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ABSTRACT

Tracer tests performed at. the geothermal reservoir
at Wairakei, New Zealand have been analyzed. A
mathematical and physical description which models tracer
flow through individual fractures with diffusion into the
surrounding porous matrix has been used. Observed tracer
return profiles matched significantly well with the model
calculations. From the model, first tracer arrival times
and the number of individual fractures (the principal
conduits of fluid flow in the reservoir) joining the
injector- producer wells can be determined. If the
porosity, adsorption distribution coefficient, bulk
density and effective diffusion coefficent are known,
fracture widths may be calculated. Hydrodynamic
dispersion down the length of the fracture is a physical
component not taken into account in this model. Future
studies may be warranted in order to determine the
necessity of including this factor. In addition to the
tracer profile matching by the matrix diffusion model,
comparisons with a simpler fracture flow model by Fossum
and Horne (1982) were made. The inclusion of the matrix
diffusion effects was seen to significantly improve the

fit to the observed data.
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Section 1. INTRODUCTION

In many geothermal development schemes, produced
geothermal waters are reinjected for the purpose of
disposal and pressure maintenance. The known effects of
reinjecting water are: improved or degraded thermal
recovery (depending on underground flow paths and
velocities); permeability changes in the reservoir;
pressure maintenance of reservoir fluid; and possible re-
routing of natural underground water pathways. Horne
(1982) presents a summary of such experience on a
worldwide basis.

Since both detrimental and beneficial effects have
been observed, reservoir tests to determine the effects
of a proposed reinjection system are desireable. Also,
various reservoir parameters and the mechanics of fluid
flow in the reservoir need be investigated. Interwell
tracer tests have made significant contributions to the
understanding of fluid flow in natural underground
reservoirs. Radioactive and chemical tracers have been
used for many years in groundwater hydrology to study the
movement of water through porous media, but until
recently little has been reported on their use in

geothermal systems.




In addition to the test itself, there needs to be
some method to analyze the data obtained. To date,
tracer returns from geothermal reservoirs have been
analyzed in only a semi-quantitative sense to determine
transit times, flow velocities and pathways.

In 1982, Fossum and Horne presented an analysis of
tracer data from field results at Wairakei, New Zealand,
including a model describing linear flow through a
fracture with hydrodynamic dispersion. This physical and
mathematical model unfortunately proved to be only
partially adequate in its modeling of fluid flow, and
does not fit well to many of the test results from the
fractured Wairakei geothermal reservoir.

In searching for and testing of a physical model
that would better mathematically fit the tracer return
data, i1t has been found here that a 'double- porosity'
model is more satisfactory. The 'double- porosity' model
formulated in this work includes diffusion of tracer into
the porous matrix in addition to flow through the

fractures in the reservoir.




Section 2. LITERATURE REVIEW

Interwell tracer tests have been an important tool
in the analysis of fluid flow in various rock matrix
systems. Wagner (1977) listed information obtainable
from tracer tests in the oil industry, for example:
identification of poor injection wells; delineation of
flow barriers; directional flow trends and volumetric
sweep patterns; determination of relative velocities of
injected fluids; and evaluation of sweep improvement
treatments. The geothermal industry has used interwell
tracer tests to help investigate possible damage from
cooling due to reinjection of produced waters and to
ascertain flow patterns in the reservoir. For example,
in New Zealand, as described by McCabe, Barry and Manning
(1983), radioactive tracers have been used to determine
flow velocities and general flow directions. Nakamura
(1981) describes tracer tests performed in Japan which
clearly showed short- circuiting and a decline in
production due to cold water reinjection. The nuclear
industry and governmental agencies make use of tracer
tests to help search for possible waste disposal sites
and to study the characteristics of such sites. Two

important papers that address the implications of tracer



tests to underground storage and disposal of nuclear
waste are those by Webster, Proctor snd Marine (1970),
and Lester, Jansen, and Burkholder (1975). As noted by
Grisak and Pickens (1980), tracer tests in fractured low
matrix porosity rock have been performed in several
hydrogeologic contexts, such as groundwater age dating,
contaminant transport, and groundwater flow velocity or
dispersion characteristics of a geologic medium.

Several mathematical models for describing fluid and
tracer flow through porous media have been presented.
Intensive studies in this area began with the study of
chromatographic and ion exchange separation processes.
Lapidus and Amundson (1952) presented the mathematics of
equilibrium and nonequilibrium adsorption, and
longitudinal diffusion under various boundary conditions
in solid material packed columns. Gershon and Nir (1969)
presented the effects of initial and boundary conditions
on the distribution of the tracer in time and distance
for several one-dimensional systems (infinite, semi-
infinite and finite) of tagged liquid flowing through a
solid matrix. The effects of hydrodynamic dispersion,
diffusion, radioactive decay, and simple chemical
interactions of the tracer were included. Field
experiments using fluorescent dye and radioactive tracers
were employed by Tester, Bivens, and Potter (1982) to

characterize a hot, low-matrix permeability,




hydraulically- fractured granitic reservoir. Tracer
profiles and residence time distributions were used to
delineate changes in the fracture system, diagnosing flow
patterns, and in identifying new injection and production
zones. One- and two-dimensional theoretical dispersion
models utilizing single and multiple porous, fractured
zones with velocity and formation dependent effects are
presented and discussed with repect to field data.

Until recently, most mathematical models were based
upon a porous media physical model. These porous media
type models are useful, but since most geothermal
reservoirs are highly fractured they are not entirely
applicable, for they assume some type of uniform sweep
through the reservoir. Horne and Rodriguez (1983)
presented a mathematical model based on the physics of
dispersion during fluid flow through fractures, thus
forming a basis for the derivation of a transfer function
to be used in the interpretation of field observations.
Fossum and Horne (1982) utilized this model to analyze
tracer return profiles for the Wairakei geothermal
field. A double flowpath model was found to give a more
accurate data match than a single component model, though
interwell flow over long distances was interpreted to
occur in only a very few open fissures. However, other
tracer test data more recently obtained from Wairakei has

proven to be poorly fitted by this fracture flow model.



A possible explanation for this poor fit was indicated by
laboratory studies performed by Breitenbach (1982).
Significant retention of the tracer in reservoir rocks
was observed. The processes producing tracer retention
could include adsorption, diffusion, dissolution and ion
exchange.

Many current madels describing tracer migration in
the ground are based on the assumption that the tracer is
retarded by some sorbtion mechanism. Since the sorbtion
mechanisms are not well understood, assumptions such as
reversibility and instantaneous equilibration are
normally made. To calculate tracer migration in bedrock,
either of two tranport mechanisms may be used. For
porous bedrock, where the water is assumed to flow evenly
through all the pores, the bulk of the rock is
equilibrated with the tracer-containing water. This is
called bulk reaction. For sparsely fissured bedrock the
assumption is that the flow is in the macrofissures and
the tracer only reacts with the fissure surface. The
fluid does not penetrate into the rock matrix to any
appreciable depth. This is called surface reaction.
Using these two models, Neretnieks (1980) attempted to
reproduce experimental data, without success. From his
experimentation, Neretnieks (1980) determined that
diffusion into the rock matrix can enhance the

retardation by many orders of magnitude compared to




retardation by surface reaction in fissures only, and
that the magnitude of the retardation depends very much
on the fissure widths and spacings.

Grisak and Pickens (1980) presented a study
concerning the effect of matrix diffusion on solute
transport through fractured media. Transport is
considered in a manner conceptually similar to 'double-
porosity' or ‘'intra- aggregate' transport models. A
finite element model was developed to simulate
nonreactive and reactive solute transport by advection,
mechanical dispersion, and diffusion in a unidirectional
flow field. The numerical model and the laboratory
tracer test data provided insight into the processes
controlling solute transport in fractured media.

From studies of the migration of radionuclides in
the bedrock surrounding nuclear waste repositories,
Neretnieks, Eriksen, and Tahtinen (1982) developed a
mathematical and physical model describing tracer
movement in a single fissure of granitic rock. This
model takes into account instantaneous sorption on the
surface of the fissure, and loss of tracer from the fluid
flowing in the fissure due to diffusion into the porous
matrix. It is this model that s used to help gain
insight and a physical understanding of the fluid flow
implied by the tracer tests performed at the geothermal

reservoir field at Wairakei, New Zealand.



Section 3. FORMULATION

In this section, the tracer test data obtained from
Wairakei, New Zealand is discussed. A mathematical and
physical model is presented along with the computer
program which uses the model to analyze the data. The
geology of the Wairakei geothermal field is also briefly
presented to give a physical understanding of the
hydrothermal aquifer surroundings and to help in the

analysis of the results computed by the model.

A. Geology

Wairakei, the site of New Zealand's first geothermal
power station, is one of the larger hydrothermal areas in
the active volcanic belt extending from the National Park
Volcanoes south of Lake Taupo, in a north- easterly
direction to White Island in the the Bay of Plenty.
DiPippo (1980) cites the Wairakei field as the longest
operated liquid dominated geothermal reservoir in the
world. Figure 3.1 from DiPippo shows the location, and
Figure 3.2 from Grindley (1965) shows the generalized

geology and tectonits of Wairakei and the Central




-
;
\

N

Y

© mi 100
—————
O km 150

k7
i

r
£ IWAIRAKEI
21 AKE_TAUPO

AREAS y
TONGARIRO,

WELLINGTON

NORTH ISLAND

-

> VALLEY & v S
Y, / . WAIRAKE | NEW VILLAGE o0 &
% ///////‘ STREAM ARE A et
A6 PI///’>/7,> ’«\

.

/

L/;vés,

WAIORA ""'%1'
STREAW

‘' STATION
PUMPHOUSE
PROJVECT
OFFICE
ROADWAYS
KARAPITI
‘BLOWHOLE
(o) 0.5 mi
e —
[+ I km

HUKA
Tauroy FALLS

AGURE 3.1 Location of Warakei geothermal
field, Ndrth Island, Nw Zealand.




’
n&\\'u. [VLE
B1) 08 PLENTY

ey
OPOT iR

/
]
\ é Lk Tanp

Lone B atkaremoa

MHAWAE R1Y

NAPHR

e River
At
C hadnappers

SCALT AN MIEES

u m 0 w 40 “
| R H L L ! ]

Quaternary sgmmbries. mine Permian 7 Mesazoke greswache
rivoines. andesties, basali~ arvilile submse

Quaternan Iresh-water .
sedimients. lake heds thinhie g Fernars  Quaternan mannc Quaternan andesite 1 Naton.if
domses and prroctasin sement Parky and hasalt (Pirongro

s

A ane amdeste wokann venie ®  Reventis sctne thaolie domes Fi Actine hvdrothermal nield = Centre o Holovene ash cruption Y6505 Howene pumiee rroclastic deposit

Maor Quaternary Fault showing sense of displacement

FIGURE 3.2 Generalized geological and tectonic map of
Central Volcanic Relgion, Nw Zealand, showing Holocene
volcanism, hydrothermal fields, and important faults.




Volcanic Region.

ihe Wairaskei hydrothermal area occupies a surface
area of about ten square miles. The area is located on
the left bank of the Waikato River extending west for
about three miles from the river. The Wairakei
geothermal field includes several separated centers of
thermal activity, notably Karapiti, halfway between Taupo
and Wairakei, the Waiora Valley to the west of Wairakei,
and Geyser Valley along Wairakei Stream to the northwest
of Wairakei. These separated centers merge at depth into
one connected area.

The Wairakei Block is an elliptical structure
trending north- northeast. Gravity and magnetic suveys
have shown evidence of basement uplift in an area less
than two square miles. The uplift appears to be in the
form of two domes separated by a narrow downfaulted
zone. The maximum concentration of deep-seated
hydrothermal activity is closely connected with these
structures and especially with the faults.

Faults are common throughout the Wairakei area and
many show as small surface scarplets or lineaments. The
faults are important in the drilling of high- pressure
production steam wells where the intervening country rock
is relatively impermeable due to cementation by
hydrothermal minerals. Drilling of successful wells in

this type of country commonly depends on intersection of




a fault at depth by the drillhole giving the necessary
increased permeability. All faults encountered in the
field whether subsurface or surface, appear to be
dominantly normal faults and are downthrown 1in the
direction of dip of the fault planes. See Figure 3.3 for
an areal view showing the Wairakei production area in
relation to the major faults. The dip of the Waiora
Fault, assuming that the subsurface fissures mark the
intersection of the fault plane by drillholes varies from
85° to 88°., A prominent fault trace, the Upper Waiora
Fault, extends across the upper Waiora Valley in a
northeast direction. Temperatures recorded (214°F) and
the high rank hydrothermal alteration are sufficiently
encouraging at a depth of 650 feet to suggest that this
fault may well be another important feed for hydrothermal
water into the Waiora aquifer. The Kaiapo Fault trace
can be seen by surface expressions to the southwest and
appears to link with the Kaiapo Fault scarp, and may be
its northeast continuation. The Kaiapo Fault changes
downthrow to the northwest, this change taking place
across a prominent northwest cross fault. To the
southwest, the fault: is again downthrown to the northwest
as far as the Kaiapo Scarp. The Wairakei Fault is
probably the subsurface extension of a fault trace two
hundred feet to the northwest of hole WK24. The Wairakei

Fault can be traced, by surface exposures, southwestwards
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as far as the Kaiapo Scarp. Surface displacements are
down to the southeast, which is in accord with the
direction of dip (86") inferred from hole wWxk24. The
Wairakei and Waiora Faults intercept each other at about
3600 feet below the surface.

All of the faults so far described strike northeast
parallel to the trend of the Taupo Volcanic Zone. These
northeast faults are locally crossed almost at right
angles by north-northwest faults, which appear to have
some bearing on the location of the thermal activity. A
most important north-northwest fault crosses the Waiora,
Wairakei, Kaiapo, and Upper Waiora Faults in the western
part of the Wairakei production area. This fault has had
a long history of movement and may be indirectly
controlling the present heat flow in the western part of
the production area.

The reservoir itself is contained within the Waiora
Formation (containing pyroclastic rocks, ignimbrites and
interbedded sediments), and the Wairakeil Ignimbrite
formation (containing pulverulitic ignimbrite). The
reservoir is overlain by the Huka Falls Formation
(containing impermeable lake-deposited grey mudstone
interbedded with various pyroclastic rocks) and the
Wairakei Breccia (Lapilli Tuff) formation. Figures 3.4
and 3.5 show these formations pictorially.

For more information as to Wairakei stratigraphy,

11



L
59 60 kY 53 40
fet
| feet
- 1000 EIVRRA LRI S JOMLRENE Sitvaavy bty mey
= RERELN PRI SN + 1000
,_FORMATIO
. N R LTI TE X
ol PAXIES]
- 500

|
’/%/%/’ ////

1500

.

X

d

v / 7
.
! .
7 ﬁB;;/:§§Z:/w Z ) ,ﬁ%%%%%%%%
% z /% 2% 5//%//%%7!}/% E%//% . G;;}%/;/t}/}/}%/%/
/ / ///':‘ 17 ji;’{/// '/f'////,, 7 % //f/ 4 '////'/ - /{/ //,7/// ’
%/%% //%// ////Z%%%////%//%%/ 1000%%%%4%%/%///7//2//////// '
AV . ._ . N
LITHOLOGY LEGEND
D Ash showers and alluvium ;:‘mmm-ﬂdr
N D.ﬁ‘.'ffff.:.fu‘.;?i:i?ff wocsies ] oens

FIGURE 3.4 Wairakei Hydrothermal Field.

Pumice breccia, non-welded lapilli,
crystal and vitric tuff

WAIRAKE! IGNIMBRITES

e.green-grey.quartzose ignimbrite  (welded cryseal tuff)

Cross

section from hole WK% to WKD showing geological

structure.




-500

-1500

I g
»
RS 3
C SR Y *
AEITIGE 3
LYY, £1 s
Temsurtegl =3
PR MY 20 Ny
‘,:“.l'.st 3 =
iy T 3
. b0
» s
4 of B
) .
£ D
- 158
W ~
r 1 -y
- "'

i B
- Ned, ST
R Rt o daL e s
134 el ” g asean
= = et s ead ¥ evane
RUIRL A Al A T

oL NI

L3/ .

ANDESITE

1000 2000
. d

AR
T

Scale in feet

LITHOLOGY LEGEND

Sittstone and pumrceous

Ash showers and alluvium sandstone diatomite.

HAPARANG! RHYOLITE

Pumiceous, spherulitic and
lithoidal rhyolite

Pumice breccia: non-welded
lapilli. crystal and
vitric  tuff

WAIORA VALLEY ANDESITE

Dark grey. vesicular, hypersthene andesites

Conglomerate. pumice breccia.ignimbrite
and siltstone fragments: siitstone
matrix.

WAIRAKEI IGNIMBRITES

Dense.green-grey, quartzose ignimbrite
(welded crystal tuff)

FIGURE 3.5 Wairakei Hydrothermal Field. Cross
section from hole WK219 to WK48 showing geological
structure.

o

- 1500

= 2000

-2500

—3000




structure and exploitation, see Grindley (1965).

B. Tracer Test Data

The tracer tests which produced the data used in

this study were performed by the Institute of Nuclear

Sciences, Department of Scientific and Industrial

Research, New Zealand. lodine- 131 was used as the
tracer. Its half-1life is eight days. This eight-day
half-life limited the field tests to four to five weeks,

by which time a combination of decay corrections and
variation of backgraund signals produced unacceptably
large errors. This error becomes quite noticeable at
late time for some of the tracer return data. For a
detailed description of tracer injection methods, well
monitoring and counting equipment used at Wairakei see
McCabe, Barry and Manning (1983).

Two tracer injection tests were made that are
analyzed in this report. One iodine-131 injection was
made into well WK107 in March of 1979, and another into
well WKIOI in June of 1979. The quantities and depths of
injection were 155 GBq at 334 meters in well WK107, and
165 GBq at 400 meters in well WK10l. Responses from
wells WK24, 30, 48, 55, 67, 68, 70, 81, 83, and 108 were

monitored after the injection into WK107. Also,

12




responses from wells WK18, 22, 24, 44, 48, 55, 74, 76,
88, 103, 116, and 121 were monitored after the injection
into WK101. Not all of the monitored wells gave
sufficient tracer returns and therefore are not analyzed
in this report.

Plots of the data showing concentration versus time
are shown in Appendix A. The data has been corrected for
decay and background responses. Also, all negative
values have been deleted, and straight lines drawn
between points and through any missing data points.
Missing data is due to instrument or field problems.
Concentrations are scaled to units of injected amount

divided by 1012 liters.

C. Mathematical and Physical Model

Most studies of groundwater flow within fractured
media emphasize the dominating influence of fractures on
the effective permeability of the rock mass. One-
dimensional flow within a single fracture can be
generally described by solution of the Navier- Stokes
equation for nonturbulent flow of a viscous
incompressible fluid between two parallel plates,
neglecting inertial forces. Derivation of such a

solution for one~dimensional laminar flow in a single

13



fracture has been presented by Horne and Rodriguez
(1983).

This single fracture model derived by Horne and
Rodriguez (1983) was modified by Neretniek, Eriksen, and
Tahtinen (1982) to include instantaneous linear
equilibrium reaction with the surfaces of the fracture.
The partial differential equation modeling this
modification is very similar to that used by Horne and
Rodriguez (1983). The solution is the same, except that
the nonlinear parameter defining the mean residence time
of the tracer is altered by a constant factor
representing the adsorption of tracer onto the fracture
walls. Since the solution is the same, calculated tracer
return curves using this refined model are of the same
shape as those using the Horne and Rodriguez model. As
is indicated in this report, these models have been found
to be unsatisfactory in modeling single peak Wairakei
tracer test data.

Although fractures are the principal paths of
groundwater flow and solute transport, the matrix
adjacent to the fractures plays an important part in the
overall solute transport process. The process of solute
diffusion from a fracture into the adjacent matrix has
been studied and modeled by Grisak and Pickens (1980) and
by Neretnieks (1980 and 1982). This process is

illustrated in Figure 3.6, which schematically depicts a

14
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FIGURE 3.6 Fissure flow and sorption by
diffusion into the rock matrix.




constant solute source of concentration C, transported
through a fracture. The effect of matrix diffusion is to
provide solute storage, with the rate of change of
storage within the matrix related to Fick's second law of
diffusion. A one-dimensional form of the diffusion

equation into the porous matrix is given by,

d acC ac
—(¢p, —P) = ¢ —P (3.1)
3y ay at

where the porosity ¢ and apparent diffusion coefficient
D, are assumed to be constant: throughout the matrix

contacted by the fluid, so that Eqn. 3.1 can be rewritten

as,

3 C 9C
p —P - P (3.2)
a 2

dy ot

The net effect of matrix diffusion is to retard the
arrival of the solute at any point along the fracture.
If the source of the solute is discontinued, the effect
will be to flush the fracture and reverse the

concentration gradient, causing solute toc move from the

matrix into the fracture.

15



A general equation describing solute transport in a

saturated medium can be written in two dimensions as:

as a(¢C) d ( ac ac
p, — - —(¢p,, —+4¢p. —-gq.cC) -
b at at ax % ax Xy dy X
d ( ac ac )
—{ ¢D — + ¢D — - q C) =0 (3.3)
3y PR 3x yy dy y
where,
Py = bulk density of the medium, M/L3
§ = amount of solute in the sorbed phase, M/M
X,y = Cartesian directions, L
D = hydrodynamic dispersion coefficients in

the corresponding x,y-directions, L2/T

Uygrdy = Darcy velocities, L/T

This form of the equation includes the effects of
adsorption by the medium, hydrodynamic dispersion, and
advection. A linear equilibrium relationship between the
dissolved and sorbed phases of the solute has been
assumed and 1S written S=kC, where k is referred to as
the adsorption distribution coefficient. Linear

adsorption assumes that once the tracer and rock are

16



brought sufficiently close together, adsorption will be
an instantaneous process.
Simplifying Eqn 3.3 to model a unidirectional flow

field in a fractured porous mnedium gives,

where x is the direction of flow and y is normal to this
direction. IT it is assumed that the porosity ¢,

adsorption distribution coefficient k, bulk density oy,

hydrodynamic dispersion coefficients D, and the Darcy
velocity q, are constant in the region of interest, then

Egqn. 3.4 becomes,

¢+ —)—-D, —5+U, — .D_ — -0 (3.5)

This equation can be simplified further by

neglecting hydrodynamic dispersion in the fracture so

17




that the second term drops out. In its place, however, a
term describing the loss of tracer from the fluid flowing
in the fracture due to diffusion into the porous matrix

of the wall is included. This new term is represented

by,

2D dC

§ 3y [y=0

Two different diffusion coefficients have been
presented up to this point, D, and D,. The apparent and

effective diffusion coefficients are related as follows:

p = —F5 (3.6)

The effective diffusion coefficient D, is dependent on
temperature, porosity, molecular diffusivity, and the
geometry of the rock. K40y is a volumetric sorption
equilibrium constant and is related to porosity ¢, the
solid rock density o, and the adsorption distribution

coefficient k by the equation,

K.p

Py = ¢+ (1 - &)ko, (3.7)

b

18




Notice that if the solids are inert, i.e., k=0, the
porous rock matrix still has a volumetric sorption
equilibrium constant equal to its porosity ¢.

Rearrangement of Eqn. 3.7 gives,

a4 (1-¢)
3 =1 + — kp, (3.8)

And since ps(l-¢)=ph, Egn 3.8 becomes

K.p kp
R=-4b_,,_ b (3.9)
¢ [
where R is refered to as the retardation factor. Using

this above relation further simplifies Eqn 3.5.

The retardation factor defines the mean velocity of
the moving liquid relative to the mean velocity at which
the tracer itself moves through the rock. This factor
accounts for the slowing down of a tracer moving with the
fluid due to the interaction with the solid. If there is
no interaction between the tracer and the solid phase, k
becomes zero and R reduces to one.

The last term in Eqn. 3.5 describes a diffusive flux
into or out of the matrix adjacent to the fracture. This

term is also represented by Eqn. 3.2 which can be

19




decoupled to form two equations describing the physical
situation of one-dimensional advective flow through a
fracture with simultaneous tracer adsorption and
diffusion into the surrounding porous matrix. The two

equations describing this condition are as follows:

aC aC¢
) .2.D..;T_3_C% U = 0 (3.10)
at 8% 3yP|y=0 3x
ach ac_
@ dy at
where,
C¢ = concentration of tracer in the liquid in

the fracture

Cp = concentration of tracer in the liquid in
the porous matrix

B

D, = apparent diffusion coefficient, L4/T

D, = effective diffusion coefficient, equal
to Dp Ky, LZ/T

6 = fracture width, L

Uf = flyid velocity in the fracture, equal to
xoltw, L/T

t, = residence time of water, T
x, = pathlength of the fracture from
injection well to production well, L

20




The initial and boundary conditions are a finite
rectangular pulse of tracer with duration At introduced
at the inlet of the fracture at time t=0, and the
fracture and rock are originally free of tracer. These

conditions can be expressed as follows:

Initial conditions,

=0 t<0 for all x and vy

cC. =0 t>0 as y=+e

C, = C_ = initial tracer concentration in
the fluid at x=0 during finite
input of tracer of duration At.

The solution to Egqns. 3.10 and 3.11 subject to the
given initial and boundary conditions is, according to
Carslaw and Jaeger (1959, p.396),

Cf =0 for t<twR

and,

21




Ceg/C, = f(t + At) - £(t) for t>t R

where,

Detw
f(t) = erfc 05
G(Da(t - twR))
tW = water residence time
tyR = first tracer arrival time

Since C, equals the total mass input over time At
divided by the total volume flow rate time At, M/(QAt),
and the input pulse duration is very small, the solution

can be rewritten as follows:

M

= —— - f(t

C, QAt(f(t+At) (t))
- % 1im (f(t+AtZt— f(t))

At+0
_moar
T Q dt
) 2 4
Because dlerfe(x)) . _ 2 e X LX | we have that

dt yu dt
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_ e w )2
D t DO‘S(t R)0°56
c, - ! < exp (—2—® )
(3.12)
D t
_ e w 1 0.5 _ 1
A= oy 0.5 5 = (p oe,) "7/ and 8=
a (twR) w

are substituted into Egqn 3.12, the following simplified

solution is obtained:

Rewriting the.nonlinear parameters in terms of a, and E

3
(a linear scaling parameter) yields,
c=c_ 2= Eajay a%
TOVFE M exp(- +— (3.14)

/?(azt—l)l.s 2

where, a,=a and a2=6 .
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The linear parameter E normalizes the flow fraction
to one. This normalization is needed because precise
information on the initial concentration injected into
the fracture system connected with the producing well is
not available. This does not affect the shape of the
calculated tracer profile, but merely the size.

Tester, Bivens, and Potter (1982) proposed the use
of an objective function F over N measured data points in
order to analyze for optimum values «; and oy in the
transfer function C(t;al,az) for a given tracer return

profile. When F, given by

F o= iBiI(C(t;al,az) - ¢, )2 (3.15)

is minimized, optimum values of o) and %y result. A
multifracture model assuming one-dimensional flow in
separate fractures and which gives the predicted tracer

concentration response is given by

M
c = ,I. e C (t;0 ,a ) (3.16)
3=V 7 g7 2
where E. is the fraction of flow in fracture path j. The

J
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relative flow fractions in the fracture system
communicating with the production well and the injection

well is given by

(3.17)

This multifractvre model 1is used to determine
whether the tracer returns to a producing well is a
result of flow through one or more fractures. Once the
above objective function is minimized, the resulting
optimized parameters are used to give information about

the fracture system and flow mechanisms in the geothermal

reservoir.

D. Computer Program

Optimization of the parameters in the transfer
function C(t;a,,ay) is accomplished using a nonlinear
least-squares method of curve fitting. The main program
calls for the input of the tracer return data, the number
of parameters being used, and estimates of the nonlinear
parameters. Subroutine VARPRO (written by Stanford

University Department of Computer Science) and its
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accompaning subroutines are called to optimize the
objective function. The main program then calls for the
plotting of the tracer return data along with the
computed best fit tracer return profile, and the optimal
values of both the nonlinear and linear parameters of the
given transfer function are printed.

VARPRO is based on a paper by Golub and Pereya

(1973). Least-squares fit of nonlinear models of the
form
M
C(tye,a) = jEleJCJ(t;aij) i=1,2 (3.18)

where,

M = number of proposed paths

t = independent variable

Cj = observed dependent variable

Ej = linear parameter

o3y = nonlinear parameters

can be performed by separately optimizing the linear

parameters e and the nonlinear parameters a;..

i’ 1]

The objective function,

2 (3.19)

e =

Fejoa.) = 1(ci - C(t;ej,aj))

is substituted with the first estimates of the nonlinear
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parameters aye The program iterates to determine the
nonlinear parameters aj, afterwhich the linear parameters

E 5 are calculated.

The numerical nonlinear least-squares routine

utilizes a Taylor expansion of the transfer function C by

expanding with respect to the nonlinear parameters a

jo
Linear least-squares is then used to determine the
optimum values for the parameter increments, éaj.
Mathematically this is shown as follows:
M 3C .
C(ti;qj’ej) - CO = jgl(q'aaj 3(!j) i=1,2,oooN (3.20)

The derivatives are evaluated at the starting point C_.

The residual F can then be expressed as,

N
F(e,,a,) = £ ( (G- C) - I, 52° 6(11,)2 (3.21)

Applying least-squares then yields a set of normal
equations.

A gradient expansion method is used to search for
those parameters a; that minimize the objective function
F(ej,uj). All parameters are incremented simultaneously
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so that the maximum variation of F is attained. The
gradient of F determines the magnitude of the largest
change, and giving it the opposite direction indicates
the path of steepest descent. The objective is to change
Gaj so that F(ej,a+6aj)<F(sj,aj). This is documented
fully in the computer program.

To more fully explore the workings of this nonlinear
least— squares method, see Fossum (1982) and the technical
report by Golub and Pereya (1973). The computer program

is listed in Appendix B along with a sample program

output.
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Section 4. RESULTS

The tracer return data for the various wells were
fitted to the mathematical model using the computer
program discussed previously. The figures shown in
Appendix C show the fitted data profiles. The squares
represent the data and the solid line is the calculated
curve fit. For comparison purposes, accompanying some of
the figures is a corresponding curve fit using the model
presented by Fossum and Horne (1982). Remember that
their model includes only advection and dispersion along
one or more non-connecting or channeled fractures. The
model presented in this report includes adsorption,
advection, and diffusion into the surrounding porous
matrix. This inclusion in the model of diffusion of
tracer into the matrix gives considerable improvement in
the curve fit of the tracer return profiles.
Furthermore, in many of the wells only single fracture
modeling is required to smoothly fit the data, whereas
multi- fracture modeling was required in the cases
presented by Fossum and Horne (1982). This is more
pleasing since most curves can be fitted if several
linear combinations of the single path equation are used,

irrespective of the physical applicability.

29




Values for the flow fractions and nonlinear
parameters a and B8 for the different calculated tracer
return curve fits are given in Table 4.1.

For a few of the tracer return data, double fracture
modeling was possible but did not substantially improve
the single fracture curve fits. Where improvement was
possible, however, these fits are included in place of
the single curve fits.

It is noted that not all tracer returns are well
fitted. These are wells WK68, 67, 116, and 121. Reasons
for poor fits may be that (1) hydrodynamic dispersion
down the length of the fracture needs to be included to
better model the fluid and tracer flow, (2) the
instantaneous linear adsorption assumption is not valid,
(3) temperature effects on k, and D, are of importance,
or (4) the data itself for some reason is suspect.

Well WK121 is an interesting case in that a good fit
was obtained when modeled as a double fracture case.
However, a negative flow fraction is calculated. This
anomaly could have a physical or mathematical
significance, but most likely is an artifact of the curve
fitting technique 1itself, in that more than one approach
to convergence may be possible.

To gain a bettgr understanding of the parameters a
and B, hypothetical tracer return profiles calculated by

varying one of the parameters while keeping the other
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TABLE 4.1

Production Injector- Flow Nonlinear Minimum  Fracture
well Producer Fraction Parameters Flow Width
Distance E;/E a 1/8 Velocity (mm)

(meters) (days) (m/hr)  ¢=17% ¢=5%
WA 210 1.000 1. 250 0.231 37.9 0.08 0.18
WK30 240 0.811 1. 370 4.367 2.3 0.32 0.71
0.189 1.270 3.212 31 0.29 0.66
WK48 120 0.450 1.393 0.293 17.1 0.08 0.18
0.550 1. 669 1.040 4.8 0.13 0.28
WK55 220 1.000 2.578 2.671 3.4 0.13 0.29
VK67 120 1.000 2.736 1.651 3.0 0.10 0.22
WK 120 1.000 2 049 2.919 17 0.17 0.39
WK70 170 1.000 2.483 2.033 35 0.12 0.27
W81 175 1.000 1.535 3.659 20 0.26 0.58
W33 330 1.000 2.167 2.550 5.4 0.15 0.34
WK108 80 1.000 1.685 6.782 05 0.32 0.72
WK103 165 1.000 3.437 0.619 11.1 0.05 0.11
WK116 350 0.259 0.920 44696 31 0.49 1.09
0.741 3844 0.626 234 0.04 0.10
WK121 490 1.000 0.916 1.451 14,1 0.27 0.61
0.530 2.555 0.719 28.4 0.07 0.15
-04°70 2.100 1.265 16.1 0.11 0.25

All production wells produce tracer injected at well WK107, except
wells WK103, 116, and 121 which produce tracer injected at WK101l.



constant were plotted. These plots are shown in Figures
4.1 and 4.2.

Note in Figure 4.1, that as the nonlinear parameter
B increases, that is, the tracer arrival time decreases,
the plotting trace begins at an earlier and earlier
time. The peak also increases in height with increasing
B.

In Figure 4.2, it can be seen that as a decreases
the peak increases dramatically, and the tailing of the
peak is reduced. These effects can be related to the
physical parameters contained in the dimensionless
parameter a. Remember that a=(De¢tw)0'5/6. If the
fracture width 6 were to increase, causing a to decrease,
it would be expected that the peak would be sharper and
less spread out. This is because increased flow would
occur through the enlarged fracture thus causing less
matrix diffusion and less spreading of the tracer return
profile. If the effective diffusion coefficient were
increased in value (indicating increased diffusion in the
porous matrix) it would be expected that the passage of
tracer through the fracture/porous media system would be
hindered, again causing the tracer profile to spread
out. This effect 1S as observed for increased a. If the
water retention time were to increase due to increased
pathlength or decreased fluid velocity, an increase in

profile spread would also be expected. Increased
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HGURE 4.1 Plots of transfer function C(t;a,8 )
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FIGURE 4.2 Plots of ,transfer function C(t;a,8 )
where o 1S varied and B is kept constant.




porosity would increase the volume of fluid in the matrix
rock, allow more volume into which the tracer could
diffuse, and thus increase the profile spread.

The goal of tracer return analysis iIs to infer

information concerning the flow velocities, fracture

widths, flow pathways, and reservoir rock and fluid

properties such as diffusion and adsorption

coefficients. To do this with the Wairakei data at hand

requires some knowledge of the parameters py, D,, k, and
b

If a nonsorbing tracer is used then k=0, R=1, and
K4yPp=¢. In this nonsorbing case some knowledge of the

porosity ¢ and effective diffusion coefficient D, is
required to calculate fracture width values for the
corresponding curve fit. In Table 4.1, fracture width
values are given based on the nonsorbed tracer assumption
and the effective diffusion coefficient value of

432 x 1070 mZ/day (5 x 10”11 mz/s). The value for Dg is
a medium value obtained from a range of values given by
Neretnieks (1980) for nonsorbing tracers in granites.
This value iS not necessarily the proper value to be used
in this case, but it does allow approximate fracture
width values to be calculated. Also, since the matrix
porosity of the Waitakei reservoir is not definitively
known, porosity values of 1%and 5% were used in the the

calculations.
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In Table 4.1, flow velocities have been calculated
based on the Injector-producer distances and calculated
first tracer arrival times. An assumption of the tracer
not being sorbed to the reservoir rock (R=1) is also made
in these calculations. As the injector-producer
distances are not necessarily representative of
pathlengths in the reservoir, these calculated velocities

are minimum values.
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Section 5. CONCLUSIONS AND RECOMMENDATIONS

1. Tracer diffusion into the matrix of the Wairakei
geothermal reservoir is an important fFfactor in the
mechanism of fluid flow. Estimated reservoir parameters
such as fracture widths, fluid velocities and dispersion
characteristics are difficult to accurately interpret in
a fractured reservoir without accounting for matrix
diffusion. The diffusion of tracers into the rock matrix
and their sorption onto the surfaces of the rock are the

main mechanisms retarding migration through fractures.

2. In using the fracture model presented by Fossum
and Horne to analyze the Wairakei data, a double flowpath
model gave a ,more accurate data match than a single
component model. However, in using the matrix diffusion
model presented in this report, single fracture flowpath

modeling was sufficient in many of the cases.

3. Without further investigation of representative
values for the effective diffusion coefficient D,, bulk
rock density p,, porosity ¢, and the adsorption
distribution coefficient k, quantitative values for the

various reservoir and fluid flow properties cannot be
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accurately calculated for the Wairakei reservoir.

4. Further study into the modeling of tracer flow
through fractured media which takes iInto account
hydrodynamic dispersion down the length of the fracture
in addition to diffusion into the porous matrix may be

warranted.
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Nomenclature

nonlinear parameters

concentration of tracer in fracture
concentration of tracer in porous matrix
hydrodynamic dispersion coefficient
apparent diffusion coefficient
effective diffusion coefficient
fracture width

linear scaling factor

fraction of flow

objective function

adsorption distribution coefficient
volumetric sorption equilibrium constant
number of proposed fracture paths
number of data points

bulk density of the medium

solid rock density

Darcy velocity

retardation factor

amount of salute in the sorbed phase
water residence time

porosity

fluid velocity in the fracture
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X0 Bat le (':;th of iracture from injection well to
ro on well.
X,y Cartesian directions
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Appendix A

Tracer Return Profiles

This data was collected at the Wairakei geothermal field
by the Institute of Nuclear Sciences, Department of
Scientific Research, Gracefield, New Zealand, and was
made available to the Stanford Geothermal Program by Dr.

Ws J. McCabe.
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Appendix B

Computer Program and Sample Output




//TRACER JOB

s7 EXEC FORTCL

//FORT.SYSIN DD

C BERREREREXAREREERRRRE R ERRERRENERXREXREXRERREXRRRRXXRRRRXRRRRRXRR
© 96363636 96 96 36 36 96 36 36 36 36 36 36 36 36 36 36 36 36 36 30 30 3 36 30 26 30 30 30 30 0 3090 96 3 0 0 0 3 00 00 00 0 006 E 3 30 06 36 3636 3 330 3 3 3 33

PROGRAM BEGINS

HXXRRXERRKR XN RRERRREERRERIERENERREERERRRRERERRRNRRERRRRARRRXRRRRR
T T I I 2 3 0 I3k IE 33K IIIE I I I3 I I NI 3636 9 9 336 3 I 96 36 33K KK K X

QOoOaaQooon

IMPLICIT REAL*8(A-B,D-H,0-2)

SET DIMENSIONS FoR VARPRO. BE CAREFUL WHEN SETTING THE
DIMENSIONS FOR THE INCIDENCE MATRIX INC. SEE NOTE.

OOOOO0

DIMENSION Y(400),T(400),ALF(14),BETA(T7),W(400),A(400,13),
¥INC(14,8),C(400,8),CTI TLE(ZU) CT(400),CY(400),DINM(T), UT(?)

SET PARAMETERS FOR VARPRO.

OOOO0

EXTERNAL ADA

IPLOT=1

IF (IPLOT.EQ.1) CALL STARTG('GENIL¥*',0.0)
NMAX = 400

IPRINT=1

READ DATA SEQUENTIAL ORDERING AND
PROPER FORMATTING ARE IMPORTANT.

oOOOaQ o

READ (5,70) CTITLE
70 FORMAT (20AlY4)

WRITE (6,71) CTITLE
71 FORMAT (1HO, 10X, 20A4)

NL IS THE NUMBER OF NONLINEAR PARAMETERS

OOO0OO0

READ (5,%) NL
WRITE(6,12) NL
12 FORMAT (1HO, 10X, '"NUMBER OF NONLINEAR PARAMETERS'//(13))

C

c

C L IS THE NUMBER oF LINEAR PARAMETERS
C

C

L=NL/2

C

C

C ESTIMATES OF THE NONLINEAR PARAMETERS
C

C

READ (5,%) (DIM(I),OUT(I),I=1,L)
DO 80 1=1,L




II=2%I-1
ALFC(II)=DIM(I)

80 ALF(II+1)=1./0UT(I)
WRITE(6,21)(ALF(I),I=1,NL)
21 FORMAT(1HO, 10X, *INITIAL EST. OF NONLIN. PARAMETERS'//(F7.3))

WRITE (6,20) (DIM(I),0UT(I),I=1,L)

20 FORMAT ¢s,*0 DIMENSIONLESS NUMBER TRACER ARRIVAL TIME',/,
# (5X,F9.5,22X,F7.3))

C
C
LPP2=L+NL+2
C
C
C
C N IS THE NUMBER OF OBSERVATIONS
C
C
READ(5, %) N
WRITE(6,35) N
35 FORMAT(/1HO, 10X, 'NUMBER OF OBSERVATIONS'//(1I4))
C
C
C IV 1S THE NUMBER OF INDEPENDENT VARIABLES T
C
C
Iv=1]
C
C
C T 1S THE INDEPENDENT VARIABLE
C Y IS THE N-VECTOR OF OBSERVATIONS
C
C

READ(5,#)(T(I),Y(I),I=1,N)
WRITE(6,60)(T(I),Y(I),I=1,N)
60 FORMAT(1HO, 'INDEPENDENT VARIABLES DEPENDENT VARIABLES'/s/
® ,(5X,F8.3,21X,F9.3))

W(I) ARE THE WEIGHTING PARAMETERS

OOO0O0

DO 1 I=1,N
1 WeIy=1.0

@ N@]

CALL VvARPRO(L,NL ,N ,NMAX,LPE2,IV,T,Y,W,ADA,R,
¥IPRINT,ALF,BETA,IERR)

WRITE (6, 13)
LP1=L+1
CALL ADA (LP1,NL,N,NMAX,LPP2,1IV,A,INC,T,ALF,2)
DO 8 1=1,N
C(I,LP1)=0.
DO 9 J=1,1L
C(I,J)=BETA(J)*A(I,J)
9 C(I,LP1)=C(I,LP1)+C(I,J)
WRITE (6,14) Y(I),C(I,LP1),(C(1,J),d=},L)
CY(I)=YC(I)
CT(I)=T(I)
8 CONTINUE




9

OOOO0ONaOOOaQOO

OO0

OOOOOOO0O

13 FORMAT(1HO,' ACTUAL CALC COMP#1 coMPR2',77)
14 FORMAT (1X,8F10.4)

DO 22 1=1,L
IT=2%1-1
DIM(IJ=ALF(II)
22 OUT(I)=1./ALF(II+1)
SUM=0.
DO 25 J=1,L
25 SUM=SUM+BETA(J)
DO 93 I=1,L
3 BETA(I)=BETA(I)/SUM
WRITE (6,38) (BETA(I),DIM(I),OUT(I),I=1,L)
38 FORMAT Cs,*0 FRACTION DIMENSIONLESS NUMBER ARRIVAL TIME",
A 7,(5%,F7.3,5X,F7.3,22%,F7.3))
IF (IPLOT.NE.1) STOP
CALL GRAPHG (**',0,N,CT,CY, 4, 'TIME (DAYS)*',
* *CONCENTRATION (Cs/S)*',CTITLE)
CALL LINESG (*SOLD,VBRT*',N,CT,C(1,LP1))

CALL EXITG
STOP
END
I IE I I K N I I I I I M NI I I I I I I I IE I I A A I I I I I I I I I I I I I W I I IR N H N KR
[Z2ZXZZE XL AZEE RS LR RS SRR R RS AL LS EEEI S SR SRS S RS EA SR RS E SRS SRR R RX
SUBROUTINES
(XS EXEEXEIEEEE SRS ER AR R SRS SRS XS LRSS S ARSI SE SRS S SR A R R SRR R &
6 I R I, I I KNI IE I IE I I I I I NI I I I I I I I I I I I W NI R R KRR KRR KRR
SUBROUTINE ADA (LP,NL,N,NMAX,LPP2,IV,A,INC,T,ALF,ISEL)
IMPLICIT REAL*8(A-H,0-2)
DIMENSION ALF(NL),A(NMAX,LPP2),T(NMAX),INC(14,8),D(400,7)
L=LP-1
THE INCIDENCE MATRIX INC(NL,L+1) IS FORMED BY SETTING
INC(K,J)=1 IF THE NONLINEAR PARAMETER ALF(K) APPEARS
IN THE J-TH FUNCTION PHICJ). (THE PROGRAM SETS ALL OTHER
INC(K,J) TO ZERO.)
IF(ISEL.EQ.2) GO TO 90
IF(ISEL.EQ.3) co TO 165
DO 1 J=1,L
DO 1 K=1,NL
INC(K,J)=0.0
IF ((K+1)/2.EQ.J) INC(K,J)=1.0
1 CONTINUE




THE VECTOR-SAMPLED FUNCTIOIHS PHI(J) ARE STORED IN
THE FIRST N ROWS AND FIRST L COLUMNS OF THE MATRIX
B(I,J). B(I,J) CONTAINS PHICJ,ALF;T(I),I, ...N;
J=1,L. THE CONSTANT FUNCTIONS PHI WHICH DO NOT
DEPEND UPON ANY NONLINEAR PARAMETERS ALF MUST
APPEAR FIRST.

OOOOOOOOOOOOOOO0

90 DO 81 1=1,N
DO 81 J=1,L
K1=2%J-1
RK2=2%)
IF CALF(K2)*T(I).GT.1.0) GO TO 82
ACI,J)=0,
D(I,J)=0.
GO TO 81
82 ACI,J)=ALF(K1)*ALF(K2)/(1.772453851%

# (ALF(K2)XT(I)-1,0)%%(1.5))%

# DEXP(-1.¥ALF(K1)%¥¥2/(ALF(K2)*T(I)-1.0))
D(I,J)=A(I,J)

C
8l CONTINUE
C
C
C
IF (ISEL.EQ.2) GO TO 200
C
C
C
C
C
C
C
165 DO 170 1=1,N
C
C
DO 170 J=1,NL
Ki=(J+1)/2
K2=2%K1
K3=K2-1
JJ=L+J+1
IF (ALF(K2)¥*¥T(I).GT.1.0) GO TO 171
ACI,JJ)=0.
GO TO 170
171 IF ((Js2)%2.EQ.J) GO TO 300

ACI,JJ)=D(I,K1)*(1.0/ALF(K3) -
# 2.0%ALF(K3)/(ALF(K2)*T(I)-1.0))
GO TO 170
300 ACI,JJ)=D(I,K1)¥(1.0/ALF(K2)~-1.5/(ALF(K2)¥*T(1)-1.0)
# T(IJH(ALF(K3)*¥2)¥T(I)/((ALF(K2)¥T(I)=~1.)¥%¥2))

*

C
170 CONTINUE
C
200 CONTINUE
C




OOOOOOOO0

ool loloNoloeololololololoNoloNoNoNololololololoNoNoNo oo oo o ool oo o No oo NoXo Ko X@)

RETURN
END

SUBROUTINE VARPRO (L, NL, N, NMAX, LPP2, IV, T, Y, W, ADA, R,
X IPRINT, ALF, BETA, IERR)

GIVEN A SET OF N B3EPVATIONS, CONSISTING OF VALUES Y(1),
Y(2), ..., Y(N) OF A DEPENDENT VARIABLE Y, WHERE Y(I)
CORRESPONDS TO THE IV INDEPENDENT VARIABLE(S) T(I,1), T(I1,2),

.» T(I,IV), VARPRO ATTEMPTS TO COMPUTE A WEIGHTED LEAST
SQUARES FIT TO A FUNCTION ETA (THE "MODEL") WHICH IS A LINEAR
COMBINATION

L
ETACALF, BETA; T) = SUM BETA PHI C(ALF; T) * PHI (ALF; T)
J=1 J J L+ 1

*

OF NONLINEAR FUNCTIONS PHI(J) (E.G., A SUM OF EXPONENTIALS AND/
OR GAUSSIANS). THAT 1s, DETERMINE THE LINEAR PARAMETERS
BETA(J) AND THE VECTOR oF NONLINEAR PARAMETERS ALF BY MINIMIZ-
ING

2 N 2
NORM(RESIDUAL) = sum W #* (Y = ETACALF, BETA; T ))
1=1 I | I

THE (L+1)-ST TERM 1S OPTIONAL, AND IS USED WHEN IT IS DESIRED
TO FIX ONE OR MORE OF THE BETA"S (RATHER THAN LET THEM BE
DETERMINED). VRRPRO REQUIRES FIRST DERIVATIVES OF THE PHI"S.

NOTES:

A) THE ABOVE PROBLEM 1S ALSO REFERRED TO AS *"MULTIPLE
NONLINEAR REGRESSION®. FOR USE IN STATISTICAL ESTIMATION,
VARPRO RETURNS THE RESIDUALS, THE COVARIANCE MATRIX OF THE
LINEAR AND NONLINEAR PARAMETERS, AND THE ESTIMATED VARIANCE OF
THE OBSERVATIONS.

B) AN ETA OF THE ABOVE FORM 1S CALLED F"SEPARABLE". THE
CASE OF A NONSEPARABLE ETA CAN BE HANDLED BY SETTING L = O
AND USING PHI(L+*1),

¢) VARPRO MAY ALSO BE US"ED TO SOLVE LINEAR LEAST SQUARES
PROBLEMS (IN THAT CASE No ITERATIONS ARE PERFORMED). SET
NL = O.

D) THE MAIN ADVANTAGE OF VARPRO OVER OTHER LEAST SQUARES
PROGRAMS 1S THAT NO INITIAL GUESSES ARE NEEDED FOR THE LINEAR
PARAMETERS. NOT ONLY DOES THIS MAKE IT EASIER TO USE, BUT IT
OFTEN LEADS TO FASTER CONVERGENCE.

DESCRIPTION OF PARAMETERS
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INC

NMAX
LPP2

IPRINT

ALF

BETA
1ERR

NUMBER OF LINEAR PARAMETERS BETA (MUST BE .Gt. 0).
NUMBER of NONLINEAR PARAMETERS ALF (MUST BE .Gt. 0).
NUMBER of OBSERVATIONS. N MUST BE GREATER THAN L + NL
(1.8., THE NUMBER OF OBSERVATIONS MUST EXCEED THE
NUMBER OF PARAMETERS).
NUMBER OF INDEPENDENT VARIABLES T.
REAL N BY IV MATRIX OF INDEPENDENT VARIABLES. T(I, J)
CONTAINS THE VALUE OF THE I-TH OBSERVATION OF THE J-TH
INDEPENDENT VARIABLE.
N-VECTOR OF OBSERVATIONS, ONE FOR EACH ROW OF T.
N-VECTOR OF NoWnEGATIVE WEIGHTS. SHOULD BE SET TO 1's
IF WEIGHTS ARE NOT DESIRED. IF VARIANCES OF THE
INDIVIDUAL OBSERVATIONS ARE KNOWN, wW(1) SHOULD BE SET
TO 1. /VARIANCEC(D),
NL X (L+1) INTEGER INCIDENCE MATRIX. INC(K, J) = 1 IF
NON-LINEAR PARAMETER ALF(K) APPEARS IN THE J-TH
FUNCTION PHICJ). (THE PROGRAM SETS ALL OTHER INC(kK, J)
TO ZERO.) IF PHICL+1) 1S INCLUDED IN THE MODEL,
THE APPROPRIATE &LEMENTS OF THE (t+1)-ST COLUMN SHOULD
BE SET TO t's, INC IS NOT NEEDED WHEN L = o OR NL = o.
CAUTION: THE DECLARED ROW DIMENSION OF INC (IN ADA)
MUST CURRENTLY BE: SET TO 12. SEE "RESTRICTIONS®™ BELOW.
THE DECLRRED ROW DIMENSION OF THE MATRICES A AND T.
IT MUST BE AT LEAST HAX(N, 2¥NL+3).
L+p+2, WHERE P 1s THE NUMBER OF ONES IN THE MATRIX INC.
THE DECLARED coruMH DIMENSION OF A MUST BE AT LEAST
ter2, (IF L = 0, SET LPP2 = NL+2, IF NL = 0, SET LPP2
L+y2,)
REAL MATRIX OF SIZE MAX(N, 2*KL+3) BY L+P+2, ON INPUT
IT CONTAINS THE ®#HI(J)'S AND THEIR DERIVATIVES (SEE
BELOW) . ON outpuT, THE FIRST L+NL ROWS AND COLUMNS OF
A WILL CONTAIN AN APPROXIMATION TO THE (WEIGHTED)
COVARIANCE MATRIX AT THE SOLUTION (THE FIRST L ROWS
CORRESPOND TO THE: LINEAR PARAMETERS, THE LAST NL TO THE
NONLINEAR ONES), COLUMN L+NL+t! WILL CONTAIN THE
WEIGHTED RESIDUALS ¢t - ETA), AC!, L+NL+2) WILL CONTAIN
THE (EUCLIDEAN) NORM OF THE WEIGHTED RESIDUAL, AND
AC2, L+NL+2) WILL CONTAIN AN ESTIMATE OF THE (WEIGHTED)
VARIANCE OF THE OBSERVATIONS, NORM(RESIDUAL)**2/
(N - L - N,
INPUT INTEGER CONTROLLING PRINTED OUTPUT. IF IPRINT IS
POSITIVE, THE NONLINEAR PARAMETERS, THE NORM OF THE
RESIDUAL, AND THE MARQUARDT PARAMETER WILL BE OUTPUT
EVERY IPRINT-TH ITERATION (AND INITIALLY, AND AT THE
FINAL ITERATION). THE LINEAR PARAMETERS WILL BE
PRINTED AT THE ruNaL ITERATION. ANY ERROR MESSAGES
WILL ALSO BE PRINTED. (IPRINT = 1 1S RECOMMENDED AT
FIRST.) IF IPRINT = 0, ONLY THE FINAL QUANTITIES WILL
BE PRINTED, As witLt AS ANY ERROR MESSAGES. IF IPRINT =
-1, NO PRINTING WIiLL BE DONE. THE USER IS THEN
RESPONSIBLE FOR CHECKING THE PARAMETER IERR FOR ERRORS.
NL-VECTOR OF ESTIMATES OF NONLINEAR PARAMETERS
(INPUT). ON OUTPUT IT WILL CONTAIN OPTIMAL VALUES OF
THE NONLINEAR PARAMETERS.
L-VECTOR OF LINEAR PARAMETERS (OUTPUT ONLY).
INTEGER ERROR FLAG (OUTPUT):
,GT. 0 - SUCCESSFUL CONVERGENCE, IERR IS THE NUMBER OF
ITERATIONS TAKEN.
-1 TERMINATED FOR TOO MANY ITERATIONS.
- 2 TERMINATED FOR ILL-CONDITIONING (MARQUARDT
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PARAVETER TOO LARGE.) ALSO SEE IERR = -8 BELOW.

-4 INPUT ERROR IN PARAMETER N, L, NL, LPP2, OR NMAX.

-5 INC MATRIX IMPROPERLY SPECIFIED, OR P DISAGREES
WITH LPP2.

-6 A WEIGHT WAS NEGATIVE.

-7 'CONSTANT' COLUMN WAS COMPUTED MORE THAN ONCE.

-8 CATASTROPHIC FAILURE = A COLUMN OF THE A MATRIX HAS
BECOME ZERO. SEE "CONVERGENCE FAILURES®™ BELOW.

(IF IERR .LE. -4, THE LINEAR PARAMETERS, COVARIANCE
MATRIX, ETC. ARE NOT RETURNED, )

SUBROUTINES REQUIRED

NINE SUBROUTINES? DPA, ORFAC1, ORFAC2, BACSUB, POSTPR, cov,
XNORM, INIT, AND VARERR ARE PROVIDED. IN ADDITION, THE USER
MUST PROVIDE A SUBROUTINE (CORRESPONDING TO THE ARGUMENT ADA)
WHICH, GIVEN ALF, WILL EVALUATE THE FUNCTIONS PHI(J) AND THEIR
PARTIAL DERIVATIVES D PHI(J)sD ALF(K), AT THE SAMPLE POINTS
T(1). THIS ROUTINE MUST BE DECLARED "EXTERNAL®" IN THE CALLING
PROGRAM. ITS CALLING SEQUENCE IS

SUBROUTINE ADA (L+1, NL, N, NMAX, LPP2, IV, A, INC, T, ALF,
ISEL)

THE USER SHOULD MODIFY THE EXAMPLE SUBROUTINE “ADA" (GIVEN
ELSEWHERE) FOR HIS OWN FUNCTIONS.

THE VECTOR SAMPLED FUNICTIONS PHI(J) SHOULD BE STORED IN THE
FIRST N ROWS AND FIRST L+1 COLUMNS OF THE MATRIX A, I.E.,
A(CI, J) SHOULD CONTAIN PHI(J, ALF; T(I,1), T(I,2), ...,
T(I,Iv)), I =1, ..., N; J =1, ..., L (ORL+1). THE (L+1)-ST
COLUMN OF A CONTAINS PHI(L+1) IF PHI(L+1) IS IN THE MODEL,
OTHERWISE 1T 1S RESERVED FOR WORKSPACE. THE "CONSTANT®" FUNC-
TIONS (THESE ARE FUNCTIONS PHI(J) WHICH DO NOT DEPEND UPON ANY
NONLINEAR PARAMETERS ALF, E.G., T(I)¥*J) (IF ANY) MUST APPEAR
FIRST, STARTING IN COLUMN 1. THE COLUMN N-VECTORS OF NONZERO
PARTIAL DERIVATI*VES D PHI(J) ~» D ALF(K) SHOULD BE STORED
SEQUENTIALLY IN THE MATRIX A IN COLUMNS L+2 THROUGH L+P+1.
THE ORDER 1S

D PHIC1) D PHIC(2) D PHI(CL) D PHI(L+1) D PHIC1)
D ALFC(H) D ALFCD 7 DALFC1Y | (D ALF(1) D ALF(2)
D PHIC(2) D PHI(L+1) D PHICY) D PHI(L+1)
b atrczy U D ALR(G) T DALFGRLY T D ALF(NL)

OMITTING COLUMNS,OF DERIVATIVES WHICH ARE ZERO, AND OMITTING
PHI(L+1) COLUMNS, IF PHICL+1) IS NOT IN THE MODEL. NOTE THAT
THE LINEAR PARAMETERS BETA ARE NOT USED IN THE MATRIX A.
COLUMN L+pP+2 IS RESERVED FOR WORKSPACE.

THE CODING OF ADA SHOULD BE ARRANGED SO THAT:

ISEL = 1 (WHICH OCCURS THE FIRST TIME ADA IS CALLED) MEANS:
A. FILL IN THE INCIDENCE MATRIX INC
B. STORE ANY CONSTANT PHI"S IN A.
C. COMPUTE NONCONSTANT PHI®"S AND PARTIAL DERIVA-
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TIVES.
2 MEANS COMPUTE ONLY THE NONCONSTANT FUNCTIONS PHI
3 MEANS COMPUTE ONLY THE DERIVATIVES

(WHEN THE PROBLEM IS LINEAR (NL = 0) ONLY ISEL = 1 IS USED, AND
DERIVATIVES ARE NOT NEEDED.)

RESTRICTIONS

THE SUBROUTINES DPA, 1INIT (AND ADA) CONTAIN THE LOCALLY
DIMENSIONED MATRIX INC, WHOSE DIMENSIONS ARE CURRENTLY SET FOR
MAXIMA OF L+1 = 8, NL = 12. THEY MUST BE CHANGED FOR LARGER
PROBLEMS. DATA PLACED 1IN ARRAY A 1S OVERWRITTEN ("DESTROYED").
DATA PLACED IN ARRAYS T, Y AND INC IS LEFT INTACT. THE PROGRAM
RUNS IN WATFIV, EXCEPT WHEN L = 0 OR NL = O.

IT IS ASSUMED THAT THE: MATRIX PHI(J, ALF; T(I)) HAS FULL
COLUMN RANK. THIS MEANS THAT THE FIRST L COLUMNS OF THE MATRIX
A MUST BE LINEARLY INDEPENDENT.

OPTIONAL NOTE: AS WILL BE NOTED FROM THE SAMPLE SUBPROGRAM
ADA, THE DERIVATIVES D PHI(J)/sD ALF(K) (ISEL = 3) MUST BE
COMPUTED INDEPENDENTLY oF THE FUNCTIONS PHICJ) (ISEL = 2),
SINCE THE FUNCTION VALUES ARE OVERWRITTEN AFTER ADA 1S CALLED
WITH ISEL = 2. THIS IS DONE TO MINIMIZE STORAGE, AT THE POS-
SIBLE EXPENSE OF SOME RECOMPUTATION (SINCE THE FUNCTIONS AND
DERIVATIVES FREQUENTLY HAVE SOME COMMON SUBEXPRESSIONS). TO
REDUCE THE AMOUNT OF COMPUTATION AT THE EXPENSE OF sonE
STORAGE, CREATE A MATRIX B OF DIMENSION NMAX BY L+t IN ADA, AND
AFTER THE COMPUTATION OF THE PHI'S (ISEL = 2), COPY THE VALUES
INTO B. THESE VALUES can THEN BE USED TO CALCULATE THE DERIV-
ATIVES (ISEL = 3). (THIS MAKES USE OF THE FACT THAT WHEN A
CALL TO ADA WITH ISEL = 3 FOLLOWS A CALL WITH ISEL = 2, THE
ALFS ARE THE SAME.)

TO CONVERT TO OTHER MACHINES, CHANGE THE OUTPUT UNIT IN THE
DATA STATEMENTS IN VARPRO, DPA, POSTPR, AND VARERR. THE
PROGRAM HAS BEEN CHECKED FOR PORTABILITY BY THE BELL LABS PFORT
VERIFIER. FOR MACHINES WITHOUT DOUBLE PRECISION HARDWARE, IT
MAY BE DESIRABLE TO CONVERT TO SINGLE PRECISION. THIS CAN BE
DONE BY CHANGING (r) THE DECLARATIONS *DOUBLE PRECISION®" TO
'REAL', (B) THE PATTERN *.p* TO *.E' IN THE "DATA" STATEMENT 1%
VARPRO, ¢c) DSIGN, DSQRT AND DABS TO SIGN, SQRT AND ABS,
RESPECTIVELY, AND (p) DEXP TO EXP IN THE SAMPLE PROGRAMS ONLY.

NOTE ON INTERPRETATION OF COVARIANCE MATRIX

FOR USE IN STATISTICAL ESTIMATION (MULTIPLE NONLINEAR
REGRESSION) VARPRO RETURNS THE COVARIANCE MATRIX OF THE LINEAR
AND NONLINEAR PARAMETERS. THIS MATRIX WILL BE USEFUL ONLY IF
THE USUAL STATISTICAL ASSUMPTIONS HOLD: AFTER WEIGHTING, THE
ERRORS IN THE OBSERVATIONS ARE INDEPENDENT AND NORMALLY DISTRI-
BUTED, WITH MEAN ZERO aNp THE SAME VARIANCE. IF THE ERRORS DO
NOT HAVE MEAN ZERO (OR ARE UNKNOWN), THE PROGRAM WILL ISSUE A
WARNING MESSAGE (UNLESS IPRINT .LT. 0) AND THE COVARIANCE
MATRIX WILL NOT BE VALID, IN THAT CASE, THE MODEL SHOULD BE
ALTERED TO INCLWDE A CONSTANT TERM (SET PHIC1) = 1.).

NOTE ALSO THAT, IN oRDER FOR THE USUAL ASSUMPTIONS TO HOLD,
THE OBSERVATIONS MUST ALL BE OF APPROXIMATELY THE SAME
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MAGNITUDE (IN THE ABSENCE OF INFORMATION ABOUT THE ERROR oOF
EACH OBSERVATIONS, OTHERWISE THE VARIANCES WILL NOT BE THE
SAME. IF THE OBSERVATIONS ARE NOT THE SAME SIZE, THIS CAN BE
CURED BY WEIGHTIMG.

IF THE USUAL ASSUMPTIONS HOLD, THE SQUARE ROOTS OF THE
DIAGONALS OF THE COVARIANCE MATRIX A GIVE THE STANDARD ERROR
S(I) OF EACH PARAMETER. DIVIDING A(I,J) BY S(I)¥S(J) YIELDS
THE CORRELATION MATRIX OF THE PARAMETERS. PRINCIPAL AXES AND
CONFIDENCE ELLIPSOIDS CAN BE OBTAINED BY PERFORMING AN EIGEN-
VALUE/EIGENVECTOR ANALYSIS ON A. ONE SHOULD CALL THE EISPACK
PROGRAM TRED2, FOLLOWED BY TaL2 (OR USE THE EISPAC CONTROL
PROGRAM) .

CONVERGENCE FAILURES

IF CONVERGENCE FAILURES OCCUR, FIRST CHECK FOR INCORRECT
CODING OF THE SUBROUTINE ADA. CHECK ESPECIALLY THE ACTION oF
ISEL, AND THE COMPUTATION OF THE PARTIAL DERIVATIVES. IF THESE
ARE CORRECT, TRY SEVERAL STARTING GUESSES FOR ALF. IF ADA
IS CODED CORRECTLY, AND IF ERROR RETURNS IERR = -2 OR -8
PERSISTENTLY OCCUR, THIS IS A SIGN OF ILL-CONDITIONING, WHICH
HAY BE CAUSED BY SEVERAL THINGS. ONE IS POOR SCALING OF THE
PARAMETERS; ANOTHER 1S AN UNFORTUNATE INITIAL GUESS FOR THE
PARAMETERS, STILL ANOTHER IS A POOR CHOICE OF THE MODEL.

ALGORITHM

THE RESIDUAL R 1S MODIFIED TO INCORPORATE, FOR ANY FIXED
ALF, THE OPTIMAL LINEAR PARAMETERS FOR THAT ALF. IT IS THEN
POSSIBLE TO MINIMIZE ONLY" ON THE NONLINEAR PARAMETERS. AFTER
THE OPTIMAL VALUES OF THE: NONLINEAR PARAMETERS HAVE BEEN DETER-
MINED, THE LINEAR PARAMETERS CAN BE RECOVERED BY LINEAR LEAST
SQUARES TECHNIQUES (SEE REF. 1).

THE MINIMIZATION IS BY* A MODIFICATION OF OSBORNE®"S (REF. 3)
MODIFICATION OF THE LEVEMBERG-MARQUARDT ALGORITHH. INSTEAD OF
SOLVING THE NORMAL EQUATIONS WITH MATRIX

T 2

(3 J + N %

D), WHERE J = D(ETA)/D(ALF),

STABLE ORTHOGONAL (HOUSEHOLDER) REFLECTIONS ARE USED ON A
MODIFICATION OF THE MATRIX

WHERE D IS A DIAGONAL MATRIX CONSISTING OF THE LENGTHS OF THE
COLUMNS OF J. THIS MARQUARDT STABILIZATION ALLOWS THE ROUTINE
TO RECOVER FROM SOME RANK DEFICIENCIES IN THE JACOBIAN.
OSBORNE*S EMPIRICAL STRATEGY FOR CHOOSING THE MARQUARDT PARAM-
ETER HAS PROVEN REASONABLY SUCCESSFUL IN PRACTICE. (GAUSS-
NEWTON WITH STEP CONTROL CAN BE OBTAINED BY MAKING THE CHANGE
INDICATED BEFORE: THE INSTRUCTION LABELED 5). A DESCRIPTION CA?
BE FOUND IN REF. ¢3), ANI) A FLOW CHART IN €2), P. 22.

FOR REFERENCE, SEE
1.  GENE H. GOLUB AND V. PEREYRA, "THE DIFFERENTIATION OF
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PSEUDO-INVERSES AND NONLINEAR LEAST SQUARES PROBLEMS WHOSE
VARIABLES SEPARATE," SIAM J. NUMER. ANAL. 10, 413-432

------ » SAME TITLE, STANFORD €.S. REPORT 72-261, FEB. 1972.

OSBORNE, MICHAEL R., "SOME ASPECTS OF NON-LINEAR LEAST

SQUARES CALCULATIONS," IN LOOTSMA, ED., "NUMERICAL METHODS

FOR NON-LINEAR OPTIMIZATION," ACADEMIC PRESS, LONDON, 1972.

4. KROGH, FRED, "EFFICIENT IMPLEMENTATION OF A VARIABLE PRO-
JECTION ALGORITHM FOR NONLINEAR LEAST SQUARES PROBLEMS,*
commMm. ACM 17, PP. 167-169% (MARCH, 1974).

5. KAUFMAN, LINDA, ‘A VARIABLE PROJECTION METHOD FOR SOLVING
SEPARABLE NONLINEAR LEAST SQUARES PROBLEMS®, B.I.T. 15,
49-57 (1975),

6. DRAPER, N., AND SMITH, H., APPLIED REGRESSION ANALYSIS,
WILEY, N.Y., 1966 (FOR STATISTICAL INFORMATION ONLY).

7. C. LAWSON AND R. HANSON, SOLVING LEAST SQUARES PROBLEMS,

PRENTICE~-HALL, ENGLEWOOD CLIFFS, N. J., 1974.
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DOUBLE PRECISION A(NMAX, LPP2), BETA(L), ALF(NL), T(NMAX, 1IV),
W(N), Y(N), ACUM, EPS?t, GNSTEP, NU, PRJRES, R, RNEW, XNORM
INTEGER B1, OUTPUT

LOGICAL SKIP

EXTERNAL ADA

DATA EPSI ~s1.p-67, ITMAX s50s, OUTPUT s67/

THE FOLLOWING TWO PARAMETERS ARE USED IN THE CONVERGENCE
TEST: EPSI 1$ AN ABSOLUTE AND RELATIVE TOLERANCE FOR THE
NORM OF THE PROJECTION OF THE RESIDUAL ONTO THE RANGE OF THE
JACOBIAN OF THE VARIABLE PROJECTION FUNCTIONAL.

ITMAX IS THE MAXIMUM NUMBER OF FUNCTION AND DERIVATIVE
EVALUATIONS ALLOWED. CAUTION: EPSI MUST NOT BE

SET SMALLER THAN 10 TIMES THE UNIT ROUND-OFF OF THE MACHINE.

IERR = 1

ITER = 0

LP1 = L + 1

Bl = L + 2

LNL2 = L + NL + 2
NLP1 = NL + 1
SKIP = _FALSE.

MODIT = IPRINT
IF (IPRINT .LE. ©8) MODIT = ITMAX + 2

NU = 0.
IF GAUSS-NEWTON IS DESIRED REMOVE THE NEXT STATEMENT.

NU = 1.
BEGIN OUTER ITERATION LOOP TO UPDATE ALF.
CALCULATE THE NORM OF THE RESIDUAL AND THE DERIVATIVE OF
THE MODIFIED RESIDUAL THE FIRST TIME, BUT ONLY THE
DERIVATIVE IN SUBSEQUENT ITERATIONS.

CALL DPA (L, NL, N, NMAX, LPP2, IV, T, Y, W, ALF, ADA, IERR,

IPRINT, A, BETA, aAC1, LP1), R)
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10

25

30
35

40

45

50

55

6n

GNSTEP = 1.0

ITERIN o 0

IF (ITER .GT. 0) GO TO 10
IF (NL .EQ. 0) GO TO 90
IF (1IERR .NE. 1) GO TO 99

IF (IPRINT .LE. 0) GO TO 10

WRITE (OUTPUT, 207) ITERIN, R

WRITE (OUTPUT, 200) NU

BEGIN TWO-STAGE ORTHOGONAL FACTORIZATION

CALL ORFACI1(NLP1, NMAX, N, L, IPRINT, AC1, B1), PRJRES, IERR)
IF (IERR .LT. 0) GO TO 99
IERR = 2
IF (NU .EQ. 0.) GO TO 30

BEGIN INNER ITERATION LOOP FOR GENERATING NEW ALF AND
TESTING 1T FOR ACCEPTANCE.

CALL ORFAC2(NLP1, NMAX, NU, ACY1, B1))

SOLVE A NL X NL UPPER TRIANGULAR SYSTEM FOR DELTA-ALF.
THE TRANSFORMED RESIDUAL (IN COL. LNL2 OF RA) IS OVER-
WRITTEN BY THE RESULT DELTA-ALF.

CALL BACSUB (NMAX, NL, A(1, B1), AC1, LNL2))
DO 35 K = 1, NL

A(K, B1) = ALF(K) + A(K, LNL2)

NEW ALF(K) = ALF(K) + DELTA ALF(K)

STEP TO THE NEW POINT NEW ALF, AND COMPUTE THE NEW
NORM OF RESIDUAL. NEW ALF 1S STORED IN COLUMN B1 OF A.

CALL DFA (L, NL, N, NMAX, LPP2, IV, T, Y, W, AC1, B1), ADA,
IERR, IPRINT, A, BETA, ACt, LP1), RNEW)
IF (IERR _NE. 2) GO TO 99
ITER = ITER + 1
ITERIN = ITERIN + 1
SKIP = MOD(ITER, MODIT) .NE. 0
IF (SKIP) GO TO 45
WRITE (OUTPUT, 2063) ITER
WRITE (OUTPUT, 216) (AC(K, B1), K = 1, NL)
WRITE (OUTPUT, 207) ITERIN, RNEW

IF (ITER .LT. ITMAX) GO TO 50

IERR = -1
CALL VARERR (IPRINT, IERR, 1)
GO TO 95

IF (RNEW = R .LT. EPS1*(R + 1.D0)) GO TO 75
RETRACT THE STEP JUST TAKEN

IF (NU .NE. 0.) GO TO 60
GAUSS—-NEWTON OPTION ONLY
GNSTEP = O0.5%GNSTEP
IF (GNSTEP .LT. EPSI) GO TO 95
DO 85 K = 1, NL
A(K, B1) = ALF(K) + GNSTEP®*A(K, LNL2)
GO TO 40
ENLARGE THE MARQUARDT PARAMETE!
NU = 1.5%NU
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IF C(.NOT. SKIP) WRITE (OUTPUT, 206) NU
IF (NU .LE. 100.) GO "TO65

IERR = -2
CALL VARERR (IPRINT, IERR, 1)
G0 TO 95
RETRIEVE UPPER TRIANGULAR FORM
AND RESIDUAL OF FIRST STAGE.
65 DO 70 K = 1, NL
KSUB = LP1 + K
DO 70 J = K, NLPI
JSUB = LP1 + J
ISUB = NLPI + J
70 ACK, JSUB) = ACISUB, KSUB)
GO TO 25
END OF INNER ITERATION LOOP
ACCEPT THE STEP JUST TAKEN
75 R = RNEW
DO 80 K = 1, NL
80 ALF(K) = A(K, B1)
CALC. NORM(DELTA ALF)/NORM(ALF)
ACUM = GNSTEP*XNORM(NL, A(C1, LNL2))/XNORM(NL, ALF)
IF ITERIN IS GREATER "THAN 1, A STEP WAS RETRACTED DURING
THIS OUTER ITERATION.
IF (ITERIN .EQ. 1) NU = 0.5%NU
IF (SKIP) GO TO 85
WRITE (OUTPUT, 280> NU
WRITE (OUTPUT, 208) ACUM
85 IERR = 3
IF (PRJRES .GT. EPS1%*(R + 1.D0)) GO TO §
END OF OUTER ITERATION LOOP
CALCULATE FINAL QUANTITIES -- LINEAR PARAMETERS, RESIDUALS,
COVARIANCE MATRIX, ETC.
90 IERR = ITER
95 IF (NL .GT. 0) CALL, ppPA(L, NL, N, NMAX, LPP2, IV, T, Y, W, ALF,
X ADA, 4, IPRINT, A, BETA, AC1, LP1), R)
CALL POSTPR(L, NL, N, NMAX, LNL2, EPS1, R, IPRINT, ALF, W, A,
X AC1, LP1), BETA, I1ERR)
99 RETURN
200 FORMAT (9H NU =, E15.7)
203 FORMAT (12HO0 ITERATION, I4, 24H NONLINEAR PARAMETERS)
206 FORMAT (25H STEP RETRACTED, NU =, E15.7)
207 FORMAT (1HO, 15, 20H NORM OF RESIDUAL =, E15.7)
208 FORMAT (34H NORM(DELTA-ALF) 7 NORM(ALF) =, E12.3)
216 FORMAT (1HO, 7E15.7)
END

SUBROUTINE ORFACI(MLP1, NMAX, N, L, IPRINT, B, PRJRES, IERR)

STAGE 1: HOUSEHOLDER REDUCTION OF

. ) (¢ DR'. R3 ) NL
( DR . R2) TO (====, == ),
( ) ¢ 0 . R4 ) N-L-NL
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WHERE DR

DR* 1S

= -D(Q2)*Y IS
PRODUCED BY DP&,
IN UPPER TRIANGULAR FORM (AS IN REF.
DR IS STORED
THE MATRIX A (I.E.,

NL 1 NL 1

"THE DERIVATIVE OF THE MODIFIED RESIDUAL
"THE TRANSFORMED RESIDUAL FROM DPA, AND
(2), P. 18).

TO N AND COLUMNS L+2 TO L + NL + 1 OF
COL"UMNS 1 TO NL OF THE MATRIX B). R2 IS

R2 1S

IN ROWS L+1

STORED IN COLUMN L + NL + 2 OF THE MATRIX A (COLUMN NL + 1 OF

B). FOR K = 1, 2, ..., NL, FIND REFLECTION I - U * U* ~ BETA
WHICH ZEROES B(I, K), | = L+K+1, ...» N.
DOUBLE PRECISION acuM, ALPHA, B(NMAX, NLP1), BETA, DSIGN, PRJRES,
X U, XNORM
NL = NLPI =
NL23 = 2¥NL + 3
LPt = L + 1
DO 30 K = 1, NL
LPK = L + K
ALPHA = DSIGN(XNORM(N+1-LPK, B(LPK, K)), B(LPK, K))
U = B(LPK, K) + ALPHA
B(LPK, K) = U
BETA = ALPHA * ©
IF (ALPHA _NE. ©6.06) GO TO 13
COLUMN WAS ZERO
IERR = -8
CALL VARERR (IPRINT, IERR, LP1 + K)

GO TO 99

13 Kpt = K
DO 25 J
ACUM

DO 20

n o +

20
ACUM
DO 25
25
30 B(LPK, K)
PRJRES =

SAVE

IN CASE A STEP IS RETRACTED.

IF (1ERR .EQ.

DO 50 K = 1,
LPK = L +

DO 40 J
JSUB

B(K, J)
40 B(JSUB,

50 B(NL23,

99 RETURN
END

O R —

ACUM

B(I,

XNORM(NL,

UPPER TRIANGULAR FORM AND TRANSFORMED RESIDUAL,

KJ) o XNORM(K,

APPLY REFLECTIONS TO REMAINING COLUMNS
OF B AND TO RESIDUAL VECTOR.
P1, NLPI
.0
LPK, N

= ACUM + B(I, K) *

B(I, J)

= ACUM » BETA

= LPK: N
J) = B(I, J) - B(I, K) * ACUM
= —ALPHA

B(LP1, NLP1))

FOR USE
ALSO COMPUTE COLUMN LENGTHS.

4) GO TO 99

NL

K

K, NLPI

NLPI + J

K) = B(LPK, J)

B(LP1, K))
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SUBROUTINE ORFAC2(NLP1, NMAX, NU, B)

STAGE 2: SPECIAL HOUSEHOLDER REDUCTION OF

NL ¢ DR' . R3 ) (DR'* . R5 )
(---—- Lo==) (---—- . o==)
N-L-NL ( 0 .R4) TO C O . R4 )
(---—- . o==) (---—- -
NL (NU¥D . 0 ) « 0 R6 )

NL 1 NL 1

WHERE DpR', R3, AND R4 ARE AS IN ORFAC!1, NU IS THE MARQUARDT
PARAMETER, D IS A DIAGONAL MATRIX CONSISTING OF THE LENGTHS OF
THE COLUMNS OF DbR*, AND DR®™™ IS IN UPPER TRIANGULAR FORM.
DETAILS IN ¢1), PP. u423-424. NOTE THAT THE (N-L-NL) BAND OF
ZEROES, AND R4, ARE OMITTED IN STORAGE.

------------------------------------------------------------------

DOUBLE PRECISION ACUM, ALPHA, B(NMAX, NLP1), BETA, DSIGN, NU, U,
X XNORM

NL = NLPI - 1
NL2 = 2%NL
NL23 = NL2 + 3
DO 30 K = 1, NL
KPPt = K + 1
NLPK = NL + K
NLPKMI = NLPK - 1
B(NLPK, K) = NU * B(NLZ23, K)
B(NL, K) = B(K, K)
ALPHA = DSIGN(XNORM(K+1, B(NL, K)), B(K, K))
U = B(K, K) +*ALPHA
BETA = ALPHA * U
B(K, K) = —ALPHA
THE K—TH REFLECTION MODIFIES ONLY ROWS K,
NL+1, NL+2, ..., NL+K, AND COLUMNS K TO NL+1.
DO 30 J = KP1, NLPI
B{(NLPK, Ji = 0.
ACUM = U ¥ BrK,J)
DO 20 | = NLP1, NLPKM!
ACUM = ACUM + BCI,K) * B(I,J)
ACUM = ACUM » BETA
B(K,J) = B(K,J) - U * ACUM
DO 30 I = NLPI, NLPK .
B(1,J) = B(1,J) - B(I,K) ACUM

RETURN
END

SUBROUTINE DPA (L, NL, N, NMAX, LPP2, IV, T, Y, W, ALF, ADA, ISEL,
X 1PRINT, A, U, P, RNORM)

COMPUTE THE NorM OF THE RESIDUAL (IF ISEL = 1 OR 2), OR THE
(N-L) X NL DERIVATIVE OF THE MODIFIED RESIDUAL (N-L) VECTOR
@2*y (IF ISEL = 1 OR 3). HERE @ * PHI = s, I.E.,

L € Q1) ¢ ) (S . Rl . F1 )
(m—==) C PHI .Y . D(PHI) ) = (=== , == === )
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N-L ( Q2 ) ¢ . . ) (0 . R2. F2 )
N L | P L | P

WHERE @ IS N X N ORTHOGONAL, AND s IS L X L UPPER TRIANGULAR.
THE NORM OF THE RESIDUAL = NORM(R2), AND THE DESIRED DERIVATIVE
ACCORDING TO REF. (5), IS8

*

pca2 * vy = —42 * p(pPHII* §

DOUBLE PRECISION ACNMAX, LPP2), ALF(NL), T(NMAX, IV), W(N), Y(N),

X ACUM, ALPHA, BETA, RNORM, DSIGN, DSQRT, SAVE, R(N), U(L), XNORM

30
35

40
45

50

55

INTEGER FIRSTC, FIRSTR, INCC14, 8)
LOGICAL NOWATE, PHILPI
EXTERNAL ADA

IF (ISEL _NE. 1) GO TO 3
Lp1 = L + 1
LNL2 = L + 2 + NL

LP2 = L + 2
LPP1 = LPP2 = 1
FIRSTC = 1
LASTC = LPPI

FIRSTR = LP1

CALL INIT(L, NL, N, NMAX, LPP2, IV, T, W, ALF, ADA, ISEL,
IPRINT, A, INC, NCON, NCONP1, PHILP1, NOWATE)

IF (ISEL _NE. 1) GO TO 99

GO TO 30

CALL ADA (LP1,NL,N,NMAX,LPP2,IV,A,INC,T,ALF,MINOCISEL,3))
IF (ISEL .EQ. 2) GO TO 6

ISEL = 3 OR 4
FIRSTC = LP2
LASTC = LPPI
FIRSTR = (4 - ISEL)*L + 1
GO TO 50

ISEL = 2
FIRSTC = NCONPI

LASTC = LP1
IF (NCON .EQ. 0) GO TO 30
IF cact, NCON) .EQ. SAVE) 6o TO 30

ISEL = -7
CALL VARERR (IPRINT, 1sEL, NCON)
GO TO 99

ISEL = 1 OR 2

IF (PHILPI) GO TO 40
DO 35 1 = 1, N
R(I) = Y(I)
GO TO 50
DO 45 1 = 1, N
R(I) = Y(I) - R(I)

WEITGHT APPROPRIATE COLUMN:

IF (NOWATE) GO TO 58
DO 55 I = 1, N
ACUM = W(I)

DO 55 J = FIRSTC, LASIC
ACI, J) = A(I, J) ACUM
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COMPUTE ORTHOGONAL FACTORIZATIONS BY HOUSEHOLDER
REFLECTIONS. IF ISEL = 1 OR 2, REDUCE PHI (STORED IN THE
FIRST L COLUMNS OF THE: MATRIX A) TO UPPER TRIANGULAR FORM,
(Q*¥PHI = S), AND TRANSFORM Y (STORED IN COLUMN L+1), GETTING
Q*Y = rR. IF ISEL = 1, ALSO TRANSFORM J = D PHI (STORED IN
COLUMNS L+2 THROUGH L+pP+1 OF THE MATRIX A), GETTING Q¥*¥J = F.
IF ISEL = 3 OR 4, PHI HAS ALREADY BEEN REDUCED, TRANSFORM
ONLY J. s, R, AND F OVERWRITE PHI, Y, AND J, RESPECTIVELY,
AND A FACTORED FORM OF* Q 1S SAVED IN U AND THE LOWER
TRIANGLE OF PHI.

58 IF (L .EQ. 0) GO TO 75

DO 70 K = 1, L
KP1 = K + 1
IF (ISEL .6E. 3 .OR. (ISEL .EQ. 2 _AND. K .LT.NCONP1)) GO TO 66
ALPHA = DSIGN(XNORM(N+1-K, A(K, K)), A(K, K))
UCK) = A(K, K) + ALPHA
A(K, K) = —-ALPHA
FIRSTC = KP1
IF (ALPHA .NE. 0.0) GO TO 66

ISEL = -8
CALL VARERR (IPRINT, ISEL, K)
GO TO 99
APPLY REFLECTIONS TO COLUMNS
* FIRSTC TO LASTC.
66 BETA = -A(K, K) U(K)

DO 70 J = FIRSTC, LASTC
ACUM = U(K)*A(K, J)
DO 68 | = Kp1, N
68 ACUM = ACUM + ACI, K)*A(I, J)
ACUM = ACUM ~ BETA
A(K,J) = A(K,J) - U(K)*ACUM
DO 70 I = kP11, N
70 ACI, J) = A(I, J) = A(I, K)¥ACUM

75 IF (ISEL .GE. 3) GO TO 85
RNORM = XNORM(N-L, R(LP1))
IF (ISEL .EQ. 2) GO TO 99
IF (NCON .GT. 0) SAVE o AC1, NCON)

F2 1S NOW CONTAINED 1N ROWS L+t TO N AND COLUMNS L+2 TO
L+pP+1 OF THE MATRIX A. NOW SOLVE THE L X L UPPER TRIANGULAR
SYSTEM s*BETA = R1 FOR THE LINEAR PARAMETERS BETA. BETA
OVERWRITES RI.

85 IF (L .GT. 0) CALL BACSUB (NMAX, L, A, R)

MAJOR PART OF KAUFMAN'S SIMPLIFICATION OCCURS HERE. COMPUTE
THE DERIVATIVE OF ETA WITH RESPECT TO THE NONLINEAR

PARAMETERS
T D ETA T L D PHI(J) D PHI(L+1)
Q ¥ —-—--—-- = Q * (SUM BETA(J) =--—----- + mem—mm—ee- ) = F2%BETA
D ALF(K) J=1 D ALF(K) D ALF(K)

AND STORE THE RESULT IN COLUMNS L+2 TO L+NL+t1. IF ISEL NOT
= 4, THE FIRST L ROWS ARE OMITTED. THIS IS -D(Q2)¥%Y, IF
ISEL NOT = 4 THE RESIDUAL R2 = Q2%Y (IN COL. L+1) IS COPIED
TO COLUMN L+NL+2. OTHERWISE ALL OF COLUMN L+1 IS COPIED.
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DO 95 I = FIRSTR, N
IF (L .EQ. NCON) GO0 TO 95

M = LP1
DO 90 K = 1, NL
ACUM = 0.

DO 88 J = NCONP1, L
IF CINC(K, J) .EQ. 0) GO TO 88
M =M+ 1 *
ACUM = ACUM + ac(r, M) R(J)
88 CONTINUE
KSUB = LP1 + K
IF (INC(K, LP1) .EQ. 0) GO TO 90

Mm=Nn+1

ACUM = ACUM + a1, M)
90 ACI, KSUB) = ACUM
95 A(I, LNL2) = R(I)
99 RETURN

END

SUBROUTINE INIT(L, NL, N, NMAX, LPP2, IV, T, W, ALF, ADA, ISEL,

X IPRINT, A, INC, NCON, NCONP1, PHILP1, NOWATE)

CHECK VALIDITY OF INPUT PARAMETERS, AND DETERMINE NUMBER OF
CONSTANT FUNCTIONS.

llllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll

DOUBLE PRECISION A(NMAX, LPP2), ALF(NL), T(NMAX, IV), W(N),
X DSQRT

INTEGER OUTPUT, P, INC(14, 8)

LOGICAL NOWATE, PHILPI

DATA OUTPUT s6/

LPt = L + 1
LNL2 = L + 2 + NL
CHECK FOR VALID INPUT
IF (L .Ge. O .AND. NL .6E. O .AND. L+NL .LT. N _.AND. LNL2 _LE.
X LPP2 _AND. 2*NL + 3 _LE. NMAX .AND. N _.LE. NMAX _AND.
X IV .¢T. 0 .AND. .NOT. (NL .EQ. 0 .AND. L .EQ. 0)) GO TO 1

ISEL = -4
CALL VARERR (IPRINT, ISEL, 1)
Go TO 99

1 IF (L .E@. 8 _OR. NL .EQ. 0) GO TO 3
DO 2 J = 1, LPI
DO 2 K = 1, NL
2 INC(K, J} = 0

3 CALL ADA (LPt, NL, N, NMAX, LPP2, IV, A: INC, T, ALF, ISEL)

NOWATE = .TRUE.
DO 9 I = 1, N
NOWATE = NOWATE ._AND. (W(I) .EQ. 1.0)
IF (W(I) .GE. 0.) GO TO 9
ERROR IN WEIGHTS

ISEL = -6
CALL VARERR (IPRINT, ISEL, I)
GO TO 99

9 W(I) = DSQRT(W(I))
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11

15

20
25

99
210

10
20

30

NCON = L
NCONP1 = LP1
PHILPI =L .EQ. O
IF (PHILPI _OR. NL .E@. 0) GO TO 99
CHECK INC MATRIX FOR VALID INPUT AND
DETERMINE NUMBER OF CONSTANT FCNS.
P =0
DO 11 J = 1, LP1
IF (P .EQ. 0) NCONP1 =]
DO 11 K = 1, NL
INCKJ = INC(K, J)
IF (INCKJ .NE. O .AND. INCKJ .NE. 1) GO TO 15

IF (INCKJ .EQ. 1) P = P + 1
CONTINUE

NCON = NCONPI = 1
IF (IPRINT .GE. 0) WRITE (OUTPUT, 210) NCON
IF (L+P+2 .EQ. LPP2) GO TO 20
INPUT ERROR IN INC MATRIX

ISEL = -5
CALL VARERR (IPRINT, ISEL, 1)
GO TO 99
DETERMINE IF PHICL+1) IS IN THE MODEL.
DO 25 K = 1, NL
IF CINC(K, LP1) .EQ. 1) PHILPI = .TRUE.
RETURN

FORMAT (33H0 NUMBER OF CONSTANT FUNCTIONS =, I4 7)
END
SUBROUTINE BACSUB (KMAX, N, A, X)

BACKSOLVE THE N X N UPPER TRIANGULAR SYSTEM A*X = B.
THE SOLUTION X OVERWRITES THE RIGHT SIDE B.

DOUBLE PRECISION ACHMAX, N), X(N), ACUM

X(N) = X(N) 7 A(N, N)
IF (N .EQ. 1) GO TO 30
NP1 = N + 1

DO 20 IBACK = 2, N

I = Xpt - IBACK

I = N-1, N-2, "oy 2 1
1Py = | + 1
ACUM = x(I)

DO 10 J = 1P1, N
ACUM = ACUM - ACI,J)*¥X(J)
(1) = ACUM 7 A(I,I)

RETURN
END
SUBROUTINE POSTPR(L, NL, N, NMAX, LNLZ2, EPS, RNORM, IPRINT, ALF,

X W, A, R, U, IERR)

CALCULATE RESIDUALS, sSAMPLE VARIANCE, AND COVARIANCE MATRIX.
ON INPUT, U CONTAINS INFORMATION ABOUT HOUSEHOLDER REFLECTIONS
FROM DPA. ON OUTPUT, IT CONTAINS THE LINEAR PARAMETERS.

DOUBLE PRECISION A(NMAX, LNL2), ALF(NL), R(N), U(L), W(N), ACUM,

¥ EPS, PRJRES, RKORM, SAVE, DABS
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10

20

25
30

35

40
45

99

INTEGER OUTPUT
DATA OUTPUT ~s67

LP1 = L + 1

LPNL = LNL2 - 2

LNLIT = LPNL + 1

DO 10 1 = 11, N
WCI) = W(I)*x2

UNWIND HOUSEHOLDER TRANSFORMATIONS TO GET RESIDUALS,
AND MOVE THE LINEAR PARAMETERS FROM R TO U.

IF (L .EQ. 0) GO TO 30
DO 25 KBACK = 1, L

K = LP1 = KBACK

Kpt = K + 1

ACUM = 0.
DO 20 I = Kkp1, N
ACUM = ACUM + aCr, K) * R(I)
SAVE = R(K)
R(K) = ACUM 7 A(K, K)
ACUM = -AcCUM 7 (U(K) A(K, K))
U(K) = SAVE
DO 25 | = KPIr N
R(I) = R(I) = A(I, K)*ACUM
COMPUTE MEAN ERROR
ACUM = 0.
DO 35 1 = 1, N
ACUM = ACUM + R(I)

SAVE = ACUM 72 N

THE FIRST L COLUMNS OF THE MATRIX HAVE BEEN REDUCED TO
UPPER TRIANGULAR FORM IN DPA. FINISH BY REDUCING ROWS
L+1 TO N AND COLUMNS L+2 THROUGH L+NL+1 TO TRIANGULAR
FORM. THEN SHIFT COLUMNS OF DERIVATIVE MATRIX OVER ONE
TO THE LEFT TO BE ADJACENT TO THE FIRST L COLUMNS.

IF (NL .EQ. 0) GO TO 45
CALL ORFACIT1(NL+1, NMAX, N, L, IPRINT, AC1, L+2), PRJRES, 4)
DO 40 I = 1, N

ACI, LNL2) = R(I)

DO 40 K = LP1, LNL1

ACI, K) = A(CI, K+1)
COMPUTE COVARIANCE MATRIX

AC1, LNL2) = RNORM
ACUM = RNORM¥RNORM/(N - L - NL)
A(2, LNL2) = ACUM
CALL COV(NMAX, LPNL, ACUM, A)

IF (IPRINT .rT. 8) GO TO 99

WRITE (OUTPUT, 209}

IF (L .6¢T. 0) WRITE (OUTPUT, 210) (ucJ), J = 1
IF (NL .G6T. 0) WRITE (OUTPUT, 211) (ALF(K), K
WRITE (OUTPUT, 2143 RNORM, SAVE, ACUM

IF (DABS(SAVE) .GT. EPS) WRITE (OUTPUT, 215)
WRITE (OUTPUT, 209)

RETURN

L)
t, NL)

"~

209 FORMAT (1HO, 50C1H'))
210 FORMAT (20H0O LINEAR PARAMETERS 77 (7E15.7))
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211 FORMAT (23H0 NONLINEAR PARAMETERS 77 (7E15.7))
214 FORMAT (2180 NORM OF RESIDUAL =, E15.7, 33H EXPECTED ERROR OF OBS

XERVATIONS =, E15.7, 7 39H ESTIMATED VARIANCE OF OBSERVATIONS =,
X E15.7 )
215 FORMAT (95H WARNING -- EXPECTED ERROR OF OBSERVATIONS IS NOT ZERO
X. COVARIANCE MATRIX MAY BE MEANINGLESS. 7)
END
SUBROUTINE COV(NMAX, N, SIGMAZ2, A)

COMPUTE THE SCALED COVARIANCE MATRIX OF THE L + NL
PARAMETERS. THIS INVOLVES COMPUTING

2 * -1 -T
SIGMA T * T

WHERE THE (L+NL) X (L+NL) UPPER TRIANGULAR MATRIX T IS
DESCRIBED IN SUBROUTINE POSTPR. THE RESULT OVERWRITES THE

FIRST L+NL ROWS AND COLUMNS OF THE MATRIX A. THE RESULTING
MATRIX IS SYMMETRIC. SEE REF. 7, PP. 67-70, 281.

DOUBLE PRECISION ACNMAX, N), SUM, SIGMA2

bO 10 J = 1, N
10 ACJ, J) = 1.7AC3, J)

INVERT T UPON ITSELF

IF (N .EQ. 1) GO TO 70

DO 60 I = 1, NM1I
ipt = | + 1
DO 60 J = 1P1, N
JM1 = J =1
SUM = 0.
DO 50 M = 1, JmM1?
50 SUM = SUM + ACI, M) * A(M, J)
60 ACI, J) = -SUM * A(J, J)
NOW FORM THE MATRIX PRODUCT
70 DO 90 I = 1, N
DO 90 J = 1, N
SUM = 0.
DO 80 M = J, N
80 SUM = SQM + ACI, M) * ACJ, M)
SUM = SUM SIGMA2
ACI, J) = SUM
90 A(J, I) = SUM
RETURN
END

SUBROUTINE VARERR (IPRINT, IERR, K)
PRINT ERROR MESSAGES

INTEGER ERRNO, OUTPUT
DATA OUTPUT ~s6~7




IF (IPRINT .LT. 8) GO TO 99
ERRNO = IABS(IERR)
Go 10 ¢1, 2, 99, 4, 5, 6, 7, 8), ERRNO

C
1 WRITE (OUTPUT, 101)
GO TO 99
2 WRITE (OUTPUT, 102)
GO TO 99
4 WRITE (OUTPUT, 104)
GO TO 99
5 WRITE (OUTPUT, 105)
GO TO 99
6 WRITE (OUTPUT, 106) K
GO TO 99
7 WRITE (OUTPUT, 107) K
GO TO 99
8 WRITE (OUTPUT, 108) K
C

99 RETURN

101 FORMAT (46H0 PROBLEM TERMINATED FOR EXCESSIVE ITERATIONS 77)
102 FORMAT (u49H0 PROBLEM TERMINATED BECAUSE OF ILL-CONDITIONING 77)
104 FORMAT (s 50H INPUT ERROR IN PARAMETER L, NL, N, LPP2, OR NMAX.

105 FORMAT (68H0 ERROR == INC MATRIX IMPROPERLY SPECIFIED, OR DISAGRE

XES WITH LpP2. /)
106 FORMAT C19H0 ERROR -- WEIGHT(, I4, 114H) IS NEGATIVE. /)
107 FORMAT (2810 ERROR ~-- CONSTANT COLUMN , I3, 37H MUST BE COMPUTED
XONLY WHEN ISEL = 1. 72
108 FORMAT (33H0 CATASTROPHIC .FAILURE == COLUMN , 1%, 28H 1S ZERO,
XE DOCUMENTATION. 73
END
DOUBLE PRECISION FUNCTION XNORM(N, X)

COMPUTE THE L2 (EUCLIDEAN) NORM OF A VECTOR, MAKING SURE TO
AVOID UNNECESSARY UNDERFLOWS. NO ATTEMPT IS MADE TO SUPPRESS
OVERFLOWS.

aaaaaaq

DOUBLE PRECISION X¢(N), RMAX, SUM, TERM, DABS, DSQRT

OO

FIND LARGEST (IN ABSOLUTE VALUE) ELEMENT
RMAX = 0.
DO 10 I = 1, N
IF (DABS(X(I)) .G6T. RMAX) RMAX = DABS(X(I))
10 CONTINUE

SUM = 0.
IF (RMAX .EQ. 0.) 6o TO 30
DO 20 1 1, N
TERM 0.
IF (RMAX + DABS(X(I)) _NE. RMAX) TERM = X(I)/RMAX
20 SUM = SUM + TERM¥TERM

30 XNORM = RMAX¥DSQRT(SUM)
99 RETURN
END
//LKED.SYSLMOD DD DSN=WYL.JE.CLJ.SETH(MELISSA),DISP=0OLD




WATRAKEI (37/79) - CWK24%4 FROM WK107%
NUMBER OF NONLINEAR PARAMETERS

INITIAL EST. OF NONLIN. PARAMETERS

2.000
5.000

DIMENSIONLESS NUMBER TRACER ARRIVAL TIME
2.00000 0.200

NUMBER OF OBSERVATIONS

93
INDEPENDENT VARIABLES DEPENDENT VARIABLES

214 28.510
.297 2043.906
.380 7757.337
.464 10865.406
547 10752.924
.630 9576.211
714 8226.813
.797 7012.052
.880 5984 _576
.964 5198.999
.047 4588.288
.130 4092 .422
.297 3386.888
.380 2895.055
_464 2727.387
.547 2606.242
.630 2446.038
_714 2321.840
.797 2194641
-880 2078.807
_964 1973.313
.047 1890.512
.130 1792 .964
214 1615.511
.630 1280.402
714 1232.835
797 1187.192
.880 1145 .455
.964 1111.014
.047 1079.655
.130 1044 .407
214 1002.250
.297 944 _850
.380 909.742
.464 879.628
547 848.368
.630 817.099
_714 792.777
797 769.525
-880 748.345
_964 751.802
.047 714.117
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4.130 695.975

4.214 658.868
4.297 638.992
4.380 618.845
4.464 607.310
4.630 572.912
4.714 559.063
4.797 543.320
4.880 532.194
4.964 517.672
5.047 502.855
5.130 491.666
5.214 483.097
5.297 469.851
5.380 462.071
5.464 450.761
5.547 446.069
5.630 432.668
5.880 407 .597
5.964 397.611
6.047 392.204
6.130 380.086
6.214 375.645
6.297 369.281
6.380 359.749
6.630 345.746
6.714 340.128
6.797 338.155
6.880 338.703
6.964 333.483
7.047 331.370
7.130 317.503
7.214 305.410
7.297 300.365
7.380 295.185
7.464 292.692
7.547 287.393
7.630 284.710
7.714 279.273
7.797 275.762
7.880 271.511
8.130 263.995
8.380 256.012
8.464 249.8u4y
8.547 247.240
8.630 244 .606
8.880 236.365
8.964 234.301
9.047 229.099
9.130 225.334
9.214 223.842
NUMBER OF CONSTANT FUNCTIONS = 0
0O NORM OF RESIDUAL = 0.1280073D+05
NU = 0.1000000D+01
ITERATION 1 NONLINEAR PARAMETERS
0.1951013D+01 0.7306868D+01
Y NORM OF RESIDUAL = 0.5307679D+0%
NU = 0.5000000D+00

NORM(DELTA-ALF) 7 NORMCALF) = 0.335D+00



ITERATION 2 NONLINEAR PARAMETERS
0.1790861D+01 0.6391822D+01

1 NORM OF RESIDUAL = 0.4667214D+04

NU = 0.2500000D+00

NORM(DELTA-ALF) s NORM(ALF) = 0.140D+00
ITERATION 3 NONLIMEAR PARAMETERS
0.1397078D+01 0.4619397D+01

1 NORM OF RESIDUAL = 0.2752487D+04

NU = 0.12506000D+00

NORM(DELTA-ALF) 7 NORM(ALF) = 0.376D+00
ITERATION 4y NONLINEAR PARAMETERS

0.1242511D+01 0.4320153D+01
1 NORM OF RESIDUAL = 0.1722342D+04%

NU = 0.6250000D-01
NORM(DELTR-ALF) s NORM(ALF) = 0.749D-01
ITERATION 5 NONLINEAR PARAMETERS

0.1249233Dp+01 0.4327062D+01

1 NORM OF RESIDUAL = 0.1716735D+04

NU = 0.3125000D-01

NORM(DELTA-ALF) 7 NORM(ALF) = 0.214D-02
ITERATION 6 NONLINEAR PARAMETERS
0.1248118D+01 ©0.4323440D+01

t NORM OF RESIDUAL = 0.1716674D+04

NU = 0.1562500D-01
NORM(DELTA-ALF) / NORM(CALF) = 0.842Dp-03
ITERATION U NONLINEAR PARAMETERS

0.1248064D+01 0.4323031D+01

1 NORM OF RESIDUAL = 0.1716672D+04

NU = 0.7812500D-02

NORM(DELTA-ALF) 7/ NORM(ALF) = 0.916D-04
ITERATION 8 NONLIHEAR PARAMETERS
0.1248037D+01 0.4322911D+01

1 NORM OF RESIDUAL = 0.1716672D+04

NU = 0.3906250D-02

NORM(DELTA-ALF) s NORM(ALF) = 0.272D-04
ITERATION S NONLIMEAR PARAMETERS
0.1248032D+01 0.4322888D+01

1 NORM OF RESIDUAL = 0.1716672D+04

NU = 0.1953125D-02
NORM(DELTA-ALF) s NORM(ALF) = 0.530D-05
ITERATION 10 NONLIHEAR PARAMETERS

0.1248031D+01 0.4322883D+01
1 NORM OF RESIDUAL = ©0.1716672D+04

NU = 0.9765625D-03
NORM(DELTA-ALF) 7/ NORM(ALF) = 0.121D-05
ITERATION 11 NONLINEAR PARAMETERS

0.1248031D+01 0.4322882D+01

1 NORM OF RESIDUAL = 0.1716672D+04

NU = 0.4882812D-03

NORM(DELTA~ALF) - NORM(ALF) o 0.258D-06
ITERATION 12 NONLINEAR PARAMETERS
0.1248031D+01 0.4322881D+01

1 NORM OF RESIDUAL = 0.1716672D+0k

NU = 0.2441406D-03

NORM(DELTA-ALF) / NORM(ALF) = 0.564D-07

[N 2 0 IO I IO 2O IO O O DO AN OO DO 2 N 2O 2O 2O DO DN N NN IR DO N B DN DN DO RN B DN DO RN B B B BN B AR BN BN AN |

LINEAR PARAMETERS

0.1655775D+05
NONLINEAR PARAMETERS



0.1248031D+01

WARNI

0.4322881D+01
NORM OF RESIDUAL = 0.1716672D+0%4 EXPECTED ERROR OF OBSERVATIONS = O.
ESTIMATED VARIANCE OF OBSERVATIONS =

0.3274403D+05

NG == EXPECTED ERROR OF OBSERVATIONS 1S NOT ZERO.

[N NN N NN N N N EE R

ACTUAL

28.

5100

CALC

0.

2043.9060 1380.
7757.3370 8667.
10865.406010619.
10752.924010097.

9576.
8226.
7012.
5984.
5198.
4588.
4092.
3386.
2895.
2727.
2606.
2446.
2321.
2194.
2078.
1973.
1890.
1792.
1615.
1280.
1232.
1187.
1145.
1111.
1079.
1044.
1002.
944.
909.
879.
848.
817.
792.
769.
748.
751.
714.
695.
658.
638.
618.
607.
572.
559.
543.

2110
8130
0520
5760
9990
2880
4220
8880
0550
3870
2420
0380
8400
6410
8070
3130
5120
9640
5110
4020
8350
1920
4550
0140
6550
4070
2500
8500
7420
6280
3680
0990
7770
5250
3450
8020
1170
9750
8680
9920
8450
3100
9120
0630
3200

9022.
7926.
6970.
6158.
5467.
4893.
4407.
3634.
3328.
3058.
2825.
2620.
2435.
2273.
2128.
1997.
1879.
1772.
1674.
1298.
1239.
1185.
1135.
1087.
1044.
1003.
964.
928.
895.
863.
833.
804.
777 .
752.
728.
706.
684.
664 .
644 .
626.
608.
591.
560.
545.
531.

0 0.
2258 1380.
5898 8667.
640610619,
242210097,

CoMP®#1

0

2258
5898
6406
2422

6719
6328
8984
7656
9453
8203
9609
8909
4558
7834
5759
0679
8870
8853
8738
0005
4253
8572
8044
8887
8137
6943
3857
9790
2793
4192
7019
8235
1094
0107
1306
9316
9731
7786
9126
0134
5388
1294
4846
0051
3909
3887
0254
1943
1709

9022.6719
7926.6328
6970.8984
6158.7656
5467.9453
4893.8203
4407.9609
363111.8909
33281.4558
30581.7834
2825.5759
26201.0679
2435.8870
2273.8853
2128.8738
1999.0005
1874.4253
1772.8572
1674.8044
12981.8887
1239.8137
1185.6943
1135.3857
1087.9790
1044.2793
1003.4192
964.7019
926.8235
895.1094
863.0107
833.1306
804.9316
773.9731
752.7786
726.9126
704.0134
684.5388
66%. 1294
649.4846
626.0051
608.3909
591.3887
566.0254
545.1943
531.1709

coMP#2

COVARIANCE MATR




532.1940
517.6720
502.8550
491.6660
483.0970
469.8510
462.0710
450.7610
446.0690
432.6680
407.5970
397.6110
392.2040
380.0860
375.6450
369.2810
359.7490
345.7460
340.1280
338.1550
338.7030
333.4830
331.3700
317.5030
305.4100
300.3650
295.1850
292.6920
287.3930
284.7100
279.2730
275.7620
271.5110
263.9950
256.0120
249.8440
247.2400
244.6060
236.3650
234.3010
229.0990
225.3340
223.8420

FRACTION

1.000

517.7378
504.7092
492.3628
480.5112
468.9929
458.0562
447.5374
437.2954
427.5527
418.1665
391.8708
383.6477
375.8010
368.2180
360.7998
353.7109
346.8511
327.4724
321.3625
315.5098
309.8323
304.2576
298.9116
293.7202
288.6172
283.7185
278.9568
274.2720
269.7700
265.3896
261.0762
256.9275
252.8874
241.3363
230.6383
227.2199
223.9243
220.7076
211.4695
208.5092
205.6513
202.8581
200.0950

DIMENSIONLESS NUMBER

517.7378
504.7092
492.3628
480.5112
468.9929
458.0562
447.5374
437.2954
427.5527
418.1665
391.8708
383.6477
375.8010
368.2180
360.7998
353.7109
346.8511
327.4724
321.3625
315.5098
309.8323
304.2576
298.9116
293.7202
288.6172
283.7185
278.9568
274.2720
269.7700
265.3896
261.0762
256.9275
252.8874
241.3363
230.6383
227.2199
223.9243
220.7076
211.4695
2081.5092
205.6513
202.8581
200.0950

1.248

ARRIVAL TINE
0.231




CONCENTRATI@N (C/S)

10000

8000

4000

2000
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20

30 4.0 5.0

TIME (DAYS)

60

7.0

8.0

8.0




Appendix C

Fitted Tracer Return Profiles






Appendix B

Computer Program and Sample Output




//TRACER JOB
ss EXEC FORTCL

//FORT.SYSIN DD
G BRI I I3 IE I I K I NI I NI I I3 I NI I I H R
€ IR 363 36 36 36 9000 36 9 K 36 36 36 36 96 36 3 3 30 JE 3 3 36 26 36 3 3 3 096 3 36 9 36 36 36 3 3k 36 3 36 3 96 3K I 3 36 I 3 3 3 3 9 X ¢ kR

PROGRAM BEGINS

HEXXEXRRRERENRLEREEREENRREREEEREEREREXXREXERRRRERRRRRRNRRRXERRXRRRNN
HREXRREXRERKINENXERIERK NN NNNIN NI NI KRI NI I NI K NI KN KNNE KX

oOoOoOaaaooon

IMPLICIT REAL*8(A-B,D-H,0-2)

SET DIMENSIONS roRrR VARPRO. BE CAREFUL WHEN SETTING THE
DIMENSIONS FOR THE INCIDENCE MATRIX INC. SEE NOTE.

OOOO0

DIMENSION Y(400),T(400),ALFC14),BETA(7),W(400),A(400,13),
¥INC(14,8),C(400,8),CTITLE(20),CT(400),CY(H00),DIM(7),0UT(7)

SET PARAMETERS FOR VARPRO.

OOOO0

EXTERNAL ADA

IPLOT=1

IF (IPLOT.EQ.1) CALL STARTG('GENIL¥',0.0)
NMAX = 400

IPRINT=1

READ DATA SEQUENTIAL ORDERING AND
PROPER FORMATTING ARE IMPORTANT.

aQaQaaan

READ (5,70) CTITLE
70 FORMAT (20AY4)

WRITE (6,71) CTITLE,
71 FORMAT (1HO, 10X, 20A4)

NL IS THE NUMBER OF NONLINEAR PARAMETERS

OOOOO0

READ (5, %) NL
WRITE(6,12) NL
12 FORMAT (1HO, 10X, 'NUMBER OF NONLINEAR PARAMETERS'//(I13))

C
C
C L IS THE NUMBER oF LINEAR PARAMETERS
C
C
L=NL/2
C
C
C ESTIMATES OF TKE NONLINEAR PARAMETERS
C
Cc

READ (5,%) (DIM(I),OUT(I),I=1,L)
DO 80 I=1,L




OOOO0O0 OOOO0 OOOO0OO0 oo

OOO0O0

N

II=2%I-1
ALF(II)=DIM(I)

80 ALF(II+1)=1./0UT(I1)
WRITE(6,21)(ALF(I),I=1,NL)
21 FORMAT(1HO, 10X, *INITIAL EST. OF NONLIN. PARAMETERS'//(F7.3))

WRITE (6,20) (DIM(I),OUT(I),XI=1,L)
20 FORMAT (r,*'0 DIMENSIONLESS NUMBER TRACER ARRIVAL TIME',/,
&% (5X,F9.5,22X,F7.3))

LPP2=L+NL+2

N IS THE NUMBER OF OBSERVATIONS

READ(S, *) N
WRITE(6,35) N
35 FORMAT(/1HO0, 10X, 'NUMBER OF OBSERVATIONS'//(14))

IV 1S THE NUMBER OF INDEPENDENT VARIABLES T

1v=1

T IS THE INDEPENDENT VARIABLE
Y IS THE N-VECTOR OF OBSERVATIONS

READ(S,¥)(T(I),Y(I),I=1,N)
WRITE(6,60)(T(I),Y(I),I=1,N)
60 FORMAT(1HO, *INDEPENDENT VARIABLES DEPENDENT VARIABLES'//
® ,(5X,F8.3,21X,F9.3))

W(r) ARE THE WEIGHTING PARAMETERS

CALL VARPRO(L,NL,N,NMAX,LPP2,IV,T,Y,W,ADA A,
*IPRINT,ALF,BETA,IERR)

WRITE (6, 13)

LP1=L+1

CALL ADA (LP1,NL,N,NMAX,LPP2,1IV,A,INC,T,ALF,2)
Do 8 I1=1,N

C(I,LP1)=0.

DO 9 J=1,L

C(I,J)=BETA(J)*A(I,J)

9 C(I,LP1)=C(I,LP1)+C(I,J)

WRITE (6,14) Y(I),C(I,LP1),(C(1,J),J=1,L)
CY(I)=Y(I)
CT(I)=T(I)

8 CONTINUE




13 FORMAT(1HO,' ACTUAL CALC COMP#1 COMP#2',77)
14 FORMAT (1X,8F10.4)

2

2
93
3

OO OOOaQaQaO0n

OO0

aaaaQaaaaan

DO 22 1=1,L
IT=2%I-1
DIM(I)=ALF(II)
2 OUT(I)=1./ALF(II+1)
SUM=0.
DO 25 J=1,L
5 SUM=SUM+BETA(J)
DO 93 1=1,L
BETA(I)=BETA(I)/SUM
WRITE (6,38) (BETA(I),DIM(I),OUT(I),I=1,L)
8 FORMAT ¢, '8 FRACTION DIMENSIONLESS NUMBER ARRIVAL TIME",
# 7,(5X,F7.3,5X,F7.3,22%X,F7.3))
IF (IPLOT.NE.1) STOP
CALL GRAPHG (*#*',0,N,CT,CY,4, 'TIME (DAYS)¥*',
¥ "CONCENTRATION (Cs/S)*',CTITLE)
CALL LINESG ('SOLD,VBRT*',N,CT,C(1,LP1))
CALL EXITG
STOP
END

M I NN K I I NI I KKK NN R I I I IR I I N IR E R KKK K ER
222 SRR RS EE R R R R RS RSE SRR E RS SRS R R AR R AT XXX SRR R

SUBROUTINES

222222 E 2R 2R R R R R XSRS R R R R R R XX SR AR 2RSSR 2R X RE R R,
HEUKEXNEKERKEAXREXREXRXAERERRA XN KRR ERRERERREAEXRREERRRNRE KRR NNKXR

SUBROUTINE ADA (LP,NL,N,NMAX,LPP2,IV,A,INC,T,ALF,ISEL)
IMPLICIT REAL*8(A-H,0-2)
DIMENSION ALF(NL),A(NMAX,LPP2),T(NMAX),INC(14,8),D(400,7)

L=LP-1

THE INCIDENCE MATRIX INC(NL,L+1) IS FORMED BY SETTING
INCC(K,J)=1 IF THE NONLINEAR PARAMETER ALF(K) APPEARS

IN THE J-TH FUNCTION PHICJ). (THE PROGRAM SETS ALL OTHER
INC(K,J) TO ZERO.)

IF(ISEL.EQ.2) GO TO 90
IF(ISEL.EQ.3) GO TO 165

DO 1 J=1,L

DO 1 K=1,NL

INC(K,J)=0.0

IF ((K+1)72.EQ.J) INC(K,J)=1.0
CONTINUE




THE VECTOR-SAMPLED FUNCTIONS PHI(J) ARE STORED IN
THE FIRST N ROWS AND FIRST L COLUMNS OF THE MATRIX
B(I,J). B(I,J) CONTAINS PHICJ,ALF;T(I),I,...N;
J=1,L. THE CONSTANT FUNCTIONS PHI WHICH DO NOT
DEPEND UPON ANY NONLINEAR PARAMETERS ALF MUST
APPEAR FIRST.

OO0OO0OOO0OOO0O0O0OO0n

90 DO 81 I=1,N

DO 81 J=1,L

Ki1=2%J-1

K2=2%J

IF (ALF(K2)*T(I).GT.1.0) GO TO 82
ACI,J)=0.

D(I,J)=0.

GO TO &1

82 ACI,J)=ALF(K1)*ALF(K2)/7(1.772453851*

# (ALF(K2)¥T(I)-1.0)%%(1,5))*
# DEXP(—1.%ALF(K1)*%2/(ALF(K2)*T(I)-1.0))

D(I,J)=A(I1,J)

C
81 CONTINUE
C
C
C
IF (ISEL.EQ.2) GO TO 200
C
C
C
C
C
C
C
165 DO 170 1=1,N
C
C
DO 170 J=1,NL
Ki=(J+1)72
K2=2%K1
K3=K2-1
JI=L+J+1
IF (ALF(K2)*T(1).G6T.1.0) GO TO 171
A(I,JJ)=0.
GO TO 170
171 IF ((Jr72)%2.EQ.J) GO TO 300

A(I,JJ)=D(I,K1)*(1.0/ALF(K3) -
# 2.0%ALF(K3)/(ALF(K2)*T(I)=1.0))
GO TO 170
300 A(I,JJ)=DC(I,K1)%(1.0/ALF(K2)-1.5/CALF(K2)*T(I)~1.0) ¥
$ TCID+(ALF(K3)*%2)¥T(I)/((ALF(K2}¥T(I)=1.)%%2))
C
170 CONTINUE
C
200 CONTINUE
C




OOOOOOO0O0

C')C')C')OOOOOOOOOC’)C’)C’)C’)C’)OC’)C’)OOOOOOOOOOOOOOOOOOOOOOOOOOOO

RETURN
END

SUBROUTINE VARPRO (L, NL, N, NMAX, LPP2, IV, T, Y, W, ADA, A,
IPRINT, ALF, BETA, IERR)

GIVEN A SET OF N «BSEPVATIONS, CONSISTING OF VALUES Y(1),
Y(2), ..., Y(N) OF A DEPENDENT VARIABLE Y, WHERE y(1)
CORRESPONDS TO THE 1V INDEPENDENT VARIABLE(S) T(I,1), T(I,2),

«.» TC(I,IV), VARPRO ATTEMPTS TO COMPUTE A WEIGHTED LEAST

SQUARES FIT TO A FUNCTION ETA (THE "MODEL") WHICH 1S A LINEAR

COMBINATION
L
ETACALF, BETA: T) = SUM BETA * PHI (ALF; T) + PHI  (ALF;
J=1 J J L+l

OF NONLINEAR FUNCTIONS PHI(J) (E.G., A SUM OF EXPONENTIALS AN
OR GAUSSIANS). THAT IS, DETERMINE THE LINEAR PARAMETERS

T)

D/

BETA(J) AND THE VECTOR OF NONLINEAR PARAMETERS ALF BY MINIMIZ-

ING

2 N 2
NORM(RESIDUAL) = SUM W * (Y = ETACALF, BETA; T ))
1=1 | | I

THE (L+1)-ST TERM IS OPTIONAL, AND IS USED WHEN IT 1S DESIRED
TO FIX ONE OR MORE OF THE BETA"S (RATHER THAN LET THEM BE
DETERMINED). VARPRO REQUIRES FIRST DERIVATIVES OF THE PHI"S.

NOTES:

A) THE ABOVE PRDBLEM IS ALSO REFERRED TO AS *"MULTIPLE
NONLINEAR REGRESSION®. FOR USE IN STATISTICAL ESTIMATION,
VARPRO RETURNS THE RESIDUALS, THE COVARIANCE MATRIX OF THE

LINEAR AND NONLINEAR PARAMETERS, AND THE ESTIMATED VARIANCE O
THE OBSERVATIONS.

B) AN ETA OF THE ABOVE FORM 1S CALLED “"SEPARABLE". THE
CASE OF A NONSEPARABLE ETA CAN BE HANDLED BY SETTING L = ©
AND USING PHI(L+1).

¢) VARPRO MAY ALso BE USED TO SOLVE LINEAR LEAST SQUARES

PROBLEMS (IN THAT CASE NO ITERATIONS ARE PERFORMED). SET
NL = 0.

D) THE MAIN ADVANTAGE OF VARPRO OVER OTHER LEAST SQUARES
PROGRAMS 1S THAT*NO INITIAL GUESSES ARE NEEDED FOR THE LINEAR
PARAMETERS. NOT ONLY DOES THIS MAKE IT EASIER TO use, BUT IT
OFTEN LEADS TO FASTER CONVERGENCE.

DESCRIPTION OF PARAMETERS

F




OO0 000O0O00O000O0OO000O0O0O0

INC

NMAX
LPP2

IPRINT

ALF

BETA
1ERR

NUMBER OF LINEAR PARAMETERS BETA (MUST BE .GE. 0).
NUMBER OF NONLINEAR PARAMETERS ALF (MUST BE .G&. 0).
NUMBER OF OBSERVATIONS. N MUST BE GREATER THAN L + NL
(I.8., THE NUMBER OF OBSERVATIONS MUST EXCEED THE
NUMBER OF PARAMETERS).
NUMBER OF INDEPENDENT VARIABLES T.
REAL N BY IV MATRIX OF INDEPENDENT VARIABLES. 71(1, J)
CONTAINS THE VALUE OF THE I1-TH OBSERVATION OF THE J-TH
INDEPENDENT VARIABLE.
N-VECTOR OF OBSERVATIONS, ONE FOR EACH ROW OF T.
N-VECTOR OF NONNEGATIVE WEIGHTS. SHOULD BE SET TO 1's
IF WEIGHTS ARE NOT DESIRED. IF VARIANCES OF THE
INDIVIDUAL OBSERVATIONS ARE KNOWN, wW(1)> SHOULD BE SET
TO 1./VARIANCE(I).
NL X (L+1) INTEGER INCIDENCE MATRIX. INC(KR, J) = 1 IF
NON-LINEAR PARAMETER atFr(r) APPEARS IN THE J-TH
FUNCTION PHICJ). (THE PROGRAM SETS ALL OTHER INC(K, J)
TO ZERO.) IF PHICL+1) IS INCLUDED IN THE MODEL,
THE APPROPRIATE ELEMENTS OF THE ¢L+1)-sT COLUMN SHOULD
BE SET 10 1's. INC IS NOT NEEDED WHEN L = 0 0R NL = 0.
CAUTION: THE DECLARED ROW DIMENSION OF 1Nc¢ (IN ADA)
MUST CUrRRENTLY BE SET TO 12. SEE "RESTRICTIONS®™ BELOW.
THE DECLARED ROW DIMENSION OF THE MATRICES A AND T.
IT MUST BE AT LEAST MAX(N, 2¥NL+3),
L+P+2, WHERE P 1s THE NUMBER OF ONES IN THE MATRIX INC.
THE DECLARED COLUMN DIMENSION OF A MUST BE AT LEAST
LpP2, (IF L =20, SET tPP2 = NL+2, IF NL = 0, SET LPP2
L+2,)
REAL MATRIX OF SIZE MAX(N, 2%*NL+3) BY L+P+2. ON INPUT
IT CONTAINS THE PHI(J)'S AND THEIR DERIVATIVES (SEE
BELOW) . ON OUTPUT, THE FIRST L+NL ROWS AND COLUMNS OF
A WILL C"ONTAINAN APPROXIMATION TO THE (WEIGHTED)
COVARIANCE MATRIX AT THE SOLUTION (THE FIRST L ROWS
CORRESPOND TO THE LINEAR PARAMETERS, THE LAST NL TO THE
NONLINEAR ONES), COLUMN L+HL+1 WILL CONTAIN THE
WEIGHTED RESIDUALS (Y - ETA), A(!, L+HL+2) WILL CONTAIN
THE (EuUCLIDEAN) NORM OF THE WEIGHTED RESIDUAL, AND
AC2, L+NL+2) WILL CONTAIN AN ESTIMATE OF THE (WEIGHTED)
VARIANCE OF THE OBSERVATIONS, NORM(RESIDUAL)**¥2/
(N - L = NL).
INPUT INTEGER CONTROLLING PRINTED OUTPUT. IF IPRINT If
POSITIVE:, THE NONLINEAR PARAMETERS, THE NORM OF THE
RESIDUAL, AND THE MARQUARDT PARAMETER WILL BE OUTPUT
EVERY IPRINT-TH ITERATION (AND INITIALLY, AND AT THE
FINAL ITERATION). THE LINEAR PARAMETERS WILL BE
PRINTED AT THE FINAL ITERATION. ANY ERROR MESSAGES
WILL ALSO BE PRINTED. (IPRINT = 1 1S RECOMMENDED AT
FIRST.) IF IPRINT = 0, ONLY THE FINAL QUANTITIES WILL
BE PRINTED, AS WELL AS ANY ERROR MESSAGES. IF IPRINT =
-1, NO PRINTING WILL BE DONE. THE USER 1S THEN
RESPONSIBLE FOR CHECKING THE PARAMETER IERR FOR ERRORS.
NL-VECTOR OF ESTIMATES OF NONLINEAR PARAMETERS
(INPUT). ON OUTPUT IT WILL CONTAIN OPTIMAL VALUES OF
THE NONLINEAR PARAMETERS.
L-VECTOR OF LINEAR PARAMETERS (OUTPUT ONLY).
INTEGER ERROR FLAG (OUTPUT):
,6T., 0 - SUCCESSFUL CONVERGENCE, IERR IS THE NUMBER OF
ITERATIONS TAKEN.
-1 TERMINATED FOR TOO MANY ITERATIONS.
-2 TERMINATED FOR ILL-CONDITIONING (MARQUARDT
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PARAMETER TOO LARGE.) ALSO SEE IERR = -8 BELOW.
-4 INPUT ERROR IN PARAMETER N, L, NL, LPP2, OR NMAX.

-5 INC MATRIX IMPROPERLY SPECIFIED, OR P DISAGREES
WITH LpPP2.

-6 A WEIGHT WAS NEGATIVE.

-7 T"CONISTANT® COLUMN WAS COMPUTED MORE THAN ONCE.

-8 CATASTROPHIC FAILURE - A COLUMN OF THE A MATRIX HAaS
BECOME ZERO. SEE "CONVERGENCE FAILURES®™ BELOW.

(IF IERR .LE. -4, THE LINEAR PARAMETERS, COVARIANCE
MATRIX, ETC. ARE NOT RETURNED.)

SUBROUTINES REQUIRED

NINE SUBROUTINES, DPA, ORFAC1!1, ORFAC2, BACSUB, POSTPR, cov,
XNORM, INIT, AND VARERR ARE PROVIDED. IN ADDITION, THE USER
MUST PROVIDE A SUBROUTINE (CORRESPONDING TO THE ARGUMENT ADA)
WHICH, GIVEN ALF, WILL EVALUATE THE FUNCTIONS PHI(¢J) AND THEIR
PARTIAL DERIVATIVES D PHI(J)sD ALF(K), AT THE SAMPLE POINTS
T(I). THIS ROUTINE MUST BE DECLARED "EXTERNAL® IN THE CALLING
PROGRAM. ITS CALLING SEQUENCE IS

SUBROUTINE ADA (L+1, NL, N, NMAX, LPP2, IV, A, INC, T, ALF,
ISEL)

THE USER SHOULD MODIFY THE EXAMPLE SUBROUTINE "ADA®" (GIVEN
ELSEWHERE) FOR HIS OWN FUNCTIONS.

THE VECTOR SAMPLED FUNCTIONS PHI(J) SHOULD BE STORED IN THE
FIRST N ROWS AND" FIRST L+l COLUMNS OF THE MATRIX A, I1.E.,
A(I, J) SHOULD CONTAIN PHI(J, ALF; T(I,1), T(I,2), ...,
T(I,IV)); I = 1, R . J = 1) R L (OR L+1). THE (L+1)-ST
COLUMN OF A CONTAINS PHIC(L+1) IF PHI(L+1) IS IN THE MODEL,
OTHERWISE IT 1S RESERVED FOR WORKSPACE. THE T“CONSTANT" FUNC-
TIONS (THESE ARE FUNCTIONS PHI(J) WHICH DO NOT DEPEND UPON ANY
NONLINEAR PARAMETERS ALF:, E.G., T(I)¥**3) (IF ANY) MUST APPEAR
FIRST, STARTING IN COLUMN 1. THE COLUMN N-VECTORS OF NONZERO
PARTIAL DERIVATIVES D PH1I(J) - D ALF(K) SHOULD BE STORED
SEQUENTIALLY IN THE MATRIX A IN COLUMNS L+2 THROUGH L+P+1.
THE ORDER 1S

D PHIC1) D PHI(2) D PHI(L) D PHI(L+1) D PHIC1)

D ALFCH) D ALFCT) D ALFC1) D ALE(1) D ALF(2)
D PHI(2) D PHI(L+1) ) D PHIC1) D PHI(L+1)
D ALFC2) D ALF(2) D ALEONL D ALF(NL)

OMITTING COLUMNS OF DERIVATIVES WHICH ARE ZERO, AND OMITTING
PHI(L+1) COLUMNS IF PHICL+1) IS NOT IN THE MODEL. NOTE THAT
THE LINEAR PARAMETERS BETA ARE NOT USED IN THE MATRIX A.
COLUMN L+p+2 1S RESERVED FOR WORKSPACE.

THE CODING OF ADA SHOULD BE ARRANGED SO THAT:

ISEL = 1 (WHICH OCCURS THE FIRST TIME ADA IS CALLED) MEANS:
A.  FILL IN THE INCIDENCE MATRIX INC
B. STORE ANY CONSTANT PHI®S IN A.
C. COMPUTE NONCONSTANT PHI"S AND PARTIAL DERIVA-




eclelekekekeleke koo ko kel ko ke keke koo ke ke ke ke keXet s No oo o No o oo oo NoNoXoNoNoNo o NoNoNo oo NoNoNo o R o No No Ko N o X®)

TIVES.
2 MEANS COMPUTE ONLY THE NONCONSTANT FUNCTIONS PHI
3 MEANS COMPUTE ONLY THE DERIVATIVES

(WHEN THE PROBLEM IS LINEAR (NL = 08) ONLY ISEL = 1 1S USED, AND
DERIVATIVES ARE NOT NEEDED.)

RESTRICTIONS

THE SUBROUTINES DPA, INIT (AND ADA) CONTAIN THE LOCALLY
DIMENSIONED MATRIX INC, WHOSE DIMENSIONS ARE CURRENTLY SET FOR
MAXIMA OF L+l = 8, NL = t2. THEY MUST BE CHANGED FOR LARGER
PROBLEMS. DATA PLACED IN ARRAY A IS OVERWRITTEN (*DESTROYED').
DATA PLACED IN ARRAYS T, Y AND INC IS LEFT INTACT. THE PROGRANM
RUNS IN WATFIV, EXCEPT WHEN L = 0 OR NL = 0.

IT 1S ASSUMED THAT THE MATRIX PHI(J, ALF; T(I1)) HAS FULL
COLUMN RANK. THIS MEANS THAT THE FIRST L COLUMNS OF THE MATRIX
A MUST BE LINEARLY INDEPENDENT.

OPTIONAL NoTE: AS WILL BE NOTED FROM THE SAMPLE SUBPROGRAM
ADA, THE DERIVATIVES D PHI(J)/D ALF(K) (ISEL = 3) MUST BE
COMPUTED INDEPENDENTLY OF THE FUNCTIONS PHICJ) (ISEL = 2),
SINCE THE FUNCTION VALUES ARE OVERWRITTEN AFTER ADA 1S CALLED
WITH ISEL = 2. THIS IS DONE TO MINIMIZE STORAGE, AT THE POS-
SIBLE EXPENSE OF SOME RECOMPUTATION (SINCE THE FUNCTIONS AND
DERIVATIVES FREQUENTLY HAVE SOME COMMON SUBEXPRESSIONS). TO
REDUCE THE AMOUNT OF COMPUTATION AT THE EXPENSE OF SOMNE
STORAGE, CREATE A MATRIX B OF DIMENSION NMAX BY L+l IN ADA, AND
AFTER THE COMPUTATION OF THE PHI'S (ISEL = 2), COPY THE VALUES
INTO B. THESE VALUES CAN THEN BE USED TO CALCULATE THE DERIV-
ATIVES (ISEL = 3). (THIS MAKES USE OF THE FACT THAT WHEN A
CALL TO ADA WITH ISEL = 3 FOLLOWS A CALL WITH ISEL = 2, THE
ALFS ARE THE SAME.)

TO CONVERT TO OTHER MACHINES, CHANGE THE OUTPUT UNIT IN THE
DATA STATEMENTS IN VARPRO, DPA, POSTPR, AND VARERR. THE
PROGRAM HAS BEEN CHECKED FOR PORTABILITY BY THE BELL LABS PFORT
VERIFIER. FOR MACHINES WITHOUT DOUBLE PRECISION HARDWARE, IT
MAY BE DESIRABLE TO CONVERT TO SINGLE PRECISION. THIS CAN BE
DONE BY CHANGING (A) THE DECLARATIONS *DOUBLE PRECISION* TO
"REAL", (B) THE PATTERN *'.Dp' TO '.E' IN THE "DATA" STATEMENT IM
VARPRO, ¢c)> DSIGN, DSQRT AND DABS TO SIGN, SQRT AND ABS,
RESPECTIVELY, AND (p) DEXP TO EXP IN THE SAMPLE PROGRAMS ONLY.

NOTE ON INTERPRETATION OF COVARIANCE MATRIX

FOR USE IN STATISTICAL ESTIMATION (MULTIPLE NONLINEAR
REGRESSION) VARPRO RETURNS THE COVARIANCE MATRIX OF THE LINEAR
AND NONLINEAR PARAMETERS. THIS MATRIX WILL BE USEFUL ONLY IF
THE USUAL STATISTICAL ASSUMPTIONS HOLD: AFTER WEIGHTING, THE
ERRORS IN THE OBSERVATIONS ARE INDEPENDENT AND NORMALLY DISTRI-
BUTED, WITH MEAN ZERO AND THE SAME VARIANCE. IF THE ERRORS DO
NOT HAVE MEAN ZERO (OR ARE UNKNOWN), THE PROGRAM WILL ISSUE A
WARNING MESSAGE (UNLESS IPRINT .LT. 0) AND THE COVARIANCE
MATRIX WILL NOT BE VALID. IN THAT CASE, THE MODEL SHOULD BE
ALTERED TO INCLUDE A CONSTANT TERM (SET PHI(C1) = 1.).

NOTE ALSO THAT, IN ORDER FOR THE USUAL ASSUMPTIONS TO HOLD,
THE OBSERVATIONS MUST ALL BE OF APPROXIMATELY THE SAME
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MAGNITUDE (IN THE ABSENCE OF INFORMATION ABOUT THE ERROR OF
EACH OBSERVATION), OTHERWISE THE VARIANCES WILL NOT BE THE
SAME. IF THE OB"SERVATIONS ARE NOT THE SAME SIZE, THIS CAN BE
CURED BY WEIGHTING.

IF THE USUAL ASSUMPTIONS HOLD, THE SQUARE ROOTS OF THE
DIAGONALS OF THE COVARIANCE MATRIX A GIVE THE STANDARD ERROR
S(1) OF EACH PARAMETER. DIVIDING A(I,J) BY S(I)¥S(J) YIELDS
THE CORRELATION MATRIX OF THE PARAMETERS. PRINCIPAL AXES AND
CONFIDENCE ELLIPsOoIbs CAN BE OBTAINED BY PERFORMING AN EIGEN-
VALUE/EIGENVECTOR ANALYSIS ON A. oONE SHOULD CALL THE EISPACK
PROGRAM TRED2, FOLLOWED BY TQL2 (OR USE THE EISPAC CONTROL
PROGRAM) .

CONVERGENCE FAILURES

IF CONVERGENCE FAILURES OCCUR, FIRST CHECK FOR INCORRECT
CODING OF THE SUBROUTINE ADA. CHECK ESPECIALLY THE ACTION OF
ISEL, AND THE CO"MPUTATION OF THE PARTIAL DERIVATIVES. IF THESE
ARE CORRECT, TRY SEVERAL STARTING GUESSES FOR ALF. IF ADA
IS CODED CORRECT"LY, AND IF ERROR RETURNS IERR = -2 OR -8
PERSISTENTLY oCCUR, THIS 1S A SIGN OF ILL-CONDITIONING, WHICH
MAY BE CAUSED BY" SEVERAL THINGS. ONE IS POOR SCALING OF THE
PARAMETERS; ANOTHER IS AN UNFORTUNATE INITIAL GUESS FOR THE
PARAMETERS, STILL ANOTHER IS A POOR CHOICE OF THE MODEL.

ALGORITHM

THE RESIDUAL R IS MODIFIED TO INCORPORATE, FOR ANY FIXED
ALF, THE OPTIMAL LINEAR PARAMETERS FOR THAT ALF. IT IS THEN
POSSIBLE TO MINI"MIZE ONLY ON THE NONLINEAR PARAMETERS. AFTER
THE OPTIMAL VALUES OF THE NONLINEAR PARAMETERS HAVE BEEN DETER-
MINED, THE LINEAR PARAMETERS CAN BE RECOVERED BY LINEAR LEAST
SQUARES TECHNIQUES (SEE REF. 1).

THE MINIMIZATION IS BY A MODIFICATION OF OSBORNE®"S (REF. 32
MODIFICATION OF THE LEVENBERG-MARQUARDT ALGORITHM. INSTEAD OF
SOLVING THE NORMAL EQUATIONS WITH MATRIX

T 2
(3 J +NU ¥, WHERE J = D(ETA)/D(ALF),

STABLE ORTHOGONAL (HOUSEHOLDER) REFLECTIONS ARE USED ON A
MODIFICATION OF THE MATRIX

( NU¥*D )

WHERE D IS A DIAGONAL MATRIX CONSISTING OF THE LENGTHS OF THE
COLUMNS OF J. THis MARQUARDT STABILIZATION ALLOWS THE ROUTINE
TO RECOVER FROM SOME RANK DEFICIENCIES IN THE JACOBIAN.
OSBORNE*S EMPIRICAL STRATEGY FOR CHOOSING THE MARQUARDT PARAM-
ETER HAS PROVEN REASONABLY SUCCESSFUL IN PRACTICE. (GAUSS-
NEWTON WITH STEP CONTROL CAN BE OBTAINED BY MAKING THE CHANGE
INDICATED BEFORE THE INSTRUCTION LABELED 5)>. A DESCRIPTION CA!
BE FOUND IN REF., ¢3), AND A FLOW CHART IN (2), P. 22.

FOR REFERENCE, SEE

1. GENE H. GOLUB AND V. PEREYRA, "THE DIFFERENTIATION OF
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PSEUDO-INVERBES AND NONLINEAR LEAST SQUARES PROBLEMS WHOSE
VARIABLES SEPARATE," SIAM J. NUMER. ANAL. 10, 413-432
(1973).

______ , SAME TITLE, STANFORD c.s. REPORT 72-261, FEB. 1972.

3. OSBORNE, MICHAEL R., "SOME ASPECTS OF NON-LINEAR LEAST
SQUARES CALCULATIONS," IN LOOTSMA, ED., "NUMERICAL METHODS
FOR NON-LINEAR OPTIMIZATION," ACADEMIC PRESS, LONDON, 1972.

4. KROGH, FRED, "EFFICIENT IMPLEMENTATION OF A VARIABLE PRO-
JECTION ALGORITHM FOR NONLINEAR LEAST SQUARES PROBLEMS,*
comm. ACM 17, PP. 167-169 (MARCH, 1974),

5. KAUFMAN, LINDA, 'A VARIABLE PROJECTION METHOD FOR SOLVING
SEPARABLE NONLINEAR LEAST SQUARES PROBLEMS®, B.I.T. 15,
49-57 (1975).

6. DRAPER, N., AND SMITH, H., APPLIED REGRESSION ANALYSIS,
WILEY, N.Y., 1966 (FOR STATISTICAL INFORMATION ONLY).

7. C. LAWSON AND R. HANSON, SOLVING LEAST SQUARES PROBLEMS,
PRENTICE-HALL, ENGLEWOOD CLIFFS, N. J., 1974.
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JOHN BOLSTAD

COMPUTER SCIENCE DEPT., SERRA HOUSE
STANFORD UNIVERSITY

JANUARY, 1977

DOUBLE PRECISION ACNMAX, LPP2), BETA(L), ALF(NL), T(NMAX, 1IV),
W(N), Y(N), ACUM, EPS1, GNSTEP, NuU, PRJRES, R, RNEW, XNORM
INTEGER B1, OUTPUT

LOGICAL SKIP

EXTERNAL ADA

DATA EPSI -t.p-6s, ITMAX s50/, OUTPUT r6~/

THE FOLLOWING TWO PARAMETERS ARE USED IN THE CONVERGENCE
TEST: EPSI 18 AN ABSOLUTE AND RELATIVE TOLERANCE FOR THE
NORM OF THE PROJECTION OF THE RESIDUAL ONTO THE RANGE OF THE
JACOBIAN OF THE VARIABLE PROJECTION FUNCTIONAL.

ITMAX 1S THE maximum NUMBER OF FUNCTION AND DERIVATIVE
EVALUATIONS ALLOWED. CAUTION: EPSI MUST NOT BE

SET SMALLER THAN 10 TIMES THE UNIT ROUND-OFF OF THE MACHINE.

IERR = 1

ITER = 0

LP1t = L + 1!

Bl = L + 2

LNL2 = L + NL + 2
NLPI = NL + 1
SKIP = .FALSE.

MODIT = IPRINT
IF (IPRINT _LE. ©8) MODIT = ITMAX + 2
NU = 0.
IF GAUSS-NEWTON IS DESIRED REMOVE THE NEXT STATEMENT.
NU = 1.

BEGIN OUTER ITERATION LOOP TO UPDATE ALF.

CALCULATE THE NORM OF THE RESIDUAL AND THE DERIVATIVE OF
THE MODIFIED RESIDUAL THE FIRST TIME, BUT ONLY THE
DERIVATIVE IN SUBSEQUENT ITERATIONS.

CALL DPA (L, NL, N, NMAX, LPP2, IV, T, Y, W, ALF, ADA, IERR,
IPRINT, A, BETA, AC1, LP1), R)
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GNSTEP 1.0

ITERIN 0

IF (ITER .GT. 0) GO TO 10
IF (NL .EQ. 0) GO TO 90
IF (1IERR .NE. 1) GO TO 99

IF (IPRINT .LE. B) GO TO 10
WRITE (OUTPUT, 207) ITERIN, R
WRITE (OUTPUT, 200) NU
BEGIN TWO-STAGE ORTHOGONAL FACTORIZATION

10 CALL ORFACY1(NLP1, NMAX, N, L, IPRINT, AC1, B1), PRJRES, IERR)

25

30

35

40

45

50

55

60

IF (IERR .LT. 0) GO TO 99
IERR = 2
IF (NU .EQ. 8.) GO TO 30

BEGIN INNER ITERATION LOOP FOR GENERATING NEW ALF AND
TESTING 1T FOR ACCEPTANCE.

CALL ORFAC2(NLP1, NMAX, NU, ACI1, B1))

SOLVE A NL X NL UPPER TRIANGULAR SYSTEM FOR DELTA-ALF.
THE TRANSFORMED RESIDUAL (IN COL. LNL2 OF A) IS OVER-
WRITTEN BY THE RESULT DELTA-ALF.

CALL BACSUB (NMAX, NL, AC1, B1), AC1, LNL2))
DO 35 K = 1, NL

A(K, B1) = ALF(K) + A(K, LNL2)

NEW ALF(K) = ALF(K) + DELTA ALF(K)

STEP TO THE NEW POINT NEW ALF, AND COMPUTE THE NEM
NORM OF RESIDUAL. NEW ALF IS STORED IN COLUMN B1 OF A.

CALL DPA (L, NL, N, NMAX, LPP2, IV, T, Y, W, AC1, B1), ADA,
IERR, IPRINT, A, BETA, AC1, LP1), RNEW)
IF (IERR .NE. 2) GO TO 99
ITER = ITER + 1!
ITERIN = ITERIN + 1
SKIP = MODCITER, MODIT) .NE. O
IF (SKIP) GO TO 45
WRITE ~(OUTPUT, 203> ITER
WRITE (OUTPUT, 216) (AC(K, B1), K = 1, NL)
WRITE (OUTPUT, 207) ITERIN, RNEW

IF (ITER .LT. ITMAX) GO TO 50

IERR = -1
CALL VARERR (IPRINT, IERR, 1)
GO TO 95

IF (RNEW = R .LT. EPS1¥(R + 1.D0)) GO TO 75
RETRACT THE STEP JUST TAKEN

IF (NU .NE. 0.) GO TO 60
GAUSS—-NEWTON OPTION ONLY
GNSTEP = 0.5%GNSTEP
IF (GNSTEP .LT. EPS1) GO TO 95
DO 55 K = 1, NL
A(K, B1) = ALF(K) + GNSTEP*A(K, LNL2)
GO TO 40
ENLARGE THE MARQUARDT PARAMETE!
NU = 1.5%NU
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IF ¢.NOoT. SKIP) WRITE (OUTPUT, 206) NU
IF (NU .LE. 180.) GO TO 65

IERR = -2
CALL VARERR (IPRINT, IERR, 1)
GO TO 95
RETRIEVE UPPER TRIANGULAR FORM
AND RESIDUAL OF FIRST STAGE.
65 DO 70 K = 1, NL
KSUB = LP1 + K
DO 70 J = K, NLPI
JSUB = LP1 + J
ISUB = NLPI + J
70 ACK, JSUB) = A(ISUB, KSUB)
GO TO 25
END OF INNER ITERATION LOOP
ACCEPT THE STEP JUST TAKEN
75 R = RNEW
DO 80 K = 1, NL
80 ALF(K) = A(K, B1)
CALC. NORM(DELTA ALF)/NORM(ALF)
ACUM = GNSTEP*XNORM(NL, A(1, LNL2))/XNORM(NL, ALF)
IF ITERIN IS GREATER THAN 1, A STEP WAS RETRACTED DURING
THIS OUTER ITERATION.
IF (ITERIN .EQ. 1) NU = 0.5%NU
IF (SKIP) GO TO 85
WRITE (OUTPUT, 2060) NU
WRITE (OUTPUT, 208) ACUM
85 IERR = 3
IF (PRJRES .GT. EPS1*(R + 1.D0)) GO TO 5§
END OF OUTER ITERATION LOOP
CALCULATE FINAL QUANTITIES =- LINEAR PARAMETERS, RESIDUALS,
COVARIANCE MATRIX, ETC.
90 IERR = ITER
95 IF (NL .GT. 0) CALL pPACL, NL, N, NMAX, LPP2, IV, T, Y, W, ALF,
X ADA, 4, IPRINT, A, BETA, AC1, LP1), R)
CALL POSTPR(L, NL, N, NMAX, LNL2, EPS1, R, IPRINT, ALF, W, A,
X AC1, LP1), BETA, IERR)
99 RETURN
200 FORMAT (9H NU =, E15.7)
203 FORMAT (12H0 ITERATION, I4, 24H NONLINEAR PARAMETERS)
206 FORMAT (25H STEP RETRACTED, NU =, E15.7)
207 FORMAT (1HO, 15, 20H NORM OF RESIDUAL =, E15.7)
208 FORMAT (3uH NORM(DELTA-ALF) ~/ NORM(ALF) =, E12.3)
216 FORMAT (1HO, 7E15.7)
END

SUBROUTINE ORFACI1(NLP1, NMAX, N, L, IPRINT, B, PRJRES, IERR)

STAGE 1: HOUSEHOLDER REDUCTION OF

( ) ¢ DR*. R3 ) NL
¢ DR . R2) TO (====. ==,
( ) ¢ 0 . R4 ) N-L-NL
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WHERE DR = -p(Q2)#*Yy IS THE DERIVATIVE OF THE MODIFIED RESIDUAL
PRODUCED BY bppA, R2 IS THE TRANSFORMED RESIDUAL FROM bpa, AND
DR* IS IN UPPER TRIANGULAR FORM (AS IN REF. (2>, P. 18).

DR 1S STORED IN ROWS L+1 TO N AND COLUMNS L+2 TO L + NL + 1 OF
THE MATRIX A (I,E., COLUMNS 1 TO NL OF THE MATRIX B). R2 IS
STORED IN COLUMN L + NL + 2 OF THE MATRIX A (COLUMN NL + 1 OF
B). FOR K =1, 2, ..., NL, FIND REFLECTION I - U ¥ u* , BETA
WHICH ZEROES B(I, K), | = L+K+1, ..., N.

..................................................................

DOUBLE PRECISION ACUM, ALPHAS B(NMAX, NLP1), BETA, DSIGN, PRJRES,

X U, XNORM

13

20

25
30

40
50

99

NL = NLPI - 1
NL23 = 2%NL + 3
LPt = L + 1

bO 30 K = 1, NL
LPK = L + K
ALPHA = DSIGN(XNORM(N+1-LPK, B(LPK, K)), B(LPK, K))
U = B(LPK, K) + ALPHA
B(LPK, K) = U*
BETA = ALPHA U
IF (ALPHA .NE. 0.0) GO TO 13
COLUMN WAS ZERO

IERR = -8

CALL VARERR (IPRINT, IERR, LP1 + K)

GO TO 99
APPLY REFLECTIONS TO REMAINING COLUMNS
OF B AND TO RESIDUAL VECTOR.

KPt = K + 1

DO 25 J = Kp1t, NLPI

ACUM = 0.0

DO 20 I = LPK, N *
ACUM = ACUM + B(I, K) B(I, J)
ACUM = ACUM ~» BETA

DO 25 I = LPK, N *
B(I, J) = B(I, J) - B(I, K) ACUM
B(LPK, K) = —ALPHA

PRJRES = XNORM(NL, B(LP1, NLP1))

SAVE UPPER TRXANGULAR FORM AND TRANSFORMED RESIDUAL, FOR uUse
IN CASE A STEP 1S RETRACTED. ALSO COMPUTE COLUMN LENGTHS.

IF (IERR .EQ. 4) GO TO 99
DO 50 K = 1, NL

LPK = L + K
DO 40 J = K, NLPI
JSUB = NLPI + J

B(K, J) = B(LPK, J)
B(JSUB, K) = B(LPK, J)
B(NL?23, K) = XNORM(K, B(LP!, K))

RETURN
END
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SUBROUTINE ORFAC2(NLP1, NMAX, NU, B)

STAGE 2: SPECIAL HOUSEHOLDER REDUCTION OF

NL ( DR' . R3 ) (DR'® R5 )
(=---- . == ) (mmmmm -
N-L-NL ( 0 . R ) TO ( 0 R4 )
(=== . o== ) (===m- -
NL (NU¥D ., O ) ( 0 R6 )

NL 1 NL 1

WHERE DR', R3, AND R4 ARE AS IN orRFAC1, NU IS THE MARQUARDT
PARAMETER, D 1S A DIAGONAL MATRIX CONSISTING OF THE LENGTHS OF
THE COLUMNS OF DR*, AND DR®"™ IS IN UPPER TRIANGULAR FORM.
DETAILS IN (1), pP. 423-u424. NOTE THAT THE (N-L-NL) BAND OF
ZEROES, AND R4, ARE OMITTED IN STORAGE.

DOUBLE PRECISION ACuUM, ALPHA, B(NMAX, NLP1), BETA, DSIGN, NU, U,
X XNORM

NL = NLPI = |
NL2 = 2¥*NL
NL23 = NL2 + 3
DO 30 K = 1, NL
KP1 = K + 1
NLPK = NL + K
NLPKMI = NLPK - l
B(NLPK, K) = NU B(NL23, K)
B(NL, K) = B(K, K)
U = B(K, K) + ALPHA
BETA = ALPHA #* U
B(K, K) = —ALPHA
THE K-TH REFLECTION MODIFIES ONLY ROWS K.,
NL+1, NL+2, ..., NL+K, AND COLUMNS K TO NL+1%.
DO 30 J = KP1, NLPI
B(NLPK, J) = 0.

ACUM = U * B(K,J)

DO 20 I = NLPI, NLPKMI
ACUM = ACUM + BC(I,K) * B(I,J)
ACUM = ACUM ~» BETA
B(K,J) = B(K,J) - U * ACUM
DO 30 I = NLP1, NLPK *
B(I,J) = B(I,J) - B(I,K) ACUM
RETURN
END

SUBROUTINE DPA (L, NL, N, NMAX, LPP2, IV, T, Y, W, ALF, ADA, ISEL,
X IPRINT, A, U, P, RNORM)

COMPUTE THE NORM OF THE RESIDUAL (IF ISEL = 1 OR 2), OR THE

(N-L) X NL DERIVATIVE OF THE MODI&IED RESIDUAL (N-L) VECTOR
@2*y (IF ISEL = 1 OR 3). HERE @ PHI = 8, I1.E.,

L € Q1) ¢ ) (S . R1 . F1 )
(m——==) C PHI . Y . D(PHI) j = (-== " __ )
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N-L € Q2 ) ( ) ¢t o0 . R2 . F2 )
N L 1 P L 1 P

WHERE @ IS N X N ORTHOGONAL, AND S IS L X L UPPER TRIANGULAR.
THE NORM OF THE RESIDUAL = NORM(R2), AND THE DESIRED DERIVATIVE
ACCORDING TO REF. (¢5), IS

p(Qz Y) = -Q2 * D(PHI)¥* S Qi* Y.

DOUBLE PRECISION ACNMAX, LPP2), ALF(NL), T(NMAX, IV), W(N), Y(N),
X ACUM, ALPHA, BETA, RNORM, DSIGN, DSQRT, SAVE, R(N), U(CL), XNORM

INTEGER FIRSTC, FIRSTR, INCC14, 8)

LOGICAL NOWATE, PHILPI

EXTERNAL ADA

IF (ISEL _NE. 1) GO TO 3
Lpt = L + 1
LNL2 = L + 2 + NL

LP2 = L + 2
LPPI = LPP2 - 1
FIRSTC = 1
LASTC = LPPI

FIRSTR = LP1
CALL INIT(L, NL, N, NMAX, LPPZ2, IV, T, W, ALF, ADA, ISEL,

X IPRINT, A, INC, )ICON, NCONPI, PHILP1, NOWATE)

IF (ISEL .NE. 1) co TO 99
GO TO 30

CALL ADA (LP1,NL,N,NMAX,LPP2,IV,A,INC,T,ALF,MINOCISEL,3))
IF (ISEL .EQ. 2) GO TO 6

ISEL 3 OR 4
FIRSTC = LP2

LASTC = LPPI

FIRSTR = (4 - ISEL)*L + 1

GO TO 50

1
N

ISEL
FIRSTC = NCONPI
LASTC = LP1
IF (NCON .EQ. 0) GO TO 30
IF ¢ACY, NCON) .EQ. SAVE) GO TO 30

ISEL = -7
CALL VARERR (IPRINT, I1sEL, NCON)
GO TO 99

ISEL = 1 OR 2

IF (PHILP1) GO TO 4o
DO 35 I = 1, N
R(I) = Y(I)
GO TO 50
DO 45 | = 1, N
R(I) = Y(I) = R(I)

WEIGHT APPROPRIATE COLUMN:

IF (NOWATE) GO TO 58
DO 55 I = 1, N
ACUM = W(I)

DO 55 J = FIRSTC, LASIC
ACI, J) = A(I, J) ACUM
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58

66

68

70
75

85

COMPUTE ORTHOGONAL FACTORIZATIONS BY HOUSEHOLDER
REFLECTIONS. IF ISEL = 1 OR 2, REDUCE PHI (STORED IN THE
FIRST L COLUMNS OF THE MATRIX A) TO UPPER TRIANGULAR FORM,
(Q*PHI = S), AND TRANSFORM Y (STORED IN COLUMN L+1), GETTING
Q*Y = R. IF ISEL = 1, ALSO TRANSFORM J = D PHI (STORED IN
COLUMNS L+2 THROUGH L+P+t OF THE MATRIX A), GETTING Q*J = F.
IF ISEL = 3 OR 4, PHI HAS ALREADY BEEN REDUCED, TRANSFORM
ONLY J. s, Rn AND F OVERWRITE PHI, Y, AND J, RESPECTIVELY,
AND A FACTORED FORM OF @ 1S SAVED IN U AND THE LOWER
TRIANGLE OF PHI.

IF (L .EQ. 8) GO TO 75
DO 70 K = 1, L
KP1 = K + 1
IF (ISEL .6E. 3 .OR. (ISEL .EQ. 2 _AND. K .LT.NCONP1)) GO TO 66
U(K) = A(K, K) + ALPHA
A(K, K) = —-ALPHA
FIRSTC = Kp1
IF (ALPHA .NE. 0.0) GO TO 66

ISEL = -8
CALL VARERR (IPRINT, ISEL, K}
GO TO 99
APPLY REFLECTIONS TO COLUMNS
* FIRSTC TO LASTC.
BETA = -A(K, K) U(K)
DO 70 J = FIRsTC, LASTC

ACUM UCR)*A(K, J)
DO 68 I = KP1, N
ACUM = AcuM + A(I, K)*aA(I, J)
ACUM = ACUM ~» BETA
A(K,J) = A(K,J) = U(K)*ACUM
DO 70 I = kP11, N
ACI, J) = A(CI, J) - A(I, KJ)¥ACUM

IF (ISEL .GE. 3) GO TO 85
RNORM = XNORM(N-L, R(LP1))
IF (ISEL .EQ. 2) GO TO 99
IF (NCON .GT. 0) SAVE @ AC1, NCON)

F2 IS NOW CONTAINED IN ROWS L+l TO N AND COLUMNS L+2 TO
L+P+1 OF THE MATRIX A. NOW SOLVE THE L X L UPPER TRIANGULAR
SYSTEM s*BETA = R1 FOR THE LINEAR PARAMETERS BETA. BETA
OVERWRITES R1.

IF (L .6¢T. 0) CALL BACSUB (NMAX, L, A, R)

MAJOR PART OF KAUFMAN®S SIMPLIFICATION OCCURS HERE. COMPUTE
THE DERIVATIVE OF ETA WITH RESPECT TO THE NONLINEAR

PARAMETERS
D ETA T, L D PHICJ) D PHICL+1)
-------- = Q " (SUM BETA(J) =---==== * ——ee——w—-—-) = F2¥BETA
D ALF(K) J=1 D ALF(K) D ALF(K)

AND STORE THE RESULT IN COLUMNS L+2 TO L+NL+1. IF ISEL NOT

= 4, THE FIRST L ROWS ARE OMITTED. THIS IS -bD(Q@2)*Y. IF
ISEL NOT = 4 THE RESIDUAL R2 = 2%y (IN COL. L+1) IS COPIED
TO COLUMN L+NL+2. OTHERWISE ALL OF COLUMN L+1 1S COPIED.
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DO 95 | = FIRSTR, N
IF (L .EQ. NCON) Go TO 95

M = LP1
DO 90 K = 1, NL
ACUM = 0.

DO 88 J = NCONPI, L
IF CINC(K, J) .EQ. 0) GO TO 88

M =M+ 1 *
ACUM = ACUM + a(1, M) R(J)D
88 CONTINUE

KSUB = LPt + K
IF (INC(K, LP1) .EQ. 0) co TO 90
M =M+ 1
ACUM = ACUM + A(I, M)
90 ACI, KSUB) = ACUM
95 ACI, LNL2) = R(I)

99 RETURN
END

SUBROUTINE INIT(L, ML, N, NMAX, LPPZ2, IV, T, W, ALF, ADA, ISEL,
X TPRINT, Ar INC, NCON, NCONP1, PHILP!, NOWATE)

CHECK VALIDITY OF INPUT PARAMETERS, AND DETERMINE NUMBER OF
CONSTANT FUNCTIONS.

DOUBLE PRECISION ACMMAX, LPP2), ALF(NL), T(NMAX, IV), W(N),
X DSQRT

INTEGER OUTPUT, P, INC(14, 81

LOGICAL NOWATE, PHILP1

DATA OUTPUT /67

LPY = L + 1
LNL2 = L + 2 + NL
CHECK FOR VALID INPUT
IF (L .6e. O .AND. NL .GE. 0 _AND. L+NL .LT. N _AND. LNL2 .LE.
X LPP2 .AND. 2*NL + 8 _LE. NMAX _AND. N .LE. NMAX .AND.
X IV .6T. 0 _AND. .NOT. (NL .EQ. O .AND. L .E@Q. 0)) GO TO 1

ISEL = -4
CALL VARERR (IPRINT, ISEL, 1)
GO TO 99
1 IF (L .EQ. 0 _OR. NL .EQ. 0) GO TO 3
DO 2 J = 1r LPY
DO 2 K = 1, NL
2 INC(K, J) = 0

3 CALL ADA (LP1, NL, N, NMAX, LPP2, IV, A, INC, T, ALF, ISEL)

NOWATE .TRUE.

DO 9 | 1, N
NOWATE = NOWATE _AND. (W(I) .EQ. 1.0)
IF (W(1) .GE. 0.) GO TO 9

ERROR IN WEIGHTS

ISEL = -6
CALL VARERR (IPRINT, ISEL, I)
GO TO 99

9 W(I) = DSQRT(W(I))
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NCON = L

NCONPI = LP1

PHILPI = L .EQ. O

IF (PHILPI .OR. NL .E@. 0) GO TO 99
CHECK INC MATRIX FOR VALID INPUT AND
DETERMINE NUMBER OF CONSTANT FCNS.

P =

po 11 J = 1, LP1
F (P .EQ. 0) NCONPI =]
11 K = 1, NL
INCKJ = INC(K, J)
IF (INCKJ .NE. O .AND. INCKJ .NE. t) GO TO 15
IF (INCKJ .E@. 1) Po P + 1
11 CONTINUE

NCON = NCONPI = 1
IF (IPRINT .GE. 0) WRITE (OUTPUT, 210) NCON
IF (L+P+2 .EQ. LPP2) GO TO 20
INPUT ERROR IN INC MATRIX
15 ISEL = -5
CALL VARERR (IPRINT, ISEL, 1)
Go TO 99

DETERMINE IF PHICL+1) IS IN THE MODEL.
20 DO 25 K =1, NL

25 IF CINC(K, LP1) .EQ. 1) PHILPI = ,TRUE.
99 RETURN
210 FORMAT (33H0 NUMBER OF CONSTANT FUNCTIONS =, 14 /)
END

SUBROUTINE BACSUB (NMAX, N, A, X)

BACKSOLVE THE N X N UPPER TRIANGULAR SYSTEM A*X = B.
THE SOLUTION X OVERWRITES THE RIGHT SIDE B.

DOUBLE PRECISION ACNMAX, N), X(N), ACUM

X(N) = X(N) 7 A(N, N)
IF (N .EQ. 1) GO TO 30
NPY? = N + 1

DO 20 IBACK = 2, N

I = NP1 - IBACK
Il = N-1, N-2, "oy 2, 1
1Pt = | + 1
ACUM = X(1)
DO 10 J = 1P1, N
10 ACUM = ACUM = AC(I,J)*X(J)
20 X(1) = ACUM - ACI,ID
30 RETURN
END

SUBROUTINE POSTPR(L, NL, N, NMAX, LNL2, EPS, RNORM, IPRINT, ALF,
X W, A, R, U, IERR)

CALCULATE RESIDUALS, SAMPLE VARIANCE, AND COVARIANCE MATRIX.
ON INPUT, u CONTAINS INFORMATION ABOUT HOUSEHOLDER REFLECTIONS
FROM DPA. ON ouTpPUT, IT CONTAINS THE LINEAR PARAMETERS.

DOUBLE PRECISION A(NMAX, LNL2), ALF(NL), R(N), U(L), W(N), ACUM,
¥ EPS, PRJRES, RNoRrRM, SAVE, DABS
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10

20

25
30

35

40
45

99

INTEGER OUTPUT
DATA OUTPUT 767

LPY = L + 1

LPNL = LNL2 = 2

LNLI = LPNL + 1

bO 10 I = 1, N
W(I) = W(I)*%x2

UNWIND HOUSEHOLDER TRANSFORMATIONS TO GET RESIDUALS,
AND MOVE THE LINEAR PARAMETERS FROM R TO U.

IF (L .EQ. 0) GO TO 30
DO 25 KBACK = 1, L

K = LPY - KBACK

KP1 = K + 1

ACUM = 0.
DO 20 I = Kpr1, N
ACUM = ACUM + AC(I, K) ¥* R(I)
SAVE = R(K)
R(K) = ACUM 7 A(K, Ki
ACUM = -acuM 7 (U(K) A(K, K))
UCK) = SAVE
DO 25 | = KP1, N
R(I) = R(I) - A(I, KJ)*ACUM
COMPUTE MEAN ERROR
ACUM = 0.
DO 35 1 = 1, N
ACUM = ACUM + R(I)

SAVE = ACUM 7 N

THE FIRST L COLUMNS OF THE MATRIX HAVE BEEN REDUCED TO
UPPER TRIANGULAR FORM IN DPA. FINISH BY REDUCING ROWS
L+1 TO N AND COLUMNS L+2 THROUGH L+NL+1 TO TRIANGULAR
FORM. THEN SHIFT COLUMNS OF DERIVATIVE MATRIX OVER ONE
TO THE LEFT TO BE ADJACENT TO THE FIRST L COLUMNS.

IF (NL .EQ. 0) GO TO 45
CALL ORFACIT(NL+1, NMAX, N, L, IPRINT, AC!, L+2), PRJRES, &)
DO 40 I = 1, N

A(I, LNL2) = R(I)

DO 40 K = LpPt, LNLI

ACI, K) = A(I, K+1)
COMPUTE COVARIANCE MATRIX

ACY, LNL2) = RNORM
ACUM = RNORM¥RNORM/(N - L - NL)
AC2, LNL2) = ACUM
CALL coV(NMAX, LPNL, ACUM, A)

IF (IPRINT .LT. 0) GO TO 99

WRITE (OUTPUT, 209)

IF (L .6¢T. 0) WRITE (OUTPUT, 210) (u(J), J = 1,
IF (NL .GT. 0) WRIT"E (OUTPUT, 211) (ALF(K), K =
WRITE (OUTPUT, 214) RNORM, SAVE, ACUM

IF (DABS(SAVE) .GT. EPS) WRITE (OUTPUT, 215)
WRITE (OUTPUT, 209)

RETURN

209 FORMAT (1HO, 50(C1H'))
210 FORMAT (20H0 LINEAR PARAMETERS #7 (7E15.7))
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211 FORMAT (23H0 NONLINEAR PARAMETERS /s (7E15.7))
214 FORMAT ¢21H0 NORM OF RESIDUAL =, E'5.7, 33H EXPECTED ERROR OF OBS
XERVATIONS =, E15.7, - 39H ESTIMATED VARIANCE OF OBSERVATIONS =,
X E15.7 )
215 FORMAT (95H WARNING == EXPECTED ERROR OF OBSERVATIONS 1S NOT ZERO
X. COVARIANCE MATRIX MAY BE MEANINGLESS. 7)
END
SUBROUTINE COV(NMAX, N, SIGMA2, R)

COMPUTE THE SCALED COVARIANCE MATRIX OF THE L + NL
PARAMETERS. THIS INVOLVES COMPUTING

2 -1 -T
SIGMA  * T T

WHERE THE (L+NL) X (L+NL) UPPER TRIANGULAR MATRIX T 1S
DESCRIBED IN SUBROUTINE POSTPR. THE RESULT OVERWRITES THE

FIRST L+NL ROWS AND COLUMNS OF THE MATRIX A. THE RESULTING
MATRIX IS SYMMETRIC. SEE REF. 7, PP. 67-70, 281.

DOUBLE PRECISION ACNMAX, N), SUM, SIGMA2

DO 10 J = 1, N
10 ACJ, J)Y = Y.7znaC0, )
INVERT T UPON ITSELF

IF (N .EQ. 1) GO TO 70

DO 60 I = 1, NM1
IP1 = | + 1
DO 60 J = 1P1, N
JM1 o J = 1
SUM = 0.
DO 50 M = I, JMI
50 SUM = SUM + ACI, M) * A(M, J)
60 ACI, J) = -SUM * A(J, 3
NOW FORM THE MATRIX PRODUCT
70 DO 90 I = 1, N
DO 90 J = I, N
SUM = 0.
DO 80 M = J, N .
80 SUM = SUM + ACI, M) © ACJ, M)

SUM = SUM * SIGMA2
ACI, J) = SUM
90 ACJ, 1) = SUM

RETURN

END

SUBROUTINE VARERR (IPRINT, 1ERR, K)
PRINT ERROR MESSAGES

INTEGER ERRNO, OUTPUT
DATA OUTPUT r67




IF (IPRINT .LT. 0) GO TO 99
ERRNO = IABS(IERR)
Go 10 ¢1, 2, 99, 4, 5, 6. 7, 8), ERRNO

C
1 WRITE (OUTPUT, 101)
GO TO 99
2 WRITE (OUTPUT, 102)
GO TO 99
4 WRITE (OUTPUT, 104)
Go TO 99
5 WRITE (OUTPUT, 105)
GO TO 99
6 WRITE (OUTPUT, 106) K
GO TO 99
7 WRITE (OUTPUT, 107) K
GO TO 99
8 WRITE (OUTPUT, 108) K
C
99 RETURN
101 FORMAT (46H0 PROBLEM TERMINATED FOR EXCESSIVE ITERATIONS 77)
102 FORMAT (49H0 PROBLEM TERMINATED BECAUSE OF ILL-CONDITIONING 77)
104 FORMAT (s SOH INPUT ERROR IN PARAMETER L., NL, N, LPP2, OR NMAX.
105 FORMAT (68H0 ERROR == INC MATRIX IMPROPERLY SPECIFIED, OR DISAGRE
XES WITH LpP2. /)
106 FORMAT C(19H0 ERROR =-- WEIGHT(, I4%, 14H) 1S NEGATIVE. 7)
107 FORMAT (28H0 ERROR == CONSTANT COLUMN e I3, 37H MUST BE COMPUTED
XONLY WHEN ISEL = 1. 72)
108 FORMAT (33H0 CATASTROPHIC FAILURE -- COLUMN , 14, 28H 1S ZERO,
XE DOCUMENTATION. 2)
END
DOUBLE PRECISION FUNCTION XNORM(N, X)
C
C COMPUTE THE L2 (EUCLIDEAN) NORM OF A VECTOR, MAKING SURE TO
C AVOID UNNECESSARY UNDERFLOWS. NO ATTEMPT 1S MADE TO SUPPRESS
C OVERFLOWS.
C
DOUBLE PRECISION X(N), RMAX, SUM, TERM, DABS, DSQRT
C
C FIND LARGEST (IN ABSOLUTE VALUE) ELEMENT
RMAX = 0.
DO 10 I = 1, N
IF (PABS(X(I)) .GT. RMAX) RMAX = DABS(X(I))
10 CONTINUE
C
SUM = 0.
IF (RMAX .EQ. 0.) GO TO 30
DO 20 I = 1, N
TERM = 0.
IF (RMAX + DABS(X(I)) _NE. RMAX) TERM = X(I)/RMAX
20 SUM = SUM + TERM*TERM
C
30 XNORM = RMAX¥DSQRT(SUM)
99 RETURN
END

//LKED.SYSLMOD DD DSN=WYL.JE.CLJ.SETH(MELISSA),DISP=0OLD




WATRAKEI (3,/79) - cWK24 FROM WK107%
NUMBER OF NONLINEAR PARAMETERS

INITIAL EST. OF NONLIN. PARAMETERS

2.000
5.000

DIMENSIONLESS NUMBER TRACER ARRIVAL TIME
2.00000 0.200

NUMBER OF OBSERVATIONS

93
INDEPENDENT VARIABLES DEPENDENT VARIABLES
0.214 28.510
0.297 2043.906
0.380 7757.337
0.464 10865.406
0.547 10752.924
0.630 9576.211
0.714 8226.813
0.797 7012.052
0.880 5984.576
0.964 5198.999
1.047 4588.288
1.130 4092.422
1.297 3386.888
1.380 2895.055
1.464 2727.387
1.547 2606.242
1.630 2446.038
1.714 2321.840
1.797 2194.641
1.880 2078.807
1.964 1973.313
2.047 1890.512
2.130 1792.964
2.214 1615.511
2.630 1280.402
2.714 1232.835
2.797 1187.192
2.880 1145.455
2.964 1111.014
3.047 1079.655
3.130 1044.407
3.214 1002.250
3.297 944.850
3.380 909.742
3.464 879.628
3.547 848.368
3.630 817.099
3.714 792.777
3.797 769.525
3.880 748.345
3.964 751.802
4.047 714.117



4.130 695.975
4.214 658.868
4.297 638.992
4.380 618.845
4.464 607.310
4.630 572.912
4.714 559.063
4.797 543.320
4.880 532.194
4.964 517.672
5.047 502.855
5.130 491.666
5.214 483.097
5.297 469.851
5.380 462.071
5.464 450.761
5.547 446.069
5.630 432.668
5.880 407 .597
5.964 397.611
6.047 392.204
6.130 380.086
6.214 375.645
6.297 369.281
6.380 359.749
6.630 345.746
6.714 340.128
6.797 338.155
6.880 338.703
6.964 333.483
7.047 331.370
7.130 317.503
7.214 305.410
7.297 300.365
7.380 295.185
7.464 292.692
7.547 287.393
7.630 284.710
7.714 279.273
7.797 275.762
7.880 271.511
8.130 263.995
8.380 256.012
8.464 249.844
8.547 247.240
8.630 244 .606
8.880 236.365
8.964 234.301
9.047 229.099
9.130 225.334
9.214 223.842
NUMBER OF CONSTANT FUNCTIONS = 0

0 NORM OF RESIDUAL = 0.1280073D+05

NU = 0.1000000D+01
ITERATION 1 NONLINEAR PARAMETERS
0.1951013D+01 0.7306868D+01

! NORM OF RESIDUAL = 0.5307679D+04

NU = 0.5000000D+00

NORM(DELTA-ALF) / NORM(ALF) = 0.305D+00




ITERATION 2 NONLINEAR PARAMETERS
0.1790861D+01 0.6391822D+01

1 NORM OF RESIDUAL = 0.4667214D+0Y4

NU = 0.2500000D+00

NORM(DELTA-ALF) 7 NORM(ALF) = 0.140D+00
ITERATION 3 NONLINEAR PARAMETERS
0.1397078D+01 0.4619397D+01

1 NORM OF RESIDUAL = 0.2752487D+04

NU = 0.1250000D+00

NORMCDELTA—-ALF) - NORM(ALF) = 0.376D+00
ITERATION 4 NONLINEAR PARAMETERS
0.1242511D+01 0.4320153D+01

1  NORM OF RESIDUAL = 0.1722342D+04

NU = 0.6250000D-01

NORM(DELTA-ALF) 7 NORM(ALF) = 0.749D-01
ITERATION 5 NONLINEAR PARAMETERS
0.1249233D+01 0.4327062D+01

1 NORM OF RESIDUAL = 0.1716735D+04
NU = 0.3125000D-01
NORM(DELTA-ALF) 7 NORMCALF) = 0.214D-02

ITERATION 6 NONLINEAR PARAMETERS
0.1248118D+01 0.4323440D+01
1  NORM OF RESIDUAL = 0.1716674D+04

NU = 0.1562500D-01

NORM(DELTA-ALF) 7 NORMCALF) = 0.842D-03
ITERATION 7 NONLINEAR PARAMETERS
0.1248064D+01 0.4323031D+01

1  NORM OF RESIDUAL = 0.1716672D+04

NU = 0.7812500D-02

NORMCDELTA—-ALF) / NORM(ALF) = 0.916D-04

ITERATION 8 NONLIN"EAR PARAMETERS
0.1248037D+01 0.4322911D+01

1 NORM OF RESIDUAL = 0.1716672D+04

NU = 0.3906250D-02

NORMCDELTA—-ALF) - NORIMCALF) = 0.272D-04
ITERATION 9 NONLINEAR PARAMETERS
0.1248032D+01 0.4322888D+01

1 NORM OF RESIDUAL = 0.1716672D+0Uu

NU = 0.1953125D-02

NORM(DELTA-ALF) 7 NORM(ALF) = 0.530D-05

ITERATION 10 NONLINEAR PARAMETERS
0.1248031D+01 0.4322883D+01

1 NORM OF RESIDUAL = 0.1716672D+04

NU = 0.9765625D-~03

NORM(DELTA-ALF) 7 NORM(ALF) = 0.121D-05
ITERATION 11 NONLINEAR PARAMETERS
0.1248031D+01 0.4322882D+01

t NORM OF RESIDUAL = 0.1716672D+04

NU = 0.u4882812D-03

NORM(DELTA-ALF) ~ NORMCALF) = 0.258D-06
ITERATION 12 NONLINEAR PARAMETERS
0.1248031D+01 0.4322881D+01

1 NORM OF RESIDUAL = 0.1716672D+04

NU = 0.2441406D-03

NORMCDELTA-ALF) - NORM(ALF) = 0.564D-07

RN N N RN RN R N]

LINEAR PARAMETERS

0.1655775D+05
NONLINEAR PARAMETERS




0.1248031D+01
NORM OF RESIDUAL =
ESTIMATED VARIANCE OF OBSERVATIONS =

WARNING —-- EXPECTED ERROR OF OBSERVATIONS IS NOT ZERO.

0.4322881D+01
0.1716672D+04 EXPECTED ERROR OF OBSERVATIONS = 0.

8.3274403D+05

TR L TYEEEEEY Y YYENEYYYYEYNYOELAYYEYOEYEOEOEOEOEOETEYEYEEEREOODY

ACTUAL

28.
2043.
7757.

10865.
10752.
9576.
8226.
7012.
5984.
5198.
4588.
4092.
3386.
2895.
2727.

2606
2446

1792

1044

909

848

769
751
658
638

607

.2420
.0380
2321.
2194.
2078.
1973.
1890.
.9640
1615.
1280.
1232.
1187.
1145.
1111.
1079.
.4070
1002.
944 .
. 7420
879.
.3680
817.
792.
.5250
748.
.8020
714.
695.
.8680
.9920
618.
.3100
572.
559.
543.

5100 0.
9060 1380.

3370 8667.
406010619
924010097.
2110 9022.
8130 7926.
0520 6970
5760 6158.
9990 5467.
2880 4893.
4220 4407
8880 3634.
0550 3328.
3870 3058.
2825.
2620.
8400 2435.
6410
8070
3130
5120

2128.
1997
1879.
1772
1674.
1298
1239.
1185.
1135.
1087.
1044.
1008.
964
928.
895.
863.
833.
804
777.
752.
728.
706.
684.
664.
644.
626.
608.
591.
560.
545.
531.

5110
4020
8350
1920
4550
0140
6550

2500
8500

6280

0990
7770

3450
1170
9750
8450
9120

0630
3200

2273.

CALC

0
2258
5898

COMP%# |

0.0
1380.2258
8667.5898

.640610619.6406

242210097.2422

6719
6328

.8984

7656
9453
8203

.9609

8909
4558
7834
5759
0679
8870
8853
8738

.0005

4253

.8572

8044

.8887

8137
6943
3857
9790
2793
4192

.7019

8235
1094
0107
1306

.9316

9731
7786
9126
0134
5388
1294
4846
0051
3909
3887
0254
1943
1709

9022,6719
7926,6328
6970.8984
6158,7656
5467.9453
4893,8203
4407,9609
3634,8909
3328,4558
3058.7834
2825,5759
2620,0679
2435.8870
2273.8853
2128,8738
1997.0005
1879,4253
1772.8572
1674.8044
1298.8887
1239.8137
1185.6943
1135.3857
1087.9790
1044.2793
1003.4192
964.7019
928.8235
895.1094
863.0107
833.1306
804.9316
777.9731
752.7786
728.9126
706.0134
684.5388
664.1294
644.4846
6261.0051
608.3909
591.3887
560.0254
545.1943
531.1709

coMp#2

COVARIANCE MATR



532. 1940
517.6720
502.8550
491.6660
483.0970
469.8510
462.0710
450.7610
446.0690
432.6680
407.5970
397.6110
392.2040
380.0860
375.6450
369.2810
359.7490
345.7460
340.1280
338.1550
338.7030
333.4830
331.3700
317.5030
305.4100
300.3650
295.1850
292.6920
287.3930
284.7100
279.2730
275.7620
271.5110
263.9950
256.0120
249.8440
247.2400
244.6060
236.3650
234.3010
229.0990
225.3340
223.8420

FRACTION
1.000

517.7378 517.
504.7092 504.
492.3628 492.
480.5112 480.
468.9929 468.
458.0562 458.
447.5374 447.
437.2954  437.
427.5527 427.
418.1665 418.
391.8708 391.
383.6477 383.
375.8010 375.
368.2180 368.
360.7998 360.
353.7109 353.
346.8511  346.
327.4724  327.
321.3625 321.
315.5098  315.
309.8323 3009.
304.2576 304.
298.9116 298.
293.7202 293.
288.6172  288.
283.7185 283.
278.9568 278.
274.2720 274.
269.7700 269.
265.3896 265.
261.0762 261.
256.9275 256.
252.8874 252.
241.3363 241.
230.6383 230.
227.2199 227.
223.9243 223.
220.7076 220.
211.4695 211.
208.5092 208.
205.6513 205.
202.8581 202.
200.0950 200.

DIMENSIONLESS NUMBER

1.248

7378
7092
3628
5112
9929
0562
5374
2954
5527
1665
8708
6477
8010
2180
7998
7109
8511
4724
3625
5098
8323
2576
9116
7202
6172
7185
9568
2720
7700
3896
0762
9275
8874
3363
6383
2199
9243
7076
4695
5092
6513
8581
0950

ARRIVAL TIME
0.231




CONCENTRATI@GN (C/S)
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Appendix C

Fitted Tracer Return Profiles



CONCENTRATI@N (C/S)
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WAIRAKEI {3/79) - CWK24 FROM WK107

Fossum model: double fracture fit
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CONCENTRATION (C/S)

CONCENTRATI@N (C/S)

WAIRAKEI (3/79) - CWK48 FROM WK107

Frssum model: single fracture fit
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CONCENTRATIBN (C/S)

100

WAIRAKEI (3/79) - CWKG7 FRBM wKki07

Matrix diffusion model: single fracture fit
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CSNCENTRATISN (C/S)

CONCSNTQATION (C/S)
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