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Abstract

The aim of this research was to identify and characterize the small fractures in geother-

mal rocks using the X-Ray CT scanner. Geothermal rocks typically have small poros-

ity and a large number of tiny fractures scattered in a dense rock matrix. The small

fractures are di�cult to measure accurately by CT imaging when their aperture is of

the order of or even smaller than the CT scanner's resolution. Previous research in

the area of fracture calibration using CT imaging was focused on arti�cial fractures

with apertures larger than the CT resolution or fractures existing in rock lighter and

more homogeneous than geothermal rock.

In this research we focused on the detection and calibration of natural fractures

in samples of Geysers core. We investigated the basic theory of the CT technique.

Previous results in the area of CT measurement were enhanced by incorporating

image-processing techniques for image enhancement and natural fracture detection.

We proposed a systematic procedure for fracture identi�cation, fracture aperture

calibration and saturation calculation in an identi�ed fracture region. Speci�cally,

we used edge detection methods to obtain the edge map, the Hough transform to

estimate the fracture orientation, and the Active Contour approach to re�ne the edge

map and to determine a well-connected fracture region. The detection quality of the

fractured region was signi�cantly improved.
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Section 1

Introduction

Enormous e�ort has been applied in advancing the understanding of uid ow in

heterogeneous porous media. The e�ect of fracture aperture variability on water or

steam distribution, especially under geothermal reservoir conditions, is still unknown.

Many concerns related to the necessity of evaluating the heterogeneity of rocks arises

from previous experiments. We found that adsorption and the distribution of water

and steam in a network consisting of tiny fractures are, in fact, not negligible in mass

transfer processes. Geothermal rocks usually have dense matrix within which tiny

fractures are scattered. Therefore fracture aperture has signi�cant impact on mass

transfer in geothermal rock and it is important to characterize the fracture geometry.

X-ray computerized tomography (CT) is a non-destructive measurement technol-

ogy that has been applied increasingly in the study of rock properties and uid ow

in porous media, Huang et al. (1995), Bonner (1997), Akin (1996) and Johns (1991).

In a CT image, the CT number represents the intensity which resulted from the at-

tenuation of photons. The attenuation is correlated to atom number or density of

material. Therefore the CT number is proportional to density. In the two-dimensional

intensity image, a fracture is shown as dark region if the aperture is not too small. If

we consider a perpendicular line across the fracture and plot the CT number along

this line in a two-dimensional graph, we get a pro�le of the CT response. We will

be able to �nd a dip in that pro�le corresponding to the fracture. It was found that

neither the depth nor the width of the dip can be used to de�ne the aperture size

1



SECTION 1. INTRODUCTION 2

over a wide range of scales. In particualr, when it comes to using CT to calibrate

a fracture in geothermal rock, the accuracy of measurement becomes more crucial.

The aperture of some of the fractures in geothermal rock is of the order of the CT

scanner resolution or even smaller. The resolution of CT scanner we are using is

300�m. Therefore some fractures may be sub-pixel-sized. Johns(1991) proposed a

quantitative calibration between the gap size and the CT response. In his study, the

cumulative CT response was correlated to gap size. Our fracture calibration methods

were based upon this approach with improvement in automation of natural fracture

detection and calibration using image processing techniques.

In order to obtain the accumulation over the gap, the starting point and ending

point of the integration need to be identi�ed. In a two-dimensional intensity image

the fracture is distinguished by a discontinuity in intensity. The boundary of a frac-

ture usually is acquired by an edge detection process. However, the edge segments

generated by edge detection are seldom well-connected. This means there is no guar-

antee of �nding the integration boundaries. To solve this problem, we introduced the

Active Contour model to �nd the contour of the fracture. The Hough transform was

used to �nd the orientation of a fracture and the direction of integration. We will

discuss the details of these methods in this report.

Chapter 2 elucidates the theoretical background of the approaches used to detect

and measure natural fractures. It is divided into �ve sections. Section 2.1 briey

reviews the theoretical background of the CT technology and discusses the issues that

limit the resolution of a CT scanner. Section 2.2 focuses on edge detection. Section

2.3 discusses the necessity of denoising prior to edge detection and soft-thresholding

denoising using wavelet transform. Section 2.4 discusses the necessity of edge linking

and the functionality of the Hough transform for detecting the line features in an

image. Section 2.5 introduces the Active Contour approach as an elegant way to

re�ne the edge map.

Chapter 3 describes the necessary experiments in the entire calibration procedure

and discusses the issues related to obtaining good quality core CT images.

Chapter 4 presents the results of application of denoising, edge detection, edge

linking methods to images of cores.
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Chapter 5 summarizes the general procedures for detecting natural fractures and

calibrating them. This chapter also includes suggestions about utilizing results from

this research in other experiments and research projects.



Section 2

Theoretical Background

2.1 CT Technology and Measurement

Computer-Aided Tomography (CT) can produce a higher resolution internal image

of an object than conventional X-ray methods. The technique has been applied

increasingly in the study of rock properties. Unit elements in the two-dimensional

image matrix generated by the X-ray CT scanner are referred to as CT numbers.

Each CT number corresponds to the average attenuation coe�cient (�voxel) within a

voxel. The object is divided into voxels which are cubic and can be described as pixels

with a thickness. The thickness of voxel is equal to the slice thickness (X-ray beam

thickness) and the square dimension of a voxel is de�ned by the length of the detectors

divided by the dimension of the image matrix which results from the sampling rate.

Prior to display of a CT image, it is conventional in the medical �eld to normalize

the X-ray attenuation data to the value of water in the following fashion:

CT =
2048(�voxel � �water)

�water
(2.1)

where � is the X-ray attenuation coe�cient, and CT is the CT number, whose unit

is called the Houns�eld. This results in CT numbers of -1024 Houns�eld for air,

0 Houns�eld for water, and 1024 Houns�eld for bone. The relationship between

detected intensity Id(x; y) =
R
I0 (�) exp [�

R
� (x; y; z; �) dz] d� and incident intensity

4



SECTION 2. THEORETICAL BACKGROUND 5

Id(x; y) =
R
I0 (�) exp [�

R
� (x; y; z; �) dz] d� can be expressed as

Id(x; y) =
Z
I0 (�) exp

�
�
Z
� (x; y; z; �) dz

�
d� (2.2)

where I0 (�) is the incident X-ray beam intensity as a function of the energy per photon

� and �(x; y; z; �) is the linear attenuation coe�cient at each region of the object. The

� of all materials depends on the photon energy of the beam and the atomic number

of the elements in the material. The decreasing of intensity of the X-ray beam after

traversing an object is described by the photon absorption or scattering. Attenuation

mechanisms are composed of coherent or Rayleigh scatter, photoelectric absorption,

and Compton scatter in the diagnostic range, below 200 kev (kiloelectron volts).

� = �R + �P + �C (2.3)

where R, P, and C refer to Rayleigh (coherent) scattering, photoelectric e�ect and

Compton scattering respectively. Photoelectric absorption dominates in materials

with higher atomic number. The attenuation coe�cient undergoes a sharp increase

in the energy region corresponding to the K shell. For high-atomic-number material,

the K absorption edge occurs within the spectrum of interest. On the other hand,

Compton scatter dominates in low-atomic-number material, such as water and soft

tissue (Macovski, 1983). With respect to materials such as water, steam and rock,

only the Compton e�ect and photoelectric adsorption are expected to be dominant

while coherent scatter only happens when the X-ray energy is of the order of a few

kev which is not within the energy level range of our experiment. The Compton

attenuation contribution �C to the total attenuation is dependent on energy E, but

independent of atomic number. The photoelectric component is dependent on both

atomic number and energy level. Elements in Eq. 2.3 take the form

� = �Ng

8<
:f (�) + CR

Z
k
r

�l
+ CP

Z
m
p

�l

9=
; (2.4)

where � is the photon energy in kev, Ng is the electron mass density in electron per

gram as given by

Ng = NA

X
i

wi
Zi

Ai

(2.5)
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wi is the proportion by weight of the i th constituent, and Zr and Zp are the e�ective

atomic number as given by

Zr =

 X
i

�iZ
k
i

!1=k
(2.6)

Zp =

 X
i

�iZ
m
i

!1=m

(2.7)

In Eqs. 2.6 and 2.7 k ;m; l , and n are empirically determined exponent, and �i is

the electron fraction of the i th element given by

�i =
NgiP
i
Ngi

=
NAwi

�
Zi
Ai

�
P
i
Ngi

(2.8)

Ai is the atomic mass of i th constituent, andNA is Avagadro's number. The Compton

scattering function f (�), which is independent of the atomic number, can be described

by the Klein-Nishina function (Macovski, 1983):

fkn(�) =
1 + �

�2

"
2 (1 + �)

1 + 2�
� 1

�
ln (1 + 2�)

#
+

1

2�
ln (1 + 2�)� 1 + 3�

(1 + 2�)2
(2.9)

� = �=510:975kev (2.10)

These equations provide us a way to identify material in a porous medium. As we

can see from Eq. 2.4, the attenuation coe�cient is linearly dependent on the density

of the material.

2.1.1 Measuring Porosity and Saturation Using CT

Conventionally, porosity and saturation are obtained from CT measurement after sat-

urating a porous medium with contrast agents, e.g. water and air are most commonly

used. There are two sets of CT scans needed to calculate porosity. One is the dry

scan (CTdry), which is conducted when the porous medium is fully saturated with

air; the other is the wet scan (CTwet), which is conducted after the porous medium

has been saturated with water. Then the porosity is obtained by

� =
CTwet � CTdry
CTwater � CTair

(2.11)
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To calculate saturation another scan (CTp1p2) is required, which is performed when

two phases, p1 and p2, are coexisting in the porous medium. Saturation is given by

Sp1 =
CTp1p2 � CTp2r
CTp1r � CTp2r

(2.12)

Sp2 = 1� Sp1 (2.13)

where r refers to rock.

In such a measuring process one must make sure the core is fully saturated with

contrast agent, which usually requires a long experimental time in low permeability

rocks. In addition, this process may not be fully appropriate for the determination

of porosity in fractured rocks, since the saturating uids are not distributed uni-

formly. In fractured rocks, we expect to require a di�erent procedure that identi�es

the fractures speci�cally.

2.2 Edge Detection

A fracture in a two-dimensional image is identi�ed as a discontinuity in intensity (see

Figure 3.2(a)). In a CT pro�le a fracture is indicated by a valley (see Figure 3.2(d)).

To detect such features we usually rely on edge detection methods.

Edge detection methods can be divided into two categories: �nding the local

maximum from �rst order gradients, or �nding the zero-crossing from the second

derivative.

From the line pro�le of core CT number we can tell the existence of a fracture

by a valley in the pro�le. In the two-dimensional density image, a fracture is shown

as a dark region. In Figure 4.2(a), four main fractures can be identi�ed as valleys.

Commonly the gaps are �lled with air. Note that the CT numbers inside the gaps do

not give the typical CT number for air, which is -1024, as we expect. Instead, the CT

numbers in the valleys indicate values around 1700. This is an e�ect often referred

to as dispersion of the CT response, which is caused by the �nite beam width and

oversampling. Usually an in�nitesimal point can appear within four to nine voxels

surrounding the voxel in which the point is located. Also if the voxel contains more
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Row Gradient Column Gradient2
64
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Figure 2.1: Roberts operator
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3
75

Figure 2.2: Sobel operator

than one component, the resulting attenuation response is determined by the volume

fraction of each component and the attenuation response for each pure component.

The integrated missing mass (CT number) corresponds to the gap size linearly. Thus a

general approach is to run a calibration using homogeneous material with an arti�cial

fracture. The fracture aperture is calibrated mechanically before being scanned in the

CT scanner. The correlation between the integrated CT number over the gap and the

calibrated aperture can be obtained using line �tting. With this preknowledge, we

can characterization the natural fractures once we calculate the integrated \missing"

CT in the fracture area. In order to obtain the integration, we need to identify the

starting and ending points. Edge detection will allow us to mark these boundaries

of the integration. We used the Roberts and Sobel gradient operators (Pratt, 1991)

to detect edges. Figure 2.1 shows the impulse response arrays for the 3x3 orthogonal

di�erential Roberts operator. We convolve these impulse response arrays with a two-

dimensional image. Each pixel in the resulting image is set to 1 if the value is larger

than the given threshold, or set to 0 otherwise. Therefore we acquire a binary image

called an edge map. The advantage of the Roberts operator is its simplicity, however

this method is sensitive to noise. In our experiment we used the Sobel operator

(shown in Figure 2.2) to obtain the edge map.
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2.3 Denoising

The edge detection methods are all sensitive to noise, although to di�erent degrees,

because they have similar processes such as taking derivatives of the signal. Thus

for most natural CT images, we usually perform denoising on the data before it is

passed to edge detection module. We applied soft-thresholding using the wavelet

transform for denoising the core CT images. This was proposed by Donoho (1993).

The beauty of this method is in its e�ciency in preserving the true underlying data

while suppressing noise. We will �rst talk about the wavelet transform, then we will

discuss the soft-thresholding algorithm.

2.3.1 Wavelet Transform

Similar to the Fourier transform, the wavelet transform decomposes a time function

on an orthogonal basis represented by a and � (variables characterize the dilation and

translation of basic wavelet). The wavelet transform of a function f(t) 2 L2 (R) is

de�ned by

Wf(a; �) =
Z

+1

�1

f(t)
p
a (a (t� �))dt (2.14)

where  (t) is called a basic wavelet (mother wavelet). The translations and dilation

of the basic wavelet form a family given by
p
a (a (t� �)), which is an orthonormal

basis. Normally we use a discretized form:

Wf(m;n) = 2
m
2

X
k

f (k) (2mk � n) (2.15)

In order to use this formula the signal has to be in dyadic length, i.e., signal length

is equal to 2J , where J is an integer.

In a wavelet multiresolution representation frame (Mallat, 1989), the signal is

decomposed into approximations and details. The approximation at resolution 0 <

j < J is in space V2j , which is spanned by an orthogonal basis formed by the dilation

and translations of  (t). The di�erence between the approximations at resolution

2j and 2j+1 is the detail signal at resolution 2j, which belongs to the space O2j , the
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H

L j

A 2 j+1

D2
j

A 2

Figure 2.3: Scheme of wavelet decomposition

orthogonal complement of V2j in V2j+1. Space O2j is spanned by an orthogonal basis

formed by the dilation and translation of a scaling function ' (t). Between ' (t) and

 (t), there is a pair of �lters H and L, called the quadrature mirror �lter (QMF), to

correlate them. There are many papers (Cohen, 1992, Cohen, 1993 and Chui, 1992)

talking about how to construct the QMF and consequently obtain ' (t) and  (t) with

desired properties. Figure 2.3 shows the scheme of decomposition using the QMF

pair H and L. A2j and D2j denote the approximation and detail at resolution 2
j. A2j ,

the approximation to A2j+1 at next coarser level 2
j is obtained by convolving A2j+1

with low-pass �lter L; the corresponding complement detail signal D2j is obtained by

convolving A2j+1 with high-pass �lter H. Therefore the approximations and details

are obtained by cascade �ltering using QMF. For two-dimensional signals, we assume

the columns and rows are separable and the scaling function and wavelet function

can also be constructed separately.

 1 (x; y) =  (x)' (y) (2.16)

 2 (x; y) = ' (x) (y) (2.17)

 3 (x; y) =  (x) (y) (2.18)

This construction corresponds to the �ltering on column and row data sequentially.

The advantage of the wavelet transform over the conventional Fourier transform is

that wavelets can form an unconditional base of many functional spaces. The wavelet

transform gives us a look at the signal at multiple resolutions and screens out the

useful signal more e�ciently.
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2.3.2 Soft-Thresholding

Conventionally we �lter noise in the frequency domain by assuming that the signal

is banded and noise is spread over the entire frequency domain. Usually we use a

low-pass �lter to cut out the high frequency noise. This procedure is based on the

representation of the signal in a Fourier series. Theoretical proofs and experiments

show that this representation is not very e�cient. Often the Gibbs phenomenon (os-

cillation in a rapid changing area) is induced during such process. By applying the

wavelet transform, a signal is decomposed into its building blocks. In those wavelet

coe�cients, signal coe�cients rise above the noise level. Since the wavelet transform

compresses signal with �nite energy l2 into a small number (limited for discretized

wavelet transform) of coe�cient groups, signal amplitude will consequently increase.

Also the Gaussian white noise property is kept during orthogonal transformation,

therefore the noise level remains the same. The amplitude of the noise level is pro-

portional to
q
log (n), where n is the signal length (Donoho, 1993). We can take

advantage of this property to threshold the noisy wavelet coe�cient while preserving

the signal.

Assume the measured noisy data is represented as

yi = f(t) + �zii = 0; :::::; n� 1 (2.19)

The procedure of soft-thresholding denoising consists of three steps (Donoho, 1992):

(1) Decompose the measured yi using the wavelet transform and obtain the em-

pirical wavelet transform coe�cients wc.

(2) Apply the thresholding nonlinearity �wc = sgn(wc) (jwcj � thr) with the thresh-

old chosen as thr =
q
2 log (n)�.

(3) Invert the wavelet transform to yield the ^f(t), which is the restored version

of the f(t) from noisy sample yi. Figure 2.4 depicts the Gaussian noise e�ects in

the wavelet coe�cients domain. Plot (a) shows the noisy signal. Plot (b) shows the

true signal behind the noisy features in (a). Plots (c) and (d) display the wavelet

coe�cients obtained by transformation using a simple Haar wavelet. Comparing

(c) and (d), we can tell that the signal coe�cients do stand out from the noisy

background. Plot (e) displays the thresholded wavelet coe�cients, which look similar
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to those of clean signal (b). We can apply the same procedure to CT image data to

obtain an e�cient recovery of a true image.

0 0.5 1
−20

0

20

40
 (a) Noisy Data y

0 0.5 1
−10

0

10

20
 (b) Clean Data y

0 0.5 1

−10

−8

−6

−4

(c)  Haar[noisy y]

0 0.5 1

−10

−8

−6

−4

(d)  Haar[clean y]

0 0.5 1

−10

−8

−6

−4

(e)  Thresholded Haar

0 0.5 1
−10

0

10

20
(f) Reconstructed y

Figure 2.4: Comparison between clean block signal, noisy block signal and denoised
block signal

2.4 Hough Transform

The Hough transform can detect speci�c structural relationships between pixels in

an image. The transform was proposed by Hough in 1962. Commonly, we use this

approach to �nd subsets of n points in an image that lie on straight lines (Pratt,

1991). A line can be represented as

x cos � + y sin � = � (2.20)
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(a) (b)

Figure 2.5: (a) Normal representation of a line. (b) Quantization of �� plane into
cells.

The meaning of the parameters used in Eq. 2.20 is illustrated in Figure 2.5(a). The

Hough transform subdivides the parameter space into the accumulator cells shown in

Figure 2.5(b).

The cell at coordinate (i ; j ) in the quantized �� plane, with accumulator value

A(i ; j ), corresponds to a square associated with parameter space coordinates (�i; �j).

Initially, these cells are set to zero. Then, for every point (xk; yk) in the image plane,

we let parameter � equal each of the allowed subdivision values on the � axis and

solve for the corresponding � using Eq. 2.20. The resulting � values are then rounded

o� to the nearest allowed value in the � axis (Gonzalez, 1987). Therefore M collinear

points lying on a line with parameter pair (�i; �j) will yield M sinusoidal curves that

intersect at (�i; �j) in the parameter space, i.e. A(i; j) = M . In the process of line

detection, we usually set a threshold. If the value of the accumulator cell A(i; j) is

larger than the threshold, we claim that there is a line described by (�i; �j) (van der

Heijden, 1994).



SECTION 2. THEORETICAL BACKGROUND 14

2.5 Active Contour Model

The Active Contour approach is an energy-minimizing model (Kass, Witkin and

Terzopoulos, 1987). Because of the dynamic behavior of the approach, the curve is

often referred to as a snake. A snake is an energy-minimizing spline regulated by

internal forces, image forces and constraint forces. The energy of the snake can be

represented as

E�

snake =
Z
[Eint (v(s)) + Eimage (v(s)) + Econt (v(s))] ds (2.21)

where v(s) = (x(s); y(s)) represents the position of snake parametrically. Eint

represents controlled continuity spline forces which impose a piecewise smoothness

constraint. The constraint can be written

Eint =

�
�(s) jvs(s)j2 + �(s) jvss(s)j2

�
2

(2.22)

The �rst-order term makes the snake act like a membrane and the second-order

term makes it act like a thin plate. � (s) and � (s) are the weights of the two terms.

Eimage represents the image forces. Here we set

Eimage = � jrI(x; y)j2 (2.23)

In this way a snake is attracted to a contour with large gradients. There are other

applications in which the image force can include line force and termination force.

According to our image content, we are focused on the edge information.

Minimizing the energy function given by Eq. 2.21 gives rise to the Euler equation

in �nite di�erence form, Eq. 2.26. Let

fx(i) =
@Eext

@xi
(2.24)

fy(i) =
@Eext

@yi
(2.25)
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where Eext = Eimage + Econ.

�i (vi � vi�1)� �i+1 (vi+1 � vi)

+�i�1 (vi�2 � 2vi�1 + vi)� 2�i (vi�1 � 2vi + vi+1)

+�i+1 (vi � 2vi+1 + vi+2) + (fx (i) ; fy (i)) = 0 (2.26)

Eq. 2.26 can be reorganized into matrix form.

Ax + fx (x; y) = 0 (2.27)

Ay + fy (x; y) = 0 (2.28)

where A is a pentadiagonal banded matrix. Eqs. 2.27 and 2.28 are solved using an

explicit Euler method with respect to the external forces. The resulting equations are

Axt + fx
�
xt�1; yt�1

�
= ��

�
xt � xt�1

�
(2.29)

Axt + fy
�
xt�1; yt�1

�
= ��

�
yt � yt�1

�
(2.30)

where � is the step size. At equilibrium, the time derivative vanishes and a stable

solution is obtained. Eqs. 2.29 and 2.30 can be solved by matrix inversion resulting

in

xt = (A+ � I)�1
�
xt�1 � fx

�
xt�1; yt�1

��
(2.31)

yt = (A + � I)�1
�
yt�1 � fy

�
xt�1; yt�1

��
(2.32)

The common problem in solving the Eqs.2.29 and 2.30 is the instability due to the

discretization of the evolution (Cohen, 1990). The choice of � can not be too large

even if the external forces in only a few points is large. Instead of adjusting the time

step, we normalize the forces.

�
�fx(v); �fy(v)

�
=

(fx(v); fy(v))

jj (fx(v); fy(v))j j (2.33)
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In this way the small and large image gradients have the same inuence on the

curve.



Section 3

Calibration Experiment

This experiment served the purpose of investigating the dispersion e�ect inherent in

the CT scanner and calibrating the linear curve of the fracture aperture size vs. the

integrated missing CT number over the gap (Johns, 1991). The calibration experi-

ment should be done in a material with a distinctive density value within which the

fracture will appear.

Two shim stock slide in along the arrows

Figure 3.1: Experimental setup

The experimental apparatus is illustrated in Figure 3.1. A basalt core was used

because of its homogeneity. The original basalt core was 4.5 cm in diameter and 8 cm

in length. The core was cut in half and both planar surfaces were optically polished.

17
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The smoothness of the surfaces was 0.5 micron. Two shim stocks with calibrated

thickness were inserted from both ends of the core along the direction of the arrows

and an arti�cial fracture was created. The range of fracture size was 0.001�0.04 inch.
An aluminum ring was used to surround the basalt core in order to reduce the X-ray

beam hardening e�ect.
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Figure 3.2: Fracture: aperture = 0.04 in

Figures 3.2 to 3.8 demonstrate the variation of fracture aperture. The (a) plots
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Figure 3.3: Fracture: aperture = 0.02 in
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Figure 3.4: Fracture: aperture = 0.012 in
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Figure 3.5: Fracture: aperture = 0.008 in
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Figure 3.6: Fracture: aperture = 0.004 in
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Figure 3.7: Fracture: aperture = 0.002 in
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Figure 3.8: Fracture: aperture = 0.001 in
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Figure 3.9: Minimal CT over the gap vs. aperture

in these �gures show the intensity image of the basalt core with fracture. The (b)

plots show the edge maps. The (c) plots show the location of pro�les plotted against

the edge maps with fracture boundaries emphasized by two parallel straight lines.

The (d) plots show the pro�les of the CT numbers along the line AA0 shown in (c).

The valley in the pro�le corresponding to the fracture becomes shallower when the

fracture is narrower. Figure 3.9 shows that the minimum CT number in the valley

of pro�le increases as the aperture decreases. However when the fracture was �lled

with water, the two smallest fractures became indistinguishable and the valley in the

pro�le is buried. Figure 3.10 shows the linear relationship between the integrated

CT and the fracture aperture. In our calculation of integrated missing CT, the CT

number in the neighborhood of the fracture boundary is the density level with which

each pixel in the gap is being compared.
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Figure 3.10: Relationship between integrated missing CT and aperture: y=1.398e5*x-
194.5402



Section 4

Results

4.1 Denoising Core CT Image

The soft-thresholding algorithm was introduced in Section 2.5 along with an example

of one-dimensional signal denoising. This denoising procedure consists of three steps,

(1) forward wavelet transform, (2) wavelet coe�cient thresholding and (3) inverse

wavelet transform. In the two-dimensional case, we apply a high-pass �lter and low-

pass �lter on the rows and columns of the image data respectively. After one level

decomposition, we obtain the pattern shown in Figure 4.1.

The noise level � is estimated from the median value of detail sub-image HH. We

also know that white noise is proportional to log
q
(N) , where N is the signal length.

For the two-dimensional core image the threshold is chosen as � logN , where N is

the dimension of image.

LL

HH

LH

HL

Figure 4.1: Coe�cient pattern after one level of wavelet decomposition
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Figure 4.2: Denoising e�ect. (a) Original core image. (b) Edge map using Roberts
gradient operator (thr=20) on the original image. (c) Denoised core image. (d) Edge
map using Roberts gradient operator (thr=20) on the denoised image.
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Figure 4.3: (a) Edge map of sample of basalt core with a fracture of 0.04in. (b) Hough
transform corresponding to (a).

4.2 Hough Transform

As described in Section 2.4, the edge map of the basalt core with arti�cial fracture was

used as input data to calculate the Hough transform in order to obtain the slope of the

two boundaries of the fracture. We are looking for the distinctive common intersects

of sinusoidal curves in the parameter plane. Figure 4.3(a) depicts the input edge map

of fractured basalt core. Figure 4.3(b) shows the Hough transform of edge points in

(a). Two intersects are distinguished, �1 = 303:6699, �1 = 0:0754, and �2 = 297:6210,

�2 = 0:0843. We drew lines according to these parameter pairs as is shown in Figure

4.3(b). These two lines correctly indicate the location of the boundary of the arti�cial

fracture in basalt core (see Figure 3.2(c)). We also obtained the orientation of the

pro�le subsequently. The line perpendicular to these two parallel lines shows the

location of the CT pro�le in Figure 3.2(d).
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4.3 Finding the Contour Using Active ContourModel

In our application of the Active Contour Model the external constraint forces are not

included and the image forces only include edge forces. Eqs. 2.29 and 2.30 solve the

snake model implicitly with respect to the internal forces and explicitly with respect

to the external forces. The time step � should be adjusted according to the external

forces. Large external forces may cause the vt�1 move too far across the desired

minimum position and lose the convergence. We normalized the external forces to

make the convergence less sensitive to � .

4.3.1 Finding the Arti�cial Fracture Contour

The active contour method described in Section 2.5 was applied to the arti�cial

fracture in the basalt core. Figure 4.4 shows the moving path of the snake during

evolution. The correct contour was obtained at equilibrium.

Figure 4.5 demonstrates the problem with two adjacent objects and starting the

snake not close enough the object of interest. The snake was attracted by edges of

objects other than the fracture under study. This problem is due to the theoretical

basis of the snake model. The snake model attempts to �nd the equilibrium of the

forces or the minimum of the energy. However this minimum is not unique. Since in

most situations we are only interested in the local minimum, we can certainly con�ne

our solution. Therefore we have to push the snake closer to the fracture of interest in

order to let the snake �nd the right path.

4.3.2 Finding the Contour of Natural Fractures

We applied the Active Contour Model to a CT image of a Geysers rock sample. Figure

4.6 shows the contours of all the detected fractures in the Geysers sample.

After we have found the contours of the fracture, we can calculate the fracture

aperture based on the calibration curve shown in Figure 3.10. Figure 4.7 shows

an example of this approach, as applied to one of the identi�ed fracture in Figure

4.6. Since the orientation of the contour shown in Figure 4.7 does not change much,
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Figure 4.4: Finding a contour using Active Contour Model (a) Initial contour of
fracture. (b) Locus of snake after one iteration. (c) Stable locus of snake after 300
iterations. (d) Final contour of fracture.
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Figure 4.5: Case study of setting initial contour not close enough to object of interest.
(a) Initial contour of fracture. (b) Locus of snake after one iteration. (c) Stable locus
of snake after 300 iterations. (d) Final contour of fracture.
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Figure 4.6: Finding fracture contours using snake (a) Original core image. (b) Edge
map using Sobel gradient operator (thr=20) on the original image. (c) Connected
contours found by snake.
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Figure 4.7: (a) Contour of a typical fracture in Geysers core. (b) Aperture calculation
on the contour shown in (a).

we used the global Hough transform to estimate the orientation of the fracture and

determine the appropriate location of the pro�le. The orientation of the contour can

be described by � of 1.0472. (See Figure 2.5(a) for the de�nition of the �.) At the

location shown in Figure 4.7(b) the aperture is 0.1226mm. Natural fractures usually

have changing orientation and aperture (see Figure 4.6). The procedure used to

calculate aperture shown in Figure 4.7 may not be applied in such cases. To account

for the variation of aperture, we calculated the aperture at each pixel on each contour

of the fractures in the entire slice of the sample of Geysers core. Figure 4.8 shows the

distribution of fracture aperture in Geysers sample. Most apertures are below 250

micron.
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Figure 4.8: Aperture distribution in Geysers sample



Section 5

Conclusions and Discussions

A general procedure for determining fracture aperture in geothermal rocks has been

developed. The procedure includes the following steps:

(1) The experimental calibration of a curve of integrated missing mass vs. aperture

using homogeneous material having similar density to the natural fractured core.

(2) Edge detection on the natural fractured core. A denoising procedure may be

applied prior to edge detection.

(3) The active contour algorithm is used to re�ne the edge map.

(4) Components are labeled if necessary. This procedure is useful when we need

to address an individual contour in an image.

(5) The identi�ed fracture orientation is estimated using the Hough transform.

The fracture aperture size is inferred from the empirical curve of integrated missing

CT number vs. fracture aperture obtained from the calibration experiment. The

saturation of uid in the fracture region can also be estimated.

For the detection of a regular fracture, we can use the global Hough transform to

estimate the orientation of the fracture. For a natural fracture, we can use the local

Hough transform. The window of the local transform is adjustable according to the

variation of the fracture orientation.

In our application of the snake model, the initial curve is placed outside of the

object of interest, and internal forces guide the snake to �nd its way. Spurious points

inside the desired contour do not have any inuence on the contour obtained. This

36
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way of setting the initial contour is easier than the one presented by Cohen(1990).

However, if there is a nearby object that is too close to the object of interest, the

initial curve has to be placed closer to the one under study.

The denoising procedure is only necessary when the edge map is too noisy. The

Active Contour method has resistance to noise while �nding the contour.

One of the advantages of the snake model that can be explored in the future is

the exibility of including constraints, such as edge information. We can utilize the

previous achievement in edge detection, for instance the Canny-Deriche edge detector

(Canny, 1986) and edge detection using the wavelet transform. The attraction forces

can be de�ned by simulating a potential obtained by convolving the binary edge

image with a Gaussian impulse response. This can attract the snake to the small

edge segments.

In general, the Active Contour model combined with the edge detection and Hough

transform can signi�cantly improve the detection quality of closed fractures, while

enhancing the computational stability and reducing the complexity. Making use of

edge detection, the Hough transform and the Active Contour model, we were able

to characterize the fracture aperture distribution in a sample core from the Geysers

geothermal �eld.
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Appendix A

Core Functions

The following MATLAB programs were used to process core functions of the fracture

detection procedure.

� hough.m | calculate the Hough transform. Accumulator array of the dis-

cretized parameter plane is returned. Be sure to supply the rough estimation

of the range of the � in which the orientation of the edge is expected to appear.

� out in.m | solve the Active Contour Model with an initial contour speci�ed

around the object of interest.

� denoise core.m | Soft-thresholding based on the wavelet transform.

A.1 Hough Transform

%=====================

% File Name : hough.m

% by Meiqing He

% Last Modified 6/5/1998

%-------------------

%hough transform subroutine

%Functionality:

% Calculate the Hough transform. Accumulator array of the discretized

% parameter plane is returned. Be sure to supply the rough estimation

41
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% of the range of the theta in which the orientation of the edge is

% expected to appear.

%=====================

function [Acc, Rou, theta]=hough(thetaMin, thetaMax, numStep, numAccCell, x , y)

% thetaMin in degree

% thetaMax in degree

% numStep integer, discretization of the theta,

% limis the resolution

% numAccCell integer, discretization of the Rou,

% limits the resolution

N= length(x);

theta = linspace(thetaMin,thetaMax, numStep);

theta = theta*pi/180;

Rou = zeros(N,numStep);

for loop = 1:N,

Rou(loop,:) = x(loop)* cos(theta)+y(loop)*sin(theta);

end

RouMin = min(min(Rou));

RouMax = max(max(Rou));

%numAccCell also limits the resolution

Acc = zeros(numAccCell,numStep);

resolution = (RouMax-RouMin)/(numAccCell-1);

for loop1 = 1:numStep,

for loop2 = 1: N,

index = floor((Rou(loop2,loop1)-RouMin)/resolution)+1;

Acc(index, loop1) = Acc(index, loop1)+1;

end

end
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A.2 Solving the Snake Model

%=============

% File Name: out_in.m

% by Meiqing He

% Last Modified 6/5/1998

%--------------

%subroutine solving the avtive contour (discrete Euler equations)

%Functionality:

% For a given image "img" and an initial curve (x0,y0) around the object of

% interest, function out_in(x0,y0,img) finds the contour.

% =============

function [ctrI, ctrJ]=out_in(x0,y0,img)

n=length(x0);

% generate n*n unit matrix I:

I=eye(n);

% generate n*n matrix A:

a=mtrxa(n)/4;

x1=zeros(n,1);

y1=zeros(n,1);

%tau is the discretization parameter of the time, has effect on the

%convergence, can be modified.

tao=1;

[m,m]=size(img);

px=zeros(m);

py=zeros(m);

fx=zeros(m);

fy=zeros(m);

potntl=zeros(m);

p=zeros(m);

% calculate the gradient

[px,py]=gradient(img);
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%calculate the potential

potntl=absgrad(px,py);

%calculate the derivative of the potential

[fx,fy]=gradient(potntl);

% normalize external forces: fx,fy

p=absgrad(fx,fy);

for i=1:m

for j=1:m

if p(i,j)>.0001

p(i,j)=sqrt(p(i,j));

fx(i,j)=fx(i,j)/p(i,j);

fy(i,j)=fy(i,j)/p(i,j);

end

end

end

b=I+tao*a;

b_inv=inv(b);

for ii=1:1000

ii

%interpolate the external forces at the decimal location of the snake

ffx=interp4(fx,x0,y0);

ffy=interp4(fy,x0,y0);

%solve the snake position

x1 = b_inv*(x0+tao*ffx);

y1=b_inv*(y0+tao*ffy);

% track the snake and the error step by step

% the if condition can be eliminated if you do not want to monitor the snake

% and want to save some time. Plotting can take a while to accomplish.

if ii ==round(ii/300)*300 | ii ==1



APPENDIX A. CORE FUNCTIONS 45

figure;

plot([x1;x1(1)],[y1;y1(1)],'r.'), title('snake moving path');

axis('ij')

pause;

end

%evaluate the movement of the snake. Compare the position difference between

%the new position acquired after the current iteration and the old one

err=err1(x0,y0,x1,y1)

%update the position of the snake

x0=x1;y0=y1;

end

ctrI = y0;

ctrJ = x0;
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A.3 Soft-Thresholding Denoising

%==============

% File Name: denoise_core.m

% by Meiqing He

% Last modified 6/6/98

%-------------

%This code implements two approaches.

%The first one approximates the noise process as Gaussian distribution

%the threshold for the Soft-Thresholding method is derived based on this

% See Donoho(1992) and Masters' report by Meiqing He(1998).

%The second one takes the noise process as it is(Poisson distribution) and

%transforms to Gaussian distribution in order to apply the Soft-Threshoding

%mehtod

%==============

%----------------

%read and display 2D core CT image

%512*512 grids

%---------------

DATAPATH = '/pangea/play/pete/meiqing/';

filepath = [ DATAPATH '4635-01.txt'];

fid = fopen(filepath,'r');

data= fscanf(fid,'%g',[512 512]);

fclose(fid);

img = data';

%-------------------------

%display the sub-images after one level decomposition

%-------------------------

D4QMF = MakeONFilter('Daubechies',4);

wcNoise = FWT2_PO(img,8,D4QMF);

wc1 = wcNoise(1:256, 1:256);

wc2 = wcNoise(1:256,257:512);

wc3 = wcNoise(257:512,1:256);

wc4 = wcNoise(257:512,257:512);
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subplot(221);

imagesc(wc1);

colormap(bone);

axis('image');

title('LL');

subplot(222);

imagesc(wc2);

colormap(bone);

axis('image');

title('LH');

subplot(223);

imagesc(wc3);

colormap(bone);

title('HL');

subplot(224);

imagesc(wc4);

colormap(bone);

title('HH');

%----------------------

%calculate the threshold

%----------------------

nlevel = median(median(abs(wcNoise(256:512,256:512)))); %estimate the

%standard deviation of the noise from the HH

% thr = 2*nlevel;

% thr = 2.*(thr+3/8).^0.5; % thr is transformed from Poisson

%distribution to Gaussian distribution

thr = nlevel*sqrt(2*log(512*512-64))/0.6745; %thr of the Gaussian

%distribution

wcNoise = FWT2_PO(img,3,D4QMF); %forward transform

coarse = wcNoise(1:8,1:8);

Thr_wcNoise = SoftThresh(wcNoise, thr);
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Thr_wcNoise(1:8,1:8) = coarse;

cleanCore = IWT2_PO(Thr_wcNoise,3, D4QMF); %inverse transform

save cleanCore1 cleanCore;

%--------------------------

%transform the CT noisy data from Poisson distribution to Gausian

%distribution

%-------------------------

%%%%%%%%%%%%%%%%%%%

%The second approach

%------------------------

img_t = 2.*(img+1024+3/8).^0.5; %Anscombe variance stabilizing

%transformation

D4QMF = MakeONFilter('Daubechies',4);

wcNoise = FWT2_PO(img_t,8,D4QMF);

nlevel = median(median(wcNoise(256:512,256:512)));

thr = 2*nlevel; &threshold level for Poisson process

wcNoise = FWT2_PO(img_t,3,D4QMF);

coarse = wcNoise(1:8,1:8);

Thr_wcNoise = SoftThresh(wcNoise, thr);

Thr_wcNoise(1:8,1:8) = coarse;

cleanCore = IWT2_PO(Thr_wcNoise,3, D4QMF);

cleanCore = (cleanCore./2.0).^2 -1024-3/8; % transform back to

%Gaussian distribution
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Utility Functions

The following MATLAB utility function were used.

� CalcLineXY.m | calculate the line vector to connect the two given end points

speci�ed by (x1; y1) and (x2; y2).

� CalcLine.m | calculate the line vector con�ned in 512x512 Cartesian coordi-

nates according to the parameter pair (�; �).

� CircMask.m | set the pixels outside the speci�ed circle while maintaining the

value of pixel inside the region.

� CircWindow.m | select a sub-vector from the original vector. The original

vector acts like a cicular bu�er. The center and length of the selection window

has to be supplied.

� adjacent.m | judge if two points are adjacent.

� ctr2region.m | mark the region surrounded by the given contour with 1.

� err1.m | calculate the di�erences between the positions of the two contours.

Mean square error standard is applied.

� manhanttanDist.m | calculate the Manhanttan distance of two points.

� mtrxa.m | generate the matrix A in Eq. 2.27 and 2.28.

49
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� labeling.m | label all the features in an image.

� lookup.m | interpolate the fracture aperture according to the empirical linear

curve of integrated missing CT vs. aperture.

� roi try.imp | script �le run under FPImage to convert an image data in spec-

i�ed region from IMG format to an ASCII data �le.

B.1 Connect Two Points with a Straight Line

%==============

% File Name: CalcLine.m

% by Meiqing He

% Last modified 6/7/98

%--------------

function [I,J] = CalcLine(Rou, theta)

%according to the supplied parameter of a line

%calculate the coordinates of the line vector

%see Masters' report by Meiqing He(1998) for the definition of Rou and theta

% 0---------->J(y)

% |

% |

% |

% |

% I(x)

%==============

if abs(theta)==pi/2

I = [1:512];

J = round(Rou)*ones(1,512);

elseif abs(theta)==0

I = round(Rou)*ones(1,512);

J = [1:512];
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elseif abs(theta) > pi/4

I = [1:512];

J = round((Rou-I*cos(theta))/sin(theta));

else

%if abs(theta) < pi/4

J = [1:512];

I = round((Rou-J*sin(theta))/cos(theta));

end
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%===============

% File Name: CalcLineXY.m

% by Meiqing He

% Last modified 6/7/1998

%---------------

function [I,J] = CalcLineXY(xStart, yStart, xEnd, yEnd)

%according to the supplied coordinates of starting point and ending point

%of a line, calculate the coordinates of the points of the line connecting two

%points

% 0------->J(y)

% |

% |

% |I(x)

%===============

if xStart == xEnd, %line parallel to Y axis

if yStart < yEnd,

J = [yStart:yEnd];

else

J = [yStart:-1:yEnd];

end

I = xStart*ones(size(J));

elseif yStart == yEnd,

if xStart < xEnd

I = [xStart:xEnd];

else

I = [xStart:-1:xEnd];

end

J = yStart*ones(size(I));

else

a = (yStart-yEnd)/(xStart-xEnd);

b = yStart-a*xStart;

if abs(a) < 1

if xStart < xEnd



APPENDIX B. UTILITY FUNCTIONS 53

I = [xStart:xEnd];

else

I = [xStart:-1:xEnd];

end

J = round(a*I+b);

else % iterate on J

if yStart < yEnd,

J = [yStart:yEnd];

else

J = [yStart:-1:yEnd];

end

I = round((J-b)/a);

end

end
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B.2 Selection of a Circular Region out of an Image

%================

% File Name: CircMask.m

% by Meiqing He

% Last modified 6/7/1998

%----------------

%functionality:

% Select the pixels inside the specified circle.

% centerX & centerY: position of the center of the circle

% radius: radius of the circle.

% img: image matrix.

%Only pixels of image within the specified circle will be remained, rest are

%set to zero.

%================

function imgCut = CircMask(centerX,centerY,radius, img)

imgCut = zeros(size(img));

for i=1:512,

for j= 1: 512,

tmp = (i-centerX)*(i-centerX)+(j-centerY)*(j-centerY);

if(tmp<=radius*radius)

imgCut(i,j)=img(i,j);

end

end

end
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B.3 Selection of a Vector from a Circular Bu�er

%=================

% File Name: CircWindow.m

% by Meiqing He

% Last modified 6/7/1998

%-----------------

%Functionality:

% Select a vector from the given vector.

% The original vector acts like a circular buffer

% winLen: length of the screen window.

% ind: index of the center of the window.

%================

function selectVector=CircWindow(originalVec, ind,winLen)

n = length(originalVec);

if ind+winLen > n,

selectVector = [originalVec(ind-winLen:n) originalVec(1:(ind+winLen-n))];

elseif ind-winLen <1,

selectVector = [originalVec((n+ind-winLen):n) originalVec(1:ind+winLen)];

else selectVector = originalVec(ind-winLen :ind+winLen);

end
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B.4 Determination of Adjacent Points

%============

% File Name: adjacent.m

% by Meiqing He

% Last modified 6/7/1998

% ------------

% functionality:

% To determine if two points are adjacent. 8-connectivity rule is applied

% val = 1, not adjacent

% = 0, adjacent

%============

function val=adjcent(x1,y1,x2,y2)

dis=manhanttanDist(x1,y1,x2,y2);

if dis==1

val=1;

else if dis==2,

if abs(x2-x1)==1 & abs(y1-y2)==1

val=1;

else val=0;

end

else val=0;

end

end
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B.5 Marking the Region inside a Contour

%===============

%File: ctr2region.m

% by Meiqing He

% Last modified 6/7/1998

%-----------------

% Functionality:

% For a given contour obtained from Snake Model, make it connected

%mark the region inside the contour with certain value

%===============

function [bmp, fnlI, fnlJ] = ctr2region(ctrI, ctrJ)

%Since the coordinates of the contour was rounded from floating points, there

%may be redundant points which have same interger coordinates.

%We need to abridge the contour.

len = length(ctrI);

ctrI=[ctrI ctrI(1)];

ctrJ=[ctrJ ctrJ(1)];

contour_x=ctrI(1);

contour_y=ctrJ(1);

for loop = 1:len,

if ctrI(loop)~=ctrI(loop+1) | ctrJ(loop)~=ctrJ(loop+1)

contour_x=[contour_x ctrI(loop+1)];

contour_y=[contour_y ctrJ(loop+1)];

end

end

fnlI = contour_x(1);

fnlJ = contour_y(1);

len = length(contour_x);

for i=1:len-1,

isAdj = adjacent(contour_x(i), contour_y(i),contour_x(i+1),contour_y(i+1));

if isAdj==0

%link pixels in between, assume the contour is smooth enough. This is true
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% if the contour data set is obtained from the Active contour snake model

%using linear interpolation

[tmpI,tmpJ] = CalcLineXY(contour_x(i),contour_y(i),contour_x(i+1),

contour_y(i+1));

lenTmp = length(tmpI);

fnlI = [fnlI tmpI(2:lenTmp)];

fnlJ = [fnlJ tmpJ(2:lenTmp)];

else

fnlI = [fnlI contour_x(i+1)];

fnlJ = [fnlJ contour_y(i+1)];

end

end

%assume the contour is convex

bmp = zeros(512,512);

minX = min(fnlI);

minY = min(fnlJ);

maxX = max(fnlI);

maxY = max(fnlJ);

geom_x = abs(maxX-minX);

geom_y = abs(maxY-minY);

if geom_x > geom_y

%iterate on x

for i = minX:maxX,

ind = find(fnlI==i);

startP = min(fnlJ(ind));

endP = max(fnlJ(ind));

for j=startP:endP,

bmp(i,j)=1;

end
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end

else for j=minY:maxY,

ind = find(fnlJ==j);

startP = min(fnlI(ind));

endP = max(fnlI(ind));

for i=startP:endP,

bmp(i,j)=1;

end

end

end
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B.6 Di�erence between Two Vectors

%============

% File Name: err1.m

%by Meiqing He

% Lst modified 6/7/1998

%-------------

% function used to calculate the difference between two contour vectors

%===========

function err1=err1(x0,y0,x1,y1)

n=length(x0);

err1=0.;

for i=1:n

err1=err1+(x0(i)-x1(i))*(x0(i)-x1(i))+(y0(i)-y1(i))*(y0(i)-y1(i));

end

err1=sqrt(err1/n);
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B.7 Calculation of Manhanttan Distance

%=============

% File Name: manhanttanDist.m

%by Meiqing He

% Last modified 6/7/1998

%-------------

%functionality:

% Calculate the Mahanttan distance between two points.

%=============

function distance = manhanttanDist(x1,y1,x2,y2)

vert = abs(x1-x2);

horz = abs(y1-y2);

distance = vert+horz;
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B.8 Matrix A Generator

%==============

% File Name: mtrxa.m

%by Meiqing He

% Last modified 6/7/1998

%--------------

% function to generate coefficients matrix A

%=============

function a=mtrxa(n)

a=zeros(n,n);

a(1,1:3)=[8 -5 1];

a(1,n-1:n)=[1 -5];

a(2,1:4)=[-5 8 -5 1];

a(2,n)=1;

for i=4:n-2

a(1,i)=0;

end

for i=5:n-1

a(2,i)=0;

end

for i=1:n

a(n,i)=a(1,n+1-i);

a(n-1,i)=a(2,n+1-i);

end

for i=3:n-2

for j=1:n

a(i,j)=0;

a(i,i-2)=1;

a(i,i-1)=-5;

a(i,i)=8;

a(i,i+1)=-5;

a(i,i+2)=1;

end

end
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B.9 Components Labeling

%==============

%File Name: labeling.m

%by Meiqing He

% Last modified 6/7/1998

%---------------

% According to the connectivity to label the edge segments in an binary

% edge map.

% The generation of edge map can be modified. For instance, utilize other

% advanced edge detection and contour linking methods such as Snake Model,

% Canny-Deriche edge detector and singularity detection using wavelet

% transform

%4-connectivity is considered here during linking. Can be modified to

%8-connectivity region.

%===============

%Generate the input data, edge map, using simple edge detecion method.

DATAPATH = '/wasson/home/geoth/meiqing/research/imagebasalt/';

filepath = [ DATAPATH '6398-11.txt'];

fid = fopen(filepath,'r');

data= fscanf(fid,'%g',[512 512]);

fclose(fid);

data=data';

bmp=edge(data,20,'sobel'); % the bmp can also be generated by

% reading the results generated by Snake

% Model

%core part after edge map acquired

MAXEQUI = 20000;

equivalences = linspace(1, MAXEQUI, MAXEQUI);

label = 1;

outBMP = zeros(size(bmp));

outBMP(1,:) = label*ones(1,512);

outBMP(:,1) = label*ones(512,1);

outBMP(:,512) = label*ones(512,1);
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for i=2:512,

for j=2:511,

c = bmp(i,j); % d a e

a = bmp(i-1,j); % b c

b = bmp(i,j-1);

d = bmp(i-1,j-1); % 8-connected components

e = bmp(i-1,j+1); %

y = (b==c);

z = (a==c);

if ~y & ~z,

outBMP(i,j) = label;

label = label +1;

elseif ~z & y

outBMP(i,j) = outBMP(i,j-1);

elseif z & ~y

outBMP(i,j) = outBMP(i-1,j);

else

outBMP(i,j) = outBMP(i-1,j);

w = equivalences(outBMP(i,j-1));

v = equivalences(outBMP(i-1,j));

if v~=w

maxLabel = max([w v]);

minLabel = min([w v]);

ind = find(equivalences(1:label)==maxLabel);

equivalences(ind) = minLabel*ones(size(ind));

end

end

end

end

numComponents = 1;

for i = 1:label,

j= equivalences(i);

if j==i

equivalences(i) = numComponents;

numComponents = numComponents+1;

else
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equivalences(i) = equivalences(j);

end

end

numComponents

for i=2:512,

for j = 2:511,

outBMP(i,j) = equivalences(outBMP(i,j));

end

end

imagesc(data);

colormap('bone');

axis('image');

axis(axis);

hold on;



APPENDIX B. UTILITY FUNCTIONS 66

B.10 Table Look-up

%=============

% File Name: lookup.m

% by Meiqing He

% Last modified 6/7/1998

%-------------

%For a given integrated missing CT, find the apperture.

% a & b are parameters of the linear relation obtained by least square

% fitting the data from calibration experiment

%=============

function appt=lookup(integCT)

a = 1.398e5;

b = -194.5402;

appt = (integCT-b)/a;
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B.11 Image Data Conversion

# =============

# File Name: roi_try.imp

# by Meiqing He

# Last modified 6/7/1998

#--------------

# script file for FPImage

# Convert the image file in IMG format to ascii format

# Input file name has to be in the fashion of 1978-01.img

# Supply the coordinates of upper-left and lower-right corner of the

# rectangular region which is to be clipped

input $fname " enter first Input File:"

input $asc_file "Enter first asc output file"

input total "Enter total slices :"

input roi_x1 " enter upper left X coordinate:"

input roi_y1 "Enter upper left Y coordinate:"

input roi_x2 "Enter Lower Right X coordinate:"

input roi_y2 "Enter lower right Y coordinate:"

roi_type integer

*main

infile_a $fname

roi $asc_file

process begin

out = ina

process end

total = total - 1

if total < 1

exit

endif

nextfile $fname

nextfile $asc_file

goto main

exit



Appendix C

Programs Used for Calibration

Purpose

� acc.m | calculate the integrated missing CT in an arti�cial fracture. The

boundary is obtained from the Hough transform.

� houghBasalt.m | calculate the Hough transform of the edge map of the basalt

core. The boundaries of the fracture can be estimated using this code.

� integBaslt.m | calculate the integrated missing CT in an arti�cial fracture.

The boundary is obtained from the Active Contour method.

� lmsq.m | calculate the least square �t of the measured data having a linear

relationship.

� snake4*.m | calculate the contours of the arti�cial fracture of di�erent aperture

size in basalt core.

The general procedure for calibration of the arti�cial fracture consists of following

steps.

(1) Use houghBasalt.m to estimate the orientation of the fracture boundaries.

This code can generate Figure 4.3.

(2) Modify snake4*.m to �nd the contour of the fracture. Figure 4.4 is one of the

graphs resulting from this code.

68
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(3) Use acc.m or integBaslt.m to calculate the integration of the missing CT over

the gap. Figure 3.2 is one of the �gures produced by acc.m. Code integBaslt.m

integrates the missing CT based on the results of application of the Active Contour

Model using snake4*.m.

(4) Use lmsq.m to do the least square �t to the measured relationship between

integrated missing CT vs. aperture (see Figure 3.10).

C.1 Application of the Hough Transform to the

Arti�cial Fracture

%================

% File Name: houghBasalt.m

% by Meiqing He

% Last modified 6/7/1998

%----------------

%calculate the Hough transform of the edge map of the basalt core.

%Select the two accumulator cells having largest value.

%Input data of the Hough transform is

%edge threshod chosen between 15 and 30

% parameters can be modified are:

% DATAPATH, filepath, thetaMin, thetaMax, center_x, center_y, radius

% numStep and numAccCell

%================

DATAPATH = '/wasson/home/geoth/meiqing/research/imagebasalt/';

filepath = [ DATAPATH 'steph-01.txt'];

fid = fopen(filepath,'r');

data= fscanf(fid,'%g',[512 512]);

fclose(fid);

data=data';

bmp=edge(data,20,'sobel');
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imagesc(data);

colormap(bone);

colorbar;

%display the map of edge points

figure;

imagesc(128.*bmp);

colormap(bone);

axis('image');

colorbar;

figure;

i=find(bmp);

min_=min(min(data));

data(i)=min_.*ones(length(i),1);

imagesc(data);

colormap(bone);

axis('image')

colorbar;

%mask out the data outside the inner circle

center_x = 255;

center_y = 250;

radius = 60;

bmp_cut = CircMask(center_x, center_y, radius, bmp);

figure;

imagesc(128.*bmp_cut);

colormap(bone);

axis('image');

colorbar;

%hough transform

%thetaMin and thetaMax should be modified according the estimation of the

%range of the theta
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thetaMin= -15; %degree

thetaMax = 15; %degree

numStep = 60;

points = find(bmp_cut);

y_ = floor(points./512)+1;

x_ = points-512.*(y_-1); %row number

N= length(x_);

y = y_(1:2:N); % the sammpling rate 2 can be modified if the N is

% not too big

x = x_(1:2:N);

N= length(x);

theta = linspace(thetaMin,thetaMax, numStep);

theta = theta*pi/180;

Rou = zeros(N,numStep);

for loop = 1:N,

Rou(loop,:) = x(loop)* cos(theta)+y(loop)*sin(theta);

end

RouMin = min(min(Rou))

RouMax = max(max(Rou))

figure;

for loop = 1:N,

axis('ij');

plot(theta, Rou(loop,:), 'w');

hold on;

end

title('Hough transform');

xlabel('$\theta$');

ylabel('rou');

numAccCell = 200

Acc = zeros(numAccCell,numStep);
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resolution = (RouMax-RouMin)/(numAccCell-1);

for loop1 = 1:numStep,

for loop2 = 1: N,

index = floor((Rou(loop2,loop1)-RouMin)/resolution)+1;

if index<=0 | index> numAccCell

index

loop1

end

Acc(index, loop1) = Acc(index, loop1)+1;

end

end

idAll = find(Acc>30);

idAll_y = floor(idAll/numAccCell)+1

idAll_x = idAll-(idAll_y-1)*numAccCell

maxCount = max(max(Acc))

id = find(Acc==maxCount);

id_min = min(id); %there may be two or more points aremaximal

id_y = floor(id_min/numAccCell)+1;

id_x = id_min-numAccCell*(id_y-1); %row number

theta1 = theta(id_y)

Rou1 = id_x*resolution+RouMin

Acc(id_min)=0;

%find second largest one

maxCount_ = max(max(Acc));

id = find(Acc==maxCount_);

id_min = min(id);

id_y = floor(id_min/numAccCell)+1;

id_x = id_min-numAccCell*(id_y-1); %row number

theta2 = theta(id_y)

Rou2 = id_x*resolution+RouMin
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C.2 Integration of the Missing CT

%===========

%File Name: acc.m

% by Meiqing He

% Last modified 6/7/1998

%---------------

%

%integrate the missing mass over the gap.

%using results from the Hough transform (theta1 and theta2)

%==============

%read and display the image

DATAPATH = '/wasson/home/geoth/meiqing/research/imagebasalt/';

filepath = [ DATAPATH '6398-11.txt'];

fid = fopen(filepath,'r');

data= fscanf(fid,'%g',[512 512]);

fclose(fid);

data=data';

imagesc(data);

colormap(bone);

axis('image')

colorbar;

title('(a)');

% perform the edge detection

bmp=edge(data,15,'sobel');

%display the edge map

figure;

imagesc(128*bmp);

colormap(bone);

axis('image');

colorbar;

title('(b)');

%j is between 1, 512

theta1 = 0.0754;

Rou1 = 303.6699;
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theta2 = 0.0843;

Rou2 = 297.6210;

[i1,j1] = CalcLine(Rou1, theta1); %use most sure slope

ind = (j1-1)*512+i1;

% bmp(ind) = ones(512,1);

[i2,j2] = CalcLine(Rou2, theta2);

ind = (j2-1)*512+i2;

%plot edge map and two parallel lines

figure;

imagesc(128*bmp);

colormap(bone);

axis('image')

colorbar;

axis(axis);

hold on;

plot(j1,i1);

hold on;

plot(j2,i2);

title('(c)')

%set the Rou for the vertical line, can be modified to change its position

RouVertical = 230;

%calculate the orientation of the vertical line

if theta2>0

thetaVertical = theta2-pi/2;

else thetaVertical = theta2+pi/2;

end

[i,j] = CalcLine(RouVertical, thetaVertical);

%plot the vertical line

hold on;

plot(j,i);

ind = (j-1)*512+i;
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perpenLine = data(ind);

figure;

hist(data(ind));

%plot the profile

figure;

tmp = 2200*ones(512,1);

plot(i,perpenLine,'w',i,tmp,'r');

title('(d)');

% calculate the intersect of two lines

xStart = round((RouVertical*sin(theta2)-Rou2*sin(thetaVertical))/

(cos(thetaVertical)*sin(theta2)-cos(theta2)*sin(thetaVertical)));

yStart = round((RouVertical*cos(theta2)-Rou2*cos(thetaVertical))/

(sin(thetaVertical)*cos(theta2)-sin(theta2)*cos(thetaVertical)));

startPValue = data(xStart, yStart)

xEnd = round((RouVertical*sin(theta2)-Rou1*sin(thetaVertical))/

(cos(thetaVertical)*sin(theta2)-cos(theta2)*sin(thetaVertical)));

yEnd = round((RouVertical*cos(theta2)-Rou1*cos(thetaVertical))/

(sin(thetaVertical)*cos(theta2)-sin(theta2)*cos(thetaVertical)));

endPValue = data(xEnd, yEnd)

[startPtOnPerpen,iStart] = min(abs(perpenLine-startPValue));

if length(iStart)>1

startPt = min(iStart);

endPt = max(iStart);

else

[startPtOnPerpen,iEnd] = min(abs(perpenLine-endPValue));

startPt = min([iStart iEnd]);

endPt = max([iStart iEnd]);

end

integral = sum(2200-perpenLine(startPt:endPt))
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%==============

% File Name: integBasalt.m

% by Meiqing He

% Last modified 6/7/1998

%---------------

%Integrate the missing mass.

%Use the contour obtained from the active contour model

%Use global Hough transform obtained from houghBasalt.m

%The value of the pixel in boundary is used as reference density level in

%the process to calculate the missing CT.

%=================

DATAPATH = '/wasson/home/geoth/meiqing/research/imagebasalt/';

filepath = [ DATAPATH 'steph-01.txt'];

fid = fopen(filepath,'r');

data= fscanf(fid,'%g',[512 512]);

fclose(fid);

data=data';

%read the contour data

CTRPATH = '/wasson/home/geoth/meiqing/research/snake/';

filepath =[CTRPATH 'try.reslt'];

fid = fopen(filepath, 'r');

ctr = fscanf(fid, '%g',[2,inf]);

fclose(fid);

ctrJ = round(ctr(1,:));

ctrI = round(ctr(2,:));

[bmp,fnlCtrI, fnlCtrJ] = ctr2region(ctrI, ctrJ);

% rou and theta are obtained from the Hough transform

%This code is used especially for fracture with even aperture

%Two stright lines feature in intensity image

theta1 = 0.02;

theta2 = 0.02;
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imagesc(data);

colormap(bone);

axis('image')

colorbar;

axis(axis);

hold on;

plot(fnlCtrJ,fnlCtrI,'r');

figure;

imagesc(bmp*128);

colormap(bone);

axis('image')

colorbar;

axis(axis);

hold on;

plot(fnlCtrJ,fnlCtrI);

RouVertical = -250; % pick a location of the profile

%calculate the thetaVertical

if theta2>0

thetaVertical = theta2-pi/2;

else thetaVertical = theta2+pi/2;

end

%calculate the profile line

[i,j] = CalcLine(RouVertical, thetaVertical);

hold on;

plot(j,i);

len = length(i);

integ =0;

maxDens = -1024;

numPixInGap=0;

for loop = 1:len,
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if bmp(i(loop),j(loop))==1

integ = integ+data(i(loop),j(loop));

numPixInGap = numPixInGap+1;

if maxDens < data(i(loop),j(loop))

maxDens = data(i(loop),j(loop));

maxDens_i = i(loop);

maxDens_j = j(loop);

end

end

end

%use maxDens as reference CT number in doing

integ = maxDens*numPixInGap-integ

C.3 Least Square Fitting

%================

% File Name: lmsq.m

% by Meiqing He

% Last modified 6/7/1998

%----------------

% x & y are measured data

%least mean square method to estimate the slope and intercect

%====================

x = [0.001 0.002 0.004 0.008 0.012 0.02 0.04];

y = [96 256 338 690 1404.3 2515 5501.3];

sumX = sum(x);

sumY = sum(y);

N= length(x)

sumX2 = sum(x.^2);

sumXY = sum(x.*y);

tmp = sumX * sumX - N*sumX2;

if ~(tmp==0)

a = (sumX*sumY-N*sumXY)/tmp

b = - (sumX2 * sumY-sumXY*sumX)/tmp
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end

plot(x,y, '.');

hold on;

x1 = linspace(0.001, 0.04, 10);

y1 = a*x1+b;

plot(x1,y1);

legend('Measured data', 'LS approximation');

title('Integrated missing CT vs. aperture');

xlabel('aperture(in)');

ylabel('integrated missing CT');

y_ = a*x+b;

error = sqrt(sum((y-y_).^2))
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C.4 Example of Setting Initial Contour and Solve

the Snake

%================

%File:snake4_11.m

%-------------

%reading image of basalt core used in calibration and apply edge detection

%operator.

%call out_in to solve the contour

%===============

DATAPATH = '/wasson/home/geoth/meiqing/research/imagebasalt/';

filepath = [ DATAPATH '6398-11.txt'];

fid = fopen(filepath,'r');

data= fscanf(fid,'%g',[512 512]);

fclose(fid);

data=data';

bmp=edge(data,20,'sobel');

x1 = 285;

y1 = 140;

x2 = 275;

y2 = 295;

[iInd1,jInd1] = CalcLineXY(x1,y1,x2,y2);

x3 = 285;

y3 = 300;

[iInd2, jInd2] = CalcLineXY(x2,y2,x3,y3);

x4 = 290;

y4 = 160;

[iInd3, jInd3] = CalcLineXY(x3,y3,x4,y4);

[iInd4, jInd4] = CalcLineXY(x4,y4,x1,y1);

jInd = [jInd1 jInd2 jInd3 jInd4];

iInd = [iInd1 iInd2 iInd3 iInd4];

%display the initial contour abainst the image and the edge map
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imagesc(data);

colormap('bone');

axis('image');

colorbar;

axis(axis);

hold on;

plot(jInd,iInd,'r.');

title('(a) Initial contour');

figure;

imagesc(128.*bmp);

colormap('bone');

axis('image');

axis(axis);

hold on;

plot(jInd,iInd,'r.');

[ctrI,ctrJ] = out_in(jInd', iInd', data); %

figure;

imagesc(data);

colormap('bone');

axis('image');

colorbar;

axis(axis);

hold on;

plot([ctrJ;ctrJ(1)],[ctrI;ctrI(1)],'r.'), title('converged edge');

%display the edge map the the result of the Snake Model

figure;

imagesc(128.*bmp);

axis('image');

colormap('bone');

axis(axis);

hold on;

plot([ctrJ;ctrJ(1)],[ctrI;ctrI(1)],'r.');
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%output the contour data

z = [ctrJ ctrI];

fid = fopen('contour11.reslt', 'w');

fprintf(fid,'%g \t %g \n', z');

fclose(fid);



Appendix D

Programs used for Geysers Sample

� dispwholectr.m | display all the detected contours against the core CT image

of Geysers sample.

� snake3No*.m | calculate all the contours in the core CT image of Geysers

sample one by one.

� integrateHgh.m | calculate the aperture of one natural fracture at a speci�c

location.

� integHghSts.m | calculate the aperture of a fracture at each pixel on the con-

tour.

The general procedure for estimating the aperture of the natural fracture includes

following steps:

(1) Modify snake3No*.m to �nd the contour of a natural fracture. Figure 4.7(a)

was obtained this way.

(2) Use integrateHgh.m to calculate the aperture at speci�c location of a fracture.

Figure 4.7(b) illustrates the location of pro�le.

83
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D.1 Calculation of Fracture Aperture in Geysers

Sample

%==================

%File Name: integrateHgh.m

% by Meiqing He

% Last modified 6/7/1998

%---------------

%integrate the missing mass

%use the contour obtained from the active contour model

%Global Hough transform is used to estimate the orientation of the fracture

%The aperture is calculated at a location specified by RouVertical.

%===================

%read the image and contour data

load cleanCore1

edgeMap=edge(cleanCore,15,'sobel');

CTRPATH = '/wasson/home/geoth/meiqing/research/snake/';

filepath =[CTRPATH 'GeysCtr1.reslt'];

fid = fopen(filepath, 'r');

ctr = fscanf(fid, '%g',[2,inf]);

fclose(fid);

ctrJ = round(ctr(1,:));

ctrI = round(ctr(2,:));

[bmp, fnlCtrI, fnlCtrJ] = ctr2region(ctrI, ctrJ);

thetaMin = 30;

thetaMax = 60;

numTheta = 60;

numAccCell = 200;

[Acc, Rou ,theta] = hough(thetaMin, thetaMax, numTheta, numAccCell, ctrI, ctrJ);
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% rou and theta are obtained from the Hough transform

%This code is used especially for fracture with relative uniform orientation

imagesc(cleanCore);

colormap(bone);

axis('image')

colorbar;

axis(axis);

hold on;

plot(fnlCtrJ,fnlCtrI);

figure;

imagesc(bmp*128);

colormap(bone);

axis('image')

colorbar;

axis(axis);

hold on;

plot(ctrJ,ctrI);

%statistical analysis on the profile

idAll = find(Acc>30);

idAll_y = floor(idAll/numAccCell)+1

idAll_x = idAll-(idAll_y-1)*numAccCell

maxCount = max(max(Acc))

id = find(Acc==maxCount);

id_min = min(id); %there may be two or more points aremaximal

id_y = floor(id_min/numAccCell)+1;

id_x = id_min-numAccCell*(id_y-1); %row number

theta1 = theta(id_y)

% Rou1 = id_x*resolution+RouMin

RouVertical = 100; % pick a location of the profile

%calculate the thetaVertical

if theta1>0

thetaVertical = theta1-pi/2;
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else thetaVertical = theta1+pi/2;

end

%calculate the profile line

[i,j] = CalcLine(RouVertical, thetaVertical);

hold on;

plot(j,i);

len = length(i);

integ =0;

maxDens = -1024;

numPixInGap=0;

for loop = 1:len,

if i(loop)>0 & i(loop)<=512 &j(loop)>0 & j(loop)<=512

if bmp(i(loop),j(loop))==1

integ = integ+cleanCore(i(loop),j(loop));

numPixInGap = numPixInGap+1;

if maxDens < cleanCore(i(loop),j(loop))

maxDens = cleanCore(i(loop),j(loop));

maxDens_i = i(loop);

maxDens_j = j(loop);

end

end

end

end

%use maxDens as reference CT number in doing

integ = maxDens*numPixInGap-integ

appt = lookup(integ)
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%===================

%File Name: integHghSts.m

% by Meiqing He

% Last modified 6/7/1998

%---------------

%integrate the missing mass at each pixel on contour

%Hough transform is local, the running length is 10~20

%use the contour obtained from the active contour model

%===================

%read the image and contour data

load cleanCore1

edgeMap=edge(cleanCore,15,'sobel');

CTRPATH = '/wasson/home/geoth/meiqing/research/snake/';

filepath =[CTRPATH 'try.reslt'];

fid = fopen(filepath, 'r');

ctr = fscanf(fid, '%g',[2,inf]);

fclose(fid);

ctrJ = round(ctr(1,:));

ctrI = round(ctr(2,:));

[bmp, fnlCtrI, fnlCtrJ] = ctr2region(ctrI, ctrJ);

imagesc(128*bmp);

colormap(bone);

axis('image')

colorbar;

axis(axis);

hold on;

plot(fnlCtrJ,fnlCtrI);

outFid = fopen('tryApp.dat','w');

thetaMin = -89;

thetaMax = 90;

numTheta = 180;

numAccCell = 100;
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runLength = 5; % be sure to set runLength<lengthCtr

lengthCtr = length(fnlCtrI)

for loop =1:lengthCtr,

tmpI = CircWindow(fnlCtrI,i,runLength);

tmpJ = CircWindow(fnlCtrJ,i,runLength);

[Acc, Rou ,theta] = hough(thetaMin, thetaMax, numTheta, numAccCell,tmpI,tmpJ);

% rou and theta are obtained from the Hough transform

% Using changing rou and theta to account for the changingaperture and

%orientation

%Select the best local slope at current pixel

maxCount = max(max(Acc));

id = find(Acc==maxCount);

id_y = floor(id/numAccCell)+1;

id_x = id-numAccCell*(id_y-1); %row number

slopeAtLoop = localSlope(fnlCtrI,fnlCtrJ,loop)

length(id)

if length(id)==1

thetaBest = theta(id_y)

else

errTheta=1e3;

for loop2=1:length(id),

errTmp = abs(theta(id_y(loop2))-slopeAtLoop);

if errTmp < errTheta,

errTheta=errTmp;

id_fnl = loop2;

end

end

thetaBest = theta(id_y(id_fnl))

end

%calculate the thetaVertical

if thetaBest>0

thetaVertical = thetaBest-pi/2;

else thetaVertical = thetaBest+pi/2;
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end

RouVertical = fnlCtrI(loop)*cos(thetaVertical)

+fnlCtrJ(loop)*sin(thetaVertical); % pick a location of the profile

%calculate the profile line

[i,j] = CalcLine(RouVertical, thetaVertical);

if floor(loop/20)*20==loop,

hold on;

plot(j,i);

end

len = length(i);

integ =0;

maxDens = -1024;

numPixInGap=0;

for loop1 = 1:len,

if i(loop1)>0 & i(loop1)<=512 &j(loop1)>0 & j(loop1)<=512

if bmp(i(loop1),j(loop1))==1

integ = integ+cleanCore(i(loop1),j(loop1));

numPixInGap = numPixInGap+1;

if maxDens < cleanCore(i(loop1),j(loop1))

maxDens = cleanCore(i(loop1),j(loop1));

maxDens_i = i(loop1);

maxDens_j = j(loop1);

end

end

end

end

%use maxDens as reference CT number in doing

integ = maxDens*numPixInGap-integ;

appt = lookup(integ);

fprintf(outFid,'%g\n',appt);

end
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D.2 Displaying the Contours

%================

%File Name: dispwholectr.m

% by Meiqing He

% Last modified 6/7/1998

%-----------------

%display the entire contour of the Geysers core against the original image

%================

load ../../matlab/cleanCore1

subplot(221);

imagesc(cleanCore);

colormap(bone);

axis('image');

colorbar;

title('(a)');

subplot(222);

bmp = edge(cleanCore, 20, 'sobel');

imagesc(128.*bmp);

axis('image');

colormap(bone);

title('(b)');

subplot(223);

imagesc(cleanCore);

colormap(bone);

axis('image');

colorbar;

axis(axis);

hold on;

for i=1:12,

fileNm=sprintf('GeysCtr%d.reslt',i);

fid = fopen(fileNm, 'r');
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data = fscanf(fid, '%g', [2,inf]);

x0 = round(data(1,:));

y0 = round(data(2,:));

plot(x0,y0);

hold on;

end

title('(c)');


