the TPWL model.

This method differs from the two types of methods developed previously in that

it maintains the advantages of POD and the Galerkin projection. Specifically, POD

provides optimal accuracy in representing the snapshots and the Galerkin projection

is straightforward and efficient. It is, however, important to note that the algorithm

does not guarantee stability. Nevertheless, it does lead to significant improvements in
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Algorithm 1: Selecting the Number of Basis Vectors to Achieve Stability.

Input: Training data obtained using GPRS. Search region for
lip ∈ [lp,min, lp,max] and lis ∈ [ls,min, ls,max]

[Φ,Λ] = SVD(X)1

Keep first lp,max + ls,max components2

Compute Jir,max and (∂Ai+1/∂xi)r,max based on lp,max and ls,max for all time3

steps i
for each time step do4

for lip = lp,min to lp,max do5

for lis = ls,min to ls,max do6

Extract columns 1, . . . , lp, 1, . . . , ls, of Jir,max and (∂Ai+1/∂xi)r,max7

Construct amplification matrix Mi
r8

Calculate γ(Mi
r)9

Select the optimal values lip and lis that minimize γ(Mi
r)10

Construct the basis Φi
11

stability and enables the solution of challenging problems with significant differences

in density between phases.

Figure 4.3 displays the results when applying this technique to the problem de-

scribed in Section 4.1. In this case a single set of optimized lp and ls was used (lp = 45,

ls = 60); i.e., basis switching was not required. It is evident from Figure 4.3 that,

after basis optimization, γ(Mr) is close to 1, which means that TPWL is stabilized.

The oil production for well P1 is seen to be in reasonable agreement with the reference

full-order results, with the solution blowup after 2000 days eliminated (compare with

Figure 4.1). We note that the use of local resolution will act to further improve the

accuracy of the TPWL solution.

It is of interest to note that spikes in γ(Mr) usually correspond to spikes in the

condition number of J−1
r (or Jr). This is potentially of concern since J−1

r appears not

only in Mr but also in br in Eq. 4.3. Thus, even when the system is stable, spikes in

the condition number of J−1
r can still cause inaccuracy in the solution. In such cases,

we may need to determine optimum (lp, ls) such that both γ(Mr) and the condition

number of J−1
r are minimized to assure solution stability and accuracy. This will be
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Figure 4.3: Upper: production rate for well P1 using TPWL with optimized basis for
case with different phase densities (Model 1, α = 0.3, lp = 45, ls = 60). Lower: log of
spectral radius of amplification matrix.
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addressed in future work.

4.3.2 Stabilization using Modified Basis

We now introduce a stabilization procedure in which Φ is derived from a problem

with better stability characteristics than the target problem with ∆ρ 6= 0. This

approach can be motivated with reference to stability maps. Figure 4.4(a) shows the

maximum spectral radius for all saved points as a function of lp and ls for Model 1 with

ρo = ρw. Here we see that the TPWL scheme is unstable only for a limited number

of combinations of lp and ls. However, the stability map for the same reservoir model

but with ∆ρ = 10, shown in Figure 4.4(b), indicates only isolated regions where the

TPWL model is stable. This motivates the construction of a model reduction scheme

where the basis matrix is constructed using snapshots generated from a reservoir

model with ∆ρ = 0. The states and Jacobian matrices used in the actual TPWL

solution (Eq. 2.9) are still from the specific problem of interest (with ∆ρ 6= 0). We

will refer to this procedure as the Equal Density Projection (EDP) scheme. A stability

analysis of the EDP scheme for different values of lp and ls reveals that the regions

where the TPWL solution is stable, seen in Figure 4.4(c), correspond to the stability

regions in Figure 4.4(a). Thus the approach inherits the stability properties of the

∆ρ = 0 TPWL model.

Because the EDP basis matrix is constructed using snapshots which are different

from the states in the actual solution, the global reconstruction error for zi will

necessarily increase dramatically compared with any of the approaches considered

above. However, combining the EDP scheme with local resolution TPWL effectively

eliminates the reconstruction error at key locations such as well blocks.

Figure 4.5 shows the oil and water production rates for Model 1 with ∆ρ = 10 and

α = 0.3. Here we apply both EDP and LR and set lp = 70, ls = 100 and nLR = 27 in

the TPWL(EDP+LR) solution. Note that the use of lp = 70, ls = 100 in the basic

TPWL method leads to instability (see Figure 4.1). As is evident in Figure 4.5, the

TPWL(EDP+LR) scheme, by contrast, is able to provide a stable and reasonably

accurate solution relative to the full-order results. This is further illustrated in the
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(a) log10 max{γ(Mi)}, ∆ρ = 0, POD (b) log10 max{γ(Mi)}, ∆ρ = 10, POD

(c) log10 max{γ(Mi)}, ∆ρ = 10, EDP

Figure 4.4: Maximum value for the spectral radius of the amplification matrix, Mi
r,

as a function of number of basis vector retained for Model 1 using (a) ∆ρ = 0 with
standard POD, (b) ∆ρ = 10 with standard POD, and (c) ∆ρ = 10 with EDP scheme.
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Figure 4.5: Model 1 production rates for α = 0.3 using TPWL(EDP+LR) (lp = 70,
ls = 100, nLR = 27).

results for water injection rates shown in Figure 4.6.

We do not yet have a complete explanation for why the basis matrix generated

from snapshots of the corresponding equal density case (ΦED) gives better stability

than the basis matrix generated from snapshots of the actual (different density) case.

Referring to this latter basis as ΦDD, we observe that ΦDD tends to have more ex-

treme values than ΦED. These appear to derive from the fact that changes between

snapshots in cases with different densities are more localized than in cases with equal

densities. This occurs because of the different physics in the two types of problems.

In any event, the use of ΦDD containing these extreme values leads to high condi-

tion numbers in Jr and instability. On the other hand, ΦED contains more evenly

distributed values and as a result provides better model stability.

This argument is also consistent with results from the Random Projection (RP)

scheme [33]. In the RP scheme, the pressure and saturation snapshots are replaced
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Figure 4.6: Model 1 injection rates for α = 0.3 using TPWL(EDP+LR) (lp = 70,
ls = 100, nLR = 27).
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with random vectors generated independently from a Gaussian probability distribu-

tion with zero mean and unit variance. The variance between snapshots is thus evenly

distributed spatially. Orthonormalization of these vectors provides the basis matrix.

Interestingly, this approach leads to a stable TPWL scheme for any combination of

lp and ls. In numerous tests, we achieved stable TPWL results for all of the reser-

voir models considered in this paper, including those where the basic TPWL method

exhibited instability. The accuracy of the RP scheme is, however, quite poor as it

does not use any information from the snapshots. The EDP scheme can be viewed

as an enhanced or supervised version of the RP scheme in the sense that, by using

a particular set of snapshots, it achieves stability at the cost of accuracy. As noted

above, accuracy is recovered through use of local resolution. We note finally that

the accuracy of the RP scheme can also be improved using local resolution, but nLR

needs to be very large before adequate levels of accuracy are consistently achieved.

4.3.3 Summary

The two stabilization schemes proposed in this chapter have somewhat different fea-

tures. The optimized basis method requires only one full-order simulation, though it

does require basis optimization computations. In many cases it performs reasonably

well without the use of local resolution. However, it has limited flexibility in the

choice of lp and ls as they are determined based on stability properties. The EDP

method, by contrast, requires two full-order simulations and it must be combined

with local resolution to provide reasonable accuracy. It has more flexibility, however,

in the choice of lp and ls. Thus both methods have advantages and limitations, and

further application and development of both approaches appears to be warranted.



Chapter 5

Application of TPWL to Realistic

Problems

In this chapter we apply the enhanced TPWL procedure to two realistic reservoir

models. The models contain O(105) grid blocks and the oil and water phases are of

different densities. For these examples we combine the stabilization methods with the

local resolution procedure, and present results for a range of perturbations α. The

basic TPWL procedure has difficulty providing stable solutions for these cases.

5.1 Model 2: Upper Six Layers of SPE 10

The geological model used here is shown in Figure 5.1. The model, referred to as

Model 2, comprises the upper six layers of the so-called SPE 10 geological model,

developed by Christie and Blunt [34]. The model contains 79,200 grid blocks (with

nx = 60, ny = 220, nz = 6). This model was also studied in [11], where it was

applied for an example with equal phase densities, for which accurate TPWL results

were reported. The problems that can arise using the basic TPWL procedure for

cases with unequal densities were also illustrated using this model in [11]. Model

2 includes four producers, which are perforated in the upper two layers, and two

injectors, perforated in the lower two layers. The rock and fluid properties are the

same as were used in Model 1 (see Section 2.3) except that here we set the density

35
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Figure 5.1: Upper six layers of the SPE 10 reservoir model (79,200 grid blocks) with
four producers and two injectors. Permeability in x-direction (in mD) is shown.

for water to be ρw=60 lb/ft3, which gives a larger density difference.

The performance of the TPWL procedure for this problem is again studied using

perturbation tests. The training schedule and target BHP schedules for this case

are shown in Figure 5.1. For producers, the training BHP schedules vary randomly

between 1000 psi and 3000 psi and are changed every 200 days. The target BHP

schedules vary randomly between 1000 psi and 4000 psi; they also change every 200

days. Clear differences are evident between the two schedules. For the injectors,

the training BHP schedules are constant at 8000 psi while the target BHP schedules

vary randomly between 7000 psi and 9000 psi. Again, input BHP schedules for test

cases are generated as weighted combinations of the training and target schedules, as

defined in Eq. 2.11. The training simulation is run for 5000 days and produces 311

pressure and saturation snapshots.

We apply both the optimized basis method and the EDP procedure to generate

stable TPWL models. For the optimized basis method, we considered lp in the range

[40, 90] and ls in the range [60, 90]. The search increment for both was 5. A basis

with lp = 90 and ls = 85 was found to be stable for the entire simulation, so no

basis switching was applied in this case. A total of 154 blocks were locally resolved.

These include the 12 well blocks and 144 additional blocks determined by the MPE

procedure.
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Figure 5.2: Training (left) and target (right) BHP schedules for producers and injec-
tors for Model 2.

Test cases were run for values of α from 0 to 1. Results for oil and water production

rates, for α = 0.5, are shown in Figure 5.3. Water injection rates are presented in

Figure 5.4. It is clear that the TPWL model performs reasonably well for this case.

Although slight mismatches are observed for some quantities, the general level of

accuracy of the TPWL solution is quite acceptable and the method is clearly stable.

We now present results for this case using the EDP method for stabilization. This

requires that the training simulations be run twice – once using the actual densities

and once using equal densities. The equal density run is used only to construct Φ;

the saved states and matrices are from the run using the actual densities. To allow

direct comparison with TPWL(OB), we also use lp = 90, ls = 85 and nLR = 154.

Figures 5.5 and 5.6 display results for oil and water production rates and water

injection rates for α = 0.5. We again observe stability and a reasonable degree of
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Figure 5.3: Model 2 production rates for α = 0.5 using TPWL with optimized basis
and local resolution (lp = 90, ls = 85, nLR = 154).
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Figure 5.4: Model 2 injection rates for α = 0.5 using TPWL with optimized basis
and local resolution (lp = 90, ls = 85, nLR = 154).
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Figure 5.5: Model 2 production rates for α = 0.5 using TPWL with EDP basis and
local resolution (lp = 90, ls = 85, nLR = 154).

accuracy in the TPWL results. In fact, these results are quite comparable to those

using the optimized basis procedure, shown in Figures 5.3 and 5.4.

Table 5.1 presents errors for oil and water production rates and water injection

rates for the two sets of TPWL solutions at five values of α. Errors for both methods

increase consistently with α, as would be expected. The EDP TPWL method is

slightly more accurate than TPWL with the optimized basis, though the magnitudes

of the errors are quite comparable.
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Figure 5.6: Model 2 injection rates for α = 0.5 using TPWL with EDP basis and
local resolution (lp = 90, ls = 85, nLR = 154).
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Table 5.1: Errors for TPWL(OB+LR) and TPWL(EDP+LR) for Model 2.

Method α = 0.1 0.3 0.5 0.7 0.9

TPWL(OB+LR), Eo 0.0029 0.0088 0.0142 0.0203 0.0263
TPWL(OB+LR), Ew 0.0116 0.0351 0.0582 0.0819 0.1063
TPWL(OB+LR), Ei 0.0065 0.0194 0.0321 0.0449 0.0585

TPWL(EDP+LR), Eo 0.0022 0.0067 0.0116 0.0166 0.0220
TPWL(EDP+LR), Ew 0.0097 0.0293 0.0495 0.0702 0.0912
TPWL(EDP+LR), Ei 0.0059 0.0174 0.0292 0.0409 0.0531

5.2 Model 3: Portion of Upper 30 Layers of SPE

10

We now consider a more complex case. This model, also extracted from the geological

description in [34], contains 108,000 grid blocks (nx = 60, ny = 60, nz = 30). The

permeability distribution is shown in Figure 5.7. The model is referred to as Model

3 and includes four producers perforated in the upper 12 layers and two injectors

perforated in the lower 12 layers. There are thus a total of 72 well blocks. Well

indices were set to a specified value to avoid very large discrepancies in the well

rates. The rock and fluid properties are the same as were used in Model 2; the

density difference between phases is again 15 lb/ft3. This case is challenging not only

because of its size but also because it has more and thicker layers, which means that

density-driven gravitational effects can be large.

The training and target BHP schedules are the same as were used for Model 2, as

shown in Figure 5.1. The training simulation was run for 5000 days. A total of 314

pressure and saturation snapshots were saved.

We again present results using both stabilization methods. For the optimized

basis method, lp and ls were both evaluated over the range [60, 120] with increments

of 5. The optimal combination, lp = 90 and ls = 90, was found to be stable for the

entire run, so basis switching was not required. Local resolution is applied only to the

72 well blocks. Therefore, the total dimension of the reduced space is 324, compared
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Figure 5.7: Portion of the SPE 10 reservoir model (108,000 grid blocks) with four
producers and two injectors. Log of permeability in x-direction is shown.

with 204,000 for the full-order model.

Test cases were again run for α between 0 and 1. Figures 5.8 and 5.9 display

results for production and injection rates for α = 0.5. The results are stable and

generally accurate and are of about the same quality as those presented for Model 2.

This is very encouraging, as Model 3 represents a more challenging test case.

We also generated a TPWL model for this case using the EDP approach, again

with lp = 90, ls = 90 and nLR = 72. As indicated above, constructing this TPWL

model requires that two training runs be performed. Results for production and

injection rates for α = 0.5 are shown in Figures 5.10 and 5.11. These results are

again very comparable to those using the optimized basis method.

Errors for both sets of runs for a range of α are presented in Table 5.2. As was

observed for Model 2, error increases with increasing α and the EDP method is slightly

more accurate than the optimized basis method, though both provide comparable

levels of accuracy.

The runtime for the full-order models for the two examples considered in this chap-

ter were 30 minutes and 50 minutes respectively on an Opteron dual-core CPU. The

TPWL models, by contrast, required at most a few seconds. Thus runtime speedups

of O(103) were achieved. We reiterate, however, that the overhead associated with

TPWL is equivalent to about 1–2 full-order simulations.
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Figure 5.8: Model 3 production rates for α = 0.5 using TPWL with optimized basis
and local resolution (lp = 90, ls = 90, nLR = 72).
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Figure 5.9: Model 3 injection rates for α = 0.5 using TPWL with optimized basis
and local resolution (lp = 90, ls = 90, nLR = 72).
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Figure 5.10: Model 3 production rates for α = 0.5 using TPWL with EDP basis and
local resolution (lp = 90, ls = 90, nLR = 72).

Taken in total, the results presented in this chapter demonstrate that our en-

hanced TPWL procedures are able to provide stable results of reasonable accuracy

for challenging reservoir simulation problems. This suggests that these approaches

may indeed be applicable in computational optimization or uncertainty quantification

procedures. In the next chapter, we apply the enhanced TPWL method to production

optimization problems.
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Figure 5.11: Model 3 injection rates for α = 0.5 using TPWL with EDP basis and
local resolution (lp = 90, ls = 90, nLR = 72).
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Table 5.2: Errors for TPWL(OB+LR) and TPWL(EDP+LR) for Model 3.

Method α = 0.1 0.3 0.5 0.7 0.9

TPWL(OB+LR), Eo 0.0044 0.0132 0.0222 0.0308 0.0398
TPWL(OB+LR), Ew 0.0063 0.0181 0.0298 0.0412 0.0526
TPWL(OB+LR), Ei 0.0064 0.0192 0.0326 0.0457 0.0595

TPWL(EDP+LR), Eo 0.0033 0.0098 0.0164 0.0229 0.0295
TPWL(EDP+LR), Ew 0.0043 0.0128 0.0217 0.0308 0.0403
TPWL(EDP+LR), Ei 0.0057 0.0173 0.0291 0.0401 0.0530



Chapter 6

Use of TPWL for Production

Optimization

In this section we use TPWL as a surrogate within a generalized pattern search opti-

mization algorithm. The optimization targets the maximization of net present value

for oil production under water injection. We first discuss the generalized pattern

search algorithm used for optimization, as well as our treatment of nonlinear con-

straints. We then describe the use of TPWL for production optimization, including

the retraining of the model as the optimization proceeds. We next present optimiza-

tion results for two example cases. We note that TPWL was used previously as a

surrogate in gradient-based optimizations (with gradients computed numerically) in

[11, 26]. That work did not consider systematic retraining or nonlinear constraints,

both of which are applied here.

6.1 Direct Search Optimization with TPWL

Surrogate modeling is widely used for simulation-based optimization when the full-

order (high-fidelity) model is computationally expensive to evaluate. A surrogate

model should be computationally inexpensive and at least locally accurate. TPWL

appears to be well suited for use as a surrogate as it is able to provide a reasonable

approximation of the true solution within a reasonably sized neighborhood around
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the training case.

The direct search method used here is generalized pattern search (GPS). GPS

computes a sequence of points that approach an optimal point. The algorithm applies

polling, which entails the evaluation of solutions defined by a stencil (aligned with

the coordinates) in the search space. The central point of the stencil is the current

(best) solution. If an improvement in the cost function is found, the stencil is shifted

such that it is centered on the improved point. If an improved solution is not found,

the stencil size is decreased. See [35] for more detail on GPS and [36] for application

of GPS and related procedures to oil production optimization problems.

In Case 2 below we include nonlinear constraints in the optimization. To handle

these constraints, GPS with an incremental penalty function is used. In this method, a

modified objective function, which is a weighted combination of the original objective

function and a penalty term that quantifies the violation of the constraint, is defined.

The weighting of the penalty term is increased incrementally (a sequence of subprob-

lems is solved) until an optimized solution satisfying the constraint is achieved.

Our approach for incorporating TPWL into GPS is depicted in Figure 6.1. We

start by performing a training simulation with well BHPs defined by the initial guess.

The states and Jacobian matrices are saved and the stabilized TPWL model is con-

structed using the basis optimization procedure described earlier. Then, the GPS

optimization is started using the TPWL surrogate for function evaluations. After a

specified number of function evaluations are performed, GPS is paused and a training

simulation is run at the current best point (the specified number of function evalu-

ations can vary during the course of the optimization). TPWL is then retrained at

this point and GPS is resumed. It occasionally happens that, upon retraining, the

objective function of the current point, evaluated using the full-order model, is sub-

optimal relative to that of the previous full-order solution. This inconsistency can

occur when the TPWL solution loses accuracy because it is too far from the most

recent training case. When this problem is detected, we restart the search from the

previous retraining point and reduce the number of function evaluations until the next

retraining. The size of the GPS mesh may also be reduced. We note that it should be

possible to incorporate more sophisticated criteria, possibly based on mass balance
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errors in the TPWL model (which are straightforward to compute), for retraining.

Such procedures will be considered in future work.

6.2 Optimization Results

6.2.1 Production Optimization: Case 1

We first optimize a small problem to enable comparison of results using the surrogate

procedure to those using the full-order reference solution. The reservoir model for

this case, referred to as Model 4, comprises the first four layers of Model 1 (Model

1 is shown in Figure 2.1). Model 4 contains 4800 grid blocks. The rock and fluid

properties and well locations are the same as for Model 1 in Section 4.1. In this case,

we optimize the production well BHPs to maximize net present value (NPV) over

five years (1800 days) of production. The BHP of each well is changed every 200

days. Thus there are nine control variables for each producer, giving a total of 36

control variables. Injection well BHPs are set to 6000 psi for the entire simulation.

The oil price is specified to be $80/bbl while the cost of water produced and injected

are $36/bbl and $18/bbl, respectively. Water prices are set to be artificially high to

limit the use of water. The bounds for the production well BHPs are 1000 psi and

3000 psi. Initially, the BHPs for the four production wells are set to 1500 psi for the

entire production period.

The TPWL model here used basis optimization with basis switching. Typical

TPWL parameter values were lp = 65, ls = 75 and nLR = 50. The evolution of NPV

with the number of simulations is shown in Figure 6.2 and summarized in Table 6.1.

In the figure, the red curve represents the optimization results using the full-order

simulation model while the blue curve presents results using the TPWL model. The

circles indicate points where the TPWL surrogate model was retrained. It is evident

that, using only 15 full-order training simulations, the TPWL guided optimization

provides essentially the same result as was achieved using the full-order simulations.

The total TPWL overhead in this case requires the equivalent of about another 10

training simulations. Thus the overall speedup for this example is about a factor of
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100. Because our TPWL implementation is currently in Matlab, we expect that these

speedups could be further improved through a careful C++ implementation.

6.2.2 Production Optimization: Case 2

We now consider a larger reservoir model, and therefore do not present a comparison

with full-order optimization results. The reservoir model in this case is the full Model

1, shown in Figure 2.1, which contains 20,400 grid blocks. In this example we optimize

the BHPs for the four production wells and the two injection wells. The objective

function is again NPV over five years of production. The well controls are again

changed every 200 days, so there are a total of 54 control variables. The bounds

for injector BHPs are 5500 psi and 7500 psi, while those for producers are again

1000 psi and 3000 psi. A nonlinear constraint is also imposed on the optimization.

This constraint requires that the water cut (fraction of water in the produced fluid)

for all producers is less than 50% at all times.

The TPWL model again uses basis optimization and local resolution for this case.

The optimization results for this case are shown in Figure 6.3. The blue curve indi-

cates NPV and the green curve shows the constraint violation. At early iterations,

NPV is improved and the water cut constraint is satisfied, but at later iterations

the constraint is violated. As the penalty weight increases, the constraint violation

decreases. Finally, after nearly 4000 function evaluations, a feasible solution is ob-

tained with an NPV that is 34% greater than that of the initial guess. The circles

and stars in Figure 6.3 indicate where retraining of the TPWL model is performed.

A total of 12 full-order training simulations are required. The total TPWL overhead

for this case is equivalent to around 8-10 full-order simulations. Thus the speedup

relative to running GPS with the full-order model is around a factor of 200. We note

that, because several days of computation would be required, we have not performed

optimizations using the full-order model for this case.
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Figure 6.1: Flowchart for generalized pattern search with TPWL.

Figure 6.2: NPV evolution during optimization (Case 1).

Table 6.1: Optimization results for Case 1.

Method Initial NPV ($106) Final NPV($106) # of full simulations
Full-order GPS 49.9 170.1 2500

TPWL guided GPS 49.9 169.0 15
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Figure 6.3: Evolution of NPV and constraint violation during optimization (Case 2).



Chapter 7

Summary and Future Work

7.1 Summary

In this thesis, we enhanced the performance of a recently developed approach for

reduced-order modeling – the trajectory piecewise linearization (TPWL) procedure.

In our TPWL implementation, reservoir equations are linearized around previously

simulated training runs and the high-dimension state space is projected into a low-

dimension space using proper orthogonal decomposition (POD). Both the accuracy

and stability characteristics of this method were investigated and extended in this

work.

To improve TPWL accuracy, a local resolution method was proposed to preserve

high resolution in well blocks and important flow regions. The idea is to avoid dimen-

sion reduction in these regions by separating them from the rest of the model during

the reduction. Results show that this method outperforms the basic TPWL when

using the same number of reduced variables. The method also provides flexibility on

the choice of the number of reduced variables to include in the TPWL representation.

An example with a significant density difference between phases was shown to lead

to instability in the TPWL model. Stability analysis revealed that the stability of

the TPWL method is related to the spectral radius of the amplification matrix. Two

different stabilization methods were proposed. In the optimized basis (OB) method,

we seek to minimize the spectral radius of the amplification matrix by choosing the
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optimum number of reduced variables. The OB method does not guarantee stability,

but it does improve TPWL stability and performance significantly. The equal density

projection (EDP) method stabilizes cases with density differences by using the basis

from cases without density differences. The EDP method requires one extra full-order

simulation for stabilization. This method appears to be slightly more accurate than

the OB approach. Both methods were further tested on two reservoir problems of

practical size with significant density differences. Results showed that both methods

are able to provide stabilized and accurate solutions for challenging cases.

The use of TPWL within a direct search optimization framework was also demon-

strated. TPWL was used as a surrogate in the generalized pattern search method.

Retraining is applied to update the TPWL model as the optimization proceeds. Op-

timization results for two example cases illustrated the applicability of TPWL as a

surrogate within the generalized pattern search algorithm. Speedups of about 100 to

200 relative to optimizations using the full-order model were achieved.

7.2 Future Work

One direction for future work is to investigate stabilization methods that not only

guarantee stability but also provide reasonable accuracy with low computational cost.

Several possible candidates have been suggested. One approach is to construct a left

projection matrix based on Lyapunov stability theory to guarantee stability, as is

done in [14], and to then build accuracy back into the scheme in some way. So far

guaranteed stability has been achieved, but accuracy is still an issue.

For optimization applications, future work should be directed toward formalizing

the determination of when retraining should be performed. It would also be of interest

to investigate whether it is more advantageous to have multiple training runs that

cover the whole space rather than perform retraining along the search path.

The use of TPWL for history matching is also a promising direction for future

work. As shown in the Appendix, TPWL is able to provide a reasonable approxi-

mation to the true solution even when the geology of the test case is considerably

different from that of the training simulation. This feature can be utilized to provide
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a search direction for minimizing the mismatch between simulated and actual data

by adjusting the geological model. This capability could find use in history matching

problems.



Appendix A

TPWL for History Matching

A.1 Introduction

History matching entails the updating of the geological model using new data, e.g.,

production data or time-lapse seismic data. It is often formulated as an optimization

process in which the mismatch between observed and simulated data is minimized by

modifying the geological model. In this Appendix, we present a preliminary approach

for modeling the impact of perturbation of the geological model on the flow response

using a TPWL formulation. This could eventually represent a key component of a

history matching procedure based on TPWL.

A.2 TPWL Representation with Geological Vari-

ation

The TPWL representation for history matching can be developed in analogy to the

representation for the production optimization problem. In production optimization

problems, the control parameters are well controls, e.g., well BHPs. For history

matching, the “controls” are geological parameters such as porosity, permeability

or transmissibility. Therefore, just as we linearize the governing equation around

training well BHPs for problems where well BHPs are to be varied, in the history
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matching problem we linearize the equation around training geological parameters.

Thus, in analogy to Eq. 2.3, for this case we have

gn+1 = gi+1 +
∂gi+1

∂xi+1

(
xn+1 − xi+1

)
+
∂gi+1

∂xi
(
xn − xi

)
+
∂gi+1

∂m0

(m−m0) . (A.1)

Here, gn+1 = g(xn+1,xn,m) and gi+1 = g(xi+1,xi,m0), where m0 is the parameter

set for the training geology model and m is the parameter set for the test geology

model. Following the procedure used to develop Eq. 2.9 in Chapter 2, for this case

we have

zn+1 = zi+1 −
(
Ji+1
r

)−1
[(

∂Ai+1

∂xi

)
r

(
zn − zi

)
+

(
∂gi+1

∂mi+1
0

)
r

(m−m0)

]
, (A.2)

where (
∂gi+1

∂mi+1
0

)
r

= ΦT ∂gi+1

∂mi+1
0

. (A.3)

As can be seen in the equations above, an extra term, ∂gi+1/∂mi+1
0 , appears which

is not in our earlier formulation. This term represents the derivative of the residual

to the geological parameters. The specific form of this term depends on how the

geological model is represented. GPRS has been modified to output this term in the

required form.

The geological parameters m can be taken as permeability or transmissibility (we

assume for now that porosity is not modified so it is not included in m). The residual

g of the governing equation is nonlinear in permeability k but linear in transmissibility

T. Therefore, by using T to represent m instead of k, we can eliminate one of the

second-order error terms, ∂2g/∂m2. Eq. A.2 is now written as

zn+1 = zi+1 −
(
Ji+1
r

)−1
[(

∂Ai+1

∂xi

)
r

(
zn − zi

)
+

(
∂gi+1

∂Ti+1
0

)
r

(T−T0)

]
. (A.4)
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Figure A.1: Left: training geology; Right: target geology. Permeability in x-direction
(in mD) is shown.

In Eq. A.4, ∂gi+1/∂Ti+1
0 is the derivative of the residual with respect to trans-

missibility and is output from the full-order simulator GPRS during the training

run. Both T and ∂gi+1/∂Ti+1
0 are in high-dimension space. It may be advantageous

to reduce their dimension, which will reduce the number of parameters needed for

the history matching. In this work, however, we simply use the full transmissibility

without reduction.

A.3 Simulation Results

The methodology based on Eq. A.4 is now tested using synthetic reservoir models

generated by sequential Gaussian simulation in SGEMS [37]. The permeability distri-

butions for the training and target geologies are shown in Figure A.1. The variogram

model for both geologies is the same; the main direction of permeability correlation is

20o from the y-direction. For the training geology the mean permeability is 320 mD

while the variance is 80 mD. For the target geology the mean permeability is 480 mD

and the variance is 120 mD. As can be seen in Figure A.1, the distributions are quite

different for these two models. The well locations (evident in Figure A.1) and well

BHP specifications are the same for the two models.

Consistent with our earlier approach, we designate α = 0 for the training geology

and α = 1 for the target geology. Test cases are specified using a weighted combination

of the two, as in Eq. 2.11. Figures A.2 to A.4 present results for α = 0.5. The black
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Figure A.2: Oil production rates for α = 0.5.

line is the full-order GPRS solution for the training case, about which we linearize.

The red line is the full-order solution for the test case we wish to match. It is evident

that the training and test solutions differ from each other. The TPWL test results

(red circles) are in reasonable agreement with the full-order results, particularly for

oil production rates. This indicates that the first-order correction provided by TPWL

is able to capture a large part of the difference between the training and test results.

This feature is important for history matching as it can be used to identify the search

direction for improvement in the objective function.

As mentioned above, in order to use this method for history matching, parame-

terization of the geology will also be needed to reduce the number of optimization

parameters. This can be accomplished, for example, through use of principal compo-

nent analysis (PCA), where Φgeo is the basis matrix of the geology and ξ is the set
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Figure A.3: Water production rates for α = 0.5.
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Figure A.4: Water injection rates for α = 0.5.
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of reduced geological parameters:

m = Φgeoξ. (A.5)

Nonlinear parameterizations, such as those based on kernel principal component anal-

ysis (KPCA), could also be applied. Such approaches can be used to approximately

represent multipoint geostatistical models. See [38] for further discussion.

In future work, we plan to further develop the use of TPWL for history matching

and to investigate the use of geological parameterizations within this context.
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