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1. FRACTURE CHARACTERIZ ATION USING PRODUCTI ON DATA

This research project is being conductedRysearch Assistant Egill Juliusson, Senior
Research Engineer Kewen Li and Professor Roland Horne. The objective of this project is
to investigate ways to characterize fractured geothermal reservoirs using production data.

1.1 SUMMARY

This report describes the application of methods that have been developed for analyzing
tracerand flowrate signals to characterize fractured geothermal reservoirs, to data from a
threedimensional reservoir model with upscaled fractures.

The revised inversion method that was discussed in the quarterly report from Fall 2011 is
used to find tracekernels. The kernels are first estimated using a nonlinear parametric
function which is somewhat restricted in shape. This constraint is subsequently relaxed by
reverting to a nonparametric model that uses the parametric estimate as a prior.

The thermalransport properties of the three dimensional model were also investigated. It
was shown that a commonly used thermal transport model (Lauwerier, 1955) does not
capture the thermal decline very well. A simple streamline based model (Gringarten and
Sauty,1975; Barker, 2010) was also applied but that did not capture the thermal drawdown
well either. The leading cause of this discrepancy has not been fully determined at this
point.

1.2 INTRODUCTION

A multiwell tracer test willusuallyhave different types dfacer going into each injection

well, so as not to create any confusion alfomin where the tracer originates. However,
there are situations where the same tracer, e.g. a natural recirculating chemical compound,
could be going into all of the injectiomells at once. An example of such data comes from

the Palinpinon field in the Philippines, where the chloride concentration in the produced
brine showed distinct variations over a 15 year production pefigdre 11 shows the
chloride concentration in production well P20D, along with the variation in injection

rates into each of the injection wells RRD through PNBRD. The chloride concentration

of the reinjected brine had an increasing trend because part of the fluid grdadumehe
reservoir was separated as steam going to the power plant.

Urbino and Horng¢1991), Sullera and Horn@001) Horne and Szud2007) and Basel et

al. (2011)have worked on decoding this data set without conclusive results on how much
informaion can be obtained. Working with the Palinpinon data was challenging because
the data were samplesparsely, a large number of predictors (nine injection wells) were
influencing the response, the production rates were not available aiphase flow inhe
reservoir may have been affecting the tracer flow paths in highly nonlinear ways.
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Figure 11: History of injection rates and produced chloride concentrafiorwell PN
29D, in the Palinpion field, Philippines.

In an effortto start answering questions about how much information could be obtained
from this type of data it was deemed most practical to work on similar data sets that were
created using numerical flow simulation models. The quarterly report from Fall 2011
outlines a methodology for solving the tracer transport problem where the same tracer is
being injected into more than one well. The examples in that report were focused on how
to estimate the tracer kernel for data coming from-tiwoensional discrete fracture
reservoir models. In this report we will investigate similar scenarios for data from a three
dimensional upscaled reservoir model.

1.3 KERNEL ESTIMATIO N WITH A THREE -DIMENSIONAL RESERVOI R
MODEL

The results of tracer kernel estimation with data generatd & threedimensional
upscaled reservoir model are illustrated in this chapter. This numerical reservoir model will
be referred to as Model Ill (to be distinguished from Models | and Il from the quarterly
report from Fall 2011)Model Il did not containdiscrete fracture elements but instead a
distribution of discrete fractures was upscaled t@latively coarse computational grid.
The underlying fracture network was built using the fracture generation software
FRACMAN. The fracture network, shown frigure 12, had 200 fractures which were
drawn from two sets of fractal (powkaw) size distributions, with 100 fractures in each.
One of the fracture sets had aS\trend and the other had a {$&V trend. The fracture
aperture and ydraulic conductivity were correlated to the fracture size, and th&WE




fractures were giveriwo times higher conductivity values on average. The fracture
conductivity ranged from about 20" m/s. The hydraulic conductivity of the matrix was

set to D’ m/s. The aperture distribution covered aboutOlmm. The porosity of the
fractures in FRACMAN was assumed to be one, and the matrix porosity was zero. The
connection between wells I1 and P2 was considerably better than that between 12 and P1 as
a resit of the NESW trend in the second set of fractures.

Figure 12: The threedimensional fractte network underlying Reservoir Model .

The fracture network was upscaled to a grid of 50x50x25 blocks, making each block
20x20x20m? in size. The hydraulic conductivity of the blocks ranged from 0.001 to 433
m/s after the upscaling had been performed. Similarly the porosity ranged from O to 0.006.
The upscaled data were imported into FEFLOW for flow simulation. The log of hydraulic
conductivity in the ydirection (NS) in the upscaled model is showrFigure 13.
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Figure 13: The log of hydraulic conductivity in thedyrection (NS) in the computational
grid for Model L.

Figure 14 gives a snapshot of tracer distribution in the reservoir model after 100 days of
tracer injection into injector 11, with concentration 1 mg/L avater injection rate 2500
m/day.Table 11 summarizeshe main properties of Model I1I.
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Figure 14: A snapshot of tracer distribution in Model III after 100 days of tracer injection
into injector 11, with concentration 1 mg/L amdter injection rate 2500 Tfday.



Table 1.1: Summary of properties for Reservoir Model Il

General
Dimensions 1000 x 1000 x 500%r
Initial temperature 150C
Rock heat capacity 2520 kJ/m3/C
Rock heat conductivity 3J/m/s/C
Longitudinal dispersivity Im
Transverse dispersivity 0.1m
Fractures
Number of fractures 200
Discrete fractures no
Porosity 1
Hydraulic conductivity = ¥ m/s
Total Compressibility le-10 1/Pa
Matrix
Porosity 0
Hydraulic conductivity le-7m/s

Total Compressibility le-10 1/Pa

1.3.1 Constant Flowi Varying Concentration Scenario

Examples of kernel estimation are illustrated in Sections 1.3.1.1 and 1.3.1.2. The
parametric kernel estimation approach was useddirdtfollowed by the nonparametric
estimation approach. The examples are based on simulated data from Reservoir Model |ll.
These examples are for a scenario where the-ffta@s are constant but the injected tracer
concentration varies over timehd injecton rate for each injector was 2500/day and

the injected concentration was changed every 30 days. The 550 day history ofnirgadtio
production is shown ifigure 15.
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Figure 15: Injection and prodution history of tracer concentration in the constant flow

varying concentration example for Reservoir Model Ill.

1.3.1.1 Parametric Kernel Estimation

The first step in determining the kernels was to find a parametric estimate. Data from the
first 400 dgs was used to estimate the kernels and then the kernel estimates were used to
predict the concentration from day 400 until day 550. The resulting fit was quite good as
shown inFigure 16, although it was not quite as accuratehag seen in the corresponding

example for Reservoir Model | (see quarterly report from Fall 2011).
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Figure 16: Tracer production data as reproduced from the parametric kernel estimates
compared to the actual data used to calierahe models. The true data are
shown as blue solid lines and the reproduced data are given by green dashed
lines. The black dashed line divides the estimation and prediction periods.

The reason for the less accurate data fit in this case becomes apgeenooking at the
resulting kernel estimates Figure 17. The first thing to mention in this case is that the
"true" kernel estimates were hard to obtain in this case because of numerical issues in the
simulation. This is s most clearly in the estimate of the true kernel for connection 11P1,
where the sinusoidal variations in the tail are numerical artifacts. Another observation to
keep in mind is that the parametric model did not fully conform to the shape of the "true"



kernels, as seen for the 11P2 and 12P2 connections. One obvious reason for this is that the
parametric kernels are based on equations that were derived foinoersional flow,

while the actual kernels are generated from a flow field that is somewhereebetwoe

and threedimensional.

The "true" kernel for the I12P1 connections indicated that there should have been a very
large pore volume separating the two wells, but this was not realized by the parametric
model. A couple of reasons for this may hawrb that the true kernel could not be
computed accurately because of numerical errors in the FEFLOW simulation, or that
having this as a significant connection happened to yield a better solution to the problem. It
did not seem likely that the optimizati@afgorithm had become stuck in a local minimum
because leaving the 12P1 connection out yielded significantly poorer data fits. In relative
terms, however, the 12P1 kernel had small influence on the production signal because the
corresponding IWC (interweltonnectivity, which was computed earlier from floate
variation data) coefficient was very small, as shownahle 12.

Table 12: Interwell connectivity coefficients (F;) for Model I11.

F P1 [P2
11 0.5477 0.448¢
12 0.0024 0.987]

Estimates bthe pore volume\), Peclet numberRge) and correction factorf)(are given in
Table 13. The correction factors were relatively close to one, indicating that the IWCs
give a fairly good indication of the tracer connectivity tbe flowrates used in this
example. The one exception igf which is abnormally high. Counterintuitive results of
this kind could come up when the production signal was a weak function of the input. In
spite of this, the test statistic, SO, indicatbdt the 12P1 connection was the weakest, as
shown inTable 14. Using a 0.01 cubff threshold for SO, as was done in the examples for
Models | and II, would mean that all of the connections should be considered significant,
asshown inTable 15.

Table 13: Kernel parameter estimates for Model Ill, based on the constant flow varying tracer
scenario.

P1 P2
V, 11 17,825 33,692
12 40,053 34,358
Pe 11 6.47 3.55
12 3.82 10.14
f 1 0842 0.836
12 1.552 1.102
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Figure 17: Parametric kernel estimates for eachthe four injectoiproducer connections
in Reservoir Model Ill. The "true" kernels are shown as blue solid lines and the
parametric estimates are given by green dashed lines.

Table 14: Test statistic to determine the influenceof each kernel in the constant flowrate - varying
concentration example for Model 111

SO P1 P2
1 0.8601 | 0.2872
121 0.1390 | 0.7128

1C



Table 15: List of valid injector -producer connections based on the test statistic SO for Model IlI.

GO P1 P2
1] TRUE | TRUE
12l TRUE| TRUE

1.3.1.2 Nonparametric Kernel Estimatio

The nonparametric kernel estimates for the constant-fleavying concentration example

are discussed in this section. The parametric kernels shoWwigume 17 were used as

priors in this problem, which was solved using tlomparametric theory outlined in the
guarterly report from Fall 2011. The first 400 days of production data were used to form
the kernel estimates and the last 150 days were predicted using those kernels. From
comparing the reproduction of data in this césseFigure 18) to that obtained in the
parametric case (sdeéigure 16), it is clear that the nonparametric approach brings a
considerable advantage.

11
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Figure 18: Fit to the praluction data from the constant flowvarying concentration
example for Reservoir Model Ill, using nonparametric kernels. Data from the
first 400 days was used for estimation of the kernels and the rest was predicted
based on the kernel estimates.

The nomparametric kernels were found to be relatively smooth and they fit the true kernel
estimates more accurately than did the parametric estimates, as illustr&igdren 19.

The clearest example of this is seen in the estimakg;@f The kernel estimate for the

I2P1 connection, on the other hand, is more oscillatory which would often be the tendency
for estimates that were weakly constrained by the data. The pore volume and correction
factor corresponding to the kernels showirigure 19 are given inTable 16.

12
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Figure 19: Nonparametric kernel estimates for those kernels deemed significant in the

constant flow- varying tracer example for Reservoirodel Ill. The "true"
kernels are given by blue solid lines while the estimates are in green dashed
lines.

Parametric bootstrapping was used to assess confidence bounds for the nonparametric
kernel estimates. These are showfigure 110. The roughness penalty multipliey) (vas

lowered by two orders of magnitude for the parametric bootstrap computations, which is
why the bootstrap estimates are more oscillatory. The fact that the true kernels are not
entirely encompassed by tB8% confidence intervals may indicate that the nonparametric
kernel model provides an imperfect description of the process, e.g. because of
discretization error. In addition to that, the representation of “true" kernels is not entirely
accurate, as mentied earlier. Nonetheless, these oscillations should not have much
impact on important bulk properties like the estimated pore volume and correction factor.

13
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Figure 110: Nonparametric kernel estimates and 95% confidence boundsneldtfrom
parametric bootstrapping for those kernels deemed significant in the constant
flow - varying tracer example for Reservoir Model lIl.

Table 16: Pore volume and correction factor computed from nonparametric kernels for Mael lll,
based on the constant flow varying tracer scenario.

P1 P2
V_x 11 21,497 43,442
12 39,793 40,267
f 1 0.902 0.819
2 1299 1.166

1.3.2 Varying Flowi Ramp Concentration Scenario

The varying flowrate - ramp concentration scenario was carried out with a 730 day
production history as shown Figure 111 andFigure 112. The flowrates were changed

every 100 days and the concentration in both injection wells increased linearly until day
550. After that, the injected concentration was reduced to zero. As in the previous

14



examples, the production rates were determined by a constant bottomhole pressure
condition. The kernel estimates found in the next two sections were based on these data.
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Figure 111 Injection and production rates in the variabfeow-rate - ramp tracer

example for Reservoir Model III.
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Figure 112: Injection and production history of tracer concentration in the variable flow
rate - ramp concentration example for Reservoir Model .

1.3.2.1 Parametric Karel Estimation

Using the kernel method to predict the tracer returns in this scenario, proved to be
significantly more difficult, than it did with the corresponding tdimensional example
(Model I in quarterly report from Fall 2011). There could be séveesons for this; most
notably the fact that the flow was no longer constrained to fractures that defined one
dimensional flow paths. There could also have been some numerical errors associated with
the use of relatively large gridblocks in the simulatiand of course the transients in the
production data were less informative as discussed in the previous examples for Reservoir
Models I and Il (see quarterly report from Fall 2011).
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The parametric kernel estimation method was applied to the variaide -flramp
concentration data for Model Ill. Data from the first 550 days was used to obtain the
kernels and the last 180 days were predicted with the kernel estimates. The resulting data
fits and predictions are shown kigure 113. The concentration in P1 was not captured
with much accuracy in those cases where the-fis& in P1 was small (days 2600 and
500-600). It seems like at low flowate conditions, diffusive effects, that are independent

of the flowrate, start to garn the behavior of the tracer production transient, thereby
breaking one of the assumptions made in the development of the tracer kernel model. The
concentration in P2, which produces at considerably higher-rit®s at all times, is
predicted with moraccuracy.

Table 17: Kernel parameter estimates for Model 1ll, based on the varying flow ramp tracer scenario.
P1 P2

Vy 11 38,114 29,341
12 7,597 48,220

Pe 11 4.00 4.00
12 4.00 4.00

f 11 0.929 0.987
12 0.782 1.004

Table 18: Configurations of the injection rates used to illustrate the variability in trace kernels.
Injection rates are given in n/day.

11 12
Config. 1 3750 1250
Config. 2 2500 2500
Config. 3 1250 3750

17
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Figure 113. Model reproduction of the tracer production data in the variable ftate -
ramp tracer example for Reservoir Model Ill. The true data are shown as blue
solid linesand the reproduced data are given by green dashed lines. The black
dashed line divides the estimation and prediction periods.

The resulting tracer kernel estimates are giveRigure 114 and the parameters for those
kernels ae listed inTable 17. The kernels are compared to "true" tracer return curves that
were obtained by running constant tracer injection scenarios with therdtew
configurations given ifmable 18. The \ariability in the "true" kernels shows that there is

no single kernel estimate that can capture the production signal perfectly, i.e. the kernels
vary with the flowrate configuration. In view of that, it is actually quite pleasing to see

18



how well the prodction signal in P2 was captured by the kernel model. Note also how the
kernel estimates relating to P2 are something of a mixture of the three "true" kernel
estimates. The kernel estimates for P1 are not particularly good, as expected, based on the
reasos given in the previous paragraph.
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114: Parametric kernel estimates for each of the four injegi@ducer
connections in Reservoir Model 1ll. The "true" kernels for the configurations
given inTable 18 are plotted with solid lines (Config 1: blue, Config 2: green,
Config 3: red). The parametric estimates are given by cyan dashed lines.

As in the constant flowate case, the SO test statistic indicated that all the kernels had
significant influence on the production signal, and that the I12P1 connection should be the
weakest.
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Table 19: Test statistic to determine the influence of each kernel in the varying flowate - ramp
concentration example for Model Il

SO P1 P2
1Y 0.7855 | 0.4857
121 0.2145 | 0.5143

1.3.2.2 Nmparametric Kernel Estimation

The final example is for nonparametric kernel estimation with the varying -floamp

tracer data set from Model Ill. In addition to the challenges mentioned in the
corresponding parametric estimation example, there were ssmes with utilizing the

equal area discretization method (see quarterly report from Fall 2011). To fix this, the
Peclet number for the parametric estimates was constrained to be above four (as seen in
Table 17). With this restiction, the equal area method worked well, and the data were
reproduced with similar accuracy as was obtained with the parametric model.
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Figure 115 Fit to the production data from the varying flowramp concentration
exampldor Reservoir Model Ill, using nonparametric kernels.
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The kernel estimates, with confidence bounds obtained from parametric bootstrapping, are
shown inFigure 116. The large variability in the confidence bounds is partly attaible

to the fact that some of the solutions in the bootstrapping procedure converged to a local
minimum. This issue could probably have been dealt with by implementing a rejection
criterion on the data fit, but that will be left as future work. The edBohpore volume and
correction factor are given ifable 110.
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Figure 116: Nonparametric kernel estimates and 95% confidence bounds obtained from
parametric bootstrapping for those kernels deemedfgignt in the varying flow
- ramp concentration example for Reservoir Model .

21



Table 110: Pore volume and correction factor computed from nonparametric kernels for Model I,
based on the varying flow- ramp tracer scenario.

P1 P2
Vy 1 58,404 28,144
12 9,153 44,801
f 11 1021 0.990
12 0.806 0.999

1.4 STERBY-STEP METHODOLOGY

Both the parametric and nonparametric kernel estimation methods described in the
guarterly report from Fall 2011 could be utilized on their own. It is suggested, however,
that they be used together. This process involveséps sutlined here.

Step 1: Obtain effective injectq@roducer flowrates,qipj;, using interwell connectivity.
The M-ARX method (Lee et al, 2010) was used to compute interwell connectivity for all
of the examples in this report. Transient floate datafor both injectors and producers
were required to obtain the-lRX based interwell connectivity matrik,

Pressure based interwell connectivity (Dinh, 2009) can be used when only pressure data
are available and the Interwell Transmissibility Method (tgrly report from Spring
2011, Section 1.4) can be used if both pressure aneréitaxdata are available.

Step 2: Find kernel estimates using the parametric kernel estimation method. The method
relies on interwell connectivity estimates to compute ngxiwreight and effective injector
producer flowrates. Flow rates and transient injection and production concentrations are
required for this step.

Step 3: Use test statistic SO, which is based the parametric kernel estimates and the
interwell connectivitis, to determine which wetb-well connections can be ignored.

Step 4: Find nonparametric kernel estimates for those injpobolucer connections
deemed significant in Step 3. Use parametric kernel estimates, from Step 2, as priors for
the nonparametrikernel estimates. The data required for Step 2 are used again here.

Step 5: Use parametric bootstrapping to obtain confidence bounds for the nonparametric
kernel estimates.

1.5 THERMAL TRANSPORT IN A THREE -DIMENSIONAL RESERVOI R
MODEL

In practice, it is usful to have a simple analytical model to describe the-iwellell
connections in reservoirs, e.g. for the purpose of optimizing reinjection into the reservoir.
Most analytical models for thermal transport in fractured reservoirs are based on the
assumptn that the flowrate remains constant. Moreover, the fracture and surrounding
matrix must have a relatively simple structure. In the annual report forZIUD it was
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shown that the analytical model developed by Lauwerier (1955) could be used to model
thermal transport in twalimensional fractured reservoirs quite accurately. This model was
developed for flow through a oftmensional fracture surrounded by tdonensional
matrix slabs.

The interwell connectivity and parameters derived from the traeerek can be used to
cali brate Lauweriero6s thermal transport mode
associated with the fracture aperture. Effective methods to determine the aperture, at the
onset of injection, have not been well establishédcabas (2005) suggested using
injectionbackflow testing to obtain the effective aperture, but a value obtained by that
method could be unreliable for characterizing wefvell connectivity. Reimus et al.
(2011) talked about using thermally degradiregérs to characterize the heat transfer area

for well-to-well connections. The method is still in development but seems promising,
especially as it builds on similar analytical equations to those that have been used in this
research, i.e. those given by Mszewski and Zuber(1985). The basic idea is to inject two
tracers, dissolved in cold water, at the same time into the reservoir. One tracer should be
thermally stable, and the other should have known thermal degradation properties. By
comparing the retumfrom the two tracers, one can infer how far the cold front has
progressed, which means that the effective heat transfer area, or the effective aperture, can
be found.

When it came to modeling thermal transport for tkdi@eensional models (Model 1ll) &
Lauwerier solution did not work very well, as the flow field was not constrained by one
dimensional fractures. Instead, the injegiooducer pairs were connected by relatively
large twadimensional fractures, with the exception of the 12P1 pair. Silonk&bf mass

and energy transport were run on Model Il with the injection rate and temperature
conditions listed imMable 111

Table 111: Flow rate configurations and injection temperatures for differert thermal simulation runs
with Reservoir Model IlI.

11[m3/d] 12[m3/d] 11[C]  12[C]
5000 20000 | 50 150
5000 20000 | 150 50
10000 15000 | 50 150
10000 15000 | 150 50
15000 10000 | 50 150
15000 10000 | 150 50
20000 5000 | 50 150
20000 5000 | 150 50

Conf. 4 Conf. J Conf. 3 Conf. 1

The resulting thermal drawdown curves are showRigure 117. The figure shows that

no cooling was seen in producer P1, in any of the scenarios, when water at 50°C was
injected into well 12. Thermal drawdown was seen in all of the other wells, for all other
scenarios, although very little cooling was seen in P2 at Configuration 1, with cold water
injection in I1.
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Figure 117: Simulated thermal brddhrough for Reservoir Model Ill. Note that the 12P1
connection showed no thermal breakthrough and thus the production
temperature remained at 150 C for the entire 10000 day period.

The thermal breakthrough curves for Reservoir Model 11l took on a sihapeiffered
significantly from that seen in the twitimensional reservoir model examples. The
Lauwerier (1955) model could not capture the breakthrough behavior very well, as shown
in Figure 118, where the fracture aperture thgdave the best fit to the data has been
chosen. Although the leading cause for the apparent shortcomings of this model has not
been fully determined, a few potential explanations will be offered.
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Figure 118 Comparison of simated thermal breakthrough and Lauwerier's (1955)
analytical solution for Reservoir Model Ill. The simulated values are presented
with solid lines and the fitted analytical responses have dotted lines.

One potential reason could relate to the fact thatudlés in Model Il were vertical and

each one of the major fractures was slightly tilted. Therefore, the wells intersected the
fractures at a single point, although, because of the upscaling this single point may have
gotten distributed over two or thrgeidblocks. The essential observation is that, because

of this, the streamlines between the wells formed in adim@nsional plane with a point
source and sink. Thus, a streamline based model similar to that proposed by Gringarten
and Sauty (1975) mighesolve the issue. A simple analytical streamline model for a well
doublet in an infinite plane, presented by Barker (2010), was used to look into this option.
This approach did not capture the thermal drawdown well either, but perhaps a streamline
model that is constrained to a finite plane would yield better results.

Another explanation of this discrepancy could relate to the complexity of the fracture
network. The return profile could be affected significantly by thermal returns coming from
two or more facture paths. This could perhaps be captured by fitting linear combinations
of these models to the drawdown curves.

Finally, it should be mentioned that the dispersivity coefficients for Reservoir Model Il

were set to relatively low values, as showrTable 11. The dispersivities were 50 times
smaller for Model 11l than they were for Models | and Il. The effects of this were tested by
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running Model Il with higher dispersivities but that did not explain the mismatch fully.
However, it might be useful to implement the Malozewski and Zuber (1985) model to be
able to capture this ambiguity in the dispersion term.

1.6 CONCLUSION

In this quarterly report the application of the tracer kernel method for flow through a three
dimensionalfractured system was reviewed. The results showed that the nonparametric
tracer kernels were able to capture the tracer transfer functions quite accurately for
constant flowrate conditions. The tracer kernels were less representative for the varying
flow-rate case because of the inherent variability in the-hraensional flow field.

It was noticeable from the examples given in Section 1.3 (and also the quarterly report
from fall 2011) that the tracer kernels were considerably more difficult to iffenwhe
flow-rates and tracer concentrations varied simultaneously. Abgtefep methodology

for inferring the tracer kernels was outlined in Section 1.4.

The applicability of using analytical thermal transport models to predict thermal
breakthrough ira threedimensional fractured reservoir was considered in Chapter 1.5. The
results showed that the Lauwerier (1955) model, that had worked well with two
dimensional discrete fracture models, did not predict the thermal decline accurately for
flow through athreedimensional fractured reservoir. The leading reasons for this
shortcoming have not been fully understood. We speculate that it has to do with the
distribution of flow through the twdimensional plane defined by the major fractures
connecting wellsn the reservoir.
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2. FRACTURE CHARACTE RIZATION OF ENHANCED
GEOTHERMAL SYSTEMS U SING NANOPARTICLES

This research project is being conducted by Research Associates Mohammed Alaskar and
Morgan Ames, Senior Research Engineer Kewen Li and Professor Roland. Abe
objective of this study is todevelop insitu multifunction nanosensors for the
characterization dEnhanced Geothermal Systems (EGS).

2.1 SUMMARY

During this quarterflow experiments were carried out in a fracturedk plug using 2um

and 2um fluorescent microparticleso examinevariable suspension concentration and
fluid velocities. The recovery of im particles was found to be highly sensitive to
suspension concentration, while that of thgnd was found to be highly sensitive to the
fluid velocity (i.e. pressure gradient). The sensitivity of the recoverygharticles to
concentration was likely due to a higher susceptibility @in2 particles to aggregation
than that of 5um particles, leading to more aggregation at high concentratoals
subsequently, more trapping via straining. Meanwhile, the sensitivity of the recovery of 5
pum particles to fluid velocity was likely due to the larger gravitational forces and fluid drag
forces acting on the larger particles and the fact that highdrdrag forces corresponding

to higher fluid velocities can directly offset gravitational forces (whereas particle
aggregation cannot necessarily be offset significantly by a higher fluid velocity).

To investigatethe processes that govern particlegort in experiments and ultimately in

the reservoir, we began to perform psoale simulation of naparticleand micropatrticle

flow for various pressure gradients, particle sizes, particle densities, and injection
conditions. The model accowrfor fluid drag gravity, andelectricforces, and the results
demonstrate the shifting balance between these forces at different conditions.

2.2 INTRODUCTION

Last quarterwe investigated the flow mechanism of silica microspheres thrthegbore
spaces oh micromodel. We fabricated micromodel made of an etched image of Berea
sandstone pore network intosilicon wafer. Transport of the silica microspheres was
analyzed by acquiring images usiag optical microscope. Work was also performed to
adapt an emulsio synthesis route reported for monodisperse bismuth nanoparticles with
the goal to synthesize monodispersehbismuth nanoparticles.

This quarter, wéegan to investigate the transport of fluorescent silica microparticles (with
twice the density of the ater used as the suspension fluid) in a fractoaérix systemFor

this purpose, corooding experiments were conducted usafyactured sandstone core
plug. Influence ofparticlesize, concentration and fluid velocity @articletransport was
addressd. Particletransport was assessed by measuring breakthrough curves, which were
constructed using fluorometry measurements on collected effluent samples.

This quarter, we began to perform psecale particle tracking simulations in order to
improve our gantitative understanding ofie experiments and tbelp determinevhich
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nanomaterialexhibit favorable transport under different geochemical conditionhe
reservoir and thus meet the first selection criterfon geothemal temperature sensors.
Modding performed thus far accounts for fluid drag, gravitational, and electric forces.
Ultimately, chemical bonding forces, particle straining due to size exclusion, and particle
aggregation will be incorporated into these modeling efforts.

2.3FRACTURE FLOW EXPERIMENT S

2.3.1 Fluorescent silica microparticles

Fluorescent silicparticleswere used irthe experimentsThese microsphere particles have

a narrow size distribution with an average diameter ah@ 5 pm labeled with blue and

green fluorescenty@, respectively. The excitation and emission of the blue and green
fluorescent dyes were 360/430 nm and 480/530 nm, respectively. The particle size was
confirmed by Scanning Electron Microscopy (SEM), as depicted in Figure 2.1. These
microspheres had aedsity in the range between 2.0 to 2.2 dlcithe microspheres
employed were negatively charged as per the manufacturer. Five different measurements
of zeta potential— (i.e. conversion of electrophoretic mobility to zeta potential using the
Smoluchowski equation, (Bradford et al., 2002)) were performed and the average zeta
potentials were found to bet0.2 mV (standard deviation: 0.4 mV) ar80.23 mV
(standard devigon: 1.77 mV) for particle size 2 and 5um, respectively. All silica
suspensions were diluted to three distinct concentrations @®hcd pwé 6

Ca dDG).

Figure 2.1: SEM micrographs of (A) blue and (B) green fluorescent silica particles
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2.3.2 Sandstone Core Preparation and Characterization

The Berea sandstone core plug used this experimental study was 3.78 and 2.56 cm in
diameter and lengtiréble 2.}, respectively. The core plug was fired at 700°C for 2 hours.
This firing process was implemented because it stabilizes the indigenous fines and
produces strongly watavet conditions (Syndansk, 1980; Shaw et al., 1989). Prior to
saturation, the core plug was dried under vacuum pressure of 0.09 MPa at 70 °C for 24
hours. The core was thesaturated with testing fluid (i.e. ultrapure water using Q
Millipore) inside the cordnolder. The saturation was accomplished by evacuating the
system (core plug and connecting tubing) to vacuum pressure below 50 millitorr. The
system was left under vaaon for about 4 hours to ensure complete evacuation. The pure
water was then introduced and the remaining vacuum was released to aid the process of
saturation.

The rock sample was characterized in terms of its porosity, matrix permeability, grain
densityand pore size distribution. The porosity of the core plug was measured using by
resaturation of the core (weight difference before and after saturation with testing fluid of
known density), Helium expansion (gas pycnometer) and mercury intrusion methibds an
found to be 22%, 21.4% and 20.3%, respectively. The grain density measured by the gas
pycnometer was 2.67 g/émand that by mercury intrusion was 2.57 glcrMatrix
permeability was measured by introducing flow at different flow rates. The average matrix
permeability was approximately 0.51 darcy. The pore size distribuiigure 22) was
obtained from the capillary presstsaturation curve measured by mercury intrusion and
Lapl aceds equation of capillarity.nehmascordin
pores in the range from few nanometers (5 nm) to as large |a% %0 diameter, with the
majority below 25um (d90). The average pore siZ& or (d50) was approximately 15.5

pm. The pore distribution also indicated that 10% of the total pores are smallerjithan 8
(d10).

Table 2.1 Summary of fractured Berea sandstone properties.

Diameter | Length Porosity Pore volme | Matrix perm. Tg:r?: Aperture (um) Mean grain | Mean pore
(cm) (cm) (saturation) (cm3) (darcy) ((Fj)arcy.) P H size (um) size (um)
Max. | Min.
3.78 2.56 0.22 6.3 0.51 1.2 62.4 | 3.79 150 15.5
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Figure 22: Pore size distribution of Berea sandstone obtained by mercunysiatr,

indicating an average pore diameter of about 15, 90% of pores are smaller
than 25um and 10% are smaller thany8n.
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Figure 23: Schematic of the sandstone core plug with the location of the fracture. The
fracture extends from the inlet tioe outlet.

The fracture wasreatedby sawcutting the core plug into two pieces at the center. A
schematic of the core showing the location of the fragtidepicted inFigure 23. The

two pieces were then brought together using shrinking tube. yidradiic aperture of the
fracture was estimated by considering the flow in parallel layers. Under conditions of flow

in parallel layers, the pressure drop across each layer is the same. The total flow rate is the
sum of flow rate in each layer. That is:

v 0 ULV U (2.3

usingDar cyds Law of i ncompries®Vpjt & hori zontal f
W 0 Q6 0o (2.2)
since @ Q@ Q and assumingdg © © “i,Q &jp ¢(cubic law) and

® cwi thenEquation (6) becomes

© ¢iQ 0 (2.3
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wherei is the radius of the core plug in meté&® and'Q are the total and matrix
permeability in square meters, respesy. Note that the matrix permeabilityQ was
determined before introducing the fracture. The hydraulic aperture of the fracture varied
between 17.9 to 62.4um at different confining pressure ranging from 8.5 to 50
atmospheres. Since gdhrticleinjections were performed under confining pressure of 8.5
atmospheres, the maximum hydraulic aperture in these experiments was estimated to be
62.4 um (Q p& mdarcy) using flow in parallel layers (Equation 8). The minimum
aperture was approximated be 3.79um by assuming the fracture permeability to be
equal to the total permeability (1.2 darcy).

2.3.3 Experimental Setup and Procedures

A schematic oflie exgrimental setup employed for tparticletransport studies is given

in Figure 2.4 It conskts of ultrapure water container, water pump, injection lsgpnge,
differential pressure transducer and a duskler. Effluent samples were then analyzed by
standalone flueameter. Water (” Ty w xg/cnt, ¢ o P ccp at 21°C) used
throughout the experiments was purified using Millip(#d0) equipped with 0.220 pm
filter, and deaerated at 50 millitorr vacuum for at least 30 minutes prior tdPadeles
were injected using syringrough the injection loop. The injection loop allowed an
alternating injection oparticle suspensioand particlefree water, without interrupting the
flow. Volumetric flow rates were varied between 1 to 10°amn using pump equipped
with standard heathanufactured by Dynamax. The pump flow rate was calibrated using
stop watch and balance (Mettler PM300) with 0.01 gram accuracy. The differential
pressure across the core plug was measured using differential pressure transducer
(Validyne Model DP215%0) with low pressure rating diaphragm. The transducer was
calibrated with standard pressure gauge with accuracy of 1.25% of full range.

Syringe
2-way X Colloid  Vent ?
valve T suspensions
\/
%oreholder

| Core |

. |
Replaced by Vial rj_)

Pure ¢

water Microscope

©

Micromodel

Figure 2.4: Schematic of the experimental setup employed pathiele transport studies.
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Prior to the injection oftte particle suspensions, the core was preflushed with pure water

to displace rock fines and debris. The preflushing samples were analyzed to elucidate the
existence of any naturally occurringarticles The injection sequence involved the
introduction of he particle suspension slug followed by a continuous injection of pure
water. In particular, the volume pfrticlesuspension injected in to the core was 2.8.cm
Subsequently, a continuous flow of pure water @gsiction) was carried out. Depending

on the experiment, a few pore volumes of pure water were injected while the effluent
samples were collected. The total time of the experiment, flow rates and frequency of
sampling were also experiment dependent. To investigate the influerp=aticte size,
concentration and fluid velocity on the transportpafticlesthrough the core plug, 13
injections were conducted. For eagarticle size, every suspension concentration
(6Fcd & tH) was injected at 1 and 3 &min. In addition, the 5 urparticlesuspension

at concentration® was injected at 10 cifmin. The breakthrough curvesf the silica
microspheres were determined by measuring the emission spectrum and correlating it to
the effluent concentration using a calibration cuiv@ construct thealibration curve, the
emission spectra of a few dilution samples of known concentrations were acquired. The
emission intensity at the maximum peak was then plotted against the dilution
concentrations, and the intensdgncentration data were fit by andiar correlation. The
concentration of collected effluents was then determined using this linear correlation based
on their emission intensity.

24 PORE-SCALE FLOW SIMULATIO N OF NANOPARTICLES AND
MICROPARTICLE S

In order to understand which forces havendwant effects on particle transport in porous

and fractured media under various conditions, it is necessary to model these processes at
the porescale. Thus, fluid drag, gravity, size exclusion, and both parchrix and
particleparticleelectricandchemical bonding forces must be modeled as distinct terms in
order to better understand experimental results and have any predictive power regarding
which nanomaterials can be transported through a reservoir at reservoir condiigns.
guarter, simulatios were performed using the Particle Tracing Module in COMSOL
Multiphysics accounting for fluid drag, gravity, aatbctricforces.

2.4.1Model Geometry and Velocity Field Solutions

Beforemodelng the flow of nanoparticles at the peseale, it is firsihecessary to model

the flow field in the pore space. Keller et al. (2011) constructed a pore scale toodel
mimic the geometry of a micromodel, which was in turn generated from SEM images of
rock thin sections. Tih modelwas used t®olve the NavieStokes equationnumerically

for laminar flow for the velocity field and pressure distribution in a g0 by 320um

section of the micromodel given a horizontal pressure drop of 0.715 Pa between the inlet
(right face) and outlet (left face). The resulting vélpdield and pressure distribution
generated by Keller et al. asbown inFigure 2.5and2.6, respectively
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Figure 2.5 Velocity field intwo-dimensionalpore space for a pressure drop of 0.715
Pa/640um (Keller et al., 2011)

Figure 2.6 Velocity field and pressure surface two-dimensionalpore space for a
pressure drop of 0.715 Pa/64on (Keller et al., 2011)



The pore space geometry and velocity fidiag(re 2.5 generated by Keller et al. were

used in the particle tracking simulat®odescribed in this report. Ultimately, a pore scale
model will be constructed to mimic the geometry of the micromodel used in our
experimentsTo investigate the effect of variable pressure gradient in the particle tracking
simulations, wealso calculatedhe velocity field at a pressure gradient of ~250 G2

pum, which is the average pressure gradient in the micromodel experiments described last
guarter.The resultingvelocity field and pressure surfaeee shownn Figures 3 and 4,
respectively.
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Figure 2.7 Velocity field intwo-dimensionajpore space for a pressure drop of 250 Pa/640
pm.
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Figure 2.8 Velocity field and pressure surface two-dimensionalpore space for a
pressure drop of 250 Pa/640n.

2.4.2Model Structure & Summary of Particle Tracking Simulations

The momentum balance described in the following equation was used to model particle
movement in the flow field:

—— 0 (2.4)

whered is the particle mass) is the particle velocity vector, an@ is the vector sum of
all forces acting on the particle at any given time. The forces modeled were fluid drag,
gravity, and electric surface charge interactions (the last of which is a work in progress).

The fluid drag force on a particl® was calculged using the following equation:
O a — 06 (2.5)

where* is fluid viscosity (1 cP)0 is the fluid velocity vector/, is the density of a
particle, andl, is particle diameter

The gravitational force on a pante "O was calculated using the following equation:

0O a QO—— (2.6)
where"Qis gravitational acceleration afid is fluid density (100&g/m®).
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The electrical force on a particl®@was modeled as:
O Qw w (2.7)

whereQis the elementary charge of an electris the charge number of each particle (so
particle charge is eZ), and6 is the electric field intensity in the pore spaéeig the
electric potential in the pore space)e&ly state electric potential fields in the pore space
were generated for these simulations by solving the following equation (conservation of
electric current):

~

0 0 (2.8)
0,00 (aFEl Of T A IEI 80 , Ax(29
0 ) (2.10)

€20 T (electric insulation boundary condition) (2.11)

where* is charge density) represents an external current source (O in this cass),
electrical conductivity of the pore fluid (82S/m),Ois the electric fieldp is externally
generated current density (O in this case), hnig the unit normal vector at a model
boundary. The following boundary condition was used to apply an electric potential at the
rock surfacety w wherew is some constant eleitt potential at te pore wall.

The particle tracing simulations performed are summarizéale 2.2

Table 2.2 Summary of Particle Tracmg Simulations Performed

Case | Drag | Gravity | Electric | Y1 [Pa] [kg/m3] Q [m] Injection Wall potential Z (particle

V) charge #)
1 y n n 0.715 2200 500 Pulse n/a n/a
2 y n n 248 2200 500 Pulse n/a n/a
3 y n n 0.715 2200 500 Step n/a n/a
4 y n n 248 2200 500 Step n/a n/a
5 y y n 0.715 2200 500 Pulse n/a n/a
6 y y n 248 2200 500 Pulse n/a n/a
7 y y n 0.715 2200 2000 Pulse n/a n/a
8 y y n 248 2200 2000 Pulse n/a n/a
9 y y n 0.715 8000 500 Pulse n/a n/a
10 y y n 248 8000 500 Pulse n/a n/a
11 y y n 0.715 8000 100 Pulse n/a n/a
12 y y n 248 8000 100 Pulse n/a n/a
13 y n y 0.715 2200 500 1 particle -0.05 mV -100
14 y n y 0.715 2200 500 1 particle -0.05 mV +100
15 y n y 0.715 2200 500 Pulse -0.05 mV -50
16 y n y 0.715 2200 500 Pulse -0.05 mV +20
17 y n y 0.715 2200 500 Pulse -5V -50
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25 RESULTS

2.5.1 Fracture-Flow Experiments

The transport of silica particlegas investigated by flow experiments in a fractured Berea
sandstone core plug. For this purpose,ghsdicle suspension concentration, particle size
and fluid velocity were varied. The effluent breakthrough curves are presented in Figure
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Figure 29: Breakhrough curves for silica microspheres with diameter of 2 um (left) and 5
um (right), atdifferentflow rates andarticle suspension concentratioRecovery
of particlesis enhanced agarticle size increase, which is indicative of straining.

Several observations can be made based on these breakthrough curves. The breakthrough
time for bothparticle sizes was very similar. The return curves for bpéhrticle sizes
showed a very fast arrival followed by gradually increasing (in the case of e 2
particles) or constant (for the jsm particles) concentrations. The first arrival of the 2 and 5

pm particles occurred within 0.02 to 0.04 and 0.03 to 0.08 pore volume of the start of their
injection. This suggests that the recovepadicles were, atdast initially, moving through

the fracture and large pores. Trapmedticles were most likely retained in the small pore
spaces in core matrix and fracture walls in regions with small apertures. It was concluded
that gravitational sedimentation, aggregatat the primary energy minimum (only for the

2 um particles) and straining due t@article size were the main particle trapping
mechanisms. For the fm particles, the role of the balance between fluid drag and
gravitational forces was apparent. Tipaticle cumulative recovery decreases with
increasing particle size at the same experimental conditions, which is indicative of
straining. This finding is consistent with the observation made by Bradford et al. (2002)
through the injection of fluorescentéatparticles into saturated sand columns.

For the 2um silica particles Figure 2.9 left), the recovery was inversely proportional to
particlesuspension concentration, and directly proportional to fluid veldRegoverywas
strongly sensitive to cona&ation, and slightly sensitive to fluid velocity. Detachment of
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particles by rolling, sliding or lifting was considered insignificant since increasing fluid
velocity (drag forces) did not result in considerable recovery enhancement.

Similarly, with inaeasingpatrticle size (5um), the recovery was also increasing with
increasing fluid velocity and decreasing with increasing concentration. The degree by
which the recovery was influenced by these parameters (fluid velocity and suspension
concentration) wa completely different at thigarticlesize. It was observed that recovery

is more sensitive to fluid velocity than concentration. In general, the particle recovery
(Figure 2.9 right) was found to have a linear relationship with the fluid velocity used
during injection. For example, the recovery of theurh diameterparticle particles had
increased from below 20% to higher than 64% (alibrdetimes higher by increasing

fluid velocity by factor ofthreg. Further increase in fluid velocity resulted inngaete
recovery of the fum diameter silica particles={gure 2.9 right). Largeparticles follow fast
moving streamlines (central streamlines) and therefore they are held away from grain or
fracture walls. As fluid velocity decreases, the drag force edarhparticles by moving

fluid also decreases, allowing gravity to play a larger @&ticles may also diffuse away

from fast moving streamlines toward the fracture walls, or near grains at the fracture
matrix interface, but this is not expected toypadominant role in the transport of micron
scale particles. Based on all experimental data, it was hypothesizatigtgravitational
sedimentation was playing an importaoie in theparticletransport.

Thesilica particlesused in these experimeritavea density of about 2.2 g/cinmore than
twice that of suspension or injected watereaning that these particles are subject to a
force due to gravityThe gravitational force on a particle is directly proportional to particle
mass (and thus the cubéthe particle diameter), so theytn particles are more greatly
affected by gravitational settling than theu& particles(see Equation 2.6)This helps to
explain why the recovery of gm particles is much more sensitive to fluid velocity than
the 2um particles.As the trapping of Gum patrticles is likely dominated by gravitational
sedimentation (which can be directly offset by increasing fluid velocity) and the trapping
of the 2um particles is likely dominated by aggregation (which cannot necesserily
directly offset by increasing fluid velocity), it makes sense that the recovery ofjthe 5
particles is more sensitive to fluid velocity than that of ther2particles.

Furthermore, the fluid drag force acting on spherical particle is directly piropal to the

fluid velocity and the particle diameter (see Equation.2.8)ger particles will be under
greater drag forces, and thus, they will be mobilized or detached more effectively from
contact surface as velocity increases (Ryan and Elimele®).1%he lift force that also
counters the adhesive force is also function of the fluid veldsig Figure 2.10)The
combined effect of fluid velocityand those forces renders larger particles to be very
sensitive to fluid velocity. Finally, as a resolt increasing fluid velocity, the volume of

low velocity regions (referred to as stagnant flow regions) will decrease, which will limit
collision of particles between fracture surfaceevasses or at the pore walls.
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Figure 2.10: lllustration of actindorces on particle attached to rough surface.

2.5.2 Particle Tracking Simulations
The return curves for the simulations are showRigure 2.11
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Figure 2.11 Particle return curves

Note that return curves for Cases 13 and 14 are not included,sbettauonly particle
simulated in these cases was trapped on a rock grainF{geee 2.14. Counting the
number of particles that reach the outlet gives a more quantitative measure of particle
recovery. However, the size of the model raises the quedtibavothese results can be
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scaled up to predict recovery in an entire micromodel, a coreflood, and ultimately a
reservoir.

The particle trajectory plots for selected cases are given in Figiéeand2.13.

Figure 2.12 Particle trajectories for Case$-4 at t=1000 s.

Note in Figure 2.12that the color of the particle trajectories represents particle velocity.
Also note that the trajectories for the high velocity cases (Cases 2 and 4) are less smooth
and sometimes seem to pass through the rock gréims.is anartifact of storing the
calculated particle position at too few time steps and does not actually represent the
simulation results. It is obviously more noticeable in the high velocity cases because the
particles are moving more quickly.

In all four cases, some particlasetrappedmechanicallyagainst rock grainby advective

forces (no consideration of gravity, charge interactions, or chemical bondihg) s

called interception I n t he Ast epo fewerjpartictes experiecei mul at i
interceptionbecause all particles enter the model in a high velocity region. Thus, they are

more likely to stay in the high velocity regions of the pore space and less likely to collide

with rock grains and become mechanically trapped. For this redsmsnjmportant to

understand the nature of particles entering fluid streamlines from an injection port, which

could be the subject of future modeling.
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