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1. FRACTURE CHARACTERIZ ATION USING PRODUCTI ON DATA  

This research project is being conducted by Research Assistant Egill Juliusson, Senior 

Research Engineer Kewen Li and Professor Roland Horne. The objective of this project is 

to investigate ways to characterize fractured geothermal reservoirs using production data. 

1.1 SUMMARY 

This report describes the application of methods that have been developed for analyzing 

tracer and flow-rate signals to characterize fractured geothermal reservoirs, to data from a 

three-dimensional reservoir model with upscaled fractures.  

 

The revised inversion method that was discussed in the quarterly report from Fall 2011 is 

used to find tracer kernels. The kernels are first estimated using a nonlinear parametric 

function which is somewhat restricted in shape. This constraint is subsequently relaxed by 

reverting to a nonparametric model that uses the parametric estimate as a prior.  

 

The thermal transport properties of the three dimensional model were also investigated. It 

was shown that a commonly used thermal transport model (Lauwerier, 1955) does not 

capture the thermal decline very well. A simple streamline based model (Gringarten and 

Sauty, 1975; Barker, 2010) was also applied but that did not capture the thermal drawdown 

well either. The leading cause of this discrepancy has not been fully determined at this 

point. 

1.2 INTRODUCTION  

A multiwell tracer test will usually have different types of tracer going into each injection 

well, so as not to create any confusion about from where the tracer originates. However, 

there are situations where the same tracer, e.g. a natural recirculating chemical compound, 

could be going into all of the injection wells at once. An example of such data comes from 

the Palinpinon field in the Philippines, where the chloride concentration in the produced 

brine showed distinct variations over a 15 year production period. Figure 1.1 shows the 

chloride concentration in production well PN-29D, along with the variation in injection 

rates into each of the injection wells PN-1RD through PN-9RD. The chloride concentration 

of the reinjected brine had an increasing trend because part of the fluid produced from the 

reservoir was separated as steam going to the power plant.  

 

Urbino and Horne (1991), Sullera and Horne (2001), Horne and Szucs (2007), and Basel et 

al. (2011) have worked on decoding this data set without conclusive results on how much 

information can be obtained. Working with the Palinpinon data was challenging because 

the data were sampled sparsely, a large number of predictors (nine injection wells) were 

influencing the response, the production rates were not available and two-phase flow in the 

reservoir may have been affecting the tracer flow paths in highly nonlinear ways.  
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Figure 1.1: History of injection rates and produced chloride concentration in well PN-

29D, in the Palinpinon field, Philippines. 

 

In an effort to start answering questions about how much information could be obtained 

from this type of data it was deemed most practical to work on similar data sets that were 

created using numerical flow simulation models. The quarterly report from Fall 2011 

outlines a methodology for solving the tracer transport problem where the same tracer is 

being injected into more than one well. The examples in that report were focused on how 

to estimate the tracer kernel for data coming from two-dimensional discrete fracture 

reservoir models. In this report we will investigate similar scenarios for data from a three-

dimensional upscaled reservoir model. 

1.3 KERNEL ESTIMATIO N WITH A THREE -DIMENSIONAL RESERVOI R 

MODEL  

The results of tracer kernel estimation with data generated from a three-dimensional 

upscaled reservoir model are illustrated in this chapter. This numerical reservoir model will 

be referred to as Model III (to be distinguished from Models I and II from the quarterly 

report from Fall 2011). Model III did not contain discrete fracture elements but instead a 

distribution of discrete fractures was upscaled to a relatively coarse computational grid. 

The underlying fracture network was built using the fracture generation software 

FRACMAN. The fracture network, shown in Figure 1.2, had 200 fractures which were 

drawn from two sets of fractal (power-law) size distributions, with 100 fractures in each. 

One of the fracture sets had a N-S trend and the other had a NE-SW trend. The fracture 

aperture and hydraulic conductivity were correlated to the fracture size, and the NE-SW 
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fractures were given two times higher conductivity values on average. The fracture 

conductivity ranged from about 10
-3

-10
-1

 m/s. The hydraulic conductivity of the matrix was 

set to 10
-7
 m/s. The aperture distribution covered about 1-10 mm. The porosity of the 

fractures in FRACMAN was assumed to be one, and the matrix porosity was zero. The 

connection between wells I1 and P2 was considerably better than that between I2 and P1 as 

a result of the NE-SW trend in the second set of fractures.
 

 

Figure 1.2: The three-dimensional fracture network underlying Reservoir Model III. 

 

The fracture network was upscaled to a grid of 50x50x25 blocks, making each block 

20x20x20 m
3
 in size. The hydraulic conductivity of the blocks ranged from 0.001 to 433 

m/s after the upscaling had been performed. Similarly the porosity ranged from 0 to 0.006. 

The upscaled data were imported into FEFLOW for flow simulation. The log of hydraulic 

conductivity in the y-direction (N-S) in the upscaled model is shown in Figure 1.3. 
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Figure 1.3: The log of hydraulic conductivity in the y-direction (N-S) in the computational 

grid for Model III. 

 

Figure 1.4 gives a snapshot of tracer distribution in the reservoir model after 100 days of 

tracer injection into injector I1, with concentration 1 mg/L and water injection rate 2500 

m
3
/day. Table 1.1 summarizes the main properties of Model III. 
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Figure 1.4: A snapshot of tracer distribution in Model III after 100 days of tracer injection 

into injector I1, with concentration 1 mg/L and water injection rate 2500 m
3
/day. 
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Table 1.1: Summary of properties for Reservoir Model III. 

 

 

1.3.1 Constant Flow ï Varying Concentration Scenario 

Examples of kernel estimation are illustrated in Sections 1.3.1.1 and 1.3.1.2. The 

parametric kernel estimation approach was used first and followed by the nonparametric 

estimation approach. The examples are based on simulated data from Reservoir Model III. 

These examples are for a scenario where the flow-rates are constant but the injected tracer 

concentration varies over time. The injection rate for each injector was 2500 m
3
/day and 

the injected concentration was changed every 30 days. The 550 day history of injection and 

production is shown in Figure 1.5. 

General

Dimensions 1000 x 1000 x 500 m3

Initial temperature 150 C

Rock heat capacity 2520 kJ/m3/C

Rock heat conductivity 3 J/m/s/C

Longitudinal dispersivity 1 m

Transverse dispersivity 0.1 m

Fractures

Number of fractures 200

Discrete fractures no

Porosity 1

Hydraulic conductivity ´ L1.87 m/s

Total Compressibility 1e-10 1/Pa

Matrix

Porosity 0

Hydraulic conductivity 1e-7 m/s

Total Compressibility 1e-10 1/Pa
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Figure 1.5: Injection and production history of tracer concentration in the constant flow - 

varying concentration example for Reservoir Model III. 

 

1.3.1.1 Parametric Kernel Estimation 

The first step in determining the kernels was to find a parametric estimate. Data from the 

first 400 days was used to estimate the kernels and then the kernel estimates were used to 

predict the concentration from day 400 until day 550. The resulting fit was quite good as 

shown in Figure 1.6, although it was not quite as accurate as that seen in the corresponding 

example for Reservoir Model I (see quarterly report from Fall 2011). 
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Figure 1.6: Tracer production data as reproduced from the parametric kernel estimates 

compared to the actual data used to calibrate the models. The true data are 

shown as blue solid lines and the reproduced data are given by green dashed 

lines. The black dashed line divides the estimation and prediction periods. 

 

The reason for the less accurate data fit in this case becomes apparent when looking at the 

resulting kernel estimates in Figure 1.7. The first thing to mention in this case is that the 

"true" kernel estimates were hard to obtain in this case because of numerical issues in the 

simulation. This is seen most clearly in the estimate of the true kernel for connection I1P1, 

where the sinusoidal variations in the tail are numerical artifacts. Another observation to 

keep in mind is that the parametric model did not fully conform to the shape of the "true" 



 9 

kernels, as seen for the I1P2 and I2P2 connections. One obvious reason for this is that the 

parametric kernels are based on equations that were derived for one-dimensional flow, 

while the actual kernels are generated from a flow field that is somewhere between two- 

and three-dimensional.  

 

The "true" kernel for the I2P1 connections indicated that there should have been a very 

large pore volume separating the two wells, but this was not realized by the parametric 

model. A couple of reasons for this may have been that the true kernel could not be 

computed accurately because of numerical errors in the FEFLOW simulation, or that 

having this as a significant connection happened to yield a better solution to the problem. It 

did not seem likely that the optimization algorithm had become stuck in a local minimum 

because leaving the I2P1 connection out yielded significantly poorer data fits. In relative 

terms, however, the I2P1 kernel had small influence on the production signal because the 

corresponding IWC (interwell connectivity, which was computed earlier from flow-rate 

variation data) coefficient was very small, as shown in Table 1.2. 

 
Table 1.2: Interwell connectivity coefficients (Fij ) for Model III.  

 

Estimates of the pore volume (Vx), Peclet number (Pe) and correction factor (f) are given in 

Table 1.3. The correction factors were relatively close to one, indicating that the IWCs 

give a fairly good indication of the tracer connectivity for the flow-rates used in this 

example. The one exception is fI2P1 which is abnormally high. Counterintuitive results of 

this kind could come up when the production signal was a weak function of the input. In 

spite of this, the test statistic, S0, indicated that the I2P1 connection was the weakest, as 

shown in Table 1.4. Using a 0.01 cut-off threshold for S0, as was done in the examples for 

Models I and II, would mean that all of the connections should be considered significant, 

as shown in Table 1.5. 

 
Table 1.3: Kernel parameter estimates for Model III, based on the constant flow - varying tracer 

scenario. 

 

 

F P1 P2

I1 0.5477 0.4486

I2 0.0024 0.9871

P1 P2

Vx I1 17,825   33,692   

I2 40,053   34,358   

Pe I1 6.47 3.55

I2 3.82 10.14

f I1 0.842 0.836

I2 1.552 1.102
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Figure 1.7: Parametric kernel estimates for each of the four injector-producer connections 

in Reservoir Model III. The "true" kernels are shown as blue solid lines and the 

parametric estimates are given by green dashed lines. 

 
Table 1.4: Test statistic to determine the influence of each kernel in the constant flow-rate - varying 

concentration example for Model III. 

 

 

S0 P1 P2

I1 0.8601 0.2872

I2 0.1390 0.7128
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Table 1.5: List of valid injector -producer connections based on the test statistic S0 for Model III. 

 

1.3.1.2 Nonparametric Kernel Estimation 

The nonparametric kernel estimates for the constant flow - varying concentration example 

are discussed in this section. The parametric kernels shown in Figure 1.7 were used as 

priors in this problem, which was solved using the nonparametric theory outlined in the 

quarterly report from Fall 2011. The first 400 days of production data were used to form 

the kernel estimates and the last 150 days were predicted using those kernels. From 

comparing the reproduction of data in this case (see Figure 1.8) to that obtained in the 

parametric case (see Figure 1.6), it is clear that the nonparametric approach brings a 

considerable advantage. 

G0 P1 P2

I1 TRUE TRUE

I2 TRUE TRUE
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Figure 1.8: Fit to the production data from the constant flow - varying concentration 

example for Reservoir Model III, using nonparametric kernels. Data from the 

first 400 days was used for estimation of the kernels and the rest was predicted 

based on the kernel estimates. 

 

The nonparametric kernels were found to be relatively smooth and they fit the true kernel 

estimates more accurately than did the parametric estimates, as illustrated in Figure 1.9. 

The clearest example of this is seen in the estimate of kI1P2. The kernel estimate for the 

I2P1 connection, on the other hand, is more oscillatory which would often be the tendency 

for estimates that were weakly constrained by the data. The pore volume and correction 

factor corresponding to the kernels shown in Figure 1.9 are given in Table 1.6. 
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Figure 1.9: Nonparametric kernel estimates for those kernels deemed significant in the 

constant flow - varying tracer example for Reservoir Model III. The "true" 

kernels are given by blue solid lines while the estimates are in green dashed 

lines. 

 

Parametric bootstrapping was used to assess confidence bounds for the nonparametric 

kernel estimates. These are shown in Figure 1.10. The roughness penalty multiplier (q) was 

lowered by two orders of magnitude for the parametric bootstrap computations, which is 

why the bootstrap estimates are more oscillatory. The fact that the true kernels are not 

entirely encompassed by the 95% confidence intervals may indicate that the nonparametric 

kernel model provides an imperfect description of the process, e.g. because of 

discretization error. In addition to that, the representation of "true" kernels is not entirely 

accurate, as mentioned earlier. Nonetheless, these oscillations should not have much 

impact on important bulk properties like the estimated pore volume and correction factor. 
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Figure 1.10: Nonparametric kernel estimates and 95% confidence bounds obtained from 

parametric bootstrapping for those kernels deemed significant in the constant 

flow - varying tracer example for Reservoir Model III. 

 
Table 1.6: Pore volume and correction factor computed from nonparametric kernels for Model III, 

based on the constant flow - varying tracer scenario. 

 

1.3.2 Varying Flow ï Ramp Concentration Scenario 

The varying flow-rate - ramp concentration scenario was carried out with a 730 day 

production history as shown in Figure 1.11 and Figure 1.12. The flow-rates were changed 

every 100 days and the concentration in both injection wells increased linearly until day 

550. After that, the injected concentration was reduced to zero. As in the previous 

P1 P2

V_x I1 21,497   43,442   

I2 39,793   40,267   

f I1 0.902 0.819

I2 1.299 1.166



 15 

examples, the production rates were determined by a constant bottomhole pressure 

condition. The kernel estimates found in the next two sections were based on these data. 

 

Figure 1.11: Injection and production rates in the variable flow-rate - ramp tracer 

example for Reservoir Model III. 
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Figure 1.12: Injection and production history of tracer concentration in the variable flow-

rate - ramp concentration example for Reservoir Model III. 

1.3.2.1 Parametric Kernel Estimation 

Using the kernel method to predict the tracer returns in this scenario, proved to be 

significantly more difficult, than it did with the corresponding two-dimensional example 

(Model I in quarterly report from Fall 2011). There could be several reasons for this; most 

notably the fact that the flow was no longer constrained to fractures that defined one-

dimensional flow paths. There could also have been some numerical errors associated with 

the use of relatively large gridblocks in the simulation, and of course the transients in the 

production data were less informative as discussed in the previous examples for Reservoir 

Models I and II (see quarterly report from Fall 2011).  
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The parametric kernel estimation method was applied to the variable flow - ramp 

concentration data for Model III. Data from the first 550 days was used to obtain the 

kernels and the last 180 days were predicted with the kernel estimates. The resulting data 

fits and predictions are shown in Figure 1.13. The concentration in P1 was not captured 

with much accuracy in those cases where the flow-rate in P1 was small (days 200-300 and 

500-600). It seems like at low flow-rate conditions, diffusive effects, that are independent 

of the flow-rate, start to govern the behavior of the tracer production transient, thereby 

breaking one of the assumptions made in the development of the tracer kernel model. The 

concentration in P2, which produces at considerably higher flow-rates at all times, is 

predicted with more accuracy. 

 
Table 1.7: Kernel parameter estimates for Model III, based on the varying flow - ramp tracer scenario. 

 

Table 1.8: Configurations of the injection rates used to illustrate the variability in tracer kernels. 

Injection rates are given in m
3
/day. 

 

 

P1 P2

Vx I1 38,114   29,341   

I2 7,597      48,220   

Pe I1 4.00 4.00

I2 4.00 4.00

f I1 0.929 0.987

I2 0.782 1.004

I1 I2

Config. 1 3750 1250

Config. 2 2500 2500

Config. 3 1250 3750
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Figure 1.13: Model reproduction of the tracer production data in the variable flow-rate - 

ramp tracer example for Reservoir Model III. The true data are shown as blue 

solid lines and the reproduced data are given by green dashed lines. The black 

dashed line divides the estimation and prediction periods. 

 

The resulting tracer kernel estimates are given in Figure 1.14 and the parameters for those 

kernels are listed in Table 1.7. The kernels are compared to "true" tracer return curves that 

were obtained by running constant tracer injection scenarios with the flow-rate 

configurations given in Table 1.8. The variability in the "true" kernels shows that there is 

no single kernel estimate that can capture the production signal perfectly, i.e. the kernels 

vary with the flow-rate configuration. In view of that, it is actually quite pleasing to see 
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how well the production signal in P2 was captured by the kernel model. Note also how the 

kernel estimates relating to P2 are something of a mixture of the three "true" kernel 

estimates. The kernel estimates for P1 are not particularly good, as expected, based on the 

reasons given in the previous paragraph. 

 
Figure 1.14: Parametric kernel estimates for each of the four injector-producer 

connections in Reservoir Model III. The "true" kernels for the configurations 

given in Table 1.8 are plotted with solid lines (Config 1: blue, Config 2: green, 

Config 3: red). The parametric estimates are given by cyan dashed lines. 

 

As in the constant flow-rate case, the S0 test statistic indicated that all the kernels had 

significant influence on the production signal, and that the I2P1 connection should be the 

weakest. 
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Table 1.9: Test statistic to determine the influence of each kernel in the varying flow-rate - ramp 

concentration example for Model III. 

 

1.3.2.2 Nonparametric Kernel Estimation 

The final example is for nonparametric kernel estimation with the varying flow - ramp 

tracer data set from Model III. In addition to the challenges mentioned in the 

corresponding parametric estimation example, there were some issues with utilizing the 

equal area discretization method (see quarterly report from Fall 2011). To fix this, the 

Peclet number for the parametric estimates was constrained to be above four (as seen in 

Table 1.7). With this restriction, the equal area method worked well, and the data were 

reproduced with similar accuracy as was obtained with the parametric model.  

  
Figure 1.15: Fit to the production data from the varying flow - ramp concentration 

example for Reservoir Model III, using nonparametric kernels. 

S0 P1 P2

I1 0.7855 0.4857

I2 0.2145 0.5143
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The kernel estimates, with confidence bounds obtained from parametric bootstrapping, are 

shown in Figure 1.16. The large variability in the confidence bounds is partly attributable 

to the fact that some of the solutions in the bootstrapping procedure converged to a local 

minimum. This issue could probably have been dealt with by implementing a rejection 

criterion on the data fit, but that will be left as future work. The estimated pore volume and 

correction factor are given in Table 1.10. 

 

 

Figure 1.16: Nonparametric kernel estimates and 95% confidence bounds obtained from 

parametric bootstrapping for those kernels deemed significant in the varying flow 

- ramp concentration example for Reservoir Model III. 
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Table 1.10: Pore volume and correction factor computed from nonparametric kernels for Model III, 

based on the varying flow - ramp tracer scenario. 

 

 

1.4 STEP-BY-STEP METHODOLOGY  

Both the parametric and nonparametric kernel estimation methods described in the 

quarterly report from Fall 2011 could be utilized on their own. It is suggested, however, 

that they be used together. This process involves the steps outlined here. 

 

Step 1: Obtain effective injector-producer flow-rates, qIiPj, using interwell connectivity. 

The M-ARX method (Lee et al, 2010) was used to compute interwell connectivity for all 

of the examples in this report. Transient flow-rate data for both injectors and producers 

were required to obtain the M-ARX based interwell connectivity matrix, F.  

 

Pressure based interwell connectivity (Dinh, 2009) can be used when only pressure data 

are available and the Interwell Transmissibility Method (quarterly report from Spring 

2011, Section 1.4) can be used if both pressure and flow-rate data are available. 

 

Step 2: Find kernel estimates using the parametric kernel estimation method. The method 

relies on interwell connectivity estimates to compute mixing weight and effective injector-

producer flow-rates. Flow rates and transient injection and production concentrations are 

required for this step. 

 

Step 3: Use test statistic S0, which is based the parametric kernel estimates and the 

interwell connectivities, to determine which well-to-well connections can be ignored. 

 

Step 4: Find nonparametric kernel estimates for those injector-producer connections 

deemed significant in Step 3. Use parametric kernel estimates, from Step 2, as priors for 

the nonparametric kernel estimates. The data required for Step 2 are used again here. 

 

Step 5: Use parametric bootstrapping to obtain confidence bounds for the nonparametric 

kernel estimates. 

1.5 THERMAL TRANSPOR T IN A THREE -DIMENSIONAL RESERVOI R 

MODEL  

In practice, it is useful to have a simple analytical model to describe the well-to-well 

connections in reservoirs, e.g. for the purpose of optimizing reinjection into the reservoir. 

Most analytical models for thermal transport in fractured reservoirs are based on the 

assumption that the flow-rate remains constant. Moreover, the fracture and surrounding 

matrix must have a relatively simple structure. In the annual report for 2010-2011 it was 

P1 P2

Vx I1 58,404   28,144   

I2 9,153      44,801   

f I1 1.021 0.990

I2 0.806 0.999
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shown that the analytical model developed by Lauwerier (1955) could be used to model 

thermal transport in two-dimensional fractured reservoirs quite accurately. This model was 

developed for flow through a one-dimensional fracture surrounded by two-dimensional 

matrix slabs.  

 

The interwell connectivity and parameters derived from the tracer kernel can be used to 

calibrate Lauwerierôs thermal transport model. The main uncertainty in the this approach is 

associated with the fracture aperture. Effective methods to determine the aperture, at the 

onset of injection, have not been well established. Kocabas (2005) suggested using 

injection-backflow testing to obtain the effective aperture, but a value obtained by that 

method could be unreliable for characterizing well-to-well connectivity. Reimus et al. 

(2011) talked about using thermally degrading tracers to characterize the heat transfer area 

for well-to-well connections. The method is still in development but seems promising, 

especially as it builds on similar analytical equations to those that have been used in this 

research, i.e. those given by Maloszewski and Zuber(1985). The basic idea is to inject two 

tracers, dissolved in cold water, at the same time into the reservoir. One tracer should be 

thermally stable, and the other should have known thermal degradation properties. By 

comparing the returns from the two tracers, one can infer how far the cold front has 

progressed, which means that the effective heat transfer area, or the effective aperture, can 

be found. 

 

When it came to modeling thermal transport for three-dimensional models (Model III) the 

Lauwerier solution did not work very well, as the flow field was not constrained by one-

dimensional fractures. Instead, the injector-producer pairs were connected by relatively 

large two-dimensional fractures, with the exception of the I2P1 pair. Simulations of mass 

and energy transport were run on Model III with the injection rate and temperature 

conditions listed in Table 1.11. 

 
Table 1.11: Flow rate configurations and injection temperatures for different thermal simulation runs 

with Reservoir Model III.  

 

 

The resulting thermal drawdown curves are shown in Figure 1.17. The figure shows that 

no cooling was seen in producer P1, in any of the scenarios, when water at 50°C was 

injected into well I2. Thermal drawdown was seen in all of the other wells, for all other 

scenarios, although very little cooling was seen in P2 at Configuration 1, with cold water 

injection in I1. 

I1 [m3/d] I2 [m3/d] I1 [C] I2 [C]

5000 20000 50 150

5000 20000 150 50

10000 15000 50 150

10000 15000 150 50

15000 10000 50 150

15000 10000 150 50

20000 5000 50 150

20000 5000 150 50

C
o

n
f.

 1
C

o
n

f.
 2

C
o

n
f.

 3
C

o
n

f.
 4
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Figure 1.17: Simulated thermal breakthrough for Reservoir Model III. Note that the I2P1 

connection showed no thermal breakthrough and thus the production 

temperature remained at 150 C for the entire 10000 day period. 

 

The thermal breakthrough curves for Reservoir Model III took on a shape that differed 

significantly from that seen in the two-dimensional reservoir model examples. The 

Lauwerier (1955) model could not capture the breakthrough behavior very well, as shown 

in Figure 1.18, where the fracture aperture that gave the best fit to the data has been 

chosen. Although the leading cause for the apparent shortcomings of this model has not 

been fully determined, a few potential explanations will be offered. 
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Figure 1.18: Comparison of simulated thermal breakthrough and Lauwerier's (1955) 

analytical solution for Reservoir Model III. The simulated values are presented 

with solid lines and the fitted analytical responses have dotted lines. 

 

One potential reason could relate to the fact that the wells in Model III were vertical and 

each one of the major fractures was slightly tilted. Therefore, the wells intersected the 

fractures at a single point, although, because of the upscaling this single point may have 

gotten distributed over two or three gridblocks. The essential observation is that, because 

of this, the streamlines between the wells formed in a two-dimensional plane with a point 

source and sink. Thus, a streamline based model similar to that proposed by Gringarten 

and Sauty (1975) might resolve the issue. A simple analytical streamline model for a well 

doublet in an infinite plane, presented by Barker (2010), was used to look into this option. 

This approach did not capture the thermal drawdown well either, but perhaps a streamline 

model that is constrained to a finite plane would yield better results. 

 

Another explanation of this discrepancy could relate to the complexity of the fracture 

network. The return profile could be affected significantly by thermal returns coming from 

two or more fracture paths. This could perhaps be captured by fitting linear combinations 

of these models to the drawdown curves. 

 

Finally, it should be mentioned that the dispersivity coefficients for Reservoir Model III 

were set to relatively low values, as shown in Table 1.1. The dispersivities were 50 times 

smaller for Model III than they were for Models I and II. The effects of this were tested by 



 26 

running Model III with higher dispersivities but that did not explain the mismatch fully. 

However, it might be useful to implement the Malozewski and Zuber (1985) model to be 

able to capture this ambiguity in the dispersion term. 

1.6 CONCLUSION 

In this quarterly report the application of the tracer kernel method for flow through a three-

dimensional fractured system was reviewed. The results showed that the nonparametric 

tracer kernels were able to capture the tracer transfer functions quite accurately for 

constant flow-rate conditions. The tracer kernels were less representative for the varying 

flow-rate case because of the inherent variability in the three-dimensional flow field. 

 

It was noticeable from the examples given in Section 1.3 (and also the quarterly report 

from fall 2011) that the tracer kernels were considerably more difficult to infer when the 

flow-rates and tracer concentrations varied simultaneously. A step-by-step methodology 

for inferring the tracer kernels was outlined in Section 1.4. 

 

The applicability of using analytical thermal transport models to predict thermal 

breakthrough in a three-dimensional fractured reservoir was considered in Chapter 1.5. The 

results showed that the Lauwerier (1955) model, that had worked well with two-

dimensional discrete fracture models, did not predict the thermal decline accurately for 

flow through a three-dimensional fractured reservoir. The leading reasons for this 

shortcoming have not been fully understood. We speculate that it has to do with the 

distribution of flow through the two-dimensional plane defined by the major fractures 

connecting wells in the reservoir. 
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2. FRACTURE CHARACTE RIZATION OF ENHANCED  

GEOTHERMAL SYSTEMS U SING NANOPARTICLES  

This research project is being conducted by Research Associates Mohammed Alaskar and 

Morgan Ames, Senior Research Engineer Kewen Li and Professor Roland Horne. The 

objective of this study is to develop in-situ multifunction nanosensors for the 

characterization of Enhanced Geothermal Systems (EGS). 

2.1 SUMMARY 

During this quarter, flow experiments were carried out in a fractured rock plug using 2 µm 

and 2 µm fluorescent microparticles to examine variable suspension concentration and 

fluid velocities. The recovery of 2 µm particles was found to be highly sensitive to 

suspension concentration, while that of the 5 µm was found to be highly sensitive to the 

fluid velocity (i.e. pressure gradient). The sensitivity of the recovery of 2 µm particles to 

concentration was likely due to a higher susceptibility of 2 µm particles to aggregation 

than that of 5 µm particles, leading to more aggregation at high concentrations and, 

subsequently, more trapping via straining. Meanwhile, the sensitivity of the recovery of 5 

µm particles to fluid velocity was likely due to the larger gravitational forces and fluid drag 

forces acting on the larger particles and the fact that higher fluid drag forces corresponding 

to higher fluid velocities can directly offset gravitational forces (whereas particle 

aggregation cannot necessarily be offset significantly by a higher fluid velocity). 

 

To investigate the processes that govern particle transport in experiments and ultimately in 

the reservoir, we began to perform pore-scale simulation of nanoparticle and microparticle 

flow for various pressure gradients, particle sizes, particle densities, and injection 

conditions. The model accounts for fluid drag, gravity, and electric forces, and the results 

demonstrate the shifting balance between these forces at different conditions. 

2.2 INTRODUCTION  

Last quarter, we investigated the flow mechanism of silica microspheres through the pore 

spaces of a micromodel. We fabricated a micromodel made of an etched image of Berea 

sandstone pore network into a silicon wafer. Transport of the silica microspheres was 

analyzed by acquiring images using an optical microscope. Work was also performed to 

adapt an emulsion synthesis route reported for monodisperse bismuth nanoparticles with 

the goal to synthesize monodisperse tin-bismuth nanoparticles. 

 

This quarter, we began to investigate the transport of fluorescent silica microparticles (with 

twice the density of the water used as the suspension fluid) in a fracture-matrix system. For 

this purpose, core-flooding experiments were conducted using a fractured sandstone core 

plug. Influence of particle size, concentration and fluid velocity on particle transport was 

addressed. Particle transport was assessed by measuring breakthrough curves, which were 

constructed using fluorometry measurements on collected effluent samples. 

 

This quarter, we began to perform pore-scale particle tracking simulations in order to 

improve our quantitative understanding of the experiments and to help determine which 
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nanomaterials exhibit favorable transport under different geochemical conditions in the 

reservoir, and thus meet the first selection criterion for geothermal temperature sensors. 

Modeling performed thus far accounts for fluid drag, gravitational, and electric forces. 

Ultimately, chemical bonding forces, particle straining due to size exclusion, and particle 

aggregation will be incorporated into these modeling efforts. 

2.3 FRACTURE FLO W EXPERIMENT S  

2.3.1 Fluorescent silica microparticles  

Fluorescent silica particles were used in the experiments. These microsphere particles have 

a narrow size distribution with an average diameter of 2 and 5 µm, labeled with blue and 

green fluorescent dye, respectively.  The excitation and emission of the blue and green 

fluorescent dyes were 360/430 nm and 480/530 nm, respectively. The particle size was 

confirmed by Scanning Electron Microscopy (SEM), as depicted in Figure 2.1. These 

microspheres had a density in the range between 2.0 to 2.2 g/cm
3
. The microspheres 

employed were negatively charged as per the manufacturer. Five different measurements 

of zeta potential ‒ (i.e. conversion of electrophoretic mobility to zeta potential using the 

Smoluchowski equation, (Bradford et al., 2002)) were performed and the average zeta 

potentials were found to be -40.2 mV (standard deviation: 0.4 mV) and -80.23 mV 

(standard deviation: 1.77 mV) for particle size 2 and 5 µm, respectively. All silica 

suspensions were diluted to three distinct concentrations (ὅ πȢυȟςὅ ρ ὥὲὨ σὅ
ς άὫȾὧά). 

 

Figure 2.1: SEM micrographs of (A) blue and (B) green fluorescent silica particles.  
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2.3.2 Sandstone Core Preparation and Characterization  

The Berea sandstone core plug used this experimental study was 3.78 and 2.56 cm in 

diameter and length (Table 2.1), respectively. The core plug was fired at 700ºC for 2 hours. 

This firing process was implemented because it stabilizes the indigenous fines and 

produces strongly water-wet conditions (Syndansk, 1980; Shaw et al., 1989). Prior to 

saturation, the core plug was dried under vacuum pressure of 0.09 MPa at 70 ºC for 24 

hours. The core was then saturated with testing fluid (i.e. ultrapure water using Q-

Millipore) inside the core-holder. The saturation was accomplished by evacuating the 

system (core plug and connecting tubing) to vacuum pressure below 50 millitorr. The 

system was left under vacuum for about 4 hours to ensure complete evacuation. The pure 

water was then introduced and the remaining vacuum was released to aid the process of 

saturation.  

 

The rock sample was characterized in terms of its porosity, matrix permeability, grain 

density and pore size distribution. The porosity of the core plug was measured using by 

resaturation of the core (weight difference before and after saturation with testing fluid of 

known density), Helium expansion (gas pycnometer) and mercury intrusion methods and 

found to be 22%, 21.4% and 20.3%, respectively. The grain density measured by the gas 

pycnometer was 2.67 g/cm
3
 and that by mercury intrusion was 2.57 g/cm

3
. Matrix 

permeability was measured by introducing flow at different flow rates. The average matrix 

permeability was approximately 0.51 darcy. The pore size distribution (Figure 2.2) was 

obtained from the capillary pressure-saturation curve measured by mercury intrusion and 

Laplaceôs equation of capillarity. According to this approach, the Berea sandstone has 

pores in the range from few nanometers (5 nm) to as large as 50 µm in diameter, with the 

majority below 25 µm (d90). The average pore size Ὠ  or (d50) was approximately 15.5 

µm. The pore distribution also indicated that 10% of the total pores are smaller than 8 µm 

(d10). 

 

Table 2.1: Summary of fractured Berea sandstone properties.  

Diameter 

(cm) 

Length 

(cm) 

Porosity 

(saturation) 

Pore volume 

(cm3) 

Matrix perm. 

(darcy) 

Total 

perm. 

(darcy) 

Aperture (µm) 
Mean grain 

size (µm) 

Mean pore 

size (µm) 

      Max. Min.   

3.78 2.56 0.22 6.3 0.51 1.2 62.4 3.79 150 15.5 
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Figure 2.2: Pore size distribution of Berea sandstone obtained by mercury intrusion, 

indicating an average pore diameter of about 15.5 µm, 90% of pores are smaller 

than 25 µm and 10% are smaller than 8 µm. 

  

 

Figure 2.3: Schematic of the sandstone core plug with the location of the fracture. The 

fracture extends from the inlet to the outlet.  

 

The fracture was created by saw-cutting the core plug into two pieces at the center. A 

schematic of the core showing the location of the fracture is depicted in Figure 2.3. The 

two pieces were then brought together using shrinking tube. The hydraulic aperture of the 

fracture was estimated by considering the flow in parallel layers. Under conditions of flow 

in parallel layers, the pressure drop across each layer is the same. The total flow rate is the 

sum of flow rate in each layer. That is:  

 

 ὗ ὗ ὗ ὗ  (2.1) 

 

using Darcyôs Law of incompressible horizontal fluid flow ὗ ὯὃЎὴ ‘ὒϳ , 

 

 Ὧὃ Ὧὃ Ὧὃ Ὧὃ (2.2) 

 

since Ὧ Ὧ Ὧ  and assuming ὃ ὃ ὃ “ὶ, Ὧ ὦ ρςϳ  (cubic law) and 

ὃ ςὦὶ, then Equation (6) becomes: 

 

 ὦ φ“ὶὯ Ὧ   (2.3) 
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where ὶ is the radius of the core plug in meter, Ὧ and Ὧ  are the total and matrix 

permeability in square meters, respectively. Note that the matrix permeability Ὧ  was 

determined before introducing the fracture. The hydraulic aperture of the fracture varied 

between 17.9 to 62.4 µm at different confining pressure ranging from 8.5 to 50 

atmospheres. Since all particle injections were performed under confining pressure of 8.5 

atmospheres, the maximum hydraulic aperture in these experiments was estimated to be 

62.4 µm (Ὧ ρȢςπ darcy) using flow in parallel layers (Equation 8). The minimum 

aperture was approximated to be 3.79 µm by assuming the fracture permeability to be 

equal to the total permeability (1.2 darcy). 

 

2.3.3 Experimental Setup and Procedures 

A schematic of the experimental setup employed for the particle transport studies is given 

in Figure 2.4. It consists of ultrapure water container, water pump, injection loop, syringe, 

differential pressure transducer and a core-holder. Effluent samples were then analyzed by 

standalone fluorimeter. Water (” πȢωωχ g/cm
3
, ‘ πȢωψς cp at 21ºC) used 

throughout the experiments was purified using Millipore (A10) equipped with 0.220 µm 

filter, and deaerated at 50 millitorr vacuum for at least 30 minutes prior to use. Particles 

were injected using syringe through the injection loop. The injection loop allowed an 

alternating injection of particle suspension and particle-free water, without interrupting the 

flow. Volumetric flow rates were varied between 1 to 10 cm
3
/min using pump equipped 

with standard head manufactured by Dynamax. The pump flow rate was calibrated using 

stop watch and balance (Mettler PM300) with 0.01 gram accuracy. The differential 

pressure across the core plug was measured using differential pressure transducer 

(Validyne Model DP215-50) with low pressure rating diaphragm. The transducer was 

calibrated with standard pressure gauge with accuracy of 1.25% of full range.  

 

 

Figure 2.4: Schematic of the experimental setup employed in the particle transport studies. 
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Prior to the injection of the particle suspensions, the core was preflushed with pure water 

to displace rock fines and debris. The preflushing samples were analyzed to elucidate the 

existence of any naturally occurring particles. The injection sequence involved the 

introduction of the particle suspension slug followed by a continuous injection of pure 

water. In particular, the volume of particle suspension injected in to the core was 2.5 cm
3
. 

Subsequently, a continuous flow of pure water (post-injection) was carried out. Depending 

on the experiment, a few pore volumes of pure water were injected while the effluent 

samples were collected. The total time of the experiment, flow rates and frequency of 

sampling were also experiment dependent. To investigate the influence of particle size, 

concentration and fluid velocity on the transport of particles through the core plug, 13 

injections were conducted. For each particle size, every suspension concentration 

(ὅȟςὅ ὥὲὨ τὅ) was injected at 1 and 3 cm
3
/min. In addition, the 5 µm particle suspension 

at concentration ὅ was injected at 10 cm
3
/min. The breakthrough curves of the silica 

microspheres were determined by measuring the emission spectrum and correlating it to 

the effluent concentration using a calibration curve. To construct the calibration curve, the 

emission spectra of a few dilution samples of known concentrations were acquired. The 

emission intensity at the maximum peak was then plotted against the dilution 

concentrations, and the intensity-concentration data were fit by a linear correlation. The 

concentration of collected effluents was then determined using this linear correlation based 

on their emission intensity.  

 

2.4 PORE-SCALE FLOW SIMULATIO N OF NANOPARTICLES A ND 

MICROPARTICLE S 

In order to understand which forces have dominant effects on particle transport in porous 

and fractured media under various conditions, it is necessary to model these processes at 

the pore-scale. Thus, fluid drag, gravity, size exclusion, and both particle-matrix and 

particle-particle electric and chemical bonding forces must be modeled as distinct terms in 

order to better understand experimental results and have any predictive power regarding 

which nanomaterials can be transported through a reservoir at reservoir conditions. This 

quarter, simulations were performed using the Particle Tracing Module in COMSOL 

Multiphysics accounting for fluid drag, gravity, and electric forces. 

2.4.1 Model Geometry and Velocity Field Solutions  

Before modeling the flow of nanoparticles at the pore-scale, it is first necessary to model 

the flow field in the pore space. Keller et al. (2011) constructed a pore scale model to 

mimic the geometry of a micromodel, which was in turn generated from SEM images of 

rock thin sections. This model was used to solve the Navier-Stokes equation numerically 

for laminar flow for the velocity field and pressure distribution in a 640 µm by 320 µm 

section of the micromodel given a horizontal pressure drop of 0.715 Pa between the inlet 

(right face) and outlet (left face). The resulting velocity field and pressure distribution 

generated by Keller et al. are shown in Figure 2.5 and 2.6, respectively. 
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Figure 2.5: Velocity field in two-dimensional pore space for a pressure drop of 0.715 

Pa/640 µm (Keller et al., 2011). 

 

 

Figure 2.6: Velocity field and pressure surface in two-dimensional pore space for a 

pressure drop of 0.715 Pa/640 µm (Keller et al., 2011). 
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The pore space geometry and velocity field (Figure 2.5) generated by Keller et al. were 

used in the particle tracking simulations described in this report. Ultimately, a pore scale 

model will be constructed to mimic the geometry of the micromodel used in our 

experiments. To investigate the effect of variable pressure gradient in the particle tracking 

simulations, we also calculated the velocity field at a pressure gradient of ~250 Pa/ 640 

µm, which is the average pressure gradient in the micromodel experiments described last 

quarter. The resulting velocity field and pressure surface are shown in Figures 3 and 4, 

respectively. 

 

Figure 2.7: Velocity field in two-dimensional pore space for a pressure drop of 250 Pa/640 

µm. 
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Figure 2.8: Velocity field and pressure surface in two-dimensional pore space for a 

pressure drop of 250 Pa/640 µm. 

2.4.2 Model Structure & Summary of Particle Tracking Simulations 

The momentum balance described in the following equation was used to model particle 

movement in the flow field: 

 

Ὂ     (2.4) 

where ά  is the particle mass, ὺ is the particle velocity vector, and Ὂ is the vector sum of 

all forces acting on the particle at any given time. The forces modeled were fluid drag, 

gravity, and electric surface charge interactions (the last of which is a work in progress).  

The fluid drag force on a particle Ὂ was calculated using the following equation: 

 

Ὂ ά ό ὺ    (2.5) 

where ‘ is fluid viscosity (1 cP), ό is the fluid velocity vector, rp is the density of a 

particle, and dp is particle diameter. 

 

The gravitational force on a particle Ὂ was calculated using the following equation: 

 

Ὂ ά Ὣ      (2.6) 

where Ὣ is gravitational acceleration and ” is fluid density (1000 kg/m
3
). 



 36 

The electrical force on a particle Ὂ was modeled as: 

Ὂ Ὡὤ​ὠ      (2.7) 

where Ὡ is the elementary charge of an electron, ὤ is the charge number of each particle (so 

particle charge is eZ), and ɳ6 is the electric field intensity in the pore space (6 is the 

electric potential in the pore space). Steady state electric potential fields in the pore space 

were generated for these simulations by solving the following equation (conservation of 

electric current): 

​ὐ ὗ      (2.8) 

​ὐ „Ὁ ὐ (a ÆÏÒÍ ÏÆ /ÈÍȭÓ ,Á×   (2.9) 

Ὁ ​ὠ      (2.10) 

ὲz ὐ π (electric insulation boundary condition)  (2.11) 

where * is charge density, ὗ represents an external current source (0 in this case), „ is 

electrical conductivity of the pore fluid (3e-4 S/m), Ὁ is the electric field, ὐ is externally 

generated current density (0 in this case), and Î is the unit normal vector at a model 

boundary. The following boundary condition was used to apply an electric potential at the 

rock surface: ὠ ὠ where ὠ  is some constant electric potential at the pore wall. 

 

The particle tracing simulations performed are summarized in Table 2.2. 

 

Table 2.2: Summary of Particle Tracing Simulations Performed 
Case Drag Gravity Electric Ўὴ [Pa]  ” [kg/m3] Ὠ [m]  Injection Wall potential 

(V) 

Z (particle 

charge #) 

1 y n n 0.715 2200 500 Pulse n/a n/a 

2 y n n 248 2200 500 Pulse n/a n/a 

3 y n n 0.715 2200 500 Step n/a n/a 

4 y n n 248 2200 500 Step n/a n/a 

5 y y n 0.715 2200 500 Pulse n/a n/a 

6 y y n 248 2200 500 Pulse n/a n/a 

7 y y n 0.715 2200 2000 Pulse n/a n/a 

8 y y n 248 2200 2000 Pulse n/a n/a 

9 y y n 0.715 8000 500 Pulse n/a n/a 

10 y y n 248 8000 500 Pulse n/a n/a 

11 y y n 0.715 8000 100 Pulse n/a n/a 

12 y y n 248 8000 100 Pulse n/a n/a 

13 y n y 0.715 2200 500 1 particle  -0.05 mV -100 

14 y n y 0.715 2200 500 1 particle  -0.05 mV +100 

15 y n y 0.715 2200 500 Pulse  -0.05 mV -50 

16 y n y 0.715 2200 500 Pulse  -0.05 mV +20 

17 y n y 0.715 2200 500 Pulse  -5 V -50 
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2.5 RESULTS 

2.5.1 Fracture-Flow Experiments  

The transport of silica particles was investigated by flow experiments in a fractured Berea 

sandstone core plug. For this purpose, the particle suspension concentration, particle size 

and fluid velocity were varied. The effluent breakthrough curves are presented in Figure 

2.9.  

 

Figure 2.9: Breakthrough curves for silica microspheres with diameter of 2 µm (left) and 5 

µm (right), at different flow rates and particle suspension concentration. Recovery 

of particles is enhanced as particle size increase, which is indicative of straining.  

 

Several observations can be made based on these breakthrough curves. The breakthrough 

time for both particle sizes was very similar. The return curves for both particle sizes 

showed a very fast arrival followed by gradually increasing (in the case of the 2 µm 

particles) or constant (for the 5 µm particles) concentrations. The first arrival of the 2 and 5 

µm particles occurred within 0.02 to 0.04 and 0.03 to 0.08 pore volume of the start of their 

injection. This suggests that the recovered particles were, at least initially, moving through 

the fracture and large pores. Trapped particles were most likely retained in the small pore 

spaces in core matrix and fracture walls in regions with small apertures. It was concluded 

that gravitational sedimentation, aggregation at the primary energy minimum (only for the 

2 µm particles) and straining due to particle size were the main particle trapping 

mechanisms. For the 5 µm particles, the role of the balance between fluid drag and 

gravitational forces was apparent. The particle cumulative recovery decreases with 

increasing particle size at the same experimental conditions, which is indicative of 

straining. This finding is consistent with the observation made by Bradford et al. (2002) 

through the injection of fluorescent latex particles into saturated sand columns. 

 

For the 2 µm silica particles (Figure 2.9, left), the recovery was inversely proportional to 

particle suspension concentration, and directly proportional to fluid velocity. Recovery was 

strongly sensitive to concentration, and slightly sensitive to fluid velocity. Detachment of 
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particles by rolling, sliding or lifting was considered insignificant since increasing fluid 

velocity (drag forces) did not result in considerable recovery enhancement.  

 

Similarly, with increasing particle size (5 µm), the recovery was also increasing with 

increasing fluid velocity and decreasing with increasing concentration. The degree by 

which the recovery was influenced by these parameters (fluid velocity and suspension 

concentration) was completely different at this particle size. It was observed that recovery 

is more sensitive to fluid velocity than concentration. In general, the particle recovery 

(Figure 2.9, right) was found to have a linear relationship with the fluid velocity used 

during injection. For example, the recovery of the 5 µm diameter particle particles had 

increased from below 20% to higher than 64% (about three times higher by increasing 

fluid velocity by factor of three). Further increase in fluid velocity resulted in complete 

recovery of the 5 µm diameter silica particles (Figure 2.9, right). Large particles follow fast 

moving streamlines (central streamlines) and therefore they are held away from grain or 

fracture walls. As fluid velocity decreases, the drag force exerted on particles by moving 

fluid also decreases, allowing gravity to play a larger role. Particles may also diffuse away 

from fast moving streamlines toward the fracture walls, or near grains at the fracture-

matrix interface, but this is not expected to play a dominant role in the transport of micron-

scale particles. Based on all experimental data, it was hypothesized that the gravitational 

sedimentation was playing an important role in the particle transport. 

 

The silica particles used in these experiments have a density of about 2.2 g/cm
3
, more than 

twice that of suspension or injected water, meaning that these particles are subject to a 

force due to gravity. The gravitational force on a particle is directly proportional to particle 

mass (and thus the cube of the particle diameter), so the 5 µm particles are more greatly 

affected by gravitational settling than the 2 µm particles (see Equation 2.6). This helps to 

explain why the recovery of 5 µm particles is much more sensitive to fluid velocity than 

the 2 µm particles. As the trapping of 5 µm particles is likely dominated by gravitational 

sedimentation (which can be directly offset by increasing fluid velocity) and the trapping 

of the 2 µm particles is likely dominated by aggregation (which cannot necessarily be 

directly offset by increasing fluid velocity), it makes sense that the recovery of the 5 µm 

particles is more sensitive to fluid velocity than that of the 2 µm particles. 

 

Furthermore, the fluid drag force acting on spherical particle is directly proportional to the 

fluid velocity and the particle diameter (see Equation 2.5). Larger particles will be under 

greater drag forces, and thus, they will be mobilized or detached more effectively from 

contact surface as velocity increases (Ryan and Elimelech, 1995). The lift force that also 

counters the adhesive force is also function of the fluid velocity (see Figure 2.10). The 

combined effect of fluid velocity and those forces renders larger particles to be very 

sensitive to fluid velocity. Finally, as a result of increasing fluid velocity, the volume of 

low velocity regions (referred to as stagnant flow regions) will decrease, which will limit 

collision of particles between fracture surface crevasses or at the pore walls. 
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Figure 2.10: Illustration of acting forces on particle attached to rough surface. 

 

2.5.2 Particle Tracking Simulations 

The return curves for the simulations are shown in Figure 2.11. 

 

 

Figure 2.11: Particle return curves  

 

Note that return curves for Cases 13 and 14 are not included, because the only particle 

simulated in these cases was trapped on a rock grain (see Figure 2.14). Counting the 

number of particles that reach the outlet gives a more quantitative measure of particle 

recovery. However, the size of the model raises the question of how these results can be 
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scaled up to predict recovery in an entire micromodel, a coreflood, and ultimately a 

reservoir. 

 

The particle trajectory plots for selected cases are given in Figures 2.12  and 2.13. 

 

Figure 2.12: Particle trajectories for Cases 1-4 at t=1000 s. 

 

Note in Figure 2.12 that the color of the particle trajectories represents particle velocity. 

Also note that the trajectories for the high velocity cases (Cases 2 and 4) are less smooth 

and sometimes seem to pass through the rock grains. This is an artifact of storing the 

calculated particle position at too few time steps and does not actually represent the 

simulation results. It is obviously more noticeable in the high velocity cases because the 

particles are moving more quickly. 

 

In all four cases, some particles are trapped mechanically against rock grains by advective 

forces (no consideration of gravity, charge interactions, or chemical bonding). This is 

called interception. In the ñstepò injection simulations, fewer particles experience 

interception because all particles enter the model in a high velocity region. Thus, they are 

more likely to stay in the high velocity regions of the pore space and less likely to collide 

with rock grains and become mechanically trapped. For this reason, it is important to 

understand the nature of particles entering fluid streamlines from an injection port, which 

could be the subject of future modeling. 

 


