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ABSTRACT 

Discontinuities in reservoirs are important considerations when analysing pressure draw- 

down and buildup tests. The changes exhibited in test results can reveal important geometrical 

features of the reservoir boundary. And, based on the pressure transient analysis, conclusions 

as to the preferred treatment of the reservoir can be drawn. 

A mathematical model of analysing pressure transient tests for linear skin discontinuities 

is presented. The case of a strip reservoir which is unbounded horizontally io one direction 

and bounded with impermeable barriers vertically and containing a linear skin (liscontinuity is 

proposed. The problem is solved using the two dimensional diffusion equation +kith successive 

integral transformations. 

Confirmation of the solution is demonstrated by the early time line source pressure 

response and the late time linear flow pressure response. Application to well testing can be 

made with superposition of the constant rate fluid production and with matching times to 

events such as fluid barriers with the solutions. 
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I. INTRODUCTION 

Pressure transient theory has been classically based on reservoir homogeneity. However, 

practice has shown that it is quite important to consider heterogeneities and theit effect on tran- 

sient pressure behavior. Heterogeneities such as natural fractures, faults, gas caps, and man- 

made anomalies such as hydraulic fractures or injection well tests exemplify alterations in tran- 

sient pressure behavior. In order to understand such anomalies, pressure buildup1 and drawdown 

tests have become valuable resources for explaining drainage limits, formation and wellbore 

storage, average permeability, and the presence of flow discontinuities. 

In recent years, flow barriers have attracted industry and academic rqearch interest. 

Areas such as the North Slope of Alaska which exhibits a highly faulted strucqre, in addition 

to a major gas cap, and the tight sands of Colorado which contain hydraulic fractures typify 

complex discontinuities in reservoir structure. Notwithstanding educationdl interests are 

economical interests at stake in producing these fields. As a result, more inforhation is being 

demanded from well tests such that reservoir development can be planned fro4 strategy rathei 

than conjecture. Alternately, research has the challenge to establish theoretical bases in pres- 

sure transient work for defining fluid behavior with internal flow barriers. 

Studies concerning flow discontinuities have centered on internal circular &d linear boun. 

daries with either constant pressure and no flow or constant rate systems. Li*ear boundaries 

have been analysed quite extensively with assumptions of a constant change in pressure and 

constant mobility across the boundary. In work to date, the concept of a s y s t e ~  with a penetd 

able flow boundary compounded with a skin has not been analysed. This )ype of system 

would apply to reservoirs exhibiting the heterogeneities described earlier. For ebample, the gasi 

cap showing high compressibility compared to the otherwise uniform formation compressibility 

may produce a discontinuity with skin. 

1 

The research presented in this paper involves a semi-infinite reservoir with a line source 

well located some distance from a linear skin discontinuity. Constant rate fluip production ia 
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assumed. The pressure drop associated with the skin will be a function of the flow rate and 

change in pressure as established from behavior of the line source near the discontinuity. 

Measurement of the skin with varying distances along the linear boundary frord~ the line source 

provides data to construct type curves. 
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II. LITERATURE SURVEY 

Since the late 1940’s attention has been given to the use of transient prebsure measure- 

ments in wells as a device to investigate the behavior of aquifers and petrol4um reservoirs. 

Theoretically, pressure buildup and drawdown results describe the nature of tlle system from 

whence they are drawn. Results, based on the soundness of this theory, are ithen made the 

basis for developing reservoir description. The assessment of buildup and 4awdown test% 

have focused on two general conditions: constant pressure boundaries and/or no-flow boun- 

daries. The research presented in this paper considers a semi-infinite, constar$ rate reservoir 

containing a linear skin discontinuity; the skin being a result of changes in b i d  properties 

caused by fluid-fluid interfaces or structural discontinuities. 

In a classic text by Curslaw and Jaeger [1959], the solution for a c o n s d t  flow rate line1 

source well inside an infinite reservoir was presented. Van Everdingen ond G r s r  [1949] a p  

plied the Laplace transformation to th is  condition and showed the solution foi a finite radius( 

well in an infinite system. The line source referred to in these papers is dedned by Rumey, 

K m a r ,  and Guluti [1973] as a well having a vanishing radius in an infinitely large system. 

The formation is considered at constant permeability, porosity, and thickness *le the fluid iq 

considered producing at a constant rate with constant compressibility and viscosity. Also, pres. 

sure gradients are small such that the square of the gradient may be neglected in the flow sy81 

tem. Murrhews and Russell [1967], among others, define the infinite reservoi) as an infinite4 

acting reservoir where there is negligible pressure depletion at the outer boundky caused by d 

I 

I 

I 

well located some distance from that boundary. 

Completing the reservoir definition calls for understanding the internal boljndaries, if they 

exist. As described by Muskar [1937], inner discontinuities are of practical interkst when abrupt 

changes in permeability are noticed with respect to geometrical boundary cro$sover. MuskaO 

also showed two conditions that must be satisfied when considering discontinuities: equal pres- 

sures continuing across the surface of discontinuity and, based on Darcy’s LJaw, the normal 
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velocity also continuous across the discontinuity. As a result, the pressqre regime will 

correspond to a composite flow system where the two varying permeability xkgions are con- 

nected physically and geometrically. Bixel, Larkin, and van Poollen [ 19631 presented a general 

analysis of the linear discontinuity in an infinite system. Mathematically, they described two 

regions with independently homogeneous fluid and rock properties. Bixel, ,et al. extended 

Muskat’s assumptions and developed a method for measuring pressure chanqs at producing 

wells some distance, which they also calculated, from the discontinuity. Others& such as Srand- 

ing [1964], Gibson and Campbell [19701, Piasad 119751, Fenske [1984], andl Yarley 11985) 

developed supporting results for calculating distance to a discontinuity. 

The concept of measuring the pressure effects on a well from an innex. boundary have 

been studied by numerous authors. Elkins and Skov [ 19603 used the approach of an anisotro+ 

pic media containing natural fractures and correlated results from pressure trapient curves tb 

injection tests with good agreement. Similarly, Cinco, Sumuniego, and Dominguer [ 19761 stub 

died the natural fracture effect on transient pressure but treated the fracture as +n internal finite 

linear boundary. Dmis and Huwkins [1963] looked at another form of internal, boundary when 

they studied effects on pressure transients near a fault, (no-flow boundary). H+rsr [1960] cod  

sidered the interference between oil fields similar to that of a well being affectefi by some othef 

fluid producer. In Hursr’s discussion, it is shown that the pressure drop occ(urring at a disc 

tance, r, is dependent upon the physical parameters existing in the formation dt that point. Ih 

essence, interference seen in the subject well is accounted for via two parametkrs, distance ret 

moved and rate of voidage, q*, with other formation parameters such as thickness and permea. 

bility held constant. As developed earlier, Hurst [ 19601 simplified the comp$xities formerly 

associated with identifying and determining reservoir pressure in the material balance relation1 

ship by treatment with the Laplace transformation. The inversion of which shdwed pressure a1 
an explicit function of those factors contributing to its change. 

Horner [1951]; Marrhews, Brons, and Hazebroek [1954]; Collins [1961]; and, Earb 

lougher, Rmey,  Miller, and Mueller [1968] used the method of images fot generating the 



effects of linear boundaries. Stullmun [1952] and Tiub and K m r  119801 generated log-log 

type curves based on behavior from imaged source-sink wells generating the effects of both 

constant pressure and no-flow linear boundaries. Internal circular discontimitie$ have been SIX- 

died by Sugeev [1983]. Results from this study show a well produced near 4 no-flow bount 

dary developing two different pressure regions. One region, containing the producer displaying; 

a pressure drop higher than the line source and the other region showing a preiure drop lower 

than the line source. 

The method of images cannot be applied to this problem since the linear +in discontinuic 

ty contains neither a constant pressure nor a no-flow boundary. In this researbh, a permeable 

skin discontinuity is studied. As such, the approach is similar to the mathematical method 

developed by B i r d ,  et al. [ 19631 with variations to their inner boundary condition to include 

the effect of skin. Also, the method of Goode and Thumbymayugum [1985] i s  used where ii 

set of equations describing transient pressure in horizontal wells were derived psing successive 

integral transformations. 
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III. STATEMENT OF PROBLEM 

The objective of this research involves mathematically defining transienl pressure in a 

strip reservoir with a linear skin discontinuity. The characteristics of the skin are measured in 

relation to a line source well located some fixed distance from the discontinuity. Results from 

the research provide a basis in transient testing for detecting a semi-permeable discontinuity 

caused by rock changes or fluid interfaces. 
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IV. ANALYTICAL SOLUTION 

The problem is posed in two dimensions as a strip with a linear skin discontinuity ap- 

proximated by a vertical plane. An infinite conductivity well is located in region I which pro- 

duces a fluid of constant compressibility. The initial reservoir pressure is constant Transport 

of fluids vertically is prohibited and unlimited horizontally, ( see figure! 1). 

(0, Y O )  

Pressure Point 
o(,Y 1 

Well (a,b) 

Linear discontinui ty  with 
skin (length=l, w i d t k w )  

Figure 1 : Schematic diagram for the linear skin discontinuity system 

The diffusivity, q, and mobility, X, are defined for each region as: 

“=[&I 1 11= [ f ]  1 

The partial differential equations governing the isothermal fluid flow are as follows: 

For the fist  region, (d), containing the active constant rate well, 
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For the second region, (xd) ,  

The inital, boundary, and interface conditions for the problem are: 

Initial Conditions: 

Pl(x,Y,O) = Pi 
PZ(~,Y,O) = pi 

For x>o, x 4  : 

Interface Conditions: 

[ 1 2  : I1=  [ 1 2  21, 
and for the skin discontinuity, 

(31 
(41 

(7b 

with, 2-1, a characteristic length 
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To facilitate solution of the problem, dimensionless variables are defined and substituted 
into the partial differential equations and boundary conditions. 

Dimensionless Variables: 

Dimensionless Equations: 

For XD >o : 

where t D  is defined in terms of regions I permitting a diffusivity relation betwaen region I and 
II. 
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Dimensionless Boundary Conditions: 

initial conditions: 

Interface Conditions: 

The next step in solving the problem is with a transformation in time and in y coordinate, 

the variable transform for yD is defined as, I 

where 
A v=-  

YoD 
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From Churchill [1944], the Laplace transformation in time is defined as, 
r ' l -  

and from SeZby [ 19701, the Finite Fourier Cosine transformation in y, 

F {GO)}= ~Gcv)cos(mY) dY 

or, more simply as, 

applying the Laplace transformation to equation 14 and 15 yields, 

for X D  >o: 

for XD 4, 
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applying the initial condition, equation 17, gives, 

Laplace transforming the boundary conditions, 

FD,(W,YDS) = FD~(-.oo,YD$) = 0 

and, Laplace transforming the interface conditions, 

Applying the Finite Fourier Cosine transformation and using the outer bodndary conditiob, 
equation 33, to equations 29 and 3 1, 
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The Finite Fourier Cosine transformation of the boundary conditions yield, 

p f D 1 ( - M  = pfD2("Oims) = 0 

The Finite Fourier Cosine transformation of the interface conditions yields, 

the General Solution to equation 37 is: 

To find the constant, C, equation 38 will be used. 

yielding 

Rewriting the general solution, 

(38) 

I 

To solve equation 36, we take the Laplace transformation with respect to XD where "ut' is the 
Laplace variable. 



defining the following substitutions: 

a1 = v2mZ + s 

111 

112 
q=v2n?+-s 

cos(vmb) 
S a3 = 

and, rearranging, equation 47 gives, 

I simplifying, 

From Churchill [1944], inversion of the following Laplace transforms are defined as, 

(461 
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by the Convolution Integral from Kuplun [1981], 

=D 

8(z-u)sinh(6(xD-z)) dz e”” 

Evaluating equation 53 for x D a  gives, 

XD 

s(z-u)sinh(&(xD-z)) dr- 0 

and for x D x ,  
XD 

1 G(r-a)sinh(G(xD-z)) dr- -shh(fi(xD-u)) 6 (551) 

Application of the inverse Laplace transformation to equation 49 yields: 

For kDa, 

(560 

l 

and if z p a ,  

4% fi 1 (56) 
a3 FD~ = - s W 6 @ ~ - 4 )  + ~ ~ , ( x D = O ) c o s h ( 6 ~ ~ )  + FDo(xD=O)-sinh(\6xlD) 

Solving the problem defined in region 11, x ~ 4 ,  is done by evaluation of the general solutiob 
obtained in equation 43. 

I 

Recall equation 43, 
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then differentiate with respect to xD giving, 

Substituting equation 58 into 39 at xD=0 gives, 

and, similarly, substituting equation 58 into equation 40 at x p 0  gives, 

rearranging equation 60 yields, 

Substituting equations 59 and 61 into equation 57 gives, 

1 
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Applying equation 38 and rearranging, 

1 6 % - 

D =  
f + g  

where f and g are defined as, 

1 x D + e - 6  % 

f = I[ 2 l-s+][ 2 

and 

rearranging equation 63 yields, 

simplifying equation 66 gives the definition of D in the general solution as, 

Substituting equation 67 into equation 57 gives, 

(64) 

(65)  I 
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* [ [ l - S +  1 2 

rearranging, 

simplifying, 

yielding for x D w ,  

(71) 
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substituting D, given by equation 67, into equation 72, 

rearranging, 

simplifying, 
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giving the solution to FDl at WDa as, 

+ 

Combining equation 71 and 76 by the reciprocity principle for o U D S =  gives, 

and the solution for FD2 , from equation 43, where %D<oy 



- 21 - 

V. DISCUSSION 

Evaluating the analytical solutions, equation 77 and 78, requires inversion through Fourier 

space and Laplace space back into real space. To accomplish this inversion two program$ 

were developed, the Fourfirst Program which inverts in Fourier space first dnd the Stehfirst 

Program which inverts in Laplace space first. (A full discussion of the mechaqics of each prot 

gram is presented in chapter VI.) Comparison of the two programs shcbwe6 no significant 

computing advantage of one over the other; if anything, the Stehfirst Rogran ekecuted approxt 

imately 15% faster, in cpu time. 

Since the pressure function derived in the analytical solution tends toward oscillation, duq 

1 to the fourier cosine summation, a convergence criteria was needed to keep check on th 

values produced from the fourier inversion. The convergence was set to Meaning that ret 

lative changes between summation values needed to change less than before the valu$ 

was passed to or from the Laplace inverter. Figure 2 shows the behavior of the inital converi 

gence where tD = 0.1. 

I 

After evaluating the soundness of the programs, delimiting parameters wete placed on thd 

solution. (See Appendix A for the analytical delimiting solution showing line source cofi/ 

currence.) The pressure point was situated one wellbore radius away from *e well and tht+ 

vertical no-flow boundary was placed some distance away from the well; equidistant above ad 

I 

I 

below the well. The boundary skin was set to zero, mobility ratios between the two region$ 

were set equally at one as were the diffusivity ratios. Inputting this criteria into the numerical 

inversions produced the plot shown in figure 3. Figure 3 shows the vertical nocflow boundary, 

at 20 with the well located at a = 6, b = 10; the pressure point at XD = 3,  YD = 10. N4 

variation between programs was exhibited and as expected, early time data followed st r ic t l i  

along the line source solution. 

I 

I 
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Figure 4 is the standard line source solution for varying values of yoD. This array of 

curves was generated for 10 e c 10000 using the equation 

Using figure 4 for comparison, data was generated using the numerically inverted solution 

for similar values of yo,,. Figure 5 shows these results. As is apparent, no match can be made 

except for yoD = 20. Using a shifting method the curves were found to follow those in figure 

4. Figure 6 shows the shifted results. The shift used was a factor of yoD / 20. The fact that 

this shift was necessary shows an as yet unresolved puzzle in the analytical solution. This is 

under further consideration. 

Since the data for yoD = 20 shows matching early time data to the line source and half 

slope behavior at long time, it was used with the line source as a base for the next two cases -- 
simulation of infinite mobility and infinite skin. To show the behavior of an impermeable 

boundary two alternatives were explored. Figure 7 concerns a high boundary skin, 

skin-10000. This prohibits communication between region I and 11. The late time pressure 

response doubled that of the open, flowing system. This concurs with the response typically 

seen with no-flow boundaries such as vertical fractures or sealing faults. This response can 

similarly be used to evaluate the length to the barrier based on the length of the half slope 

period. The second case investigated was setting the mobility of fluids in region I infinitely 

high, AI = 1000, such that flow with the low mobility fluids of region II was virtually stopped, 

thus forming a no-flow barrier. Figure 8 shows the anticipated late time half slope curve with 

double the pressure values of the late time curve with no fluid barrier. (Well location, pressure 

point location and diffusivities were not changed in either case.) 

Appendix C contains selected data for each case discussed herein 
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VI. COMPUTATIONAL PROCEDURES 

Exact values for the integrals in equations 77 and 78 are evaluated numerically using ei- 

ther of the programs listed in Appendix B. The two programs differ in order of inversion of 

the problem. The Stehfirst Program inverts the problem in time prior to Fourier inversion af 

the y variable. The Fourfirst Program, on the other hand, inverts the y variabla prior to the Ld- 

place variable. 

Numerical inversion of the governing Laplace equations is facilitated by using an algo- 

rithm developed by Stehfest [1970]. A fourier inversion algorithm was written to complement 

the Stehfest algorithm. The fourier inverse transform as defined by SeZby [1970] is the basils 

for the algorithm. 

The programs are intentionally general such that input data can tailor the problem to & 

solved. For example, the mobility ratio can be fixed while varying skin in order to observe thk 

pressure effects over time. Additionally, values for pressure are generated 0n a logorithdc 

time scale to ease graphing and lessen the accumulation of data once a aend has been esta- 

blished. 

I 

Flowcharts for each program are presented in Appendix B preceeding the coding. 
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MI. CONCLUSIONS AND RECOMMENDATIONS 

The objective of this research was to develop a mathematical solution for evaluating tran- 

sient pressure in a strip reservoir which contains a linear skin discontinuity. An analytical 

solution was presented with two integral transformations which, due to complaxity, were in- 

verted numerically. In evaluating the order of numerical inversion, it was found that using the 

time inversion prior to space inversion held no advantages over space inversion prior to time 

inversion. 

Verification of results was made by matching the solution to a hypothetical infinite sys- 1 

I 
I 

tem with the well located centrally and pressure response measured one radii away from the 

well. It was found for cases of varying vertical no-flow boundaries, the yoD = 20 case 

matched; thus leading to a constant shift in data of yoD / 20 for the accompanying curves. A 

closer look at the cause of this shift is under consideration. An impermeable boundary was set 

in two cases by equating mobility ratios to 1000 and, in the second case, by setting the boun- 

dary skin to 10000. Late time pressure response concurred doubling of the half slope period as 

expected. 

Future studies using this work as a template can be made studying the efkcts of varying 

parameters on the pressure response of the composite infinite strip with a skin boundary. 
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NOMENCLATURE 

a 
b 
C 

D 
F 
h 
k 
L 
m 

P 
F 
B 
B 

&*&I 

4 
4 w  

r 

S 

c 

- 
E 

S 

t 
U 

x 
Y 

Y 
YO 

= x coordinate for well location 
= y coordinate for well location 
= constant in the general solution 
= compressibility 
= constant in the general solution 
= Fourier transform operator 
= formation thickness 
= permeability 
= Laplace transform operator 
= Fourier variable 
= pressure 
= Laplace transform of p 
= Fourier transform of jF 
= Laplace transform of 
= pressure drop across the skin boundary 
= volumetric rate 
= time varying production rate 
= radius 
= dimensionless skin 
= Laplace variable for the time domain 
= time 
= Laplace variable for the x domain 
= x coordinate of the pressure point 
= y coordinate of the pressure point 
= finite width of the reservoir 
= variable transform for y, ry/yoD 

al = v 2 d  + s 

6 = D i r k  delta function 
q = diffusivity constant 

= mobility 
p = fluid viscosity 
v = x/yoD + = formation porosity (fraction) 
x = pi, 3.14152976 

Subscript 

1 -regionl,x>O 
2 =region2,xcO 

D = dimensionless 
i =initial 
r = total system 
w = wellbore 
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APPENDIX A : Delimiting Solution For 
Line Source Concurrence 
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Delimiting Solution for Line Source Concurrence 

In evaluating the validity of the derived solutions, a reduction of the Solution can be 
made such that a comparison with the line source solution is possible. Assuming the condi- 
tions the line source was developed under will be repeated for equation 71 where ZDX. 

Isolating equation 7 1, 

letting al,  a2, and a3 revert to their substituting parameters and assuming the following: 

equation 71 reduces to 

Recalling the Finite Fourier Cosine Inverse Transformation from Selby [1970] defined fot 
0 < Yo < x ,  , 

where Yo will be defined in the center of the system at Yo = W2. 

Applying equation 83 m equation 82 gives, 
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letting 
w = v m  

equation 84 becomes: 

Recalling the following Laplace inverse transformations from Churchill [ 19441: 

and 

L J 

letting w1 = 1 and applying the following substitution, 

such that equation (88) takes the form, 
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then, in real space and time, equation 86 becomes: 

Evaluation of the integral in equation 92 is facilitated by use of the following substitutions 
from Abramaoitz and Stegun [1970]: 

let 

(931 O = W  

p = -  1 
2 

2’ = r 

(94) 

and 

applying these substitutions to the following integral defined in Abrumuwirz and Stegun [ 1970) 
yields, 

1 

Equation 97 can be directly applied to the integral in equation 92 and evaluated at the limits of 
0 to to: 
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Reverting the substitution of w for o and 112 for p gives, 

Rearranging equation 99 and substituting vm back for w gives the following solution: 
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APPENDIX B : Computer Programs 



General Input : 
define regions I, 11, 
and system geometry 

- 4 1  - 

In( td) increments td,pd i 

I / 
I Stehfest Algorithm : 

f o r  Lap1 ace lnversi on 
pwd(td,n,alpha) 
n=8  parameters 

Laplace Function : 
sum1 ( e r g )  r 

Fourier lnversi on : 
f (el pha,arg) 
xd>O, xd<O 

Figure 9 : Flowchart for Fourfirst Program 
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C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

7 

PROGRAM FOURFIRST 

This program generates pd versus td for a system containing a 
linear skin discontinuity. Numerical inversion of pd is 
accomplished by first inverting the Fourier function in the 
y domain then inverting the Laplace function in time. 

Variable Definitions: 

n = number of parameters for the Stehfest Algorithm 
m = calculation flag 
td = dimensionless time 

pdw = dimensionless pressure 
pwd = function called within Stehfest that contains Laplace 

equation to be inverted 
pwdl = Stehfest function that inverts Laplace equation 
sum1 = function called within Fourier Inverter containg the 

Finite Fourier Cosine equation to be inverted 

equation 
arg = Laplace variable 

alpha = Fourier variable 
xd = dimensionless x coordinate defining the pressure point 
yd = dimensionless y coordinate defining the pressure poini 

a = dimensionless x coordinate defining the well location 
b = dimensionless y coordinate defining the well location1 

f = Fourier function that inverts the Finite Fourier Cosine 

Input required by the program is read in from a file called 
’damin’. Contents of the data file are the well and pressure 
locations, skin, dimension of the system in the y direction, aad 
formation properties. 

Output appears in a file called ’data.out’ which contains the valws 
for pd vs. td. 

implicit real* 8( a-h,o-z) 
real*8 nu,i,k,l,mm,nn 
common a,b,yod,skin,xd,yd,eta 1 ,eta2,alaml ,alam2,m 

open(unit==3, file-’daaout’) 
rewind(unit-3) 
open(unit~4, file-’damin’, status=’old’, access=’sequential’) 
rewind(unit-4) 

read(4,*)a,b,yod,skin,xd,yd,etal ,eta2,alam 1 ,alam2 
write( 3,7)a,b,yod,skin,xd,yd,etal ,eta2,alam 1 ,dam2 
format(5x,’data: a= ’,f3.l,lx,’b= ’,f4.1,lx,’yod- ’,f6.1,lx, 

+’skin- ’,f3.l,lx,’xd= ’,f3.l,lx,’yd- ’,f4.1,/,12x,’etal= *, 
+f3.l,lx,’eta2= ’,f3.l,lx,’alaml- ’,f3.1,lx,’alam2= ’$3.1) 
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pi-3.14152976 
nu-pi/y od 

20 
10 

C 
C 
C 

C 
C 

C 
C 
C 
C 

C 
C 

1 
C 
C 

m-777 
n-8 
do 10 i=0,6 

k= 1 O* *i 
I-k*lO 
m = 2 * k  

call pwd(td,n,pdw) 
write(3,*)td,pdw 

continue 
continue 

stop 
end 

THE STEHFEST P-GORlTHM . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

SUBROUTINE PWD(TD,N,PD) 
THIS FUNTION COMPUTES NUMERICALLY THE LAPLACE TRNSFORM 
INVERSE OF F(S). 

IMPLICIT REAL*8 (A-H,O-Z) 
DIMENSION G( 50),V(50) ,H (25) 
common a,b,yod,skin,xd,yd,eta 1 ,eta2,alam 1 ,alam2,m 

NOW IF THE ARRAY V(1) WAS COMPUTED BEFORE THE PROGRAM 
GOES DIRECTLY TO THE END OF THE SUBRUTINE TO CALCULATE 
F(S). 

IF (N.EQ.M) GO TO 17 
M-N 
DLOGTW=0.6931471805599 
NH=N/2 

THE FACTORIALS OF 1 TO N ARE CALCULATED INTO ARRAY G. 
G( 1 )= 1 
DO 1 I=2,N 

CONTINUE 
G(I)=G(I- l)*I 

TERMS WlTH K ONLY ARE CALCULATED INTO ARRAY H. 
H( l)=ZJG(NH-l) 
DO 6 L2,NH 
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4 

5 
6 
C 
C 
C 

C 
C 
C 
C 
C 

C 
C 

C 
C 
C 

C 
C 

9 
C 
C 
8 

12 
11 

13 

14 
10 
C 
C 
C 

C 
C 

7 
C 
C 
17 

FI-I 
IF(1-NH) 4,5,6 
H(1)-FI**NH*G( 2*I)/(G(NH-I)*G(I)*G(I- 1)) 

H(I)=FI**NH*G(2*I)/(G(I)*G(I- 1)) 
GO TO 6 

CONTINUE 

THE TERMS (-l)**NH+l ARE CALCULATED. 
FIRST THE TERM FOR 1=1 

SN=2*(Mf-NW2* 2)- 1 

THE REST OF THE SN'S ARECALCULATED IN THE MAIN RUTINE. 

THE ARRAY V(1) IS CALCULATED. 
DO 7 I-1,N 

FIRST SET V(1)-0 
V(I)=O. 

THE LIMITS FOR K ARE ESTABLISHED. 
THE LOWER LIMIT IS Kl=INTEG((I+1/2)) 

K1-(1+1)/2 

THE UPPER LIMIT IS K2=MIN(I,N/2) 
K2-I 
IF (K2-NH) 8,8,9 
K2-NH 

THE SUMMATION TERM IN V(1) IS CALCULATED. 
DO 10 K=Kl,K2 

IF (2*K-I) 12,13,12 
IF (I-K) 11,14,11 
V(I)=V(I)+H(K)/(G(I-K)*G(2*K-I)) 

V(1)-V(I)+H(K)/G(I-K) 

V(I)=V(I)+H(K)/G(2*K-I) 

GOTO 10 

GOTO 10 

CONTINUE 

THE V(1) ARRAY IS FINALLY CALCULATED BY WEIGlHTING 
ACCORDING TO SN. 

V(1)-SN*V(I) 

THE TERM SN CHANGES ITS SIGN EACH ITERATION. 
S N 4 N  

CONTINUE 

THE NUMERICAL APPROXIMATION IS CALCULATED. 
PD-O.0 

PMCA=DLOGTW/T'D 
DO 15 I-1,N 

ARG=PMCA*I 
funs=suml(arg) 
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PD=PD+v(1)*fun~ 
15 CONTINUE 

18 RETURN 
END 

PD=PD*PMC A 

function sum 1 (arg) 
implicit real*8(a-h,o-z) 
real*8 nu 
common a,b,yod,skin,xd,yd,etal ,eta2,alaml ,alam2,m 

pim3.14152976 
nu-pi/ y od 
yyd=pi*yd/yod 

fun1 =f(argO,arg) 
sumo-fun1 
sum-sum0 
sum2- 10 
sum3= 10 

argo-0.0 

c starting the computation loop 
do 20 j= 1,5000 

arg2-j 

sum5=fun2*cosCj*yyd) 
sum4-sum2 
sum2-psum3 
sum3-sum5 
sum=sum+sum5 
adelta=( abs(sum3)+abs(sum2)+abs(sum4))/sum 
delta=abs( adelta) 
if(de1ta.1t0.00000000000001) goto 999 

fUn2=f(arg2,arg) 

20 continue 

999 sum 1 =-(( 1 .O/pi)*funl+(2.0/pi)*(sum-funl)) 

rem 
end 

double precision function f(alpha,arg) 
implicit real*8 (a-h,o-z) 
real*8 nu 
common a,b,yod,skin,xd,yd,etal ,eta2,alam 1 ,alam2,m 
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pi-3.14152976 
nu-pi/yod 

f 1 =sqrt(nu*nu*alpha*alpha+arg) 
f2=sqrt(nu*nu*alpha*alpha+eta 1 /eta2*arg) 
f3-dam 1 *f 1 -skin*alam2*f2*fl + a l a d * f 2  
f4-alam 1 *f 1 -skin*alad*n*f 1 -alam2*f2 

if(xd.gt.0.0) then 
f=(-cos(nu*dpha*b)/(2.O*arg*fl))*(dexp(-f 1 *abs( xd-a)) 

else 
f=(-dam 1 *cos(nu*dpha*b)*dexp(f2*xd-a*f l))/(arg*f3) 
endif 

*+f4/f3*dexp(-fl *(xd+a))) 

return 
end 
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Time Loop : output : 
In(td) incremenb Id, Pd 

1 General Input : 
define regions I, II, 
and system geometry 

I Fourier Inversion : '\I sum1 (td,n) 

I i 
Stehfest Algorithm : 
f o r  Laplace Inversion 

Laplace Function : 
xd>O, xd<O 
f (alpha, erg) 

Figure 10 : Flowchart for Stehfirst Program 
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C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

7 

PROGRAM STEHFIRST 

This program generates pd versus td for a system containing a 
linear skin discontinuity. Numerical inversion of pd is 
accomplished by first inverting the Laplace function in 
time then inverting the Finite Fourier function in the y 
domain. 

Variable Definitions: 

n = number of parameters for the Stehfest Algorithm 
m = calculation flag 
td = dimensionless time 
pd = dimensionless pressure 

equation to be inverted 
pwd = function called within Stehfest that contains Laplace 

pwdl = Stehfest function that inverts Laplace equation 
sum1 = function called within Fourier Inverter containing the 

Finite Fourier Cosine equation to be inverted 
f = Fourier function that inverts the Finite Fourier Cosine 

equation 
arg = Laplace variable 

alpha = Fourier variable I 

xd = dimensionless x coordinate defining the pressure point 
yd = dimensionless y coordinate defining the pressure point 

a = dimensionless x coodinate defining the well location 
b = dimensionless y coordinate defining the well location 

Input required by the program is read in from a file called 
’damin’. Contents of the data file are the well and pressure , 
locations, skin, dimension of the system in the y direction, aqd 
formation properties. 

Output appears in a file called ’damout’ which contains the valdes 
for pd vs. td. 

implicit real*8(a-h,o-z) 
real*8 nu,i,k,l,mm,nn 
common a,b,yod,skin,xd,yd,eta 1 ,eta2,alaml ,alam2,m 

open(unit-3, file=’data.out’) 
rewind(unit-3) 
open(unit-4, file=’data.in’, status=’old’, access=’sequential’) 
rewind(unit-4) 

read(4,*)a,b,yod,skin,xd,yd,eta 1 ,eta2,alam 1 , a h 2  
write( 3,7)a,b,yod,skin,xd,yd,etal ,eta2,alam 1 ,alam2 
format(Sx,’data: a= ’,f3.l,lx,’b- ’,f4.l,lx,’yod= ’,f6.1,1x, 

+’skin= ’,fl.l,lx,’xd= ’,f3.l,lx,’yd- ’,f4.1,/,12x,’etal- ’, 
+f3.1,lx,’eta2= ‘,f3.l,lx,’alaml= ’,f3.1,lx,’alam2- ’,f3.1) 
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pi-3.14 152976 
nu-pi/y od 

m-777 
n-8 
do 10 i-0,6 

k=lO**i 
l=k*10 
m - 2 * k  

do 20 m = m , l , k  
td-nn 

pd=suml (td,n) 
write(3,*)td,pd 
print *, td,pd 

20 continue 
10 continue 

stop 
end 

function sum 1 (td,n) 
implicit real*8(a-h,o-z) 
real*8 nu 
common a,b,yod,skin,xd,yd,eta 1 ,eta2,alam 1 ,alam2,m 

pi-3.14152976 
nu-pi/yod 
yyd=pi*yd/yod 

funl-pwd(td,n,argO) 
sum-fun1 
sum2- 10 
sum3-10 

argo=o.o 

c starting the computation loop 
do 20 j=lJOOO 

arg2=j 
fun2=pwd(td,n,arg2) 
sumS=fun2*cos(j *yyd) 
sum4-sum2 
sum2-sum3 
sum3-sum5 
sum=sum+sumS 
adelm-( abs(sum3)+abs(sum2)+abs(sum2))/sum 
delta=abs( adelta) 
if(deIta.lt0.0000000OOOOOO1) goto 999 
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20 continue 

999 sum 1 =-(( 1 .O/pi)*funl+(2.0/pi)*(sum-fun 1)) 

return 
end 

C 
C 
C 

C 
C 

C 
C 
C 
C 

C 
C 

1 
C 
C 

4 

5 
6 
C 
C 
C 

C 

THE STEHFEST ALGORITHM . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

FUNCTION PWD(TD,N,ALPHA) 
THIS FUNTION COMPUTES NUMERICALLY THE LAPLACE TRNSFORM 
INVERSE OF F(S). 

IMPLICIT REAL*8 (A-H,O-Z) 
DIMENSION G(50),V(50),H(25) 
common a,b,yod,skin,xd,yd,etal ,eta2,alaml ,alam2,m 

NOW IF THE ARRAY V(1) WAS COMPUTED BEFORE TGE PROGRAM 
GOES DIRECTLY TO THE END OF THE SUBRUTINE TO CALCULATE 
FG). 

IF (N.EQ.M) GO TO 17 
M-N 
DLOGTW=0.693147 1805599 
NH=N/2 

THE FACTORIALS OF 1 TO N ARE CALCULATED INTO' ARRAY G. 
G( 1)=1 
DO 1 b2,N 

G(I)=G(I- 1 )*I 
CONTINUE 

TERMS WITH K ONLY ARE CALCULATED INTO ARRAY H. 
H( 1)=2./G( NH- 1) 
DO 6 I=2,NH 

FI-I 
IF(1-NH) 4,5,6 
H(I)=FI**NH*G( 2*I)/(G(NH-I)*G(I)*G(I- 1)) 

H(I)=FI**NH*G(2*I)/(G(I)*G(I-l)) 
GO TO 6 

CONTINUE 

THE TERMS (-l)**NH+l ARE CALCULATED. 
FIRST THE TERM FOR 1-1 

SN=2*(NH-NH/2*2)- 1 
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C 
C 
C 
C 

THE REST OF THE SN'S ARECALCULATED IN THE MAN RUTINE. 

THE ARRAY V(1) IS CALCULATED. 
DO 7 I-l,N 

C 
C 

C 
C 
C 

C 
C 

9 
C 
C 
8 

12 
11 

13 

14 
10 
C 
C 
C 

C 
C 

7 
C 
C 
17 

FIRST SET V(I)=O 
V(I)=O. 

THE LIMITS FOR K ARE ESTABLISHED. 
THE LOWER LIMIT IS Kl=INTEG((I+1/2)) 

K1-(1+1)/2 

THE UPPER LIMIT IS K2=MIN(I,N/2) 
K2=I 
IF (K2-NH) 8,8,9 
K2-NH 

THE SUMMATION TERM IN V(1) IS CALCULATED. 
DO 10 K-K1,K2 

IF (2*K-I) 12,13,12 
IF (I-K) 11,14,11 
V(I)=V(I)+H(K)/(G(I-K)*G(2*K-I)) 

V(I)=V(I)+H(K)/G(I-K) 

V(I)=V(I)+H(K)/G(2*K-I) 

GOTO 10 

GOTO 10 

CONTINUE 

THE V(1) ARRAY IS FINALLY CALCULATED BY WEIGmING 
ACCORDING TO SN. 

V(1)-SN*V(I) 

THE TERM SN CHANGES ITS SIGN EACH ITERATION. 
SN--SN 

CONTINUE 

THE NUMERICAL APPROXIMATION IS CALCULATED. 
PWD-0.0 

PMCA=DLOGTW/TD 
DO 15 L1,N 

ARG=PMCA*I 
funs=f( alpha,arg) 
PWD=PwD+V(I)* funs 

15 CONTINUE 
PWD=PWD*PMC A 

18 RETURN 
END 
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function f(alpha,arg) 
implicit real*8 (a-h,o-z) 
real*8 nu 
common a,b,yod,skin,xd,yd,eta 1 ,eta2,alam 1 ,alam2,m 

pi53.14152976 
nu=pi/yod 

f 1 -sqrt(nu*nu*alpha*alpha+arg) 
fl=sqrt(nu*nu*alpha*alpha+eta l/eta2*arg) 
f3=alarnl*fl-~kin*alam2*f2*fl+alam2*f2 
f45alam 1 *fl-skin*alam2*f2*fl-alarn2*f2 

if(xd.gt.0.0) then 
f=(-cos(nu*alpha*b)/(2.0*arg*f l))*(dexp(-fl *abs( xd-a)) 

else 
f=(-alaml *cos(nu*alpha*b)*dexp(f2*xd-a*f l))/(arg*f3) 
endif 

*+f4/f3*dexp(-fl *(xd+a))) 

return 
end 
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TABLE C-1 

Selected Data from Stehfirst and Fourfirst Program Evaluation 

Stehfirst Program : 

Fourfirst Program : 

t D  

0.10 
0.30 
1 .00 
3.00 

10.00 
30.00 

100.00 
300.00 

1000.00 
3000.00 

1oooO.00 
3oooo.00 

100000.00 
300000.00 
900000.00 

0.10 
0.30 
1 .00 
3.00 

10.00 
30.00 

100.00 
300.00 

1000.00 
3000.00 

1oooO.00 
3oooo.00 

100000.00 
300000.00 
900000.00 

~~ 

PD 

=iEE 
0.1485 
b.5289 
'1.0077 
'1.589 1 
P.1454 
2.9698 
14.2823 
16.8497 

$:E 
3b.2759 
SV .96 17 
W.5366 

17'1.5466 

--i----- 

P D  

100125 
0.1485 
10.5289 
1 .0077 
1.5891 
'2.1454 
12.9698 
14.2823 
16.8497 

$:E 
312.2759 
47.9617 
*.5366 

17 1 S466 - 
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TABLE C-2 

Selected Data from Composite Reservoir -- Nonshif'ted 

tD 

0.10 
0.30 
1 .00 
3.00 

10.00 
30.00 

100.00 
300.00 

1OOO.00 
3000.00 

1oooO.00 
3oooo.00 

100000.00 
300000.00 
900000.00 

tD 

0.10 
0.30 
1 .00 
3.00 

10.00 
30.00 

100.00 
300.00 

1OOO.00 
3000.00 

1oooO.00 
3 m . 0 0  

100000.00 
300000.00 
900000.00 

PD 

'0.0125 
'0.1485 
0.5289 
1.0077 
1.589 1 
2.1454 
12.9698 
4.2823 
6.8497 
1.0066 
9.1288 1 2.2759 

$7.96 17 
99.5366 

17 1 S466 

PD 

=67z 
11.4851 
i 5.289 1 

1;::;: 
1.3715 
7.4417 
2.999 1 
9.0972 

3.0249 
i6.1691 

44.7439 
1 
1:::;; 
205.4403 
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TABLE C-3 

Selected Data from Composite Reservoir -- Shifted 

I rD 
0.10 
0.30 
1 .00 
3.00 

10.00 
30.00 

100.00 
300.00 

1000.00 
3000.00 

1oooO.00 
3 m . 0 0  

100000.00 
300000.00 
900000.00 

I 
0.10 
0.30 
1 .00 
3.00 

10.00 
30.00 

100.00 
300.00 

1OOO.00 
3000.00 

loooO.OO 
3oooO.00 

100000.00 
300000.00 
900000.00 

PD 

=kET 
10.1485 
'0.5289 
1.0077 
1.5891 
12.1454 
2.9698 
4.2823 
6.8497 

4 1.0066 
49.1288 
12.2759 
47.9617 
49.5366 

l d  1.5466 

-c-- 

PD 

3.2999 
'3.9097 
p.4743 
'5.3024 
~6.6 169 
~9.1855 

13.3430 
10.5440 - 
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TABLE C-4 

Selected Data for Varying Mobility Ratios and Skin 

tD 

0.10 
0.20 
1 .OO 
2.00 

10.00 
20.00 

100.00 
200.00 

1000.00 
2000.00 

1oooO.00 
2oooO.00 

Case 1 : High Mobility Ratio 

skin = 0 
a - 6  

yoD = 20 

b =  10 
XD 7 
YD E 10 
A1 = 1000 

312-1 
11 = 12 = 1 

PD 

~ 0.0125 
'0.7457 
0.5289 
'0.8223 
1 .59m 
1.9559 
3.4242 
'4.7205 
10.7351 
15.3963 
35.3906 
$0.5535 

Case 2 : High Boundary Skin 

skin = 10000 
a - 6  

yoD = 200 

b -  10 
XD 7 
YD = 10 
L1=312=11 =12= 1 

3.00 
10.00 
30.00 

100.00 
300.00 

1000.00 
3000.00 

1oooO.00 
3 m . 0 0  

100000.00 
300000.00 

1000000.00 
3000000.00 

10000000.00 

PD 
i 

' 1.0077 
1 S903 
2.2049 
3.4227 
5.7662 

10.7076 
18.9139 
35.0802 
6 1.3 162 

i112.6169 
1195.6737 
1357,9572 
b20.635 1 

11133.8394 
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TABLE C-5 

The Line Source Solution 

ID 

0.10 
0.30 
0.60 
1 .00 
3.00 
6.00 

10.00 
30.00 
60.00 

100.00 
300.00 
600.00 

1OOO.00 
3000.00 
6o00.00 

1oooO.00 
3oooo.00 
60000.00 
100000.00 
300000.00 
600000.00 

1000000.00 
3000000.00 
6000000.00 

10000000.00 

PD 

0.0124 
0.1463 
0.3376 
0.5221 
0.9947 
1.3210 
1.5683 
2.1092 
2.4537 
2.7084 
3.2568 
3.6032 
3.8585 
4.4077 
4.7452 
5.0097 
5.5590 
5.9055 
6.1610 
6.7103 
7.0569 
7.3122 
7.8616 
8.208 1 
8.4635 


