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Monitoring design under geological uncertainty
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 Where to monitor?
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Primary focus in our current work
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Figure source: https://www.psu.edu/news/research/story/25m-grant-
funds-real-time-monitoring-underground-carbon-sequestration



Static vs. sequential monitoring design

Static monitoring design: Sequential monitoring design:
Design initial monitoring plan
[ Design monitoring plan ] JJ
Obtain measurements
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Optimize next monitoring well
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Problem setup
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Define monitoring goal

Quantity of interest (Qol): Goal: maximize uncertainty reduction of Qol
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Partially Observable Markov Decision Process (POMDP)

= Sequential decision making problem (I\/Ionitoring well 1 )

= Number of monitoring wells: 2 1
dobs

= Uncertain parameters: geological

hyperparameters and permeability fields - J
= Prior: s, Posterior: s, F
= Locations of two monitoring wells: y;, — .
J i ¥z (Monltorlng well 2 )
= Monitoring-well data: d
D=\ —
= History matching: s, = F(sl,yl,d},bs) o>
\_ J
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History matching — hierarchical data assimilation

Sequential Gaussi'an
simulation (SGSim)

Pressure (MPa)
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d: observed data from the
first monitoring well
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Surrogate comparisons — CO, plume at 30 years

Realization 1 Realization 2 Realization 3 Realization 4
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History matching problem setup

= Observed data from the first monitoring well:
pressure and CO, saturation

= Uncertain parameters: h,m

= Sequential Monte Carlo-based approximate
Bayesian computation (SMC-ABC)

= One-to-two order of magnitude speedup relative
to reference method (rejection sampling)

h: hyperparameters m: permeability
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History matching results

Pressure CO, saturation
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Online planning — Monte Carlo tree search
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Comparison of static and sequential design

Static monitoring design
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Sequential monitoring design

]
-: —— Perior
Posterior

5 10 | 15 20 25 30
CO, footprint at 30 years (km?)

11



True model 2: static vs. sequential design

Static monitoring design Sequential monitoring design
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Locations of monitoring wells for the two true models
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Summary and Future Work

= Developed a sequential monitoring design framework based on surrogate
modeling, hierarchical data assimilation, and online planning algorithms

= Formulated sequential monitoring design problem as a partially observable
Markov decision process (POMDP)

= Applied sequential Monte Carlo-based approximate Bayesian computation
algorithm for the history matching (data assimilation) step

= |n future work, plan to refine sequential hierarchical data assimilation and apply
the monitoring design framework to more realistic problems
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Backup slides
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Saturation comparison (y-z cross-sections)

Prior saturation samples
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