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Motivation:

Develop a pressure-based monitoring 
scheme that can be used real-time, 

continuously, is cost effective, and safe 
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Multilevel Pressure Monitoring

• Prior work has shown multilevel pressure 
transients can be used to determine the height 
and footprint of the CO2 plume

• Multilevel pressure transients can also be used 
to history match hydrogeological models to 
predict future CO2 migration

• Demonstrated using Illinois Basin – Decatur 
Project (IBDP) data as a case study

C. W. Strandli and S. M. Benson, “Identifying diagnostics for reservoir structure and CO2 plume migration from multilevel pressure measurements: Diagnostics from Multilevel 
Pressure Measurements,” Water Resour. Res., vol. 49, no. 6, pp. 3462–3475, Jun. 2013, doi: 10.1002/wrcr.20285.
C. W. Strandli, E. Mehnert, and S. M. Benson, “CO2 Plume Tracking and History Matching Using Multilevel Pressure Monitoring at the Illinois Basin – Decatur Project,” Energy 
Procedia, vol. 63, pp. 4473–4484, 2014, doi: 10.1016/j.egypro.2014.11.483.
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Monitoring well and injection well data
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With time, buoyancy-induced 
migration leads to larger 
pressure buildups at 
shallower depths, upward 
flow of displaced brine above 
the plume and downward 
flow of displaced brine below 
the plume
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A Tale of Two Approaches
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Deterministic Output
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Approach 1: “Direct” Inversion
• Analogy to maximum likelihood estimation 

(MLE)
• Training and test sets were developed 

using eclipse and are treated as the 
ground truth, they’re modified from same 
data sets as CCSNet

• Train a model to predict the full saturation 
plume with permeability, porosity and  
pressure buildup input data from the 
injection well and monitoring well 

• Leverages the fact that pressure and 
saturation are coupled

• 2D radial system

Initial data:

Initial data:

Reduced data:

Reduced data:
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G. Wen, Z. Li, K. Azizzadenesheli, A. Anandkumar, and S. M. Benson, “U-FNO—An enhanced Fourier neural operator-based 
deep-learning model for multiphase flow,” Advances in Water Resources, 2022.
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Model inputs and outputs

Injection rate 

Iso-thermal reservoir temperature

Irreducible water saturation

Perforation thickness and location

Van Genuchten scaling factor

Initial pressure

kx at the injection well and 1 monitoring well

kz at the injection well and 1 monitoring well

Porosity at the injection well and 1 monitoring well

Pressure buildup at the injection well and 1 monitoring well

Vertical gradient pressure buildup at the injection well and 1 
monitoring well

• 4500 samples in the training 
set, 500 samples in the test set

• 16 timesteps in one sample
• Currently always assumes the 

monitoring well is in the same 
location 

• Output is a full saturation map

Model

Inputs:
Full saturation map

Outputs:
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Model architecture selection

• U-Net was the best performing 
architecture tested for the 
inverse

• U-Net is ideal for localized 
information

• 2 million parameters in my 
model
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O. Ronneberger, P. Fischer, and T. Brox, "U-Net: Convolutional networks for biomedical image segmentation," in Proceedings of the International Conference on Medical Image 
Computing and Computer-Assisted Intervention (MICCAI), Munich, Germany, Oct. 2015, pp. 234-241.
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Ground Truth

Model performance
Good agreement for both 
heterogeneous and homogeneous 
permeability fields
Some samples overestimate plumes 
and occasional samples see 
dispersion

Prediction
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LP-loss over 100 epochs

Delta

Mean: 
0.001564 

Mean: 
0.09370 



More samples of results
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Params: injection rate: 1.83 MT/yr, temperature: 106.5 C, initial pressure: 252.8 bar, Swi: 0.24, lan: 
0.42 , Mean horizontal permeability: 1110.92, Horizontal permeability standard deviation: 216.86

Params: injection rate: 1.34 MT/yr, temperature: 43.0 C, initial pressure: 133.9 bar, Swi: 0.23, lan: 
0.61, Mean horizontal permeability: 378.01, Horizontal permeability standard deviation: 102.00

Params: injection rate: 0.76 MT/yr, temperature: 103.1 C, initial pressure: 223.5 bar, Swi: 0.24, 
lan: 0.40 Mean horizontal permeability: 14.71, Horizontal permeability standard deviation: 13.46

Params: injection rate: 0.79 MT/yr, temperature: 130.6 C, initial pressure: 291.7 bar, Swi: 0.13, 
lan: 0.42, Mean horizontal permeability: 1395.64, Horizontal permeability standard deviation: 0.00

Params: injection rate: 1.96 MT/yr, temperature: 102.5 C, initial pressure: 290.6 bar, Swi: 0.16, 
lan: 0.55, Mean horizontal permeability: 70.74, Horizontal permeability standard deviation: 122.20

Params: injection rate: 0.86 MT/yr, temperature: 141.6 C, initial pressure: 251.4 bar, Swi: 0.18, lan: 
0.55, Mean horizontal permeability: 172.93, Horizontal permeability standard deviation: 190.05
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Approach 2: History matching with ES-MDA

• ES-MDA (Ensemble Smoother with Multiple Data 
Assimilation) is an iterative scheme

• CCSNet replaces a computationally intensive 
geologic realization in the forward model step

• Use the CCSNet 2D radial U-FNO forward model 
which uses full horizontal permeability, vertical 
permeability, and porosity fields to predict either 
pressure or saturation

• Use ES-MDA to update permeability and porosity 
maps using observed pressure data 

• After all assimilation steps, use the final updated 
permeability and porosity maps to predict saturation 
using CCSNet

12

G. Wen, Z. Li, K. Azizzadenesheli, A. Anandkumar, and S. M. Benson, “U-FNO—An enhanced Fourier neural 
operator-based deep-learning model for multiphase flow,” Advances in Water Resources, 2022.

References:



Full workflow
Start with an initial guess conditioned to injection well and monitoring well data with 
correct mean and standard deviation
Add Gaussian noise to observed pressure data and the initial guess to generate an 
ensemble
Begin ES-MDA loop: 
▪ Run surrogate for the forward model using the initial guess and get an ensemble of 

pressure predictions 
▪ Calculate Kalman gain using covariances
▪ Calculate the innovation comparing true observed pressure measurements with pressure 

measurement predictions generated using the permeability ensemble
▪ The update to permeability is calculated by multiplying the Kalman gain and the innovation 

which is then added to the ensemble

Use final permeability maps to generate an ensemble of saturation maps after 
multiple assimilations
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Example problems 
Use sequential Gaussian simulation conditioned to 2 vertical columns of data with 
noise and the mean and standard deviation of the real permeability map to 
generate an ensemble of initial guesses for horizontal permeability, vertical 
permeability and porosity

Test set ground 
truth horizontal 
permeability 
map

Test set 
observed 
pressure data at 
the monitoring 
well
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History matching with ES-MDA results

Test set ground 
truth saturation

Randomly selected 
ensemble member 
saturation prediction

Comparing 
ensemble member 
pressure and 
observed data
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Understanding uncertainty
Can we mathematically prove that this is unique using the governing 
equation from eclipse:

Instinct is yes
What about this:

Instinct is no, what formal implications about uncertainty and uncertainty 
quantification are there if this is the case
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Looking Ahead

We’re not ready to call one approach better than the other, both can produce 
good visual agreement
We’re interested in how much less data can we give corresponding to what 
trade-off in performance
We want to make this work as useful as possible for real applications –
including understanding uncertainty
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Thank You
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Results – Binary Classification Loss Function
Threshold saturation >=0.05 = 1, 
otherwise 0
Inspired by desire to handle dispersion
Experimented with image segmentation 
to track plume envelope over time with 
contours using quick shift
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