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ABSTRACT 

ID this study, the rate decline and rate decline derivatives of a constant pressure 

well are presented for infinite, constant pressure outer boundary, and closed outer 

boundby homogeneous reservoirs. A rate derivative type curve is provided for these 

cases ras well. The effects of the dimensionless reservoir exterior radius are discussed. 

Rate decline and rate decline derivatives of a constant pressure well in an infinite com- 

posite reservoir are also presented. For composite reservoirs, the effects of mobility 

ratios and discontinuity distance on both rate decline and rate decline derivatives are 

preseated. Type curves for dimensionless wellbore flowrate derivatives for infinite 

cornpasite reservoirs are provided. A new correlating group for the derivative type 

curve is provided, and is different than the correlating group for the rate type curve 

presenled in the past. Finally, an analysis method that comprises type curve and 

derivative type curve matching to determine the dimensionless variables is proposed 

and damonstrated with a simulated example. 
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INTRDDUCTION 

In the evaluation of petroleum and natural gas reserves, and in the evaluation of 

grountjl water aquifers, transient rate tests are performed. In these tests, the under- 

ground formation is produced at a constant pressure and the rate response at the active 

wellbare is measured. 

Recent developments in the recording of flowrates with the use of spinners allows 

for t k  collection of very frequent rate measurements. Hence, the rate data is 

differentiable and a rate derivative response as a function of time can be constructed. 

This study first concentrates on wellbore flowrate and flowrate derivative 

respoqses in three types of homogeneous reservoirs: infinite, constant pressure outer 

boundw, and closed outer boundary. Fetkovich (1980) examined decline rates of 

infinite and closed outer boundary reservoirs and developed a method of collapsing 

them iplto type curves. Next, flowrate derivative responses for infinite composite reser- 

voirs &e examined. The configuration of a composite reservoir is illustrated in Figure 

1 (aftar Turki, 1986). A composite reservoir is defined as a system of two concentric 

region$ with a single well at the center. The two reservoir regions have different pro- 

perties (permeability, porosity, fluid viscosity, reservoir volume factor, and compressi- 

bility). An infinitesimally thin radial discontinuity is assumed to separate the two 

reservdir regions. Turki (1986) collapsed the flowrate responses for infinite composite 

reservdirs into type curves using the same method as Fetkovich (1980) and was able to 

determine the discontinuity distance and mobility ratio for certain conditions. In this 

way, Turki (1986) showed that graphed solutions for the dimensionless wellbore 

flowrate in composite reservoirs exhibit at least two inflection points. Thus, if the 

flowrae derivative is graphed instead of the flowrate, these inflection points correspond 
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Figure 1. Composite reservoir configuration. (After Turki 1986) 
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to eitiber minima or maxima that can be easily identified. This study also examines the 

possibility of collapsing the rate derivative responses of infinite composite reservoirs. 
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THEdRY 

Tbe pressure responses in the two reservoir regions are described by two partial 

differeotial diffusivity equations. These equations are converted into a system of ordi- 

nary differential equations using the Laplace transformation. By applying the 

appropkiate boundary conditions, Laplace space solutions for the transient rate decline 

in a cdmposite reservoir are generated for infinite, closed outer boundary, and constant 

pressude outer boundary reservoirs. The inversion of the Laplace solutions to real 

space i s  performed numerically by an algorithm developed by Stehfest (1970). Here, 

the treatment of the theoretical background is modeled after the work of Turki (1986). 

The usual assumptions of slightly compressible fluid, isotropic and homogeneous 

reservair, and small pressure gradients everywhere are assumed in deriving the 

diffusivity equations in both reservoir regions. In addition, a few other assumptions 

are neelded to solve the transient rate decline problem in the composite reservoir: 

1. The formation is horizontal and of uniform thickness. 

2. The discontinuity is of infinitesimal thickness in the radial direction. 

3. Only single phase flow is considered. Furthermore, only one kind of fluid 

is considered in a given reservoir region. 

4. During the testing period, the distance to the radial discontinuity is constant. 

5 .  The sandface wellbore pressure is maintained constant throughout the test- 

ing period. 

Flbid flow through both reservoir regions described in Figure 1 is idealized by the 
I 

diffusiuity equation. 
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For R$gion I: 

For R&gion 11: 

rw<r<R 

where ~R is the radial distance to the discontinuity. 

The initial and inner boundary conditions are specified by the following equa- 

tions: 

(3 1 pl(r , 0) = pi r,< r< R 

p2(r , 0) = pi R< r< - (4) 

Pdrw 9 t) = Pw (5 ) 

Equations (3) and (4) specify that the entire reservoir is initially at a constant pressure, 

pi. At the discontinuity, Equations (6) and (7) hold. 

- = h-  
ap

' r = R a n d t > O  (7) 

where h is the mobility ratio to be defined later. To completely specify the problem, 

the appopriate outer boundary condition is needed. If the reservoir is infinite, the con- 

dition is: 

p2(r 7 t)+Pi 3 r+m 
I 

For a dlosed outer boundary reservoir7 the condition is expressed as: 

aP2 - (re , t) = 0 R< re< 00 

ar (9) 

5 



The cpndition for a constant pressure outer boundary is: 

axpressing all of the above equations in dimensionless variables results in the fol- 

lowing set of equations: 

For the infinite outer boundary case: 

PD2(rD 9 tD)+o 9 rD+OO 

For the closed outer boundary case: 

I 

For thq. constant pressure outer boundary case: 

PD2(reD 9 tD) = 0 

RD< ‘eD 

RD< ‘eD 
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The dimensionless variables are defined as follows: 

Pi - P 
Pi - Pw 

PD = 

r 
rD = - 

r W  

From Darcy's equation, the relationship between the flow rate and the pressure at any 

location within the composite reservoir is derived. 

For Rdgion I: 

I 

For Rqgion 11: 

rwI r I R 

R S r c -  
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In terns of dimensionless variables, Equations (27) and (28) can be expressed as: 

where the dimensionless flow rate is defined in the following manner: 

Applying the Laplace transformation to the partial differential Equations (11) and 

(12), a d  using the initial conditions of Equations (13) and (14) yields a set of ordi- 

nary differential equations: 

Equations (32) and (33) are simple forms of modified Bessel equations (Abrumowitz 

and Stegun pp 374, 1964). The general solutions to the equations where the Laplace 

transfobation of the pressure, FD, is a function of the Laplace variable, s ,  and the spa- 

tial vdable, rD, are: 

FD2 = C2lb(rD6)  + c22&)(rD6) 7 RD< rD< O0 (35) 
I 

The fldw in any of the two reservoir regions can be obtained by using either Equation 

(36) or1 Equation (37) which are respectively the Laplace transformations of Equations 

(29) and (30). 
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To determine the constants Cl1, C12, C21, and C22, the appropriate boundary con- 

dition$ are used in addition to the conditions at the discontinuity. In Laplace space, 

Equatilons (15) through (20) become, respectively: 

For instance, the constants for the infinite reservoir case are obtained by using 

Equations (38), (39), (40), and (41). At the wellbore, rD = 1, and: 
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The cdnstants Cll, C12, and C2, have to satisfy the following system of linear equa- 

tions: 

1 C11 Io(&) + C12 KO(&) = - 
S 

where 

L J 
c12 = 

KO(&) + S&K,(&) 

The inversion of the solution from Laplace space to real space is performed 

numeriQally by an algorithm developed by Srehfesr (1970). 
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The homogeneous Laplace space rate solutions are as follows (after Fetkovich, 1980): 

Infinite Case: 

Closed Finite Systems: 

Constant Pressure Finite Systems: 

Finally, since the rate at t = 0 is zero, we have: 

L {%}= s$ 

Hence, for the log-log derivative, equation (57) is used: 

For ths semi-log derivative, equation (58) is used: 

11 



HOMDGENEOUS RESERVOIRS 

Pigure 2 presents the dimensionless wellbore flow rate declines for homogeneous 

reservoirs. Three types of reservoirs are considered: infinite, constant pressure outer 

boundary, and closed outer boundary. The exterior radii are 

reD = 50, 100, 200, and 500. The rate decline for the closed outer boundary cases were 

considkred by Fetkovich (1980). At early time, the rate declines are all infinite acting. 

Only when the effects of different reD’s are encountered do the rates deviate from the 

infinite case, and the deviation for the two different outer boundary conditions occur at 

the same time. Fetkovich (1980) also observed that the rate decline for a closed outer 

boundm reservoir is exponential. The constant pressure rate responses become almost 

constant at late time as the flow approaches a steady state condition. 

LDg-log decline curve derivatives for the same cases as presented in Figure 2 are 

shown in Figure 3 in log-log coordinates. Here again, the time of deviation from the 

infinite! case depends on reD. The larger the reD, the later the deviation occurs. How- 

ever, &e deviation of the rate decline derivatives from the infinite case derivative 

occur almost one log cycle earlier than the corresponding deviation observed in the 

rate decline. The constant pressure rate derivatives approach zero as the constant pres- 

sure rates approach constant values for differing reD’s. The closed outer boundary 

derivatives increase in a linear fashion on the log-log graph and become a straight line 

at late time with a slope of unity. 

The same decline rates in Figure 2 are presented on semi-log coordinates in Fig- 

ure 4. The corresponding semi-log rate derivatives are shown in Figure 5 in semi-log 

coordinates. Here again the deviations of the derivatives from the infinite case deriva- 

tive occurs earlier than in the rate decline Figure for the same data. The very apparent 

maxima and minima in the semi-log derivatives are reflections of the inflection points 

12 
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Figure 2. Rate decline curves for infinite, closed outer boundary, and constant pressure 

outer boundary homogeneous reservoirs. Log-log coordinates. reD=50, 100, 
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preseqt in the semi-log rate declines. The derivatives for the constant pressure case 

deviate below the infinite acting derivatives and approach zero. The derivatives for the 

closed outer boundary case display significant character. The first inflection point in 

the selini-log rate decline (Figure 4) corresponds to a minimum in the semi-log deriva- 

tive, dnd the derivative increases above the infinite acting derivative. The second 

inflection point in the rate response corresponds to a maximum value of the semi-log 

derivaqive. After this maximum, the semi-log derivative decreases rapidly and 

approwhes zero as the reservoir depletes and reservoir pressure approaches the 

wellbare pressure. 

Ferkovich (1980) presented a method for collapsing rate decline data into a type 

curve defining: 

and 

In this collapsed curve, all solutions for various reD’s in a closed outer boundary 

hornog@neous reservoir converge to a single curve at the onset of depletion. This 

observgtion is shown in Figure 6 for reD = 50, 500, and 5000. The rate declines for 

differeQt values of reD in a constant pressure outer boundary homogeneous reservoir 

collapse into a single curve in the same manner (see Figure 6).  Due to similarity in 

shape cpf the rate derivative curves for different reD’S, it seems that they too would be 

collapsible into a single curve. The derivatives for the same cases as in Figure 6 are 

I 
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shown in Figure 7 collapsed together using Fetkovich’s method. These curves do not 

shift ibto a single curve. However, if Fetkovich’s dimensionless time is simplified to 

be: 

the cdslstant pressure rate derivatives and the closed outer boundary derivatives col- 

lapse iinto individual curves, shown in Figure 8. The collapsing of the derivative curves 

for the constant pressure cases is not as good as the collapsing for the closed outer 

boundduy case. However, for practial purposes, we can consider the curves to be col- 

lapsed, 

19 
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becomes very short for mobility ratios less than 
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Due t@ this similarity in shape, it would seem that the curves would be collapsible into 

a typa curve, with the transition flow periods for different mobility ratios collapsing 

into single curves. Using Ferkovich's method again, Figure 11 shows that this is 

indeed the case, as was shown by Turki (1986). The match is fairly good, especially 

in the early portions of the transition flow periods for the different mobility ratios. 

This method for collapsing the rate responses of composite systems was presented by 

Turki (1986). 

The log-log derivatives of the wellbore flowrate response of composite systems 

with 40 = 50 and 500 presented in Figures 9 and 10 are shown in Figures 12 and 13, 

respectively. The maxima and minima apparent in the derivative Figures correspond 

to inflection points present in the rate decline curves of Figures 9 and 10. Here, the 

deviatiions from the infinite acting portion of the derivative curve due to different 

mobility ratios occur earlier than the corresponding deviations present in the rate 

decline curves. The shapes of the derivative curves for various mobility ratios with R D  

= 50 and 500 are very similar. This would lead us to believe that they too may be 

collapslible into single curves for the transition flow periods and various values of R D .  

Using the modified "shifting" method developed for the homogeneous cases results in 

a very good match. This is shown in Figure 14. Again, the match is extremely good 

for the early transition flow periods for different mobility ratios. At later time, the 

match deteriorates, more noticeably for unfavorable mobility ratios, but the earlier time 

transitiDn period data is most important in well test analysis. 
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ANAVYSIS PROCEDURE 

Stimulated rate decline data for an infinite composite reservoir with RD = 500 are 

graphdd in Figure 15. Covering just over three log cycles, the data matches very well 

over the portion of the curve representing the infinite acting rate response. However, 

very little character is displayed by this plot; no evidence of exponential decline has 

appeaed yet. This is a problem that is encountered with type curve matching on the 

Fetkovich collapsed decline curves. If there is not enough data, the radius of the sys- 

tem cdnnot be determined, and only a minimum radius can be estimated. 

If a closed outer boundary is present, or if the reservoir is a composite reservoir, 

the values of r d  or R D  can still be determined with this data. The data for the same 

case i$ differentiated and graphed on the derivative response type curve in Figure 16. 

Here, khe derivative response due to the effects of the mobility ratio or a closed outer 

boundby occurs almost one log cycle earlier than the rate response. While no 

signifieant character was evident in the rate response curve, very apparent character is 

displafed here. The deviation from the infinite acting case is obvious; but it is not 

known whether it is due to the effects of an unfavorable mobility ratio, or due to the 

presenke of a closed outer boundary. In other words, the value for the minimum RD 

can ba estimated if the conversion factor between t and f D  is known. In order to dis- 

tinguish between these two, the data would need to extend over the "hump" displayed 

in the derivative response graph. But the fact remains that the derivative response 

yields 'valuable reservoir information almost one log cycle earlier than the correspond- 

ing rat(: response. If f D  is known, or if an approximation for f D  is available, R D  can be 

estimatied from a time match point using equation (61). 

The maximum slope obtainable in the derivative response curve is unity. The 

deviations from unity seen in the composite reservoir derivative response for 
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unfavdrable mobility ratios is due to the response of the outer reservoir region. Thus, 

if the derivative data arrives at a slope of unity and remains constant at unity for a 

long *nod of time, the response may be due to the effects of a closed outer boundary. 

‘llhus, derivative analysis allows for the detection of a reservoir outer radius or a 

boundtuy -between two distinct reservoir regions around the well. 
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CONdLUSIONS 

1. Rate derivative responses for closed outer boundary and constant pressure outer 

boundary homogeneous reservoirs are collapsed into one type curve. 

2. A lbew time correlating group was found that is different from the correlating group 

presented by Fetkovich (1980). 

3. Rate derivative responses for infinite composite reservoirs are collapsed into one 

type curve in the same manner that was used for the homogeneous reservoir cases. 

4. If #e conversion factor between t and is known, the exterior radius, reD, or the 

disfiance to the discontinuity, RD, can be estimated from a time match point using 

eqqation (61). 

5.  For a composite reservoir case, the match of the derivative data to the type curve 

may yield the value or a lower limit of the value of the mobility ratio, h. 

6.  The derivative response type curves presented in this study provide valuable reser- 

voir information almost one log cycle earlier than is available from the 
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NOI\IZENCLATURE 

- qD4 - 

r =  

R =  

t =  

total compressibility, LT2/M 

formation thickness, L 

modified Bessel function, first kind, zero order 

modified Bessel function, first kind, first order 

modified Bessel function, second kind, zero order 

modified Bessel function, second kind, first order 

pressure,  MILT^ 
Laplace transform of p 

initial pressure, M / L T ~  

flow rate, L3/T 

Laplace transform of q 

Fetkovich dimensionless wellbore flow rate 

radius, L 

discontinuity radius, L 

reservoir exterior radius, L 

Laplace variable 

time, T 

Fetkovich dimensionless time 

viscosity, M/LT 

porosity 

mobility ratio of region I to region 11 

diffusivity ratio of region I to region I1 
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Su bscpi pts 

1 

2 

D 

W 

region I 

region I1 

dimensionless 

well bore 
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