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ABSTRACT

Discontinuities in reservoirs are important considerations when analysing pressure draw-
down and buildup tests. The changes exhibited in test results can reveal important geometrical
features of the reservoir boundary. And, based on the pressure transient analysis, conclusions

as to the preferred treatment of the reservoir can be drawn.

A mathematical model of analysing pressure transient tests for linear skin discontinuities
is presented. The case of a strip reservoir which is unbounded horizontally in one direction
and bounded with impermeable barriers vertically and containing a linear skin discontinuity is
proposed. The problem is solved using the two dimensional diffusion equation with successive

integral transformations.

Confirmation of the solution is demonstrated by the early time line source pressure
response and the late time linear flow pressure response. Application to well testing can be

made with superposition of the constant rate fluid production and with matching times to

events such as fluid barriers with the solutions.
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I. INTRODUCTION

Pressure transient theory has been classically based on reservoir homogeneity. However,
practice has shown that it is quite important to consider heterogeneities and their effect on tran-
sient pressure behavior. Heterogeneities such as natural fractures, faults, gas caps, and man-
made anomalies such as hydraulic fractures or injection well tests exemplify alterations in tran-
sient pressure behavior. In order to understand such anomalies, pressure buildupi and drawdown
tests have become valuable resources for explaining drainage limits, formation and wellbore

storage, average permeability, and the presence of flow discontinuities.

In recent years, flow barriers have attracted industry and academic research interest.
Areas such as the North Slope of Alaska which exhibits a highly faulted structure, in addition
to a major gas cap, and the tight sands of Colorado which contain hydraulic fractures typify
complex discontinuities in reservoir structure. Notwithstanding educationdl interests are
economical interests at stake in producing these fields. As a result, more information is being
demanded from well tests such that reservoir development can be planned ﬁ-on{ strategy rather]
than conjecture. Alternately, research has the challenge to establish theoretical bases in pres-

sure transient work for defining fluid behavior with internal flow barriers.

Studies concerning flow discontinuities have centered on internal circular a}nd linear boun-
daries with either constant pressure and no flow or constant rate systems. Linear boundaries
have been analysed quite extensively with assumptions of a constant change in pressure and
constant mobility across the boundary. In work to date, the concept of a systera with a penetr-
able flow boundary compounded with a skin has not been analysed. ThiS type of system
would apply to reservoirs exhibiting the heterogeneities described earlier. For ekample, the gas
cap showing high compressibility compared to the otherwise uniform formation compressibility

may produce a discontinuity with skin.

The research presented in this paper involves a semi-infinite reservoir with a line source

well located some distance from a linear skin discontinuity. Constant rate fluid production is
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assumed. The pressure drop associated with the skin will be a function of the flow rate and
change in pressure as established fran behavior of the line source near the discontinuity.
Measurement of the skin with varying distances along the linear boundary from the line source

provides data to construct type curves.
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II. LITERATURE SURVEY

Since the late 1940's attention has been given to the use of transient pressure measure-
ments in wells as a device to investigate the behavior of aquifers and petroléum reservoirs.
Theoretically, pressure buildup and drawdown results describe the nature of the system from
whence they are drawn. Results, based on the soundness of this theory, are ithen made the
basis for developing reservoir description. The assessment of buildup and drawdown tests
have focused on two general conditions: constant pressure boundaries and/or no-flow boun-
daries. The research presented in this paper considers a semi-infinite, constant rate reservoir
containing a linear skin discontinuity; the skin being a result of changes in fluid properties

caused by fluid-fluid interfaces or structural discontinuities.

In a classic text by Carslaw and Jaeger [1959], the solution for a constaﬂt flow rate linel
source well inside an infinite reservoir was presented. Van Everdingen and Hurst [1949] ap-
plied the Laplace transformation © this condition and showed the solution foq a finite radiug
well in an infinite system. The line source referred to in these papers is deﬁjned by Ramey,
Kumar, and Gulasi [1973] as a well having a vanishing radius in an infinitely large system.
The formation is considered at constant permeability, porosity, and thickness while the fluid i
considered producing at a constant rate with constant compressibility and viscosity. Also, pres-
sure gradients are small such that the square of the gradient may be neglected ﬁn the flow syss-

|
tem. Marthews and Russell [1967], among others, define the infinite reservoi* as an infinited

acting reservoir where there is negligible pressure depletion at the outer boundary caused by a

well located some distance from that boundary.

Completing the reservoir definition calls for understanding the internal boundaries, if they
exist. As described by Muskat [1937], inner discontinuities are of practical interest when abrupt
changes in permeability are noticed with respect to geometrical boundary crogsover. Muskat
also showed two conditions that must be satisfied when considering discontinuities: equal pres-

sures continuing across the surface of discontinuity and, based on Darcy’s Law, the normal
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velocity also continuous across the discontinuity. As a result, the pressure regime will
correspond to a composite flow system where the two varying permeability regions are con-
nected physically and geometrically. Bixel, Larkin, and van Poollen [1963] presented a general
analysis of the linear discontinuity in an infinite system. Mathematically, they described two
regions with independently homogeneous fluid and rock properties. Bixel, iez al. extended
Muskar's assumptions and developed a method for measuring pressure changes at producing
wells some distance, which they also calculated, from the discontinuity. Others, such as Stand-
ing [1964], Gibson and Campbell [1970], Prasad [1975], Fenske [1984], and Yaxley [1985]

developed supporting results for calculating distance to a discontinuity.

The concept of measuring the pressure effects on a well from an innerf boundary have
been studied by numerous authors. Elkins and Skov [1960] used the approach of an anisotro-
pic media containing natural fractures and correlated results from pressure transient curves t¢
injection tests with good agreement. Similarly, Cinco, Samaniego, and Domin%uez [1976] stut
died the natural fracture effect on transient pressure but treated the fracture as an internal finite
linear boundary. Davis and Hawkins [1963] looked at another form of internal/boundary when
they studied effects on pressure transients near a fault, (no-flow boundary). H#rst [1960] cont
sidered the interference between oil fields similar to that of a well being affected by some othet
fluid producer. In Hurst's discussion, it is shown that the pressure drop ocdurring at a dist
tance, r, is dependent upon the physical parameters existing in the formation 4t that point. Ia
essence, interference seen in the subject well is accounted for via two parameters, distance ret
moved and rate of voidage, ¢', with other formation parameters such as thickness and permea-
bility held constant. As developed earlier, Hurst [1960] simplified the complexities formerd'
associated with identifying and determining reservoir pressure in the material balance relation-
ship by treatment with the Laplace transformation. The inversion of which showed pressure a$

an explicit function of those factors contributingto its change.

Horner [1951]; Matthews, Brons, and Hazebroek [1954]; Collins [1961]; and, Ear-

lougher, Ramey, Miller, and Mueller [1968] used the method of images fot generating th¢
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effects of linear boundaries. Stallman [1952] and Tiub and Kumar [1980] generated log-log
type curves based on behavior from imaged source-sink wells generating the effects of both
constant pressure and no-flow linear boundaries. Internal circular discontinuities have been stu-
died by Sageev [1983]). Results from this study show a well produced near a no-flow boun-
dary developing two different pressure regions. One region, containing the producer displaying;
a pressure drop higher than the line source and the other region showing a pressure drop lower

than the line source.

The method of images cannot be applied to this problem since the linear skin discontinui-
ty contains neither a constant pressure nor a no-flow boundary. In this research, a permeable
skin discontinuity is studied. As such, the approach is similar to the mathematical method
developed by Bixel, et al. [1963] with variations to their inner boundary condition to include
the effect of skin. Also, the method of Goode and Thambymayagam [1985] is used where a

set of equations describing transient pressure in horizontal wells were derived using successive

integral transformations.
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. STATEMENT OF PROBLEM

The objective of this research involves mathematically defining transient pressure in a
strip reservoir with a linear skin discontinuity, The characteristics of the skin are measured in
relation to a line source well located some fixed distance from the discontinuity. Results from
the research provide a basis in transient testing for detecting a semi-permeable discontinuity

caused by rock changes or fluid interfaces.
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IV. ANALYTICAL SOLUTION

The problem is posed in two dimensions as a strip With a linear skin discontinuity ap-
proximated by a vertical plane. An infinite conductivity well is located in regi¢on | which pro-
duces a fluid of constant compressibility. The initial reservoir pressure is constant Transport

of fluids vertically is prohibited and unlimited horizontally, ( see figue! 1).

(0,y4%)

Region (I : l<2.1.12 "z ,c( Region | : k,,u,,lv,,c",h1

® Pressure Point
(x,y)
@ Well (a,b)

Linear discontinuity with
skin (length=1, width=w)

Figure 1 : Schematic diagram for the linear skin discontinuity system

The diffusivity, n, and mobility, A, are defined for each region as:

The partial differential equations governing the isothermal fluid flow are as follows:

For the first region, (x>0), containing the active constant rate well,



o __ |9 Pp
a

For the second region, (x<0),

:_ | Fp
a S|z 3y

The inital, boundary, and interface conditions for the problem are:

Initial Conditions:
p 1(1,}’,0) =P
Pz(xy)’,o) =pi

Boundary Conditions:
pl(“’ vt) = pZ(_“ry)') = Pi

For x>0, x<0 :

Interface Conditions:
e | _| 9
[l‘ax ]1 B [l'ﬁ ]2

and for the skin discontinuity,

ap1(0.y,0) -1
Lax-—— = —;'T [—pz(O,y,t) + PI(O,)'J) ]

with, I=1, a characteristic length

Ny
2 rY ] e q(03(x—a)d(y-b)

(1

@

A
)

(5)

(6)

M

8)
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To facilitate solution of the problem, dimensionless variables are defined and substituted

into the partial differential equations and boundary conditions.

Dimensionless Variables:

kh [
= — (i (xa ,t)]
Pp, w Pi — pxYy
kyh
Po,= 7 [Pi ~p(x,y,t)]
X
ID="—
w
}'D=';L
w
b ok | L
P D‘ ¢u'cl‘ 1’39

Dimensionless Equations:
For xp >0 :

dpp, aZPD, &pp

= L _ 8(xp-a)S(yp—b
T 3% + p¥s (xp—a)d(yp—b)

For xp <0 :

™ aPl.)z N azpbz N & Pp,
N2 o ah

II.

9

(10)

(11

(12)

(13)

(14)

as)

where tp is defined in terms of regions | permitting a diffusivity relation between region | and
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Dimensionless Boundary Conditions:

initial conditions:

Pp,(xp,yp,0) = 0 (16)
Pp,(xp:¥p,0) = 0 an
outer boundary conditions:
pbl(“”yb"b) = pbz(—°°1yD”D) =0 (18)
For Xp >0, Xp <0:
9pPp, ] _ 9, ] opp, ] opp, 0 19
W Jw° Wb Jo N Jw° O Jo (19)
Interface Conditions:
9pp, 0 _ A, %,
aXD ( 7ythD) = Tl -a-x: (Ony’tD) (20)
and,
9p D, -1
—a';;' (OryD’tD) = —S— [‘PDZ(O,)'DJD) + le(09yD’tD) ] (21)

The next step in solving the problem is with a transformation in time and in the y coordinate,

the variable transform for y,, is defined &s,

Yp=—2 =y, 22
Yo
where

V= (23)
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From Churchill {1944], the Laplace transformation in time is defined as,

L {F(r)} = le’s'l-‘(t)dt = fiS) = fiS)

and from Selby [1970], the Finite Fourier Cosine transformationiny,

F {Gm}= 1[ch)cos(my) dy

giving the dimensionless pressure to be evaluated as,
,D ..
- =St
Pp = lcosmyp) ([e Po(xp:¥pitp) dipdyp

or, more simply as,
o
Pp= ‘[COS(myD)ﬁD dyp

applying the Laplace transformation to equation 14 and 15 yields,
for xp >0:

azi,,l azﬁpl 5("0‘0)5(% Yp-b)

applying the initial condition, equation 16, gives,

3%pp 3*pp 8(xp—a)8(;l; Yp-b)
. +v? L - = Sﬁp
05 or} § !

fOI‘ Xp <0,

3*pp *pp
CONY Wil T | N S S
Y3 +Vv - SPp, — Pp,(t5=0)

(24)

@25)

(26)

@n

(28)

(29)

(30
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applying the initial condition, equation 17, gives,

&P, 9*Pp
i 31

Laplace transforming the boundary conditions,

Pp,(=:¥5:5) = Pp,(~0,yp:S) = 0 (32)
LT N I LN (33
9p o° %> o %p %’ 9p o

and, Laplace transforming the interface conditions,

9Pp, A, 9Pp, ‘

Y (Oyp.S) = T (V578 (3%
P 0ym5) = =2 [50 5. (0 35
S 008 = [F5099 + P00 | 35

Applying the Finite Fourier Cosine transformation and using the outer bodndary conditioh,
equation 33, to equations 29 and 31,

d*pp _ S(xp—a)cos(mbv) ‘
22 P Vme )= 3 » 1p>0 (36)
B,

= Ny
rel Po,V* m? + ™ $H=0 » Xp<0 (3?)
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The Finite Fourier Cosine transformation of the boundary conditions yield,
Pp,(=m.S) = pp,(—o,m,5) = 0 (38)

The Finite Fourier Cosine transformation of the interface conditions yields,

dFD, A dp,

-d—x; (O’mﬁg) - l] de (O,M,S) (39)
dpp ar - _
Tix_,,—l ©Om.S) = — [—Poz(oms) + Pp,(0:m.S) ] (40)

the General Solution 1 equation 37 is:

-*\,vzmz+2-l-s Xp
= le

pp, = Ce

v2m2+21—5 Xp
N T

+ De Xp<0 (415

To find the constant, C, equation 38 will be used.

Pp(—>m.5) = 0
yielding
C=0 (42)
Rewriting the general solution,
A\Jvr s ks 5
Pp,=De : xp<0 (43b

To solve equation 36, we take the Laplace transformation with respect to xp where "«" is the
Laplace variable.
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defining the following substitutions:

a; = vim? +§
0y = V2P + —=§

112

a = cos(\Slmb)

Equation 36 becomes:

dpp _
u( u?n, - Pp,(smxp=0)) - 71: (s;mxp=0) — oypp, = ™"

and, rearranging, equation 47 gives,

= € +upp (xp=0) + P'p (xp=0)

Pp, =

uz— al

simplifying, '
- e upp(xp=0) P (xp=0)

= + +
le uz-al uz—ul uz-Oq

From Churchill [1944), inversion of the following Laplace transforms are defined as,

L? [e“"‘ ] = 8(xp-a)

Lt [ u,"a ]= cosh(vorxp)
=

44

(45)

(46)

(47)

(48)

(49)

(50)

(1)
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and,

L [ “,‘a ]= %smhcﬁxp)
Uy 1

by the Convolution Integral from Kaplan {1981],

*p

[ [ g” ] = ﬁ l 8(z—a)sinh(\o,(xp-2)) dz
1

uz—a,

Evaluating equation 53 for xp<a gives,

*p

_—\/—01—1 ! 8(z-a)sinh(Vo(xp~z)) dz= 0

and for xp>a,

*D

—— | &(z-a)sinh — — g —_
= ! (z~a)sinh(Nay(xp~2)) dz= @smh(«la_locp a))

Application of the inverse Laplace transformation to equation 49 yields:

For OQDQ,

Vo

and if xp>a,

= a . = AT .
P, = == sinh(N@;(xp~)) + i, (ip=0)cosh(N@yxp) + F'p, (xp=0)—=sinh(\Grxp)

= 1 .
Pb, = Pp,(xp=0)cosh(Vayxp) + P DI(XFO)T sinh(vo,xp)

(52)

(53)

(54)

(55)

(56)

(SJ\)

Solving the problem defined in region 11, xp<0, is done by evaluation of the general solution

obtained in equation 43.

Recall equation 43,
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Vo xp

Pp, = De ; xp<0
then differentiate with respect to xp giving,
Pp, G %

Substituting equation 58 into 39 at x;=0 gives,

d;:D, Ay
=, OmsS) = Tluwla_z

and, similarly, substituting equation 58 into equation 40 at x,=0 gives,

A -1 =
TID*/'OTz = [-D + pp (0,m,S) ]

rearranging equation 60 yields,

Pp,0mS)=D [ 1- s%\[a_z]

Substituting equations 59 and 61 into equation 57 gives,

. o eﬁ (xp—a) _ e—\"—’; (xp—a) ‘
T Yo 2

+D [1-%&@][ e‘/"_”";e“’“_""’ 1
1

(58

(59

(60)

61

(62)
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Applying equation 38 and rearranging,

B a[ eV ® 1
Vo, 2
D= 63
T+ 2 (63)
where f and g are defined as,
\!—xn -‘fifxo
_ L3 £ e 1 64
f--%[l—sxlxﬁ;][ > (64)
and
A ‘/E e‘la_xxo_e"f“_xxo 1
g== (65)
A Vo 2
rearranging equation 63 yields,
2% N o)
D= Yoy (66)
Pl 1 o3 s 23
A Vo
simplifying equation 66 gives the definition of D in the general solution as,
P
llage (67)

T MG — SO, + Ayets

Substituting equation 67 into equation 57 gives,

V% o _ & Vo Goma)
T Yo 2

_ X,ageﬂ‘l“—'
Moy = shpvapVay + Mva,
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[ T N
2

*Hl-sﬁ«/a_,
A

MV [ @0 _ .
A Vo 2 (68)

rearranging,
= a3 [ \I'a_l (ID-d) —Ja_l (xD-a) ]
= — e - e
Pp, ) \fa—l

Aoy

200N — Ao + Agoty)

.[e«a—uw[l_ o o w&;]

N +-7:1-—\/?1

}"l )\vl Q4

simplifying,

Pp. = o [e‘ja xp=a) _ e"\/“_1 (xp-a) ] 0 e‘f‘i (xp—a)
T 2Va

O e (x,,+a)[ Moy - shvopvay - Ao, ]

e, G ~ Ao + Do o

yielding for xp>a,

B = _f_L[e—‘Ja_: a) [ Moy — shogVoy - Ay, ] oV o) (71)
S Vot — haVa G + Ao
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and for 0< xp <a,

l RCE S e l

5o =D|1-s2g
1 M

\ﬁl— ‘[&l-xb_ —\Exo
spr Yl e -e (72)
A oy 2
substituting D, given by equation 67, into equation 72,
= —;\-lage l [ e"la_lzD+ e—‘/“_xxo
P2 A - shVona; + Ve 2
@ e‘fa_n X _ e—\fa_x Xp :
n ; (73)
1
rearranging,
B = Aoy
2T 20Ny - koG + Apvag)
. | oV Gp0) 1- ﬁ | ﬁf‘?}_
[" [ SRR W
—~a; Gpta) My A No, ‘
[ T@_ M vay 74)

simplifying,

P, = - ° eﬁ(lo"a)_ os e—‘/aT(Xo*‘a)
b ey 2oy
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) [ MV — SANaNG - Aa, ] (75)
Aoy - sV + Ao,

giving the solution to pp, at O<xp<a a5,

5 = - [e‘fa_x(xo‘ﬂ)
o 2

|x1JcT,—sM4a‘zJoTl- Ay ]e.@, () 6
ll‘[a; - SM\[&;‘/E + M‘/a;

Combining equation 71 and 76 by the reciprocity principle for 0<xp<e gives,

o3 [ _\/a_l}‘D"‘I

e

Po, =~ S

2o,

[ MG — shaoao - A ]e-@ - } an
Moy = shovoovay + Aoy

and the solution for pp, , fran equation 43, where xp<0,

-
5 R e (78)

P0n ™ Ao — sAovan s + Vs
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V. DISCUSSION

Evaluating the analytical solutions, equation 77 and 78, requires inversion through Fourier
space and Laplace space back into real space. To accomplish this inversion two program$
were developed, the Fourfirst Program which inverts in Fourier space first and the Stehfirst
Program which inverts in Laplace space first. (A full discussion of the mechanics of each pro+
gram is presented in chapter VI.) Comparison of the two programs shawed no significant
computing advantage of one over the other; if anything, the Stehfirst Program ekecuted approx+

imately 15% faster, in cpu time.

Since the pressure function derived in the analytical solution tends toward oscillation, dug
to the fourier cosine summation, a convergence criteria was needed to keep check on th
values produced from the fourier inversion. The convergence was set to 1074, meaning that ret
lative changes between summation values needed to change less than 1074 before the valug
was passed to or from the Laplace inverter. Figure 2 shows the behavior of the inital conver:

gence where ¢, = 0.1.

After evaluating the soundness of the programs, delimiting parameters wete placed on thg
solution. (See Appendix A for the analytical delimiting solution showing line source conL
currence.) The pressure point was situated one wellbore radius away fromn the well and the
vertical no-flow boundary was placed some distance away from the well; equidistant above an&
below the well. The boundary skin was set © zero, mobility ratics between the two region$
were set equally at one as were the diffusivity ratios. Inputting this criteria into the numerical
inversions produced the plot shown in figure 3. Figure 3 shows the vertical no-flow boundary,
y°p, at 20 with the well located at a = 6,b = 10; the pressure point at x5 = 7, yp = 10. No
variation between programs was exhibited and as expected, early time data followed strictly

along the line source solution.
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Figure 4 is the standard line source solution for varying values of y°p. This array of
curves was generated for 10 < ¥y C 10000 using the equation

¥

le o 1 . 1
=—=% Ei(- Yy— Ei(-—).
Po 2,§ 4 ) 2

44

Using figure 4 for comparison, data was generated using the numerically inverted solution
for similar values of y°,. Figure 5 shows these results. As is apparent, no match can be made
except for y°p = 20. Using a shifting method the curves were found to follow those in figure
4. Figure 6 shows the shifted results. The shift used was a factor of y°5 / 20. The fact that
this shift was necessary shows an as yet unresolved puzzle in the analytical solution. This is

under further consideration.

Since the data for y°p = 20 shows matching early time data to the line source and half
slope behavior at long time, it was used with the line source as a base for the next two cases --
simulation of infinite mobility and infinite skin. To show the behavior of an impermeable
boundary two alternatives were explored. Figure 7 concerns a high boundary skin,
skin=10000. This prohibits communication between region | and II. The late time pressure
response doubled that of the open, flowing system. This concurs with the response typically
seen with no-flow boundaries such as vertical fractures or sealing faults. This response can
similarly be used to evaluate the length to tte barrier based on the length of the half slope
period. The second case investigated was setting the mobility of fluids in region I infinitely
high, A; = 1000, such that flow with the low mobility fluids of region II was virtually stopped,
thus forming a no-flow barrier. Figure 8 shows the anticipated late time half slope curve with
double the pressure values of the late time curve with no fluid barrier. (Well location, pressure

point location and diffusivities were not changed in either case.)

Appendix C contains selected data for each case discussed herein
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VI. COMPUTATIONAL PROCEDURES

Exact values for the integrals in equations 77 and 78 are evaluated numerically using ei-
ther of the programs listed in Appendix B. The two programs differ in order of inversion of
the problem. The Stehfirst Program inverts the problem in time prior to Fourier inversion of
the y variable. The Fourfirst Program, on the other hand, inverts the y variabla prior to the La-

place variable.

Numerical inversion of the governing Laplace equations is facilitated by using an algo-
rithm developed by Stehfest [1970). A fourier inversion algorithm wes written to complement
the Stehfest algorithm. The fourier inverse transform as defined by Selby [1970] is the basis

for the algorithm.

The programs are intentionally general such that input data can tailor the problem to be

|

solved. For example, the mobility ratio can be fixed while varying skin in order to observe the
pressure effects over time. Additionally, values for pressure are generated on a logorithmic

time scale to ease graphing and lessen the accumulation of data once a trend has been esta-
blished.

Flowcharts for each program are presented in Appendix B preceeding the coding.
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VII. CONCLUSIONS AND RECOMMENDATIONS

The objective of this research was to develop a mathematical solution for evaluating tran-
sient pressure in a strip reservoir which contains a linear skin discontinuity. An analytical
solution was presented with two integral transformations which, due to complexity, were in-
verted numerically. In evaluating te order of numerical inversion, it was found that using the

time inversion prior to space inversion held no advantages over space inversion prior to time

inversion.

Verification of results was made by matching the solution to a hypothetical infinite sys-;
tem with the well located centrally and pressure response measured one radii away from the‘
well. It was found for cases of varying vertical no-flow boundaries, the y°p = 20 case
matched; thus leading to a constant shift in data of y°, / 20 for the accompanying curves. A
closer look at the cause of this shift is under consideration. An impermeable boundary was set
in two cases by equating mobility ratios to 1000 and, in the second case, by setting the boun-

dary skin to 10000. Late time pressure response concurred doubling of the half slope period as:

expected.

Future studies using this work as a template can be made studying the effects of varying

parameters on the pressure response of the composite infinite strip with a skin boundary.
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NOMENCLATURE

= x coordinate for well location
=y coordinate for well location
= constant in the general solution
= compressibility

= constant in tre general solution
= Fourier transform operator

= formation thickness

= permeability

= Laplace transform operator

= Fourier variable

= pressure

= Laplace transform of p

= Fourier transform of g

= Laplace transform of g

= pressure drop across the skin boundary
= volumetric rate

= time varying production rate

= radius

= dimensionless skin

= Laplace variable for the time domain
= time

= Laplace variable for the x domain

= x coordinate of the pressure point
=y coordinate of the pressure point

= finite width of the reservoir

= variable transform fory, my/y°p

=vimt+s
=Vt + -:—IS
- cos(Vmb22

S
= Dirac delta function
= diffusivity constant
= mobility
= fluid viscosity
=ny°p
= formation porosity (fraction)
= pi, 3.14152976

Subscript

1

2
D
[

t
w

= region 1, x>0
= region 2, x<0
= dimensionless
zinitial

= total system
= wellbore
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APPENDIX A : Delimiting Solution For
Line Source Concurrence
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Delimiting Solution for Line Source Concurrence

In evaluating the validity of the derived solutions, a reduction of the Solution can be
made such that a comparison with e line source solution is posssible. Assuming the condi-
tias the line source was developed under will be repeated for equation 71 where xp>a.

Isolating equation 71,

0y [e-qa () | [ Aoy - shvaay - AV, ] SV (xow)]

N TR WA Wi

letting a4, a3, and oy revert to their substituting parameters and assuming the following:

xp-a=1 (79)
s=0 (80)
M =nymy=1 (81)
equation 71 reduces to
= € Wimd + S cos(vmb) (82)
T

Recalling the Finite Fourier Cosine Inverse Transformation from Selby [1970] defined fof
O<Yp<nm,

F =2 £ - 2 Spmcostmty) (83)

m=1

where Y, will be defined in the center of the system at Yp =w/2.
Applying equation 83 to equation 82 gives,

_ e s 2 i e_qu,,.l...s cos(vmb) cos(mYp,
P 258~ W SWAE S 2

(84)
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letting

equation 84 becomes:

2 = e YW+S cos(wh) cos(mYp)

2SN ® ,5;, SVw + S 2

Recalling the following Laplace inverse transformations from Churchill [1944]:

and

cos(wb) cos(mYpy

[ [ cos(wb) cos(mYp, ]

2§ 2

letting w;, = 1 and applying the following substitution,

AS+wA) = t[ e Fu) e dr

such that equation (88) takes the form,

(85)

(86)

(87)

(88)

(89)

(90)

o1
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then, in real space and time, equation 86 becomes:

1
. ) "_D a1 _ 1
le— 27‘ [2 n € e'fC(z‘J;;)}

JW SO I

v 4TD

2 & _cos(wb) cos(mYp) o e
%2, 24 ==

dt (92)

Evaluation of the integral in equation 92 is facilitated by use of the following substitutions
from Abramowitz and Stegun [1970]:

let
O=w (93)
B=% (94)
r=1 (95)
and
dt = 2xdy, (96)

applying these substitutions to the following integral defined in Abramowitz and Stegun [1970]
yields,

—o- & =
2 b= V| 20p B
fe x dx—4m [ez erﬂmx+x)

N erfloy, — -%) ] + constant 7

Equation 97 can be directly applied to the integral in equation 92 and evaluated at the limits of
0 to tp:
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D -8

[ez"’a erf(mtp+£) + e 2 erf(mtp—-@-) ] (98)
40 Ip ip

Reverting the substitution of w for @ and 1/2 for B gives,

1

1
—w 2 99
2'0) + e " erfwtp ) ] (99)

2tp

[e“’ erflwip+

Rearranging equation 99 and substituting vm back for w gives the following solution:

1
B W PO (WP T B
Pp,= 5= [2 ¢ ‘”f“‘z\f,;’] o

* i“ v_lm. [e"”' erf(vmtD+-i-:;) +evm e’f(thD——z‘:;) ] (100)

m=even




-40-

APPENDIX B : Computer Programs
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General Input :
define regions| 1,
and system geometry

N/

N
I r Stehfest Algorithm :
for Laptace Inversion

r-———) pwd(td,n,alpha)

n=8 parameters

I——% In(td) increments ‘ td, pd

A4
L____f Laplace Function : ]

——i suml (arg)

]

Fourier Inversion :
f(elpha,arg)
Xd>0, xd<0

Figure 9 : Flowchart for Fourfirst Program
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PROGRAM FOURFIRST

This program generates pd versus td for a system containing a
linear skin discontinuity. Numerical inversion of pd is
accomplishedby first inverting the Fourier function in the
y domain then inverting the Laplace function in time.

Variable Definitions:

n = number of parameters for the Stehfest Algorithm
m = calculation flag
td = dimensionlesstime
pdw = dimensionless pressure
pwd = function called within Stehfest that contains Laplace
equation to be inverted
pwdl = Stehfest function that inverts Laplace equation
sum! = function called within Fourier Inverter containg the
Finite Fourier Cosine equation to be inverted
f = Fourier function that inverts the Finite Fourier Cosine
equation
arg = Laplace variable
alpha = Fourier variable
xd = dimensionless x coordinate defining the pressure point
yd = dimensionlessy coordinate defining the pressure point
a = dimensionless x coordinate defining the well location
b = dimensionlessy coordinate defining the well locationl

Input required by the program is read in from a file called
’data.in’. Contents of the data file are the well and pressure
locations, skin, dimension of the system in the y direction, ard
formation properties.

Output appears in a file called ’data.out’ which contains the values

for pd vs. td.

implicit real*8(a-h,0-z)
real*8 nu,i,k,l,mm,nn
common a,b,yod,skin,xd,yd,etaleta2,alaml,alam2,m

open(unit=3, file="data.out’)

rewind(unit=3)

open(unit=4, file—"damin’, status='old’, access="sequential’)
rewind(unit=4)

read(4,*)a,b,yod,skin,xd,yd,etal,eta2,alam J,alam2

write(3,7)a,b,yod,skin,xd,yd,etal eta2,alam Lalam?2

format(5x,'data: a= ’,f3.1,1x,’b= ",f4.1,1x,’yod= " f6,1,1x,
+'skin= ’,£3.1,1x,’xd= ’,f3.1,1x,’yd= ’,f4.1,/,12x,’etal=",
+f3.1,1x,’eta2= ’ f3.1,1x,’alaml= ’,f3.1,1x,’alam2= ’ f3,1)
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pi—3.14152976
nu=pi/yod

m=777

n=§

do 10i=0,6
k= 10%*]
1=k*10
mm=2*k

do 20 nn=mm,l,k
td=nn

call pwd(td,n,pdw)
write(3,*)td,pdw

continue
continue

stop
end

THE STEHFEST ALGORITHM

sk ok ook s ok s ok o o o o ok o ok ok o ok s ok ok ook o ok o ok

SUBROUTINE PWD(TD,N,PD)

THIS FUNTION COMPUTES NUMERICALLY THE LAPLACE TRNSFORM

INVERSE OF F(S).
IMPLICIT REAL*3 (A-H,0-2)
DIMENSION G(50),V(50),H(25)
common a,b,yod,skin,xd,yd,eta Leta2,alam Lalam2,m

NOW IF THE ARRAY V(I) WAS COMPUTED BEFORE THE PROGRAM
GOES DIRECTLY TO THE END OF THE SUBRUTINE TGO CALCULATE
F(S).

IF (N.EQM) GO TO 17

M-N

DLOGTW=0.6531471805599
NH=N/2

THE FACTORIALS OF 1TO N ARE CALCULATED INTO ARRAY G.
G(D=1
DO 11=2,N
GI)=G(I-1)*1
CONTINUE

TERMS WITH K ONLY ARE CALCULATED INTO ARRAY H.
H(1)=2/G(NH-1)
DO 61=2,NH



FI-I
IF(I-NH) 4,5,6
4 H(I)=FI**NH*G(2*1)/(G(NH-)*G(1)*G(I- 1))
GOTO6
5 H(D)=FI**NH*G(2*I)/(G())*G(I-1))
6 CONTINUE
C
C THE TERMS (-1)**NH+1 ARE CALCULATED.
C FIRST THE TERM FOR 1=1
SN=2%(NH-NH/2*2)-1
C
C THE REST OF THE SN'S ARECALCULATED IN THE MAIN RUTINE.
C
C
C THE ARRAY V(I) IS CALCULATED.
DO 7 1-1N
C
C FIRST SET V(1)=0
V(1)=0.
C
C THE LIMITS FOR K ARE ESTABLISHED.
C THE LOWER LIMIT IS K1=INTEG((1+1/2))
Kl1=(1+1)/2
C
C THE UPPER LIMIT IS K2=MIN(I,N/2)
K2-I
IF (K2-NH) 8,8,9
9 K2-NH
C
C THE SUMMATION TERM IN V(I) IS CALCULATED.
8 DO 10K=K1,K2
IF (2%K-1) 12,13,12
12 IF (I-K) 11,14,11
11 VI)=VD)+HK)/(GI-K)*G(2*K-1))
GOTO 10
13 V(D)= V(D)+H(K)/G(I-K)
GOTO 10

VD=V +HEK)/G(2*K-I)
CONTINUE

14

10

C

C THE V() ARRAY IS FINALLY CALCULATED BY WEIGHTING
C ACCORDING TO SN.
V(I)=SN*V(I)

C

C

7

C

C

THE TERM SN CHANGES ITS SIGN EACH ITERATION.
SN=-SN
CONTINUE

THE NUMERICAL APPROXIMATION IS CALCULATED.

DO 151=1,N
ARG=PMCA*]
funs=sum1(arg)
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PD=PD+V(I)*funs
15 CONTINUE
PD=PD*PMCA
18 RETURN
END

function sum1(arg)

implicit real*8(a-h,0-z)

real*8 nu

common a,b,yod,skin,xd,yd,etal eta2,alam1,alam2,m

pi=3.14152976
nu-pi/yod
yyd=pi*yd/yod
argo-0.0
funl=f(arg0,arg)
sumo-funl
sum-sumO
sum2=10
sum3=10

c starting the computation loop
do 20 j=1,5000
argl=j
fun2=f(arg2,arg)
sumS=fun2*cos(j*yyd)
sumd=sum?
sum2=sum3
sum3=sum3$
sum=sum-+sums5
adelta=(abs(sum3)+abs(sum2)+abs(sum4))/sum
delta=abs(adelta)
if(delta.1t.0.00000000000001) goto 999
20 continue

999 sum=-((1.0/pi)*funl+(2.0/pi)*(sum-funl))

return
end

double precision function f(alpha,arg)

implicit real*8 (a-h,0-2)

real*§ nu

common a,b,yod,skin,xd,yd,etal eta2 alaml,alam2,m
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pi-3.14152976
nu=pi/yod

fl=sqrt(nu*nu*alpha*alpha+arg)
f2=sqrt(nu*nu*alpha*alpha+eta l/eta2*arg)
f3=alam 1*f1-skin*alam2*f2*f]+alam2*f2
f4=alam 1*f1-skin*alam2*f2*f1-alam2*f2

if(xd.gt.0.0) then

f=(-cos(nu*alpha*b)/(2.0*arg*f1))*(dexp(-f 1*abs(xd-a))
*+f4/f3*dexp(-f1*(xd+a)))

else

f=(-alam 1*cos(nu*alpha*b)*dexp(f2*xd-a*f1))/(arg*f3)

endif

return
end
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General Input :
defineregions | 1,
and system geometry

Time Loop : output :
| In(td) increments td, pd

N2

e ) . \
Fourier Inversion :
——)  sumi(td,n)
N ¢ 4
i h

Stehfest Algorithm :

for Laplace Inversion
; pwd(td,n,alphe)
n=8 parameters
\ J

rLapIace Function :
xXd>0, xd<0

f (alpha, arg)

Figure 10 : Flowchart for Stehfirst Program
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PROGRAM STEHFIRST

This program generates pd versus td for a system containing a
linear skin discontinuity. Numerical inversion of pd is
accomplishedby first inverting the Laplace function in
time then inverting the Finite Fourier function in the y
domain.

Variable Definitions:

n = number of parameters for the Stehfest Algorithm
m = calculation flag
t = dimensionless time
pd = dimensionless pressure
pwd = function called within Stehfest that contains Laplace
equation to be inverted
pwdl = Stehfest function that inverts Laplace equation
suml = function called within Fourier Inverter containing the
Finite Fourier Cosine equation to be inverted
f = Fourier function that inverts the Finite Fourier Cosine
equation
arg = Laplace variable
alpha = Fourier variable ‘
xd = dimensionless x coordinate defining the pressure point
yd = dimensionlessy coordinate defining the pressure point
a = dimensionless x coodinate defining the well location
b = dimensionlessy coordinate defining the well location

Input required by the program is read in from a file called
’data.in’. Contents of the data file are the well and pressure
locations, skin, dimension of the system in the y direction, ard
formation properties.

Output appears in a file called 'data.out’ which contains the values

for pd vs. td.

implicit real*8(a-h,0-z)
real*8 nu,ik,l,mm,nn
common a,b,yod,skin,xd,yd,eta Leta2,alaml,alam2,m

open(unit=3, file="data.out’)

rewind(unit=3)

open(unit=4, file="data.in’, status="0ld’, access="sequential’)
rewind(unit=4)

read(4,*%)a,b,yod,skin,xd,yd,eta Leta2,alam 1,alam2

write(3,7)a,b,yod,skin,xd,yd,etal eta2,alam 1,alam2

format(5x,'data: a=",f3.1,1x,’b=",f4.1,1x,’yod= ",f6.1,1x,
+’skin= ’,£3.1,1x,’xd= ",f3.1,1x,’yd= " ,f4.1,/,12x,’etal=’,
+f3.1,1x,’eta2= ' f3.1,1x,’alam1~= ’,£3.1,1x,’alam2= ',f3.1)
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pi—3.14 152976
nu=pi/yod

m-=777

n-8

do 10i=0,6
k=10%%]
1=k*10
mm=2%k

do 20 nn=mm,Lk
td=nn

pd=sum1(td,n)
write(3,*)td,pd
print ¥, td,pd

cqnﬁnue
continue

stop
end

function sum1(td,n)

implicit real*8(a-h,0-2)

real*8 nu

common a,b,yod,skin,xd,yd,etaleta2,alam Lalam?2,m

pi-3.14152976
nu=pi/yod
yyd=pi*yd/yod
arg0=0.0
funl=pwd(td,n,arg0)
sum-funl

sum2=10

sum3=10

starting the computation loop
do 20 j=1,5000

arg2=j
fun2=pwd(td,n,arg2)
sumS=fun2*cos(j*yyd)
sumd=sum?2
sum2=sum3
sum3=sums$
sum=sum+sumsS
adelta=(abs(sum3)+abs(sum2)+abs(sum2))/sum
delta=abs(adelta)
if(delta.1t.0.00000000000001) goto 999
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continue

sum!i=-((1.0/pi)*fun1+(2.0/pi)*(sum-funl))

return
end

THE STEHFEST ALGORITHM
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FUNCTION PWD(TD,N,ALPHA)
THIS FUNTION COMPUTES NUMERICALLY THE LAPLACE TRNSFORM
INVERSE OF E(S).

IMPLICIT REAL*S (A-H,0-Z)

DIMENSION G(50),V(50),H(25)

common a,b,yod,skin,xd,yd,etal,eta2,alaml,alam2,m

NOW IF THE ARRAY V(I) WAS COMPUTED BEFORE THE PROGRAM
GOES DIRECTLY TO THE END OF THE SUBRUTINE TO CALCULATE
F(S).

IF (N.EQ.M) GO TO 17

M-N

DLOGTW=0.693147 1805599

NH=N/2

THE FACTORIALS OF 1 TO N ARE CALCULATED INTO ARRAY G.
G(1)=1
DO 11=2,N
G(D)=G(1- I
CONTINUE

TERMS WITH K ONLY ARE CALCULATED INTO ARRAY H.

H(1)=2./G(NH-1)
DO 6 1=2,NH

Fl-I

IF(I-NH) 4,5,6

H(D=FT**NH*G(2*)/(G(NH-I)*G(I)*G(I- 1))

GOTO6

H(D)=-FI**NH*G(2*I)/(G()*G(-1))
CONTINUE

THE TERMS (-1)**NH+1 ARE CALCULATED.
FIRST THE TERM FOR I=1
SN=2*(NH-NH/2*2)-1
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THE REST OF THE SN*S ARECALCULATED IN THE MAIN RUTINE.

THE ARRAY V(1) IS CALCULATED.
DO 7 1-I)N

FIRST SET V(I)=0
V(1)=0.

THE LIMITS FOR K ARE ESTABLISHED.
THE LOWER LIMIT IS K1=INTEG((I1+1/2))
K1=(1+1)/2

THE UPPER LIMIT IS K2=MIN(I,N/2)
K2=]
K2-NH

THE SUMMATION TERM IN V(I) IS CALCULATED.
DO 10K=K1,K2

IF (2*K-I) 12,13,12

IF (I-K) 11,14,11

V(I)=V()+HEK)(GI-K)*G(2*K-1))

GOTO 10

V(I)=V()+HK)/GI-K)

GOTO 10

V()=V(I)+HK)/G2*K-I)
CONTINUE

THE V(I) ARRAY IS FINALLY CALCULATED BY WEIGHTING
ACCORDING TO SN.
V(D)=SN*V(I)

THE TERM SN CHANGES ITS SIGN EACH ITERATION.
SN=-SN
CONTINUE

THE NUMER ICAL APPROXIMATION IS CALCULATED.

PWD=0.0
PMCA=DLOGTW/TD
DO 151=1,N

ARG=PMCA*]

funs=f(alpha,arg)

PWD=PWD+V(I)*funs
CONTINUE
PWD=PWD*PMCA
RETURN
END
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function f(alpha,arg)

implicit real*8 (a-h,0-z)

real*8 nu

common a,b,yod,skin,xd,yd,etal,eta2,alam 1,alam2,m

pi=3.14152976
nu=pi/yod

fl=sqrt(nu*nu*alpha*alpha+arg)
f2=sqrt(nu*nu*alpha*alpha+etal/eta2*arg)
f3=alam1*f1-skin*alam2*f2*f1+alam2*f2
f4=alam 1*f1-skin*alam2*f2*f1-alam2*f2

if(xd.gt.0.0) then

f=(-cos(nu*alpha*b)/(2.0*arg*f1))*(dexp(-f1*abs(xd-a))
*+f4/f3*dexp(-f1*(xd+a)))

else

f=(-alam1*cos(nu*alpha*b)*dexp(f2*xd-a*f1))/(arg*f3)

endif

return
end
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APPENDIX C : Selected Data
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TABLE C-1

Selected Data from Stehfirst and Fourfirst Program Evaluation

Stehfirst Program :

¥°p =20

skin =0

a==6

b=10

xp=1

yp =10
M=kh=m=n=1

Fourfirst Program :

¥°p =20

skin = 0

a=6

b=10

xp=1

yp=10
M=Xh=n=n=1

)] Pp
0.10 0.0125
0.30 0.1485
1.00 b.5289
3.00 1.0077
10.00 15891
30.00 2.1454
100.00 2.9698
300.00 4.2823
1000.00 6.8497
3000.00 11.0066
10000.00 IL.1288
30000.00 3b.2759
100000.00 §7.9617
300000.00 W.5366
900000.00 17'1.5466
Ip Pp
0.10 0.0125
0.30 0.1485
1.00 105289
300 10077
10.00 15891
3000 '2.1454
100.00 12.9698
300.00 4.2823
1000.00 16.8497
3000.00 lg.0066
10000.00 19.1288
30000.00 32.2759
100000.00 479617
300000.00 99.5366
900000.00 | 1715466
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TABLE C-2

Selected Data from Composite Reservoir -- Nonshif'ted

¥°p =20
skin =0 tp Pp
a=6 010 | 00125
b=10 030 | 10.1485
xp =17 100 05289
yp = 10 300 10077
M=hh=m=n=1 31,888 3523341
100.00 129698
30000 42823
1000.00 6.8497
3000.00 1.0066
10000.00 01283
30000.00 22759
100000.00 | $7.9617
300000.00 | 99.5366
900000.00 | 1715466
yOD = 200
skin = 0 tp Pp
=6 .
b =10 010 0.1258
e 030 11.4851
D 1.00 52891
yp=10 300 10.0772
3000 13715
100.00 74417
30000 2999 1
10000 0.0972
3000.00 | 447439
10000.00 30249
30000.00 6.1691
100000.00 1.8554
300000.00 | 133.4304
900000.00 | 205.4403
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TABLE C-3

Selected Data from Composite Reservoir -- Shifted

M=h=m=1m=1

¥°p = 200

skin = 0

a=6

b=10

xp =17

yp=10
M=X=m=7=1

p Pp
010 10.0125
030 10.1485
100 10.5289
300 1.0077
10.00 15891
30.00 12.1454
100.00 2.9698
300.00 42823
1000.00 6.8497
3000.00 11.0066
10000.00 49.1288
3m.00 | 322759
100000.00 §7.9617
300000.00 495366
900000.00 171.5466
Ip Pp
0.10 0.0125
0.30 D.1485
1.00 0.5289
300 1.0772
10.00 1.5889
3000 2.1371
100.00 2.7441
300.00 3.2999
1000.00 '3.9097
3000.00 4.4743
lo0c00.00 5.3024
30000.00 6.6169
100000.00 19.1855
300000.00 13.3430
900000.00 2@0.5440
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TABLE C-4

Selected Data for Varying Mobility Ratios and Skin

Case 1 : High Mobility Ratio
¥°p =20

skin=0

a-6

b =10

xp =17

yp =10

A, = 1000

M=1

n=12=1

Case 2 :High Boundary Skin
y°D = 200

skin = 10000

a- =6

b= 10

xp=17

Y = 10

M=h=m=m=1

b Pp
|
300 -+ 10077
1000 15903
3000 2.2049
100.00 34227
300.00 5.7662
1000.00 10.7076
3000.00 18.9139
10000.00 35.0802
3m.00 613162
100000.00 1112.6169
300000.00 11956737
1000000.00 857.9572
3000000.00 £20.6351
10000000.00 1113383%4
I
4! Pp
010 | [00125
020 '0.7457
100 0.5289
200 10.8223
10.00 15904
20.00 1.9559
100.00 34242
200.00 14,7205
1000.00 10.7351
2000.00 15.3963
10000.00 35.3906
2000000 $0.5535
100000.00 | 1159147
200000.00 | 166.3672
900000.00 | 372.6822
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TABLE C-5

The Line Source Solution

b Pp
0.10 | 0.0124
0.30 | 0.1463
0.60 | 0.3376
100 | 0.5221
3.00 | 0.9947
6.00 | 1.3210

10.00 | 1.5683
30.00 | 2.1092
60.00 | 24537

100.00 | 2.7084
300.00 | 3.2568

600.00 | 3.6032
1000.00 | 3.8585
3000.00 | 4.4077
6000.00 | 4.7452

10000.00 | 5.0097
30000.00 | 5.5590
60000.00 | 5.9055
100000.00 | 6.1610
300000.00 | 6.7103
600000.00 | 7.0569
1000000.00 | 7.3122
3000000.00 | 7.8616
6000000.00 | 8.2081
10000000.00 | 8.4635




