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Abstract 

This work studied tracer and thermal transients during reinjection in geother- 
mal reservoirs and developed a new technique which combines the results from in- 

terwell tracer tests and thermal injection-backflow tests to estimate the thermal 

breakthrough times. 
Tracer tests are essential to determine the degree of connectivity between the 

injection wells and the producing wells. To analyze the tracer return profiles 
quantitatively, we employed three mathematical models namely, the convection- 
dispersion( CD) model, matrix diffusion(MD) model, and the Avdonin( AD) model, 

which were developed to study tracer and heat transport in a single vertical fracture. 
We considered three types of tracer tests namely, interwell tracer tests without 

recirculation, interwell tracer tests with recirculation, and injection-backflow tracer 
tests. To estimate the model parameters, we used a nonlinear regression program 

to match tracer return profiles to the solutions. 
We matched the appropriate solutions to the three sets of data obtained from 

the interwell tracer tests without recirculation at Wairakei, New Zealand. All model 
matches had small residuals but differed considerably in capturing the distinctive 
features such as peak time and tailing of the profiles. 

We developed new solutions to the mathematical models to interpret the return 
profiles from interwell tracer tests with recirculation. These solutions are more 
generally applicable than previously used methods, since they specifically include 
the recirculation effects and can account for any number of recirculations. 

We also developed solutions to the CD and MD models to interpret the return 
profiles of injection-backflow tracer tests. A comparison of the solutions to the 
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CD model for different boundary conditions showed that some should not be used 

for short injection period tests and/or when the dispersive transport is dominant. 

To obtain the MD model solution, we used a double Laplace transformation with 
respect to the time variables of the injection and backflow periods. 

Finally we suggested thermal injection-backflow tests as a means to estimate 
the thermal transport parameters. The solution to the MD model can be used 
for interpreting thermal injection-backflow tests. In fact, the MD model was first 

developed by Lauwerier to study the temperature distribution in an oil layer during 

hot fluid injection. The Lauwerier model has two parameters namely, t,, the water 

transit time, and X which accounts for the heat transfer from the fracture into 
the adjacent matrix. We obtain the value of t ,  from the interwell tracer tests 
and the value of X from the thermal injection-backflow tests. Substituting these 
parameters into the model, we can estimate the thermal breakthrough times during 
reinjection. This new technique avoids some of the disadvantages of previously 
suggested methods namely, the ambiguity of the estimates from the non-thermal 
methods and the inappropriateness of the interwell thermal interference tests. 
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Chapter 1 

INTRODUCTION 

This work involves a study of tracer and thermal transients during reinjec- 
tion in fractured geothermal reservoirs. We considered three types of tracer tests, 
namely interwell tracer tests both with and without recirculation, injection-backflow 
tracer tests, and thermal injection-backflow tests. To interpret tracer and tempera- 
ture return profiles, we used three mathematical models which had been developed 
previously for studying tracer and heat transport through a single vertical fracture. 

Reinjection of the waste water[17,41,74] is commonly practiced in many liquid- 
dominated geothermal fields worldwide. Most of the time the objective of the 
reinjection is to dispose of the waste water[40,41], since it usually contains silica 
and toxic minerals such as arsenic, boron and mercury[l4]. Reinjection of the waste 
water is also used to maintain the reservoir pressure[40,41] and to enhance the en- 

ergy recovery[66]. Regardless of the objective, however, the low temperature of the 
waste water is a serious constraint upon the reinjection. Many field experiences 
have shown that the reinjected water may move through the fractures to the pro- 

duction zones in a very short time. The rapid migration of the reinjected water 
is undesirable, because it can produce thermal drawdown at the production wells, 

This thermal drawdown has two detrimental effects. First, it reduces the discharge 

enthalpy causing the steam discharge rates to decline. Second, it decreases the total 
production because of the increasing hydrostatic pressure of the fluid in the we11[41]. 

We can avoid a rapid propagation of the thermal front if we are able to identify the 
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CHAPTER 1. INTRODUCTION 2 

fast flow channels prior to the start of reinjection. 
Analysis of the return profiles of tracer tests is the tool most commonly used 

to identify these fast flow channels and to estimate the fracture aperture, which is 
the most important parameter controlling the propagation of the thermal front[66]. 
Some researchers[66] also suggested using thermal interference tests to determine 
thermal characteristics of the system directly. However, there is little thermal draw- 
down data reported on this kind of a long term injection test. A quantitative anal- 
ysis of tracer return profiles can be accomplished by matching return profiles with 
solutions to mathematical models. 

1.1 MATHEMATICAL MODELS 

A heterogeneous system is characterized by preferential flow paths due to dead 
end pores[20,24], aggregates [ 63,681, fissures [4,90] , fractures [40], layering[ lo], and so 

on. Tracer transport in a heterogeneous porous system may be modelled in four 
ways [ 81 : 

1. the very near field: tracer transport in a single well defined preferential flow 
path, possibly with transport into the adjacent porous matrix is considered. 

2. the near field: tracer transport in a set of well defined preferential flow paths 

is considered. 

3. the far field: tracer transport is modelled by using two superposed continua, a 

mobile phase composed of a network of preferential flow paths and an immobile 
phase representing the rest of the system. 

4. the very far field: entire medium is treated as a single continuum representing 
characteristics of both mobile and immobile phases. 

Names of these various approaches are related to the scale of heterogeneities with 
respect to the scale of flow. 
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The far field and the very far field approaches are more widely used than the 
other two approaches. The far field approach has been commonly used to model lab- 
oratory experiments[10,35,68]. Mathematical models used for the far field approach 

assume that immobile phase acts as a uniformly distributed source in mobile phase. 
Transfer from mobile phase into immobile phase may be assumed proportional to 

the difference between average concentrations of two phases[20,24]. Alternatively, a 

diffusive transport may be assumed between the two phases[5,21,68]. In this case a 

definite geometry such as spherical, cylindrical, cubic, and so on, is assigned to the 
immobile phase. Despite different immobile phase geometries and transfer mech- 
anisms assumed to take place between mobile and immobile phases, Barker[5] has 

obtained a standard mobile phase equation which is valid for all geometries. In his 
treatment, Barker used the block geometry functions(BGF). 

Most of the time, groundwater field experiments have been modelled by using 
the very far field approach[67,77,90,93]. This is appropriate if the scale of hetero- 
geneities is much smaller than the scale of flow. 

In geothermal reservoirs, extremely fast fluid movements (up to 100 m/hr  in 
some instances[40,41]) and asymmetric tracer return profiles indicate that flow takes 
place mainly in fractures between injection well and producing wells. Since the 
scale of fractures is in the order of the scale of flow, the very near field approach is 
appropriate to model the tracer transport. 

There are three commonly used mathematical models to represent tracer trans- 
port through fractures. The first of these models, the convection-dispersion( CD) 
model, assumes a purely dispersive flow in the fracture. The form of the dispersion 
parameter depends on how the fracture is modelled. 

Most of the time, we consider the fracture to be a plane between two parallel 
plates[31,39]. Since the flow is slow and laminar, we can assume a parabolic veloc- 
ity profile across the fracture. This velocity profile gives rise to both a convective 
dispersion of the tracer along the transport path, and a large concentration gra- 
dient across the narrow width of the fracture. Molecular diffusion, on the other 

hand, rapidly equalizes the concentrations across the fracture and reduces the ef- 
fect of the convective dispersion. The combination of transverse molecular diffusion 
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Original  F lu id  

Figure 1.1: Taylor Dispersion 

and convective dispersion along the flow direction is known as Taylor dispersion 
[Fig 1.11, which Taylor[84] described for flow in a capillary tube. Taylor also de- 
rived an expression for longitudinal dispersivity for capillary flow; and Horne and 
Rodriguez[39] derived an equivalent expression for fracture flow. The net result of 
Taylor dispersion is that the tracer front propagates with the mean speed of the 
flow, and the transition zone increases at a rate proportional to the square root of 
time. 

Within the prescription of the convection-dispersion model, we could also con- 
sider the fracture as a porous stream tube[34]. In this case, we assume that the 
rough fracture walls and the bridging materials form a system of interconnected 
passages. There may be several local flow paths across the fracture which may also 
be significantly tortuous. There will be a velocity distribution within each path 
[Fig. 1.2a] and variations in the velocities of adjacent paths, in both magnitude 
[Fig. 1.2bI and direction [Fig. 1.2~1. This will cause spreading of the tracer with re- 

spect to mean flow, which is called mechanical dispersion. At the same time, in each 
of these local flow paths molecular diffusion causes an additional mixing [Fig. 1.31 
of the tracer, which makes the dispersion irreversible. This combined effect of me- 
chanical dispersion and molecular diffusion is called hydrodynamic dispersion[ 71. 

The expression of the mechanical dispersion is given by the product of dispersivity, 
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a b C 

Figure 1.2: Mechanical Dispersion a) effect of pore walls b) effect of pore dimensions 
c) effect of tortuosity [After de Smedt et .  aE., 1981 ] 
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Figure 1.3: Mixing in Local Flow Paths by Molecular Diffusion [After Fried, 19711 
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Porous Matr ix 

Flow Direction 

Diffusion in  Matrix Fracture 
Aperture= b 

Figure 1.4: Matrix Diffusion Model [ After Neretnieks, 19801 

a characteristic mixing length[34], and the average flow speed. 
The differential equation of the convection-dispersion model is given by 

d2 C D W  = 0 
aC -+ u- - 

dC 
dt  d X  
- 

6 

The variables used in Eq. 1.1 and in all other equations in this dissertation are 

defined in the nomenclature. 
The second model is called the matrix diffusion(MD) model. It represents a sys- 

tem consisting of a fracture in which the tracer fluid is mobile located in a porous 

matrix in which the reservoir fluid is virtually immobile. The model considers the 

diffusion of the tracer from the fracture into the adjacent porous matrix as the 
main mechanism spreading the tracer along the transport region. It neglects lon- 

gitudinal dispersion and assumes that tracer concentrations across the fracture are 

equalized before any significant effect of the convection appears [Fig. 1.41. Since 

the characteristic time for diffusion in the fracture is much less than that in the 

porous matrix[63], no concentration gradient across the fracture is likely. The ma- 
trix diffusion provides a time dependent storage, and the rate of change of storage 
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within the matrix is related to Fick’s second law of diffusion. Within the matrix, 
diffusive transport is assumed to occur only perpendicular to the flow direction in 
the fracture. 

Thus, two coupled one-dimensional equations are used to represent tracer trans- 
port. The equations are coupled by using the continuity of the flux and concentra- 
tion across the fracture-matrix interface. The equation of tracer transport in the 
fract ure[43,44,57,58,59] is: 

OC aC 
- + u - + q = O  at O X  

and the equation of transport in the matrix is: 

The concentrations at the fracture-matrix interface are equated as: 

C = C ,  at y = o  

and the continuity of the flux at the interface gives q in Eq. 1.2 as: 

Matrix diffusion model is equivalent to the Lauwerier[50] model for heat transport. 
The third model, called the Avdonin(AD) model, takes into account both lon- 

gitudinal dispersion and diffusion into the matrix. It was developed by Avdonin[l] 
to study the temperature distribution in an oil layer during the injection of a hot 
incompressible fluid. Since then the model has been widely used to study the trans- 
port of tracers. Similar to the matrix diffusion model, tracer transport in the system 
is represented by two coupled one-dimensional equations. The fracture transport 

equation is given by: 

+ q = o  
8C aC a2 C - + u - - D -  at d X  a22 
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u-volumelrlc f lux  
J r l r a c e r  flux 

crosslng A i n  ~t 
AV'=f luid 
c ros t lng  A In hl 

- A m ' d r a c e r  

X 
Am'  J A A l  J 
AVO U A  A t  U 

CF = -:-=- 

Figure 1.5: Definitions of Resident and Flux Concentrations [ After Kreft and Zuber, 
1986 ] 

Eq. 1.3, Eq. 1.4 and Eq. 1.5 give the matrix transport equation and the equations 

describing the continuity of the concentration and the flux at the fracture-matrix 

interface. 

1.2 FEATURES OF THE SOLUTIONS 

A variable of a system is defined as a characteristic that may be measured 

and which assumes different numerical values when measured at different times[l9], 

whereas a parameter is defined as a quantity characterizing the physical processes 

acting upon the variable, and remaining constant in time. In tracer studies, the use 

of two different concentration variables, namely resident and flux concentrations, 
has been equally common. 

In development of the mathematical equations, the resident concentration CR 
(the amount of the tracer per unit volume of the system at a given instant) [ Fig. 
1.51, has always been taken as the variable of the system. In experiments, on the 
other hand, the flux concentration CF (ratio of the tracer flux to the volumetric 
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flux) [Fig. 1.51, has been the most commonly measured quantity. As a result, tracer 
return profiles have been plotted mostly by using the flux concentration as the 
output variable. These two concentrations differ whenever the system is dispersive 
and there is a concentration gradient. Consequently, whenever a dispersive model is 
used for interpreting tracer return profiles, failure to distinguish between these two 
concentration variables leads to the use of solutions derived for initial and boundary 
conditions inconsistent with the actual conditions of the experiment(tracer test). 

In solving the mathematical equations, Brigham[lG] explained the proper spec- 
ification of the initial and boundary conditions based on these two concentration 

variables. Later, Kreft and Zuber[47] provided a classification of the solutions to 
the convection-dispersion equation and the transformations linking the solutions. 
Parker and van Genuchten[60,87] also discussed the same concepts, and showed 
how the averaging techniques lead to different boundary conditions. This section 

summarizes the concepts discussed in these three articles, and the subsequent dis- 
cussions on the subject by these authors. 

The flux, CF, and the resident, CR, concentrations are related by: 

where Q is the volumetric flow rate, A is the crossectional area, and g5j is the 
porosity of flow path. Eq. 1.7 states that the material that passed the cross-section 
at x must be found between x and 00. 

If a dispersive model is used, the constitutive relation describing the flux is given 
by: 

where J is the total flux, UCR is the convective flux and D 9  is the dispersive 
flux. 

From the definition of the flux concentration, we can write: 

J = UCF 
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substituting Eq. 1.9 in Eq. 1.8 and rearranging yields: 

10 

(1.10) 

Eq. 1.7 and Eq. 1.10 serve for finding CF whenever the theoretical form of CR 
is known, or vice versa. 

In an experiment, tracer is usually introduced into the system in either of two 
ways. In the first method, a slice of the system is uniformly filled with the traced 
fluid, which Kreft and Zuber[47] defined as injection in the resident concentration 
mode. In the second method, the tracer is uniformly distributed in the fluid stream 
entering the system, which Kreft and Zuber[47] defined as injection in the flux 

concentration mode. While the first method is formulated as an initial condition[27], 

the second method is formulated as a boundary condition[27]. 

As we have stated earlier, Eq. 1.1 has been formulated by using CR as the 
variable of the system. However, one can show that the function CF also satisfies 
Eq. 1.1 (see Brigham[lG] for details). Even though both functions CR and CF satisfy 
Eq. 1.1, we can obtain the solutions in terms of the function we want by properly 
specifying the initial and boundary conditions. 

For an infinite system, if we assume that the part of the system from 0 to --oo 

is replaced with a traced fluid of constant concentration, then we have to formulate 
this assumption as an initial condition. If we want the solution in terms of the 
resident concentration, CR, then the initial and boundary conditions are specified 
as follows: 

lim CR(Z, t )  = 0 
m 4 o o  

(1.11) 

(1.12) 

lim CR(x,t) = 1 (1.13) 

The solution to Eq. 1.1 subject to these initial and boundary conditions is called 
CCRR, which corresponds to the infinitely extended injection in the resident fluid 

x4 -m 
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and detection in the resident fluid. 
If we want to obtain the solution in terms of the flux concentration variable, then 

we have to specify the initial and boundary conditions in terms of CF. Substituting 
Eq. 1.11 through Eq. 1.13 into Eq. 1.10, we obtain: 

(1.14) 

(1.15) 

lim CF(Z, t )  = 1 (1.16) 

The solution to Eq. 1.1 subject to these initial conditions is called C C R F ,  which 

corresponds to infinitely extended injection in the resident fluid and detection in 

the flux. 

C--+-oO 

In a semi-infinite system, if we inject a traced fluid of constant concentration 
into the system at z = 0, we must formulate it as a boundary condition. If we 
want the solution in terms of CR, then we can formulate the initial and boundary 
conditions as follows: 

CR(X,O) = 0 (1.17) 

Since injection of a fluid of constant concentration means keeping a constant 
flux at 2 = 0, we write the lower boundary condition(Danckwerts condition[22]) 
as : 

and finally the upper boundary condition is specified as: 

(1.18) 

lim CR(z, t )  = 0 (1.19) 
X+oO 

The solution to Eq. 1.1 subject to these conditions is called continuous injection 
in the flux and detection in the resident fluid, or CCFR. To obtain the solution in 
the flux concentration variable, we specify: 



CHAPTER 1. INTRODUCTION 

CF(Z,O) = 0 

12 

(1.20) 

Since the tracer flux at the inlet is constant, we write: 

CF(0,t)  = 1 (1.21) 

and substituting Eq. 1.12 into Eq. 1.10, we obtain the upper boundary condition. 

X+oO lim CF(Z, t )  = O (1.22) 

In this case the solution to Eq. 1.1 is called CCFF, continuous injection in the 
flux and detection in the flux. 

Using the above technique Kreft and Zuber[47] classified the solutions to the 
CD model and showed how some of the solutions are related by different trans- 
formations. Here, the notation of Kreft and Zuber is used to represent solutions 
of governing differential equations. When the discussion is relevant to both in- 
stantaneous and continuous injection cases, the first letter of the subscript of C is 
omitted. For instance, CRR refers to both the resident concentration solution for 
an infinitely extended injection CCRR and the resident concentration solution for a 

planar injection CIRR. 

Tables 1.1 and 1.2 list the solutions in terms of CR and CF respectively, which 
are formed by rearranging the solutions in Tables 1 and 2 in the paper by Kreft and 
Zuber[47]. 

Table 1.3, which is also taken from the paper by Kreft and Zuber[47], shows how 

the solutions in Table 1.1 and Table 1.2 are linked by different transformations. 
Many authors[10,16,60,94,95] have discussed the numerical differences between 

the solutions in terms of C R  and CF. They stated that profiles of the concentration 
variables C R  and C F  become similar when the Peclet number P, is high, which 
means that convective transport dominates dispersive transport. For P, 2 30 the 
differences are quite small, however, when the Peclet number is low, the difference 
between the profiles increases. Therefore, we have to use the solution closer to 

the physical situation, to interpret the return profiles of highly dispersive systems. 
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Transformation Restrict ion : 

, 

Table 1.3: Transformations Linking The Solutions 
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Parker and van Genuchten[GO] argue that the convection-dispersion model can ef- 

fectively represent even media with large variations in pore velocities, and if we use 
the appropriate solution we should be able to match the return profiles of these 

systems. 
A second issue discussed by researchers is choosing the appropriate boundary 

condition at the outlet of the system. When we use the infinite medium solutions 
for finite systems, we implicitly assume that a finite system acts like part of an 
infinite system. Parker and van Genuchten[GO] say that this assumption imposes a 

mild restriction, since the outflow boundary should have no effect on the upstream 
velocity distribution inside the system. They also add that the only mechanism of 
backward transport is diffusion and when dispersion is dominant, the possible error 
is extremely small. 

Brenner[S] has derived a finite system solution to Eq. 1.1 by imposing the fol- 
lowing boundary conditions: 

(1.23) 

(1.24) 

The finite system solution corresponds to a case of injection in the flux and de- 
tection in the resident fluid; therefore, its spatial concentration distribution matches 
with the semi-infinite medium solution, CCFR, even for considerably small values(Pe N 

10) of the Peclet number[l0,26]. The finite system solution also produces the same 
numerical results as the semi-infinite medium CCFF solution, at z = L for the 

Peclet number as small as ten[10,26]. This is not surprising because upon substi- 
tuting Eq. 1.24 into Eq. 1.10, we see that the zero gradient boundary condition 
practically transforms[94] the C F R  solution to CFF at x = L. 

Parker and van Genuchten[GO] further claim that the semi-infinite medium CcFF 

solution is more appropriate than Brenner’s[S] solution to model finite systems. 

They say that a boundary layer interior to the outlet may arise as a result of treating 
the transition region, within which the transport parameters change from those of 
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the porous medium to those of bulk solution, as a boundary surface of infinitely 
small thickness. Therefore, a concentration discontinuity at the outlet boundary 
may exist. They support their argument by showing the inability of Brenner’s 
solution to predict a short circuiting or zero impedance behavior. Zero impedance 
behavior is approached as D / u  + 00 and the flux conditions imposed at z = 0 

are instantaneously propagated through the medium. Therefore, CCFF solution 
yields a flux concentration profile similar to the plug flow profile. They state that 
as D / u  + 00 while Brenner’s solution approaches the perfect mixing model, the 
semi-infinite medium CCFF solution approximates the plug flow conditions which 
they claim that flow in fractured porous media is observed to approach. Therefore, 
they prefer CCFF over Brenner’s solution. 

Kreft and Zuber[47] say that for a semi-infinite medium, the limiting case D / u  + 
00 has no physical meaning, but a high D / u  may be understood as a result of a wide 
spectrum of microscopic velocities in the system. Even though he does not agree 
on the reasoning followed by Parker and van Genuchten[60], Zuber[95] also shares 
the opinion that CCFF represents finite systems better than Brenner’s[9] solution. 

Finally, in the case of chemical reactions or adsorption a source/sink term ap- 

pears in the mathematical equations. A material balance in terms of the resident 

concentration yields: 

(1.25) 

where q is the reaction rate expressed in consistent units with CR. If the reaction 

rate is of the first order, as follows; 

then CF also satisfies[48] Eq. 1.25. If the reaction rate is of higher orders, then CF 
does not satisfy Eq. 1.25. In such cases, CF can be found through the application 
of transformation TI from Table 1.3, whenever the theoretical form of CR is known. 

The discussion about the resident and flux concentrations also applies to dis- 
persive models of the near field, the far field and the very far field approaches. In 
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fact, Baker[3] showed that both CF and CR satisfy the Coats-Smith model of the 
far field approach. 

In summary, tracer tests are frequently used to identify the fast flow paths in 
geothermal reservoirs and to estimate some of the parameters controlling prop- 
agation of the thermal front. A quantitative interpretation of the return profiles 
requires matching the solutions of the mathematical models to field data. There are 
three commonly used mathematical models, namely the CD, MD and AD models, 
to study tracer and heat transport through fractures. 

In tracer studies, use of the two concentration variables CR and CF has been 
equally common. Whenever a dispersive model is used, failure to distinguish be- 
tween these two concentration variables leads to use of solutions which are inconsis- 
tent with actual conditions of the experiment. Differences between the two concen- 
trations are significant at low Peclet numbers(P, I 30)[10]. For field experiments 
in fractured geothermal reservoirs the Peclet number can be as law as one[39,86]. 
Therefore, the distinction between resident and flux concentrations are necessary 
for analysis of tracer return profiles in geothermal reservoirs. 

Several researchers have discussed the physical meaning of all the known solu- 
tions to the CD and AD models for unidirectional flow and presented the trans- 
formations linking them. These solutions have been used to interpret laboratory 
column experiments as well as tracer return profiles of interwell tracer tests with- 

out recirculation. There is, on the other hand, less work reported concerning either 

interwell tracer tests with recirculation or injection-backflow tracer tests. 

Some researchers considered estimation of the thermal breakthrough time based 

on tracer tests as questionable. They suggested the use of thermal interference tests 
to determine thermal characteristics of the system. However, the extremely long 

injection period requirement makes thermal interference tests impractical most of 

the time. On the other hand, a thermal transient test in which fluid is first injected 
into a single well, and then produced from it (i.e. a thermal injection-backflow test), 
could be performed in a much shorter time. 

The objectives of this study are two-fold: namely, a quantitative interpretation 
of the return profiles from tracer tests, and investigation of the applicability of 
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thermal injection-backflow tests. First, we present a unified approach to the clas- 

sification of the solutions of dispersive mathematical models of the very near field, 

the near field, the far field and the very far field for unidirectional flow. Then we 

consider interpretation of tracer return profiles as an inverse problem. To study 
tracer return profiles of interwell tracer tests with recirculation and also injection- 

backflow tracer tests, we develop several new solutions by using single and double 

Laplace transformation met hods. When the Laplace space functions were difficult 
to invert analytically, we use single or double numerical inversion methods. Fi- 
nally, we investigate determining thermal characteristics of geothermal reservoirs 

from thermal injection-backflow tests. If we can identify fast flow paths and the 
mean speeds of flow in these paths by tracer tests and determine the heat transfer 
parameter between the flow path and the adjacent matrix, then we will be able to 
estimate the thermal breakthrough time. 



Chapter 2 

THEORY 

This chapter will elaborate on three aspects of using the two concentration 

variables in dispersive systems. First, we will present a general treatment using 
different variables for all linear dispersive models. Second, we will clarify a solution 

to the convection-dispersion model, which Sauty[77] employed, but Kreft [47] and 
Zuber[94] criticized and rejected, apparently because of an ill-defined parameter, 
Co. Using the concepts of resident and flux concentrations, we will also derive new 
solutions from this solution. Finally, we will present a new example of the differences 

between solutions in terms of the flux concentration variable and solutions derived 

by imposing zero gradient at the outlet boundary. 

2.1 DEPENDENT VARIABLES OF DISPERSIVE 

SYSTEMS 

In many cases, we represent the dispersive systems by: 

dC d2 C + U- - D- dC 
at d X  

az2 + 4 = 0 - 

Eq. 2.1 is derived by applying a material balance relation and Cfi is used as the 
concentration variable of the system. We introduce the source term, 4, to account for 
any of several phenomena such as chemical reaction, radioactive decay, adsorption, 

20 



CHAPTER 2. THEORY 21 

and molecular diffusion into the adjacent porous matrix. If we use the constitutive 
relation given by Eq. 1.8, and if we transform the dependent variable CR to J ,  we 
obtain: 

a J  d J  a 2  J 34 - + U -  - D- + uq  - D-  = 0 
at dX d X 2  d X  

We considered four specific forms of the source term, q. First, if the source term 
is equal to zero, then CR and J both satisfy the convection-dispersion equation[l6]. 
If there is no flow, then both variables satisfy the heat equation as pointed out by 
Carslaw and Jeager[ 181 for the diffusion equation. 

Second, if the source term represents a linear type reaction such that: 

q = kCR (2.3) 

then both variables CR and J again satisfy[47] the same equation. 
Third, if the source term represents diffusion into the adjacent porous matrix, 

and the source term is given by Eq. 1.5, then we can show that the Laplace transform 
of Eq. 2.1 is given by: 

in which the Laplace transform of q, corresponds to: 

p = - 2 X 6  

where X is: 

Then the Laplace transform of Eq. 2.2 can be obtained as: 

In Laplace space, since J and CR are related by: 
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Substituting Eq. 2.8 into Eq. 2.7: 

Comparing Eq. 2.4 and Eq. 2.9, we can see that both functions satisfy the same 
differential equation. 

The corresponding dependent variable of the transport equation in the matrix 

Jm satisfies Eq. 1.3, and the related boundary conditions are the same as those of 

C,. The Laplace space solution for J, is given by: 

Substituting Eq . 2.8 into Eq. 2.10: 

Eq. 2.11 can be written as: 

(2.10) 

(2.11) 

(2.12) 

Therefore, J and C, and J, and C, are correlated by the same relation. For all these 
cases, not only the variable J but also any other variable obtained by dividing J by 
a constant will satisfy Eq. 2.1. In fact, the variable CF, one of the two concentration 
variables used in tracer studies, is obtained by dividing J by u. 

The AD model corresponds to the third case, and its solutions can also be 
classified by using the methods discussed earlier. The solutions can be related to 
each other by using the transformations in Table 1.3, except for the transformations 
T2 and T3 which will not work because of diffusion into the matrix. An infinitely 
extended injection is never realized in an actual experiment. For this mode there 
are two situations. First, initially the matrix is free of tracer over the whole domain, 
while the fracture is filled with the traced fluid from 0 to -m. Second, initially 
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both the matrix and fracture contain the traced fluid for 2 5 0. Both of these cases 

are unlikely to occur in an experiment. 
Finally, if the source term represents a reaction of higher order, then Eq. 2.1 

becomes nonlinear and neither of the functions J and C F  satisfies Eq. 2.1. In such a 

case, CF does not loose its physical meaning and can be found from the theoretical 

expression for CR by using the transformation 2'1 in Table 1.3. 
So far all of the models discussed describe tracer transport in distinct fractures 

situated in matrix blocks(the very near field approach), and they suit well for study- 

ing tracer transport in geothermal reservoirs. However, the far field and the very 
far field approaches are widely used in other fields such as petroleum reservoir en- 
gineering, soil science, and hydrology. The very far field approach is modelled by 
the CD model which corresponds to the case q = 0. The far field approach models 
consist of the superposition of two continua in space, a mobile phase where convec- 
tive transport occurs, and an immobile phase where only diffusive transport occurs. 
The models assume that immobile phase acts as a uniformly distributed source in 
the mobile phase. As a result, coefficients of accumulation and source terms are 

different from those of the corresponding terms of Eq. 2.1. The discussion on the 
resident and flux concentration also applies to these models. 

Baker[3] showed that CF and CR both satisfy the Coats and Smith[20] model 
which is a special case of the far field approach models. The standard mobile 
phase equation which is valid for all immobile geometries is also satisfied by both 
concentration variables CF and CR as well as the flux variable J. 

Several authors[2,11,13,21,69] used these models consistently with the two con- 
centration variables to interpret laboratory experiments. Bretz and Orr[12] used 
the Coats-Smith and porous sphere model to investigate the effect of microscopic 
heterogeneities. Correa e t .  ul. [21] used spherical and parallel plate geometries, and 
the Coats and Smith model to interpret miscible displacement experiments. They 
developed approximate solutions of the models for short and long times to estimate 
model parameters from displacement data. 
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2.2 NEW SOLUTIONS OF THE CD MODEL 

The fundamental solution of a linear equation gives the response of a system 
to an instantaneous source acting at II: = 0 and t = 0. The fundamental solution of 

the one-dimensional convect ion-dispersion equation is given by: 

(2.13) 

If the strength of the source is time dependent in such a way that it will generate 
an amount of material equal to the total of the amount carried away in fluid flux 
and the amount dispersed, then it corresponds to the case of constant concentration 
at x = 0. This constant concentration at x = 0, however, is in terms of CR and not 
CF. If the source strength is constant in time, then the solution which will also be 
in terms of CR can be obtained by either solving: 

d2 C m' D W  = --S(II:) 
dC 

4- u- - 
dC - 
at d X  df A 

subject to the following initial and boundary conditions: 

C(Z,O) = 0 

lim C(x,t) = O 
X + O 3  

lim C(x,t) = O 
X-+--Oo 

or integrating Eq. 2.13 over time. By either of the methods we obtain: 

c = -1 m' [ e r f c  (-) x - ut - exp e r f c  (-)I x + ut 
U#fA 2 2 m  2 m  

(2.14) 

(2.15) 

(2.16) 

(2.17) 

(2.18) 

for x 2. 0, and where m' is the amount of tracer released by the source per unit 

time. The integral does not result in a known function for x 5 0. 
These solutions were employed by Bear[7] and Sauty[77] in studying disper- 

The solutions, however, were criticized and rejected by some sion in aquifers. 
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Figure 2.1: Tracer Sources in a Flow Field, [ after Sauty, 1980 3 

authors[47,94], probably because of an ill-defined parameter, C,. The parameter, 
C, was defined by Sauty as the constant concentration of the injected fluid and sub- 
stituted for m'/$fAu in Eq. 2.18. Considering this definition, we can see from Eq. 
2.18 that C, can be neither the flux concentration nor the resident concentration. 

If we assume that the traced fluid injection rate is negligible compared to the 
volumetric flow rate in the system, then we can write: 

(2.19) 

C* is a reference concentration, which is similar to the flux concentration and ex- 
pressed by the ratio of the amount of material generated in a unit time to the 
volumetric flow rate. In this system, the amount of material generated in a unit 
time is not equal to the tracer flux at the location of the source. Therefore, the 
solution is not in terms of CF. In other words, since the source strength is expressed 
as the material generated per unit volume of the system per unit time, the solution 

is in terms of CR. 
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Even though the solution is mathematically well formulated, we must investigate 
whether the initial and boundary conditions are consistent with the conditions of 

the experiment. Zuber[94] said that Figs. 2.a and 2.b in the paper by Sauty[77] 
correspond physically to the injection in flux concentration mode. Considering this 
argument, we conclude that the solutions are inappropriate for those cases studied 

by Sauty[77]. However, Fig. 2.a (see Fig. 2.1) in the paper by Sauty[77] indicates 

that there is a transport opposite to the direction of natural flow. If the injection is 
continuous, then the backward transport at the injection point may be significantly 
high. In such a case, using a solution for a continuous source at the origin may be 

more appropriate. 
For detection in the flux concentration mode, the solution for an instantaneous 

source is obtained as: 

m x + u t  (x - U t ) 2  
CSIF = - (2.20) Q 2d- 

and the solution for a continuous source is given by: 

(2.21) 

For x < 0, the integration of Eq. 2.13 does not result in a known function. Therefore, 
Eq. 2.13 must be substituted into transformation 2’1, and the resultant equation 
evaluated numerically. 

2.3 THE OUTLET BOUNDARY CONDITION 

All of the solutions discussed in the previous section are either infinite or 
semi-infinite medium solutions. In reality, however, all of the experiments must be 
carried out on finite systems, and choosing the appropriate boundary condition at 
the outlet of the system has lead to interesting discussions among researchers. 

The general approach in specifying the boundary conditions in a finite system is 
to assume three units[91]: the first and the third being semi-infinite (see Fig. 2.2). 
The conservation of flux principle requires that the fluxes on both sides of the 
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Figure 2.2: Boundary Conditions of a Finite System 

boundary (bounding surface) be equal. There can be no accumulation within the 
boundary surface because the surface has no volume. 

(2.22) 

(2.23) 

The usual assumption that D1 = 0 in the fore-section of the system reduces 

Eq. 2.22 to: 

(2.24) 

van Genuchten and Parker[62], in their response to Parlange et.aZ.[62], explain 

this result with the existence of a transition region within which the medium prop- 
erties dispersivity and concentration vary continuously. Since the transition region 

is considered infinitely thin, apparent discontinuities result in both dispersivity and 

concentration. 
However, there is no consensus over the treatment of the boundary condition 

at the outlet of the system. Brenner[S] derived a solution for the CD model by 

imposing Eq. 2.24 and 
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(2.25) 

With the assumption that 0 2  = 0 at the after-section of the system, Eq. 2.23 
reduces to: 

(2.26) 

Assuming that the macroscopic concentrations are continuous at the outlet bound- 
ary, then Eq. 2.26 is reduced to Eq. 2.25. Naumann and BufFham[56] explain this 
result by pointing out that when the flow is from a mixed region to a region where 
there is no mixing, there is no way in which the composition can change crossing 
the boundary. 

van Genuchten and Parker[62] argue that even if a zero gradient exists at the 
after-section, it tells nothing about the mathematical boundary layer associated 
with the discontinuity in medium properties. They add that even though it is con- 
venient to assume an infinitely thin boundary region within which the dispersion 
and porosity change from porous medium to bulk solution values, imposing disconti- 
nuities in these parameters must yield a discontinuity in macroscopic concentration. 

Zuber[94] argues that Eq. 2.25 applies for the case of molecular diffusion, but 

in the case of hydrodynamic dispersion, its applicability becomes obscure. Eq. 2.25 
means that there is no dispersive flux at the outlet boundary, which implies either 
all the flow lines have the same velocity, or the same concentration. Such a condition 

is highly unlikely to occur in natural systems. 

A distinctive feature of Brenner’s[9] solution is that both the time and space pro- 

files conserve the material balance relation. Consequently, for large Peclet numbers, 
it generates identical profiles with CCFR along the system, and with CCFF in time 
at x = L. For small Peclet numbers, however, the results may differ considerably. 
Thus, the main difference between the semi-infinite and finite system solutions may 
be indicated in the differences between the resident and flux concentrations. In 
the semi-infinite medium approach, CFF is always greater (smaller when convective 
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and dispersive fluxes are in opposite directions) than C,,, and the difference be- 
tween them is almost constant over the length of the system. In the finite system 
approach, however, the difference between CFF and CFR decreases as the distance 
from the inlet increases, and it becomes zero at the outlet boundary. The experi- 
mental results of Gaudet et.aZ. which are reported by de Smedt et.aZ.[26], and the 
results of the experiments presented by Parker[61], show that CFF is greater than 
CFR. Therefore, the known experimental results support the semi-infinite medium 
approach. 

As there is no proof of the inappropriateness of either approach to model real sys- 
tems, an intuitive decision is necessary on when to assume that the outlet boundary 
does not influence the system, or when to use an outlet boundary implying con- 
tinuity of macroscopic concentrations. It is our purpose here to compare the two 
solutions: one assumes continuity of the macroscopic concentrations and the other 
does not. The example corresponds to the case where the flux concentration is 
smaller than the resident concentration. 

Injection-backflow tracer tests have been performed in geothermal fields, and 
analysis of tracer return profiles is discussed in the next chapter. To obtain the 

solution for the backflow period, governing equations may be solved by using the 
injection period profile as the initial condition. 

If a dispersive model is used, an appropriate outlet boundary condition is re- 

quired at x = 0. The following initial and boundary conditions assume continuity 

of the macroscopic concentration at x = 0: 

lim C(Z, t )  = O 
f+cO 

(2.28) 

(2.29) 

Using the Green’s function method, Riley[72] gives a solution to the convection- 
dispersion model: 
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00 (x - 2' + U t ) 2  
~ ( x , t )  = J, f(x'), 7 exp - ' {  i D t  ( 4Dt 

(2.30) 

1 (x + 2' - U t ) 2  +-  m 

D 2m 
- - U exp (g) e r f c  ( x + x' + ut )} dx' 

The function f(x'), which is the initial condition, is specified as CFR, the resident 
fluid concentration at the end of the injection period: 

j(z') = s e r f c  1 (x' - ut') - exp (g) e r f c  ( 5' + utj ) 
2- 2 f i  

(x' - U t j ) 2  (2.31) 4Dtj 

In an infinite medium, the solution to the convection dispersion model is: 

) dx' (2.32) 
(x + ut - z')2 1 co 

C(x,t) = l, '(''I 2 m  (- 4Dt 
where f(x') is the initial condition. To obtain the flux concentration solution either 

of the two methods can be used. First, apply the transformation 2'1 to Eq. 2.32. 

Alternatively, express the initial condition in terms of the flux concentration by 
applying the transformation TI to the initial resident concentration function. 

Using the first method, the flux concentration solution is: 

) dx' (2' + ut - x) (x + ut - x')2 (- 4Dt C(x , t )  = 

Since the domain is infinite in both directions, the initial condition is: 

(2.33) 

(2.34) 
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The three parameters affecting the return profiles are u, D and tj. It is con- 
venient to express the solutions in terms of dimensionless variables. The Green's 
function solution in dimensionless variables is: 

where: 

I X I  

utj 
X D  - 

(2.36) 

(2.37) 

(2.38) 

(2.39) 

t 
t D p  = - (2.40) 

In a unidirectional flow, the parameter of the system is usually chosen to be the 
Peclet number, P,, which is the ratio of the characteristic time for dispersion, g, to 
that of convection, L/u.  For the injection-backflow, the parameter tD is the ratio 
of the characteristic length (dispersivity) e, to the convective transport length ut j ,  
during the injection period. The parameter is an inverse Peclet number in which 

t j  
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the distance travelled by the convective front during the injection period is used to 

set the length scale in the Peclet number. 

Similarly the flux concentration solution in dimensionless variables is: 

(2.42) 

Tracer return profiles may be studied by varying the value of the only parameter, 

t D .  

Fig. 2.3 shows that for small values of to, which is equivalent to high P, in 
solutions for unidirectional flow, zero gradient ,and infinit e medium flux solutions 
yield identical results. This is due to the small value of the dispersion coefficient 
which makes the flow approach pure convective flow. Tracer return profile of pure 

convective flow is distinguished by a sudden drop to zero in the concentration value 
when t D p  = 1. 

As for the intermediate values of to, both methods produce almost identical 
numerical results despite the fact that tracer return profiles indicate a transition 

region. As the value of becomes larger, (see Fig. 2.4 and 2.5), the two tracer 
return profiles separate. Experimental values of t D  are usually much less than 0.4. 

For large values of p, (for small values of t D  for injection-backflow tracer tests), 

the solutions for different injection and detection methods yield similar tracer return 

profiles. These two solutions, however, produce similar profiles for a larger range 

of t D ,  since imposing a zero gradient at the outlet virtually converts the resident 

concentration to the flux concentration. 
The backflow period solutions in terms of CR and CF are tabulated later in 

Section 3.3. Fig. 2.6 shows that among the solutions corresponding to different 
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Figure 2.4: Zero Gradient Solution and Flux-Flux Solution for Intermediate tos 
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Figure 2.5: Zero Gradient Solution and Flux-Flux Solution for Large t o s  
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Figure 2.6: Zero Gradient Solution and Infinite Medium Solutions for an interme- 
diate t D  
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Figure 2.7: Zero Gradient Solution and Infinite Medium Solutions for a Large t D  
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injection and detection modes, the zero gradient solution is the closest to the CcFF 

solution. Since the parameter t D  is high differences between solutions are significant. 
Fig. 2.7 shows that the difference between CCRR and CCRF solutions is large 

compared to the difference between CCFR and CCFF solutions. Also, CCRF yields 
negative concentration values because it predicts that the total tracer flux is in 

the direction opposite to the flow. This is a result of the imposed initial condition 
which provides an infinite amount of tracer supply in the region x 2 0. Thus a 

large negative gradient is generated in the system, which causes the dispersive flux 

to dominate the convective flux. 

The difference between CCFR and CCFF profiles is small because the initial con- 
dition imposed during the backflow period does not allow material to be introduced 
into or removed from the system. Therefore, initial concentration gradients are 

quickly smoothed, and this decreases the dispersive flux. As a result, difference 
between CCFR and CCFF becomes smaller. The initially finite amount of the tracer 
which is symmetrically distributed about the origin seems to prevent the negative 
flux. This may be concluded from the fact that while CCRF yields negative values, 
C I R F  given by: 

does not yield negative values at XD = 0. Eq. 2.43 gives the CIRF solution normal- 
ized by the concentration that results if all the injected fluid were to be found only 
in the total volume of injected fluid. 

In experiments, the flux concentration solution given by Eq. 2.41 is preferred 
on physical grounds and because of its simple form. A partial differential equa- 

tion(PDE) is always formulated on an open, connected set called a domain s1. An 
open set is chosen to avoid discussing the PDE on boundaries. Therefore, the 

general solution of PDE does not include boundary values. Boundary values are 
specified and related to interior values requiring the solution be continuous in the 
closed region composed of the domain and its boundary n = $2 + do.  Requring 
continuity of the solution on eliminates supurious solutions[81]. Therefore, the 
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outlet boundary condition must be known and specified in the case of finite system 

if the solution is desired in terms of CR, any of the 
specified on each boundary: 

approach. For any system, 
following quantities must be 

Alternatively, if the solution is desired in terms of CF, any of the following 
quantities must be specified on each boundary: 

A zero gradient in the resident concentration implies CF = CR, but a zero gra- 
dient in flux concentration does not[6]. Also, both resident and flux concentration 
gradients become zero only in the case of D = 0. 

For a composite system, the flux must be continuous at the interface. The 
continuity of the dependent variable( concentration) at the interface, on the other 
hand, has been proven only for the case of continuous properties across the interface. 
It has been assumed that properties change rapidly but continuously across the 
interface[81]. For discontinuous properties there is no proof of neither continuity 
nor discontinuity of the dependent variable. However, Parker and van Genuchten[62] 
reasoned that discontinuous properties must yield a discontinuity in the dependent 

variable. 
Eq. 2.22 states the continuity of fluxes at outlet boundary(interface). Assume 

the CD model is an exact formulation of reality and properties are continuous across 

boundaries. Then, 

(2.44) 

must hold at the interface because of the continuity of properties. If the resident 

concentration gradient is zero in the outer section: 

(2.45) 
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Substituting Eq. 2.44 and Eq. 2.45 into Eq. 2.22 results in: 

40 

(2.46) 

However, the CD model is a macroscopic scale approximation of reality. Re- 
ducing the boundary region within which properties change from those of porous 
medium to bulk solution to a surface yields discontinuities in properties. Imposing 
discontinuities in properties is likely to cause a discontinuity in the dependent vari- 
able of the system. Therefore, a zero gradient boundary condition is questionable. 

Dispersive flux is an approximation of the transport due to variations of micro- 
scopic velocities with respect to the average macroscopic velocity. These variations 
in microscopic velocities still exist at the outlet, therefore, dispersive flux must not 
disappear. The infinite medium flux-flux solution C F F  includes dispersive flux at 
the outlet. 

In the infinite medium approach, however, concentrations in the extended region 
beyond the outlet affect concentrations inside the system. This effect, is part of a 

fundamental problem in the formulation of tracer dispersion with the CD mode1[25]. 
In tracer experiments, since no backward mixing occur due to the velocity varia- 
tions, mixing is only in the direction of convection[25]. Yet, this forward mixing is 

represented by the CD model which includes both forward and backward mixing. 

Therefore, if the CD model is satisfactory within the system, the infinite medium 
approach at the outlet is consistent with the assumptions of modelling. This reason- 

ing, nevertheless, is not a proof of the appropriateness of infinite medium approach. 

In conclusion, there is no proof supporting any of the two approaches for real 

systems. However, infinite medium approach makes the most sense on physical 

grounds, since there are some experimental data supporting it [10,26,61]. Further- 

more, the infinite medium flux-flux solution CFF is simpler than the zero gradient 
solution. Therefore, we prefer CFF over the zero gradient solution. We turn now to 

interpret at ion of experiment a1 results. 



Chapter 3 

INTERPRETATION OF 
TRACER RETURN PROFILES 

Development of a method for forecasting the thermal breakthrough time during 
reinjection must be based on both tracer and thermal data. In this chapter, inter- 
pretation of interwell tracer tests with and without recirculation, injection-backflow 
tracer tests and thermal injection-backflow tests is considered. A new method of 

estimating the thermal breakthrough time is presented. 

3.1 INTERWELL TRACER TESTS-NO RECIR- 
CULATION 

In an interwell tracer test without recirculation, the tracer is introduced into 
the system at the injection well and observed at the production well(s). The tracer 

can be transported either by a natural gradient of the flow system, or by a gradient 

caused by injection and production. The main purpose of interwell tracer tests in 
geothermal reservoirs is to determine the degree of connectivity between the injec- 
tion well and the producers. A connectivity map of the reservoir permits selection 
of the appropriate locations for reinjection wells. Even though a qualitative analysis 
of tracer return profiles may be used to compare the flow paths leading to different 

41 
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producers, to design a reinjection scheme, values of system's parameters must be 

estimated or measured. 

3.1.1 The Analysis Technique 

From a quantitative analysis of tracer return profiles, parameters of the system 

influencing both tracer and thermal 
parameter of flow is the mean arrival 

transients can be estimated. An important 
time (transit time ) of the water: 

L t ,  = - 
U 

If the system has a constant volume accessible to the tracer, such as within parallel 
fractures, then a mean transit time of the tracer can be defined as[53]: 

If there is a porous matrix adjacent to the fracture, then the degree of fracture- 
matrix interaction is characterized by the parameter,X, defined by Eq. 2.6. Finally 
the dispersion coefficient, D, is the measure of the spreading of the tracer beyond 
the region of convective transport. The model response to both parameters X and 
D is dependent on the fracture aperture, b, which is the most important parameter 
controlling propagation of the thermal front during reinjection. 

The parameters of the system are estimated by a non-linear regression method. 
We have used a multiple parameter nonlinear regression program, VARPRO, devel- 
oped by Stanford's Computer Science Department to match tracer return profiles 
to analytical solutions. To select the best of the three models representing the sys- 
tem, we applied three criteria which are often used in model evaluations[78]. First, 
the model-data match should have a small residual of sum of squares. Second, the 
model should capture distinctive features of data profiles, such as breakthrough 
time, peak arrival time and total tracer recovery. Finally, values of the field pa- 

rameters recovered through curve fitting must be physically possible, and consistent 

with the basic assumptions of the model. 

, 
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One of the most sought parameters is the fracture aperture, and it can be esti- 

mated by two methods. If the condition of the Taylor dispersion theory[85], namely: 

L Lt 0.5 b2 -> -> -  
u u  D m  

is satisfied, then an expression for the dispersion coefficient is given by [39]: 

2 b2u2 D=-- 
105 Dm 

Rearranging Eq. 3.3: 

Lt 0.5 b2u 0.5b2u2 1 l>-B-- - - 
L DmL Dm UL 

Substituting Eq. 3.4 into Eq. 3.5 results in: 

4 Lt 1 >- 105 L P, 
-- 

(3.3) 

If L is twice the length of Lt,  and a ten to one ratio is good for assuming a quantity 
is much greater than another, then the Peclet number is at least: 

P, N 500 (3.7) 

In such a case, the fracture aperture may be estimated as: 

i: b = 0.067345 

Using Eq. 2.6, the fracture aperture may also be estimated as: 

m (3.9) 
2.934 loe3 4 

x b =  

for the MD and AD models. 
Since close initial estimates of parameters speeds convergence, some character- 

istics of the tracer return profiles may be used to provide good initial estimates. 

In fact, Bullivant[l4] showed that the parameters of the solutions to the CD model 
can be expressed by water transit time t, and peak arrival time t, and to the MD 
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model by peak arrival time t, and tracer breakthrough time t b .  The two parameters 

t, and t b  can easily be determined from tracer return profiles. 
In both laboratory experiments and field tests, both the injection and detection 

in the flux concentration is the most commonly employed mode. The C,,, solutions 
may be used to illustrate the method of determining first estimates of regression 
paramet ers. 

For an instantaneous injection in flux and detection in the flux concentration, 
the solutions of the three models with pertinent boundary conditions are given in 
Table 3.1. For the AD model a solution in the integral form is available[53,83], 
but we preferred to use a numerical Laplace inversion technique to evaluate the 
solution, because we had a computer program[92] based on an accurate inversion 
algorithm[23,29]. The theoretical peak arrival time can be determined from: 

Substituting the solution to the CD model into Eq. 3.10 and solving for t,: 

(3.10) 

(3.11) 

The parameters a1 and a2 are defined in Table 3.1. From Eq. 3.11, tw is always 

greater than t,. This is because, due to the dispersion, the tracer moves faster than 

the fluid. Therefore, following Bullivant’s[l4] suggestion, we may assign an initial 
estimate value to t ,  as: 

t w  = 2t, - t b  (3.12) 

Then the initial estimate of the Peclet number can be found from Eq. 3.11. Zuber[94] 

pointed out that the transit time of the tracer for the CD model is the same as t ,  
only for the CFF solution. 

Similarly, an expression for t, of the MD model is [14]: 

t - - q a 2  2 2 2  +a2 

, - 3  
(3.13) 
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In this case, since there is no dispersion, spreading of the tracer occurs only behind 
the pure convection region. Therefore, tracer breakthrough time is virtually equal 

to t,, and t, is greater than t,. Choosing the time of the first detection as the 
initial estimate oft,, the initial estimate of the parameter, X can be calculated. 

As for the AD model, initial estimates of the parameters should be based on the 

shape of the tracer return profile. For instance, a steep slope in the profile after 

breakthrough and long tailing after the peak is an indication of a dominant matrix 

diffusion effect. Therefore, t ,  should be between t b  and t ,  and an initial estimate 

of X may be made from Eq. 3.13. To estimate the Peclet number, a significantly 
smaller value is selected than the initial estimate of the CD model. 

If the return profile varies smoothly between t b  and t, and does not exhibit a 

long tail, then we should enter a value close to 2t, - t b  as an initial estimate for 

t,. Peclet number may be estimated from Eq 3.11. The parameter X is assigned 
an initial estimate value significantly smaller than the initial estimate for the MD 
model’s same parameter. 

3.1.2 Field Examples 

We have obtained three data sets from tracer tests conducted in the Wairakei 
geothermal field[54]. In order to use the appropriate theoretical solution to interpret 
tracer return profiles, it is necessary to determine which of the two concentration 
variables correspond with the injection and detection modes. The tracer was in- 
troduced into the system at the wellhead of the injection well and allowed to be 
transported by the gradient created by the production wells [14]. The concentra- 
tions in samples taken from the outflowing fluid were measured to determine tracer 
return profiles. In this type of tracer test, the injection and the detection modes 
are both in the flux concentration variable. Therefore, the solutions in Table 3.1 

can be used to interpret tracer return profiles. 

The ability of each of the model solutions to match the field data is shown in 
Figs. 3.1 through 3.5. For all the profiles analyzed, the residual error after fitting is 
of the same order for all three models. However, the models differed in matching the 
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Figure 3.1: Model Fits to the Profile at WK108 
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Figure 3.2: Model Fits to the Profile at WK116 
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Figure 3.3: 1-Path CD Model’s Fit to the Profile at WK76 
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Figure 3.5: 2-Path AD and AD-MD Model’s Fits to the Profile at WK76 
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, - .  
- I 0.06123 0.2454 0.2716 

0.7457 0.8471 X I  - 

I Well WK108 
I CD I AD I MD 

m/Q 
l/Pe 
l/t, 

A 

I m/Q i 0.2465 103 i 0.6327 103 i 0.6525 103 1 
1/P, I 0.12832 1 0.00349 I - 

CD MD AD 
0.2474 10' no match no match 

0.4245 - - 
0.0322 - - 

- - - 

Well Wk116 

I Welt WK76 I 

Table 3.2: Regression Parameters 

breakthrough and peak arrival times. Also, the values of the parameters determined 
differed greatly. Table 3.2 shows the estimated regression parameters for all three 
models. 

Assuming the fracture length is equal to the distance between the injector and 

the producer, we obtained the flow speeds and the related dispersion coefficients, 

and estimated the corresponding fracture apertures (see Table 3.3). For CD and 

AD models, the estimated fracture apertures based on the Taylor dispersion theory 

are quite large and do not satisfy Eq. 3.3. However, for MD and AD, the apertures 

estimated by using Eq. 3.9 are consistent with the observations since a fast flow and 

a strong matrix diffusion are likely to occur in a narrow fracture. 
Fig. 3.1 shows the return profile at  well WK108 and the optimum fits of the 

models. In the return profile, considering the distance, 230 m, between the injection 
well and well WK108, we see that the breakthrough and peak arrival times are very 

small, indicating a fast flow path. The concentrations of the tail section are very 
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Table 3.3: Estimates of the Flow Parameters From Regression Results 

close to the peak concentration which indicates a strong matrix diffusion effect. 
The dominant matrix diffusion effect becomes obvious, since the matrix diffusion 
model captures the breakthrough and the peak arrival times as accurately as does 
the Avdonin model. 

Fig. 3.2 shows the return profile at the well WK116 and the effectiveness of the 
models in matching the observed data. The profile has the characteristics of a fast 
flow and strong matrix diffusion, however, in this case they are less pronounced 
compared to the characteristics of WK108. While CD and MD models have slight 
differences with the observed values, the AD model shows an excellent agreement 
with the data. The values of the parameter estimates from the regression, however, 
differed significantly. For example, Table 3.2 shows the values of t,, a common 
parameter to all of the three models, is only 2.5 days for the MD model, 5.8 days for 

the AD model and 13.8 days for the CD model. The fracture apertures cannot be 
estimated by using Eq. 3.8 because Eq. 3.3 is not satisfied. The MD model yields a 

smaller fracture aperture and a higher flow speed than the AD model. 

Fig, 3.3 shows the return profile at the well WK76 matched by the CD model. 

The error of residual to fit was similar in order to the residuals of the earlier matches. 

The model yielded a relatively small flow velocity and a high dispersion, but the 

fracture aperture cannot be estimated from Eq. 3.8, because Eq. 3.3 is not satisfied. 
We could not match MD and AD models to this set of data. During the regression, 
sometimes illconditioning occurred which may be caused by either an unfortunate 
initial guess or a poor choice of the model. In other cases, the absolute and relative 
tolerance for the norm of the projection of the residual onto the range of the jacobian 
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of the variable projection functional is not satisfied. 
The existence of the double peak suggests that the injection and the observation 

wells may be connected by at least two paths. The two path solution to the CD 
model gave a much better match, Fig. 3.4, but neither of the two path solutions to 
MD and AD models matched the profile. 

During the regression for a single path solution to the AD model, the Peclet 
number consistently diverged towards infinity. A two path solution was also un- 
successful, but this time either the Peclet number for the second path diverged to 
infinity or ill-conditioning occurred. We concluded that the ill-conditioning occurred 
because the flow rates of the two paths were almost the same. In this case, in the 
regression procedure, we need to use one transfer function( 1TF) with six variables, 
three for each path. 

As for the divergence of the Peclet number towards infinity for the second path, it 
could be because dispersion in the second path is negligible. Therefore, we matched 

the first peak by the AD model. Then the profile for this first path was subtracted 

from the observed profile and the resultant profile was matched by the MD model. 
The performances of the one transfer function for the AD model(1TF-AD) and for 

this combined AD&MD model are shown in Fig. 3.5. 

We also considered the possibility of three paths connecting the injection well 

and the producing well, since there is a small peak between the two main peaks. 

However, the data did not match any of the three-path solutions of the models, 

because error tolerance was not satisfied. Fig. 3.6 shows matching of the first peak 

with the AD model and the profile resulted from subtracting profile of the first path 

from the observed profile. The difference profile has the characteristics of a single 

flow path, an evidence of the failure in matching data with a three-path solution. 
In summary, all three models had small residuals satisfying the first criteria of 

model evaluations. The AD model captured the characteristic features of the return 
profiles accurately whenever a match was possible, and the MD model was more 
successful than the CD model in this respect. As for the values of the parameter 
estimates, Table 3.3 shows that the flow speeds are extremely high compared to 
those normally reported in the groundwater literature. The estimates of P, or the 
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Figure 3.6: Matching the first peak of WK76 data with the AD model 
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related estimates of the fracture aperture, b, did not satisfy the Taylor dispersion 

condition for any of the return profiles. The values of dispersion coefficients are 
difficult to accept as realistic for the CD model. For the AD model, the dispersion 

coefficient estimated for WK116 is similar to the one obtained by the CD model. 

The estimated D value for WK108 is, although less than the estimated D value for 

WK116, still 10 times higher than the largest value reported[69] in the groundwater 

literature, Even if the fracture is modelled as a porous stream tube so that hydro- 
dynamic dispersion expression[7,15,65] can be used, we obtain dispersivity, D / u ,  
values which are still extremely large compared to the values reported in the review 

paper by Pickens and Grisak[67]. 
Therefore, first, the fracture aperture estimations must not be based on Taylor 

dispersion theory, and second, considering the extremely high dispersion coefficient 
estimates, caution must be exercised in using the parameter estimates for forecasting 
the effect of future operations. 

3.2 INTERWELL TRACER TESTS WITH RE- 

CIRCULATION 

In an interwell tracer test with recirculation, the reservoir fluid is withdrawn 
from a production well and reinjected at an equal rate into the reservoir at the 
injection well. The procedure continues until the system reaches steady state. Then 
the tracer is introduced into the flowing stream at the injection well. While the 
recirculation continues, the concentration history of the fluid samples taken at the 
production well is analyzed to determine the system’s parameters. These techniques 
of injecting and detecting the tracer correspond to injection and detection in flux 
concentration modes. 

3.2.1 The Analysis Technique 

Interwell tracer tests with recirculation are useful to estimate the volume of 

the fluid recirculating in the system[39]. Another advantage of this type of test is 
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that it enables larger distances and areas to be investigated[93]. 
Most of the researchers[36,67,90,94] who studied tracer tests with recirculation 

assumed an infinite homogeneous isotropic porous medium confined between two 
parallel horizontal planes. Thus, they were able to treat the flow field generated 

by an injection-production well pair as the superposition of the flow fields of a line 

source and a line sink. They divided the flow field between the injector and the 
producer into crescents and approximated the crescents by columns of finite length. 

A one-dimensional solution to the CD model was used to calculate the tracer return 

profile of each crescent. Then the individual return profiles were summed to obtain 

the composite return profile. The recirculation effect was considered by adding 

continuous injection solutions to the spike injection solution. The concentrations 
of the continuously injected fluid were equated to the average concentrations of 

different segments of the return profile. Only one recirculation was considered. 

While most of the researchers[36,67,90] used the finite system solution derived by 
Brenner[9] to model the tracer transport, Zuber[94] reported a work where he and 
his co-worker used C ~ F F  solution as the theoretical model. 

Since a linear geometry is employed, we can use the approach of the previous 
studies to model the tracer transport in vertical fractures. However, the previously 
developed methods of analysis for this type test considered only one recirculation 
and were not able to account for the strong recirculation effects. Therefore the 
previous methods were applicable only in homogeneous layers with low dispersivit y 

and wells situated at sufficient distances to minimize the recirculation effects. The 
solutions we have developed, on the other hand, not only specifically include recircu- 
lation, but also use the effects of the recirculation to determine the dominant mech- 
anism of tracer spreading along the flow path. Assuming a semi-infinite domain, we 

developed solutions for the case of an instantaneous injection and detection in flux 
concentration mode. We preferred the semi-infinite medium flux-flux solution over 
the finite medium solution because the flux-flux solution represents real systems 
better than the finite medium solution. Furthermore, the semi-infinite flux-flux and 
finite medium solutions give numerically identical results over a large range of the 
values of the parameters, but the latter are more complicated. Table 3.4 shows the 
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solutions to the three models with the pertinent initial and boundary conditions. 

We can match these solutions to the field data to estimate the parameters. 

3.2.2 Theoretical Return Profiles 

The purpose of interwell tests with recirculation is to estimate the total reser- 
voir volume accessible to the tracer as well as the parameters affecting the tracer 
transport. The total reservoir volume accessible to the tracer consists of the recir- 
culating fluid volume, which corresponds to the fracture volume, and the stationary 
fluid volume, which corresponds to the matrix pore volume. In general, while the 
recirculating fluid volume affects the breakthrough time, the stationary fluid volume 
determines the final level of concentration reached after adequate recirculations. 

In the study of tracer return profiles, it is convenient to normalize the concentra- 
tion by a reference concentration, C,, the final concentration that would be reached 
if all the tracer were to mixed only in the recirculating volume. Since the reference 
concentration C,. is: 

m c, = - 
VT 

(3.14) 

the source strength in the equations of Table 3.4 can be expressed as: 

m m L  L 
- cT- Q V , u  U 

- ----- (3.15) 

The normalized concentration functions are given in Table 3.5. In Table 3.5 the 
CD model is scaled also to the pore volume injection, however, the MD and AD 
models cannot be scaled to the pore volume injection since the matrix diffusion is 

time dependent[52]. Therefore, in MD and AD models the influence of time does 
not disappear upon normalization of time by the mean arrival time of the water, 

tw. 

In the literature, the reported values for fracture apertures in groundwater 
aquifers are usually smaller than 0.2 mm. Considering the unusually high flow 

speeds in some geothermal reservoirs, we can expect fracture sizes to be greater than 



CHAPTER 3. INTERPRETATION OF TRACER RETURN PROFILES 59 

o r  
8 4  7 
W W  

C, 



CHAPTER 3. INTERPRETATION OF TRACER RETURN PROFILES 60 

a 
3 

I 
Y 

a 
I 

3 
i s  

lek; 
II 

n u 
1 



CHAPTER 3. INTERPRETATION OF TRACER RETURN PROFILES 61 

0.2 mm. To generate the theoretical return profiles we used X values corresponding 
to a range of fracture apertures from 0.14 mm ( A  = 1) to 0.23 mm ( A  = 0.064). We 

have assumed an apparent diffusion coefficient of 8.6410-6 m2/day (1. cm2/sec)  
and a porosity of 0.05. 

The generated return profiles indicate (see Figs. 3.7 to 3.12) as many local 
minima and maxima as the number of recirculations. If we try to determine the 
times of the local minima and maxima by equating the time derivative to zero, only 
the first peak time occurs in a linear equation. However, the equation of the time 
of the first peak allows us to make close initial estimates of the parameters. 

Even though it is difficult to solve the theoretical equations for the times of the 

local minima and maxima, the generated profiles display several distinctive features, 
which are useful in analyzing field profiles. 

The return profiles generated by the CD model in Fig. 3.7 display almost periodic 
patterns, and the amplitude of the peaks decreases with increasing time. The second 
peak occurs almost exactly at a time equal to twice the time of the first peak. Also 
the first local minimum occurs virtually at the midpoint of the first and second 
peaks. These features can be used to identify the number of recirculations in an 
experiment and to determine if a recirculation is completed or not. Therefore, in 
cases where there is not enough data, we can look for distinguishing features such 
as the slope after the first peak. It should be negative until the time is close to 
1.5tP, and then positive until the time is close to 2tP. 

Also, in the CD model profiles, the final level concentration should stay constant. 
Finally in cases of high dispersion, the profiles will reach a plateau earlier than t,. It 
is desirable to continue measurements until twice the time of the maximum observed 
concentration, since it will help determine whether the plateau has been reached or 

not. 
The MD model return profiles shown in Figs. 3.8 and 3.9 also have almost 

periodic patterns. On the other hand, their features are different from the features 
of the CD model profiles. First the peaks occurs immediately after t,, and the 
section between t ,  and t, are characterized by a steep slope. Second the final 
level concentration is not constant but decreases with time. This results because 
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of the assumption of flow in a single fracture. For the parallel fractures model, the 
final level concentration would have been constant. Finally, the influence of time 
is significant in determining the shape of the return profile. For example, both a 

system with a small X and large t, and a system with a large X and a small t, yield 
similar tracer return profiles. The parameter t ,  affects the injection period because 

the tracer reaches the observation point when t > t,. 
The generated return profiles of the AD model are shown in Figs. 3.10, 3.11 and 

3.12. The return profiles are characterized by the dominant mechanism mixing the 

tracer with the reservoir fluid. If dispersion is the dominant mechanism, appearance 

of the peaks may have the features of the peaks of the CD model profiles. On the 

other hand, if matrix diffusion is dominant, then profiles will be similar to those of 

the MD model. In both cases, however, for a single fracture model, there will not 
be a final concentration level, since the matrix pore volume is theoretically infinite. 
Because of matrix diffusion, the influence of time cannot be eliminated. As a result, 
it is possible to obtain similar profiles corresponding to short, intermediate and 
long t,, by utilizing different combinations of P,, X and t,. This is indicated by 
the similarities between the profiles for t ,  values of 0.25, 2.5 and 25. However, the 
absolute amplitude of the peaks differ considerably, being high for a small t ,  and 
low for a large t,. 

De Smedt et.a1[26] pointed out that for a test without recirculation the three 
parameters, t,, P, and X are not likely to be correlated, since they affect different 
segments of the profiles. While t ,  affects the breakthrough time, P, affects the 
slope of the section between tb and t,, and X affects the slope of the tail section. 
It is also possible to observe these distinct effects of the parameters on the return 
profiles of tracer tests with recirculation. In addition to the previously mentioned 
effects, several other features related to the parameters can be observed. First, 
as the Peclet number increases, tb becomes smaller. Second, the parameter X has 

significant effects on the magnitudes and the number of the peaks that can be 
distinguished by eye in the profiles. Finally the slopes at the limit are almost 

independent of the parameters, which can be observed in all the figures for the AD 
model. Again if the parallel fractures model were used, the final level concentration 
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Figure 3.10: Normalized Solutions to the AD Model for Short Period Tests 
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would have been constant. 

3.2.3 A Field Example 

We matched the tracer return profile of a test conducted in Broadland, New 

Zealand with solutions to the models. Fig. 3.13 shows the tracer return profile 
matched by the CD model. The other two models did not match the data. For the 

MD model the error tolerance was not satisfied. For the AD model, when parameter 

estimates of the CD model and a small value for X were entered as initial estimates, 

the regression value of X became negative, and moreover, the error tolerance was 
not satisfied. When initial estimates are determined from correlations related to t,, 

t, and tb the error tolerance was not satisfied. 
The tracer return profile does not show a fast flow path characteristic) namely, 

a steep slope between t b  and t,. Furthermore, since the tailing section was not 
measured, it was difficult to determine whether the matrix diffusion effects, which 
influence the tailing of the tracer return profile appeared or not. The early part of 
the tracer return profile could be matched by the CD model of the tracer transport 
without recirculation. 

Since the shape of the tracer return profile is similar to those obtained in uni- 
form formations[36,67,90] it seems reasonable to use the uniform porous medium 
approach. In all those profiles, t, values were 3 to 13 times greater than tb, and in 
the Broadland profile t, was approximately equal to 7tb. If we divide the flow field 
into crescents such that the flow rates are equal, we can use one transfer function 
for multiple paths in the regression procedure. If the flow rates were unequal, we 
would have to use as many transfer functions as the number of paths. This is not 
feasible for more than few paths. If the flow velocities of the individual paths are 

specified explicitly, then the number of nonlinear parameters can be reduced signifi- 
cantly. Further assumptions on the form of the dispersion coefficient, for instance it 
can be taken as proportional to the velocity or to the square of the velocity, would 
greatly simplify the problem. Especially, assuming that the dispersion coefficient 
is proportional to the velocity square, the Taylor dispersion relation, the solution 
becomes a function of a single nonlinear parameter, dispersivity. The best approach 
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is to start from the simplest case and to add complications as the problem requires. 

The fracture aperture estimated from the match values of the CD model did 
not satisfy Eq. 3.3. This was expected, since the shape of the profile was not well 
captured by the model. This example however is not a characteristic profile one 

would expect to obtain from a fast flow path. Therefore, it is more appropriate 

to test the model on other data, which have the desired characteristics, including 

strong recirculation effects. 

Tracer tests with recirculation were also used by Ito e t .d . [42]  to estimate the 

volume of fluid recirculating trough the system at Onuma field, Japan. We tried 

to estimate transport parameters of the Onuma field by matching tracer return 
profiles with the solutions of models. Since we did not have the actual data sets we 

digitized the tracer return profiles published by Ito et .  aZ. The tail part of digitized 
tracer return profile matched solutions of the CD and AD models poorly, therefore, 
parameter estimates were rejected. Data match with the MD model did not satisfy 
the error criteria. 

3.3 INJECTION-BACKFLOW TRACER TESTS 

In an injection-backflow tracer test, the traced fluid is injected into the system 
at a well for a period of time, after which the same well is produced until the tracer 
is recovered. The flow conditions are assumed to be steady state and the flow due 
to injection to be dominant compared to the natural formation flow. Tracer return 
profiles obtained during the backflow period may be analyzed to determine disper- 
sive flow characteristics of the flow region near the test well. The main purpose 
of an injection-backflow tracer test in a geothermal field is to identify high con- 
ductivity fractures intersecting the injection well. Therefore, we need to study the 
characteristics of tracer return profiles of injection-backflow tests when flow takes 
place in a high conductivity single vertical fracture. 

Usually, in tracer tests in geothermal reservoirs, the tracer is introduced into 
the flow stream of the injection fluid, and concentrations of tracer in samples taken 
from the backflow stream are used to obtain tracer return profiles. In this case, both 
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injection and detection methods correspond to the flux concentration mode. Even 
though both injection and detection in resident concentration modes are difficult to 
perform, analytical solutions for both injection and detection in resident fluid and 
injection in resident fluid, and detection in flux are easy to compute. Therefore, for 

the cases where dispersion is not high, these formulas may be used instead of the 
solution for both injection and detection in flux concentration mode. 

3.3.1 Injection Period Solutions 

Injection period solutions are the same as solutions derived for the analysis of 

interwell tracer tests without recirculation. 

3.3.2 Backflow Period Solutions 

Since the flow directions in injection and backflow periods are opposite, the 
sign of the convective transport term in the transport equation of the backflow 
period is of opposite sign from the convective transport term in the equation of 

the injection period. For the convection-dispersion model, Eq. 1.1 is the injection 

period transport equation, and the backflow period transport equation is: 

aC a2 C 
- -  dC u - - D = = O  
at ax (3.16) 

The positive sign before the second term in Eq. 1.1 becomes negative in Eq. 3.16. 
To obtain the solution for tracer return profiles during the backflow period, Eq. 3.16 
must be solved subject to appropriate initial and boundary conditions. The tracer 

distribution at the end of the injection period is the initial tracer distribution for 

the backflow period. Therefore, the injection period solution provides the initial 

condition of the backflow period solution. 

Convection-Dispersion Model 

In this study, we consider four cases of injection-detection modes, namely 
both injection and detection in resident concentration mode, injection in resident 
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concentration mode and detection in flux concentration mode, injection in flux 
concentration mode and detection in resident concentration mode, and finally, both 
injection and detection in flux concentration mode. The solutions for the continuous 
injection of tracer fluid during the injection period will be considered. 

To obtain both injection and detection in resident concentration solution, Eq. 3.16 
will be solved with CCRR solution for the injection period as the initial condition. 
Solution was obtained by Fourier transformation method. The solution to Eq. 3.16 
is [ 3 71 : 

where f(x') is the initial condition. Eq. 3.17 is the convolution of the initial con- 
dition with the influence function of Eq. 3.16. Therefore, the Fourier transform 
of Eq. 3.17 is the scalar product of the Fourier transforms of the functions f ( x ' )  
and the influence function. If the infinitely extended injection in resident fluid and 
detection in resident fluid concentration is the initial condition for the injection 
period, the Fourier transform of the solution CCRR for the injection period is: 

ZrCRR = B(W)  exp (-Djtju2) exp (ujtjiw) (3.18) 

where B ( w )  is the Fourier transform of [l - H ( x ) ]  and H ( z )  is the Heaviside step 

function. The Fourier transform of Eq.3.17 is: 

- 
C = B ( w )  exp (-(Djt j  + Dt)w2) exp((ujtj - ut)iw) (3.19) 

Using the convolution theorem, Eq. 3.19 can be inverted: 

) dz' (3.20) 1 0  f i  (z - ujtj + ut - x')2 

C ( x 7 t )  = 1, J- Djtj + Dt (- 4(Djtj + D t )  

and Eq.3.20 can be integrated to yield: 

1 
2 

x - ujtj -l- ut 
C ( x , t )  = - e r f c  (3.21) 
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To determine the tracer return profile, Eq. 3.21 is evaluated at x = 0. An advantage 
of this solution is that the injection and backflow rates do not have to be equal. 
Using this method, solutions for any number of sequences of constant rate periods 
may be found. 

The solutions of injection in resident fluid and detection in flux concentration 
modes can be obtained by two methods. However, the easiest is application of the 
transformation Tl to Eq. 3.21. Because of the change in the sign of the convective 
flux, the transformation Tl in Table 1.3 for the backflow period is: 

(3.22) 

When backflow starts, the initial flux concentration solution can be found by sub- 

stituting Eq. 3.21 into Eq. 3.22. The flux concentration is chosen to be positive if 

the net tracer transport is in the flow direction. That means the values measured 

during the backflow will be taken as positive values. 
To determine the solution for the case of both injection and detection in flux 

concentration mode, an important assumption is that the exit boundary does not 
influence the system. This is a challenging task, because it is necessary to avoid 

imposing a boundary condition at x = 0, which is the outlet of the system. As- 
suming an infinite domain for the backflow period permits the use of Eq. 3.17 in 
obtaining the solution. Eq. 3.17 requires an initial condition f(x') from --oo to 
00. The solution for the injection period is the initial concentration distribution 
for x 2, but the initial concentration distribution for x 5 must be assumed. Care 
must be exercised so that initial condition does not cause material balance errors. 
To obtain the solution, either of the two methods can be used. First, express f(x') 
in terms of the resident concentration distribution and apply the transformation 
Tl to Eq. 3.17. This method was used in Section 2.3. Alternatively, express f ( x ' )  
in terms of the flux concentration by applying the transformation TI to the initial 
resident concentration function and substitute into Eq. 3.17. 

The injection period solution, CCFF in Table 1.2, gives the flux concentration 
distribution in a semi-infinite system during the injection period. Between the end 
of injection and the beginning of backflow there is a moment at which the flow 
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velocity becomes zero, and CCFF becomes equal to CCFR. The solution C C F R  in 
Table 1.2 gives the resident concentration distribution from 0 to 00, and we must 
assume an initial resident concentration distribution from 0 to -m. Substituting 
a resident concentration distribution into Eq. 3.17 gives the resident concentration 
solution. Material balance can be ensured as follow: From CCFR, there is a negative 
concentration gradient at x = 0. An initially symmetrical resident concentration 
profile with respect to the point cc = 0 allows the system respond to the negative 
concentration gradient and prevents addition of material into the system. Further, 
during the backflow period, there will be no dispersive flux across the point of 
symmetry travelling with the mean speed of flow. 

The initial flux concentration distribution is obtained by substituting initial 
resident concentration function into Eq. 3.22: 

f(x') = s e r f "  1 (2' - ut') - exp (g) e r f c  ( X' + u t j  ) 
2@ 2 6  

(x' - Ut )2  x 2 0 (3.23) 4Dt ) 

Finally, substituting Eqs. 3.23 and 3.24 into Eq. 3.17 yields the flux concentration 

solution. The concentration values at the well can be found by numerical integration 

of Eq. 3.17 at z = 0. The solutions may be expressed in dimensionless variables 

which are defined in Section 2.3 as shown in Table 3.6. 
Numerical differences between injection-backflow solutions are similar to nu- 

merical differences between the solutions for unidirectional flow. While for small t D  

differences between profiles are small (see Fig. 3.14), for large values of t D  differ- 
ences increases (see Fig. 3.15). In Fig. 3.14, the CCRR solution yields the highest 
concentration values as opposed to CCFF in the case of unidirectional flow. This is 
because, convective and dispersive fluxes are in opposite directions. 

I 
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Table 3.6: Dimensionless Backflow Period Solutions to the CD Model 
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The CGRF solution may yield negative concentrations which indicate that the 
net tracer transport is in opposite direction with flow. The initial condition which 
assumes an infinite amount of tracer is distributed along the negative axis of the 
domain can support a high concentration gradient so that dispersive flux becomes 
greater than convective flux. The basic assumption in using CC,, and CCRF is 
that the length of the transition region between tracer fluid and reservoir fluid is 
negligible compared to the distance traveled by convective front. Therefore, we 

should avoid using these solutions for short term injection-backflow tracer tests and 

for highly dispersive systems. 

The difference between CCFR and CCFF solution profiles is smaller than the 

corresponding profiles for unidirectional flow. The source at the origin which gives 

rise to large concentration gradients ceases to be for the backflow period. As a 
result, dispersive flux decreases reducing the difference between CCFR and CCFF 
solutions. 

Since the second group of terms in Eq. 3.23 is a product of a large number and 

a small number, we used an asymptotic expansion of the error function for large 
arguments, to evaluate the solution. 

The instantaneous injection case solutions can also be found by the same method. 

Matrix Diffusion Model 

Solutions of transport equations for the backflow period were obtained by 
using a double Laplace transformation method. Transport equations were trans- 
formed first with respect to the injection period time variable t j ,  and then with 
respect to the backflow period time variable, t. Using the Laplace transformation, 
the difficulties caused by the effect of the step function, which is in the solutions 
for the injection period, have been avoided. 

The Laplace space solution for equal injection and backflow rates were presented 
in a previous work[45,46]: 
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To obtain theoretical tracer return profiles, Eq. 3.25 was inverted by a double 

numerical inversion technique based on the Stehfest algorithm[82]. However, the 
effect of numerical dispersion on the Stehfest algorithm was not determined for the 
case of tracer return profiles with steep slopes, which are likely to be observed when 
the parameter, A, in Eq. 3.25 is small. To compute solutions for small A, either 
an accurate numerical inversion algorithm must be used or the real space solution 
must be found and evaluated. 

Using the inversion method, functions of functions, discussed by Ditkin and 
Prudnikov[28], and the inversion formula given by Voelker and Doetsch[89], the 

real space function of Eq.3.25 (see Appendix D), is obtained: 

A0 exp (--E) + min(tj,t) 

t - 0  

x262 de 2 X e r f c  (J5) 4 . m  1 (-E)} 

X202 )}  de (3.26) 
1 

JW e X p ( - t + v - o  

Eq. 3.26 may be interpreted to show that there are two parameters, X and 
t j ,  affecting tracer return profiles. However, the influences of both parameters on 

the tracer return profiles are not independent. Both parameters can eliminate the 

concentration discontinuity at the convective front. For every A, there is a corre- 

sponding t j  which can moderate the concentration discontinuity at the convective 
front. This can be verified as follows. Defining a new variable, AD: 
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A D  = A& (3.27) 
and normalizing the time variables by t j ,  Eq. 3.26 becomes: 

To obtain Eq. 3.28, 6' and y of Eq. 3.26 were also normalized by t j ,  but since they 
are dummy variables we left them unchanged. The Laplace space solution can be 

expressed (see Appendix D) in terms of the new variable as: 

Eq. 3.29 has the same form as Eq. 3.25, but the Laplace space variables s and 
p correspond to different real space variables. In Eq. 3.29, s corresponds to the 

variable t j / t j  = 1, and p corresponds to the variable t D p .  

From Eqs. 3.28 and 3.29, that the influences of X and t j  are indistinguishable; 
and A D ,  a combination of X and t j ,  determines shapes of tracer return profiles. 

Eq. 3.28 was evaluated numerically for several values of A D ,  and Eq. 3.29 was 

inverted numerically by using a double numerical inversion technique based on the 
S tehfest [82] algorithm. 

L 
I 

L 
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Figs. 3.16 to 3.18 show the results of numerical integration of the solution as 

well as the numerically inverted Laplace space solution. From these figures, all of 

the profiles computed by either method preserve a material balance. The material 

balance Can be checked by drawing a vertical line at tDp = 1, and determining 
whether the areas above the curve before the line and under the curve after the line 
are equal or not. All of the tracer return profiles have a common feature: Since 
the matrix provides a time-dependent storage, for all of the injected tracer to be 
recovered, an infinitely long backflow period is required. For small values of AD, the 
curves for the two methods differ considerably. For large values of AD, the profiles 

become smooth, and both methods produce the same result. Based on these new 

results, the tracer return profiles with steep fronts, which were interpreted in a 

previous work [45] by using the Stehfest [82] algorithm, should be reinterpreted. 

Fig. 3.16 shows the tracer return profiles for small values of AD. A small AD 
may occur because of either X or t j  being small. While a small X means that the 

rate of diffusion into the matrix is small, a small value for tj means that the time 
is not enough for diffusion into the matrix. In Fig. 3.16, since the total amount of 

diffusion is small, the concentration discontinuity at the convective front is reduced 

slightly. As a result, when to, = 1 in each of those return profiles, a large sudden 

drop of concentration is observed. 
In Fig. 3.17, values of X are large and there is much diffusion, but the rate of 

transfer is not enough to smooth the concentration discontinuity at the convective 
front. In Fig. 3.18, XD values are high, which means either a high X or ti value 

or both being moderate such that the product AD is high. If X is high, then the 
injected fluid loses most of the tracer content to the matrix before it travels far in 
the fracture. Thus, the concentration discontinuity is virtually eliminated. Tracer 

return profiles have high slopes at early times since the injected fluid has lost most 
ofthe tracer content to the matrix. For the tracer which has diffused into the matrix 
to be recovered, the gradient at the fracture-matrix interface must to be reversed, 
which occurs as the reservoir fluid follows the injected fluid during the backflow. As 
a result, most of the tracer is recovered slowly, because it is controlled by diffusive 
transfer between the fracture and the matrix. If t j  is high, the continuous sorption of 
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the tracer reduces the magnitude of the concentration discontinuity at the convective 

front, and during the backflow period the tracer is slowly recovered. 
The porosities of most geothermal reservoirs are low, ranging from 0.01 to 0.1 

fraction of bulk volume. Generally, fracture apertures range from 0.05 to 2 mm, and 
diffusion into the porous matrix is about ten times smaller than molecular diffusion 

in water. Therefore, assuming the following values for each of the parameters: 

4 = 0.05 

b=lmm 

D, = 1. 10-'cm2/sec 

(0.36 10-'m2/hr) 

A representative field parameter value of X can be calculated as: 

(3.30) 

In short injection period field tests, 2 to 48 hrs, tracer return profiles should be 
similar to the ones in Figs. 3.16 and 3.17. Hence, using the Stehfest[82] algorithm 
to evaluate theoretical tracer return profiles should be avoided. 

Evaluation of solutions by numerical integration requires long computation times 
making a regression analysis in a small computer infeasible. On the other hand, 
numerical Stehfest inversion of the solutions requires little computation time. 

3.4 THERMAL INJECTION-BACKFLOW TESTS 

In this section, the possibility of determining thermal characteristics of a sys- 

tem by thermal injection-backflow tests is explored. Tracer tests identify fast flow 

paths, but estimation of the thermal breakthrough based on tracer data has some- 
times been considered ambiguous[66] because of the assumptions about the geome- 
try of the flow path, and other properties of the system such as the porosities of the 
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flow path and the adjacent matrix. The fracture aperture is the most important 

parameter affecting the propagation of the thermal front. It can be estimated by 

Eq. 3.8. However, Eq. 3.8 can be used only if the condition of Taylor Dispersion, 

Eq. 3.3, is satisfied. Therefore, nonisothermal injection tests have been proposed to 

determine the thermal characteristics of a system[66]. 

Pruess et. al. [66] argued that while tracer breakthrough time is determined by 
the volume of the flow path, thermal breakthrough is determined by the available 
surface area for heat transfer from the matrix to the fracture. As a result, the 
speed of the thermal front is only partially determined by the speed of the tracer. 
They proposed thermal interference tests to make reliable estimates of the thermal 
characteristics of fast flow paths. They reported that these tests had been carried 
out in several small experimental hot dry rock reservoirs[33,86]. However, a ther- 
mal interference test on a large scale requires a test period of duration similar to 
the thermal breakthrough time. A small scale test is also unattractive, since it re- 
quires drilling a new observation well into the zone connecting the injector and the 
producer, which is a costly operation. It is also possible that the observation well 
would not intersect the fast flow path. Therefore, if no thermal drawdown data are 

available, which is the case for most fields, the thermal interference analysis must 
be based on nonthermal means. 

3.4.1 The Analysis Technique 

A thermal injection-backflow test may be the best way to estimate the thermal 
characteristics of a system to avoid high cost or extremely long test period of thermal 
interference tests. The heat and the tracer transport mechanisms in porous media 
are nearly identical in form. The transport of both heat and tracer may be modelled 

by the same differential equations. In fact, the MD and AD models were originally 
developed to study the temperature distribution in an oil layer during a hot fluid 
injection. The solution to the MD model, which was developed for the analysis of 
injection-backflow tracer tests is used to interpret temperature return profiles from 
thermal injection-backflow tests. In this case, the dependent variable of the system 

is temperature, and the parameter of the model, AD, for flow in a porous stream 
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tube, is: 

(3.31) 

Whether the Taylor dispersion condition is satisfied or not, the fluid transit 
time, t,, from the interwell tracer tests and Eq. 3.31 can be used to estimate the 
thermal breakthrough time. 

In heat transport problems, a dimensionless temperature variable is: 

(3.32) 

The thermal breakthrough time, if equal the breakthrough time of To = 0.75, is[66]: 

2 
P l C l  tuJ t, + -  tt = -- 
pWcw d j  tj 0.81342 (3.33) 

The contribution of the first group of terms in Eq.3.33 is small compared to the 
contribution of the second group of terms, because the lateral heat conduction is 

the main mechanism retarding propagation of the thermal front. In other words, 
it is the parameter X which influences the thermal breakthrough time most. The 
parameter, tw, must be determined by tracer tests. 

3.4.2 Estimation of the Thermal Breakthrough 

Determining the parameter XD from a thermal injection-backflow test and 
t, from an interwell tracer test, the thermal breakthrough time can be estimated. 
The only assumption is that flow occurs in a single vertical fracture and lateral 
heat conduction is the main mechanism retarding the propagation of the thermal 
front. In fact, the assumption that the flow path is vertical can be removed since 
the solution (Eq. 3.29) is valid for both linear and radial flow geometries, and for 
other general flow paths. The breakthrough time (Eq. 3.33), however, must be 
modified according to the assumed geometry. Eq. 3.33 can be used to estimate 
the breakthrough time for any flow path with a constant surface to volume ratio 
independent of the position. As for radial flow, a similar expression can be derived 
by using the solution for unidirectional flow. 
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Table 3.7: Thermal Properties of the System 

Pr Cr  t j  tw 
kg/m3 k J / k g ° C  hrs hrs 

2640 0.82 1 50 

Table 3.8: Estimated Thermal Breakthrough Times 

Using the values given in Table 3.7 for the rock and fluid properties[38,71] and 
for t j  = 1 hr and t, = 50 hrs, corresponding thermal breakthrough times were 

calculated and are given in Table 3.8. 
From Table 3.8 and Fig. 3.18, for q5jb values less than 2mm, temperature return 

profiles of the zones with 4 j b  5 2 mm cannot be differentiated from each other. 
However, premature breakthrough is not a concern for any of these paths. In cases 
of Qlfb 2 5 mm, it is important to design short injection period tests since as 
t j  increases, the return profiles tend to converge to a single curve. Therefore, a 
carefully designed thermal injection-backflow test with a small t j  is essential for an 
estimation of the thermal breakthrough time. 

While the effect of temperature on some of the rock and the fluid properties 
such as pwcw and prcr are not important others such as IC, and k, may be affected 
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by temperature. In Table 3.7 the properties of water were evaluated at 176"C, and 
the reservoir rock was assumed to be granitic. It is reported[71] that k,  of granite 

may have values ranging from 1.73 to 3.98. If k ,  is taken to be 1.73, then for 
4 f b  = 1 mm, the corresponding thermal breakthrough time in Table 3.8 would have 

decreased from 633 to 398 years. This demands an accurate determination of the 

thermal conductivity of the rock. An in-situ determination of thermal conductivity 
and other parameters as well may be achieved by using thermal injection-backflow 

tests. 

Thus, the results of a well-planned thermal injection-backflow test and the re- 

sults of an interwell tracer test can provide estimates of thermal breakthrough times 

during reinjection processes. 

In summary, any method of estimating the thermal breakthrough time must 
be based on both tracer and thermal data. This section contains quantitative in- 
terpretation techniques of tracer tests and thermal injection-backflow tests, and 
development of a new method to estimate thermal breakthrough times. 

Depending on the scale of heterogeneities relative to the scale of flow, one of 
the four approaches namely, the very near field, the near field, the far field and the 
very far field may be used to model tracer and heat transport through fractures. In 
geothermal reservoirs, extremely fast fluid movements and asymmetric tracer return 
profiles of interwell tracer tests indicate that the scale of fractures is in the order 
of the scale of flow. Therefore, tracer return profiles should be interpreted by using 
the very near field approach. Based on this approach, quantitative interpretation 
techniques of interwell tracer tests with and without recirculation, and injection- 
backflow tests are presented. 

Tracer return profiles are matched with the solutions of three mathematical mod- 
els(CD,MD and AD) developed to study tracer transport through a single vertical 
fracture. Matching tracer return profiles with solutions of mathematical models 
provides estimates of three parameters: 

0 t,, a measure of flow speed, 

0 D, a measure of dispersive characteristics, 
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0 A, a measure of fracture-matrix interaction. 

Estimating the thermal breakthrough time may be based solely on tracer data. 
The two parameters D, and X can be used to estimate the fracture aperture b, the 

most important parameter controlling the propagation of thermal front. However, 

estimating b from D requires that P ,  N 500 - 1000. For most of the tracer return 

profiles P, << 500. Estimating b from X is also questionable, since D, and 4 are 

usually unknown. 
Alternatively, estimation of the thermal breakthrough time may be based solely 

on thermal interference tests. Thermal interference tests are infeasible, because 
durations of these tests are similar to thermal breakthrough times. Small scale 
thermal interference tests are also unattractive mainly because of high cost. 

Finally, a new method of forecasting the thermal breakthrough time is developed 
by using interwell tracer tests and thermal injection-backflow tests. If Lauwerier 
model[50], which is equivalent to the MD model for tracer transport, is used to 
represent heat transport in the system, the thermal breakthrough time is given by 
Eq.3.33. Eq.3.33 requires two important parameters namely, water transit time t ,  
and AD which is a measure of thermal interaction between fracture and matrix. 
The parameter t ,  is estimated from interwell tracer tests and X is estimated from 
thermal injection-backflow tests. 

In conclusion, the new method requires the following steps to estimate the ther- 
mal breakthrough time during reinjection: 

1. estimate the water transit time t ,  from interwell tracer tests, 

2. estimate the parameter AD from thermal injection-backflow tests, 

3. substitute values oft, and XD into Eq. 3.33 to evaluate the thermal break- 

through time. 

This new technique does not have the disadvantages of previously suggested 

methods namely, ambiguity of estimates from non-thermal methods and high cost 

and long periods of thermal interference tests. 



Chapter 4 

CONCLUSIONS 

Major contribution of this study is development of a new method to estimate 

the thermal breakthrough time during reinjection in geothermal reservoirs. Follow- 

ing is a summary of this study on different aspects of tracer and thermal transients 

during reinjection. Also, recommendations for future work are listed. 

4.1 SUMMARY 

We presented a study of tracer and thermal transients during reinjection pro- 
cesses in geothermal reservoirs. Three mathematical models were used, namely, 
the CD, MD and AD models, developed to study tracer and heat transport in a 

single vertical fracture. The CD and AD models account for dispersive effects in 
the system. 

In tracer studies, use of two concentration variables, namely resident and flux 
concentrations, has been equally common. The two concentrations differ whenever 
a system is dispersive, and there is a concentration gradient. Many solutions have 
been developed for the CD and AD models in both variables. Even though these 
solutions give similar numerical results in most cases, they differ significantly when 
dispersive effects are dominant. Therefore whenever a system is highly dispersive 
it is necessary to use a solution which is consistent with the conditions of the ex- 
periment. A distinction between these two concentration variables is also necessary 

92 



CHAPTER 4.  CONCLUSIONS 93 

in: 

0 multidimensional simulators of tracer transport, 

0 miscible displacement experiments, 

0 water flooding, if modelled as a convective-dispersive process[73], especially 

in plotting the saturation profiles and the fractional flow curves, 

0 thermal injection processes[75,80] when dispersive effects are included, and 

0 thermal energy st orage operations[ 761. 

There are two approaches in treatment of the outlet boundary of a system. A 
zero gradient condition and the assumption that the outlet boundary does not af- 

fect the velocity distribution inside the system giving rise to the infinite medium 

flux-flux solution CCFF. Many researchers are of the opinion that the second ap- 
proach represents real systems better than the first approach. Since there is no 
proof supporting either, an example from the injection-backflow tracer tests have 
been evaluated to compare the two approaches. Fortunately, both approaches gave 
identical numerical results for observed field parameters. The CCFF solution was 
used for interpreting tracer return profiles, first because of some experimental data 
supporting[26,61] it, and second because of its simple form. 

We interpreted the return profiles from interwell tracer tests without recircu- 
lation in Wairakei, New Zealand. For the dispersive models, we used the C ~ F F  
solutions, which are consistent with the actual conditions of the tests. The param- 
eters were estimated by using a nonlinear regression technique. For all the tests, 
the estimates did not satisfy the Taylor dispersion condition. The fracture aper- 

tures estimated by using Eq. 3.9 were also high compared with values reported in 
the literature. However, the estimated fracture apertures were consistent with the 
tracer return profiles, which showed unusually high flow speeds indicating fast flow 
paths between injectors and producers. The estimated fracture apertures, however, 
are uncertain, because it was necessary to assume the matrix porosity. 

Interwell tracer tests with recirculation are useful for determining both the de- 
gree of connectivity between the injector and producers, and the recirculating fluid 
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volume between them. New solutions to the mathematical models were developed 

to interpret the tracer return profiles from these tests. The solutions appear to be 

superior to previous met hods, since the solutions specifically include recirculation 

effects, and can account for any number of recirculations. A study of the theoretical 

tracer return profiles generated by using the new solutions were presented. 

Injection-backflow tests are useful to study dispersive characteristics of a reser- 

voir near the test well. Solutions to the CD and MD models to interpret the tracer 

return profiles from injection-backflow tracer tests were developed. The CD model 
solutions depend on a parameter t D  which is the ratio of the dispersivity, a char- 
acteristic length of the system, to the length travelled by convective front during 
the injection period. If the condition for Taylor dispersion is satisfied, then the 
parameter t D  allows estimation of the fracture aperture b. If conducting a series of 

tests is economically feasible, using the results of tests with different flow rates, it 
is possible to determine whether dispersivity is scale dependent or not. The MD 
model solutions are dependent on the parameter AD, which allows an estimation of 
the product of the fracture porosity and the fracture aperture, $jb .  

The uncertainities of the estimates of thermal characteristics from tracer tests 
led to the investigation of thermal interference tests. We proposed thermal injection- 
backflow tests, which do not have high cost and extremely long test period disad- 
vantages of thermal interference tests. To interpret temperature return profiles, the 
solution developed for analyzing tracer return profiles can be used. Using the pa- 

rameters AD obtained from thermal injection-backflow tests, and t ,  obtained from 
interwell tracer tests, the thermal breakthrough time can be estimated which will 
help in designing the best reinjection scheme. 

To develop the solutions to the models, single and double Laplace transfor- 
mation methods were used. When the Laplace solutions were too complicated to 

invert analytically, or resulted in complicated integrals in real space, single and dou- 

ble numerical inversion methods based on Dubner and Abate[29], and Stehfest[82] 
algorithms were used. Double Laplace transformation has frequently been used to 
solve differential equations for semi-infinite mediums. We have used it to solve the 
MD model for injection-backflow tests. This allowed avoiding difficulties caused by 

! 
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discontinuities in the injection period solutions in real space. It is a useful tool 
whenever an injection-backflow process such as thermal recovery processes and sin- 

gle well tests to estimate the residual oil saturations are involved. Especially using 

Dean’s[24] model, it is possible to derive analytical solutions of single-well tracer 

test problems. It is also useful in well testing problems where superposition does 
not work such as a flow period followed by a shut-in period with different wellbore 

storage. 

4.2 RECOMMENDATIONS 

One of the main problems of tracer tests in geothermal reservoirs is to account 
for tracer flow in the wellbore. Since most of the time the tracer is introduced at the 
wellhead, the effect of flow in the wellbore on the concentration of the fluid stream 
entering the reservoir should be quantified. Similarly in thermal injection-backflow 
tests the heat gained by the cold fluid in the wellbore should be considered so that 
the temperature of the fluid entering the formation can be specified accurately. 

Another important issue is the effect of temperature on the thermal properties of 
the reservoir. It seems that the properties pwcy and pTcT are not strongly dependent 
on temperature, however, the effect of temperature on the thermal conductivities 
should be investigated. If thermal conductivity decreases with decreasing temper- 
ature, the thermal breakthrough time may decrease significantly since the thermal 
breakthrough time is directly proportional to the thermal conductivity of the ad- 
jacent matrix. In such a case, use of pseudo temperature functions similar to the 
pseudo pressures in gas flow, or a temperature-square model may allow a better 

estimation of the thermal breakthrough time. 
Using the method of Grove and Beetem[36], and the new solutions derived for 

interwell tests with recirculation, tracer return profiles from homogeneous forma- 

tions can be analyzed. The new solutions have two advantages over solutions used 

by previous researchers. First, they can consider any number of recirculations. Sec- 
ond, they are easier to evaluate than the finite-system solution. Furthermore, a 

regression technique can be used to estimate parameters, rather than using trial 
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and error. In particular, assuming a dispersion coefficient proportional to the ve- 

locity squared, the problem can be simplified to a regression analysis for a single 

parameter function. 
Double Laplace transformation may be used for well testing problems when the 

superposition technique does not work, such as for a flow period followed by a shut-in 
period with a different wellbore storage. The double Laplace transformation method 
may also be used for single well tracer tests to estimate residual oil saturations. 
Since, in Dean’s model, the mass transfer coefficient between the flowing and the 
stagnant phases can be related to physical parameters [68,70,88], the technique 
becomes very attractive. 
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Appendix A 

Nomenclature 

A 
b 
C 

CF 

CO 
CR 

C* 

c2 

Cm 

C r  

CW 

= cross-sectional area of preferential flow path 

= fracture aperture 

= resident concentration variable of fracture transport equations 

= flux concentration variable (ratio of the tracer flux to volumetric flux) 

= concentration variable of matrix transport equations (related to the 

= concentration of the injected fluid 

= resident concentration variable (amount of tracer per unit volume of 

resident concentration of the fracture equations) 

the system) 
= a reference concentration (concentration that would be obtained if 

all the injected tracer were to mix in the recirculating fluid volume) 
= a reference concentration (ratio of the total tracer generated per unit 

time by a source to the volumetric flow rate in the system ) 
= concentration of the first unit in a three-unit system to study 

specification of boundary conditions 
= concentration of the last (third) unit in three unit system to study 

= specific heat of the immobile(matrix) phase 
= specific heat of the reservoir rock 

= specific heat of water 

specification of boundary conditions 
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= specific heat of the mobile(fracture) phase 
= longitudinal dispersion coefficient 
= apparent diffusion coefficient (diffusion coefficient in a porous 

matrix in this study) 
= longitudinal dispersion coefficient during injection period if 

injection and backflow rates are different 
= coefficient of molecular diffusion in water 
= longitudinal dispersion coefficient in the first unit 
= longitudinal dispersion coefficient in the third( last) unit 
= Heaviside step function 
= complex constant, 2/=T 
= total tracer flux 
= dependent variable of matrix transport equation when fracture 

transport equation has J as its dependent variable 
= constant in a linear reaction term 
= thermal conductivity of the immobile( matrix) phase 

= thermal conductivity of the reservoir rock 

= thermal conductivity of water 
= length of a finite system (distance between the injector and the 

producer in interwell tracer tests) 

= length over which the tracer has spread 

= amount of tracer injected into the system (or generated by a source 

in the system) 

= amount of tracer generated per unit time by a source in the system 

= tracer in AV of fluid 
= tracer crossing A in At 
= Peclet number 
= Laplace space variable (corresponding to the backflow time variable) 
= volumetric flow rate in the system 
= volumetric injection rate 
= a source/sink in the system (amount of tracer generated/lost per 
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unit volume of the system per unit time) 

time variable) 
= Laplace space variable (corresponding to the injection period 

= temperature of the fracture 
= dimensionless fracture temperature 
= dimensionless matrix temperature 
- - i t h  transformation linking two solutions of dispersive models 

= temperature of the injected fluid 
= initial temperature of the system 

= time variable of the transport equations 

= tracer breakthrough time 
= inverse Peclet number scaled to the distance travelled by the 

convective front during the injection period 
= dimensionless injection time variable 

= dimensionless backflow time variable 

= injection period 

= peak arrival time of a tracer slug 

= thermal (temperature) breakthrough time 

= tracer transit time in a constant volume system 

= water transit time (breakthrough time of the convective front) 

= integration variable of time 
= a small time interval 
= flow velocity (volumetric flux) 
= flow velocity during injection period, if injection and backflow 

rates are unequal 
= flow velocity in the first unit 
= flow velocity in the third(1ast) unit 
= space variable along the flow direction 
= dimensionless space variable 

= integration variable of space 
= dimensionless integration variable 
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= length of a small segment of the system 
= space variable perpendicular to the flow direction 
= total injected fluid volume in an injection-backflow test 
= recirculating fluid volume in an interwell tracer test 

= a small volume of fluid in the system 

= a small volume of fluid crossing A in At 
= ith nonlinear parameter of a regression function 
= ith linear parameter of a regression function 

= Dirac delta function for space variable 

= Dirac delta function for time variable 
= integration variable of the solution of the MD model for 

inject ion-backflow tests 

= integration variable of the solution to the MD model for 

inject ion- backflow tests 

= parameter accounting for tracerwise or thermal interaction 

between fracture and matrix 
= dimensionless parameter accounting for fracture matrix 

interaction 
= density of immobile(matrix) phase 
= reservoir rock density 
= water density 
= density of mobile(fracture) phase 
= matrix porosity 
= preferential flow path(fracture) porosity 
= Fourier space variable (corresponding to the space variable x) 
= domain of a partial differential equation 
= boundaries of the domain of a partial differential equation 
= indicates single Laplace transformation 

= indicates double Laplace transformation 
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Derivatives of Solutions-No 
Recirculation 

The regression routine VARPRO uses the derivatives of the function with 
respect to nonlinear parameters (See Fossum[31] for details of using VARPRO). 
Hence, the derivatives of solutions to transport models are presented in the follow- 
ing: 

B. l  Derivatives of the CD Model 

The CD Model solution has two nonlinear parameters and its derivatives are: 

B.2 Derivatives of the MD Model 

The MD Model solution has two nonlinear parameters and its derivatives are: 
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B.3 Derivatives of the AD Model 

The AD Model solution has three nonlinear parameters and its derivatives 
are: 

ZIFF -= [ - &/( QlQ2) (B.lO) 
a Q 3  41/(4a:) + ( 8  + 2 ~ s f i / ( a i a 2 )  



Appendix C 

Derivation of 

Solut ions-Recirculat ion 

Solutions to transport models for recirculating flow are derived as follows: 

C.l  The AD Model Solution 

The AD model transport equation of flow in a fracture, in terms of the flux 
concentration variable, is: 

aC aC a2 C 
at ax - + u - -  D a z , + q = O  

The equation of the transport in the matrix is: 

The fluxes and the concentrations at the fracture matrix interface are equated 
by: 
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Initially, both the fracture and the matrix are assumed to be tracer free. Thus 
initial conditions are: 

C(X, 0 )  = Cm(2, y, 0) = 0 (C.5) 
The matrix is assumed to be infinite, therefore, the outer boundary condition 

for the matrix equation is: 

(C.6) lim Cm(x:,t) = O 
Y-+- 

Assuming that the outlet boundary does not influence the velocity distribution 
inside the system, we can follow a semi-infinite medium approach. Thus, the outer 
boundary condition becomes: 

I 

X+OO lim C(2, t )  = 0 (C.7) 

The inner boundary condition is specified in terms of flux concentrations so that 

a flux concentration is obtained. Assume that the outflowing fluid at the production 

end is immediately reinjected into the system. Thus the lower boundary condition 

is: 

m 
C(0, t )  = --S(t) + C(L,  t )  (C.8) Q 

Taking the Laplace transformation of Eq. C.2 and imposing Eqs. C.4, C.5 and 

C.6 results: 

Substituting Eq. C.9 into the Laplace transform of Eq. C.3 yields: 
q =  -A&C (C.10) 

The Laplace transform of Eq. C.l is: 

(C.11) 
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The source term,q, was transformed by using Eq. C.10. The solution of Eq. C. l l  
subject to the Laplace transforms of Eqs. C.5, C.7 and C.8, is: 

(C.12) 

where: 

U 
u2/(4D2) + (4s/.D) + (4/.D)(2A&) (C.13) 

Solving Eq. C.12 at IC = L and rearranging, the Laplace space solution to the 

K = - -  
2D 

AD model in terms of the the variables p, a1 and a2 are: 

(C.14) 

C.2 The CD Model Solution 

To obtain the CD model solution, it is not necessary to repeat the same procedure, 
since the solution can be derived from the AD model solution. When X = 0, Eq. C.13 
reduces to: 

IC ' U  =--  2/213/(402) + (4@) (C.15) 

Replace IC in Eq. C.12 by IC' to obtain the Laplace space solution to the CD 
2 0  

model: 

((2.16) 

Using the binomial series expansion[79] given by: 

00 

- - - C X n = 1 + X + X 2 + . . .  f o r  IXl<I  (C.17) 
1 

1 - X  n=O 

Rewrite Eq. C.16 as: 

- m  00 c = - exp (K'IC) exp ( ~ K ' L )  
n=O Q 

(C.18) 
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Eq. C.18 may be inverted to obtain the real space solution to the CD model: 

m o o  n L + x  -(nL + IC - U t ) 2  C = - C  
Q n=O 2 d m  ( 4Dt (C.19) 

Eq. C.19 can be solved at x = L and rewritten in terms of parameters p, a1 and 

a2 as: 

C.3 The MD model Solution 

The transport equation of the fracture is: 

dC dC - + u -  + q = o  
dt dX 

(C.21) 

Since Eq. C.21 is first order in the x variable, only one boundary condition must 
be specified along the flow direction. The matrix transport equation and the initial 
and boundary conditions are the same as those of the AD model. 

The Laplace space solution of the matrix transport equation is given by Eq. C.9 
and the source term is given by Eq. C.10. If we take the Laplace transform of 

Eq. C.21 and substitute Eq. C.10 in it we obtain 

The solution of Eq. C.22 is: 

- X 2xx 
C = Aexp(--s) e x p ( - u & )  

U 

The constant A is determined by using the boundary cond , 

The solution is: 

(C .22) 

(C.23) 

given by Eq. C.8. 

(C.24) 

where - I C ~  is: 



117 APPENDIX C. DERIVATION OF SOL UTIONS-RECIRCULATION 

s 2x 
K m = - + - f i  

u u  
Using Eq. C.17, Eq. C.24 becomes: 

00 - m  C = - exp (-tcmx) exp (-ntc,~) 
Q n=O 

(C.25) 

(C.26) 

Eq. C.26 may be inverted to obtain the real space solution to the MD model: 

nL + 2 2X((nL + x ) / u )  
4(t - (nL  + z ) / u )  1 

n= 0 u 2&(t - (nL + x ) / u ) 3  
(C.27) 

Eq. C.27 may be solved for x = L, and the resultant equation expressed in terms 
of the parameters p, a1 and a2 of the MD model to obtain: 
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Derivatives of 
Solut ions-Recirculat ion 

Derivatives of solutions with respect to nonlinear parameters are presented in 
the following: 

D. l  Derivatives of the CD Model 

The CD model solution has two nonlinear parameters and its derivatives are: 

1 M 

D.2 Derivatives of the MD Model 

The MD model solution has two nonlinear parameters and its derivatives are: 
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D.3 Derivatives of the AD Model 

The AD model solution has three nonlinear parameters and its derivatives 

are: 



Appendix E 

MD Solution- Injection-Backflow 

Derivation of solutions to the CD model for injection-backflow case has been ex- 
plained in detail in section 3.3. The solution to the MD model may be derived as 

follows: 

E.1 The MD Model Solution 

In a previous work, the Laplace space solution was presented without nondimen- 
sionalizing the variables. Here we will use dimensionless variables and a slightly 
different approach to reach the same solution and show how the real space solution 
is obtained. 

Define the following dimensionless variables: 

Y 
b Y D  = - 

AD = - 
b 
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The dimensionless injection period equations are: 

121 

( E 4  --  
at,; 

The fluxes at the fracture matrix interface are equated by: 

The initial and boundary conditions are: 

lim C m ( x D , t ~ ; )  = O (E.ll)  

The Laplace space solution of the fracture transport equation subject to these 
YD--SW 

conditions is: 

1 K = - ~ Z P ( - ( Z D ~ ) )  ~ X P  ( - ( ~ X D Z D ~ ~ ) )  (E.12) 
S 

and the Laplace space solution of the matrix transport equation is: 

4+ (E.13) 
- 1  c = - exp ( - ( xos ) )  exp(-(2xDzD)l/i-,) exp(--yo) 

S A D  
The fracture transport equation of the backflow period is different from the 

injection period equation in the sign of the convective term, because of the change 
in the direction of the flow velocity (or convective flux): 
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In Eq. E.14, the time variable is defined as: 

122 

(E.14) 

(E.15) 

In Eq. E.15, the time variable t is understood to be the backflow time. Since 
Eq. C. l  is first order in the X D  variable, only one boundary condition must be 
specified along the flow direction: 

(E.16) 

The matrix transport equation and other boundary conditions remain the same 
as in the injection period. Only the time variable, tDi, in Eq. E.6 should be changed 
to the backflow time variable t D p .  The injection period solutions, Eqs. E.12 and 
E.13, become the initial conditions in the backflow period. In these equations, 
the Laplace transformtion variables correspond to t p i  = 1, since at the end of the 
injection period, the time variable t becomes t j .  The double Laplace transformation 
of Eq. E.6 with respect to the injection and backflow time variables is: 

(E.17) 

where cm is the initial condition given by Eq. E.13. Eq. E.6 is an inhomogeneous 
ordinary differential equation, and a solution may be obtained by the method of 
undetermined coefficients: 

Applying the boundary conditions yields: 
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Substituting Eq. E.19 into Eq. E.7 yields: 

--  
The double Laplace transformation of the fracture equation is: 
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(E.20) 

(E.21) 

?7 = f [I + &=] P+ s ( S ) + ( P ) + ( 2 A g ) ( f i + , / j j )  1 exp ( - ( X D s ) )  

exP - ( ( ~ ~ D X D & ) )  + AeXP(-(XoP)) exp ( - ( ~ X D X D ~ ) )  (E.22) 

Applying the boundary condition specified at XD = 1 by Eq. E.16, and solving 

the resultant equation at X D  = 0: 

(E.23) 

To obtain the inverse transform, rewrite Eq. E.23 as: 

Use the method of functions of functions described by Ditkin and Prudnikov[28]. 
Supposing: 

~ ( s )  = lm exp ( - s ~ > f ( e > d ~  

and the validity of following operational relations: 

(E.25) 
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Writing [ p ( s )  + a(p)] for s in Eq. E.25, and multiplying both sides by a ( s ) P ( p ) ,  
we obtain: 

1 
Q(S) = - p ( s )  = s + 2XD& 

S 

P(P) = a@) P + 2 A D f l  

Using Eqs. E.26 and E.30: 

Using Eqs. E.27 and E.31: 

(E.30) 

(E.31) 

(E.32) 

(E.33) 

To invert the second term, we assume: 

a ( S )  = -, 1 p(S) = -k 2 x D f i  (E.34) 
S 

(E.35) 



APPENDIX E. MD SOLUTION- INJECTION-BACKFLOW 
125 

To invert the third term, we assume: 

1 4) = - G' p(s) = s + 2 X D G  (E.36) 

P ( P )  = 1, a(P) = P + 2ADfi (E.37) 

and use the transformation given by Voelker and Deutch [89], the 43rd trans- 
formation: 

1 t D  i -f (% P> = J, F(tDi - q,  tDp + q)dq 
S - P  (E.38) 

Finally, to invert the fourth term, we assume: 

and use Eq. E.38. 
As a result, the real space solution is: 
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In Eq. E.41 the term tD; has been replaced by unity because its value is constant 
and equal to unity during the entire backflow period. 
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