Sequential Monitoring Design for Geological Carbon Storage

Wenchao Teng & Louis J. Durlofsky November 19, 2024

Stanford | Doerr | Stanford Center School of Sustainability | for Carbon Storage

Monitoring design under geological uncertainty

Static vs. sequential monitoring design

Stanford Center for Carbon Storage

Problem setup

- Storage aquifer size: 7.2 km \times 7.2 km \times 120 m
- Storage aquifer: $60 \times 60 \times 12$ blocks
- Grid size: 120 m × 120 m × 10 m
- Injection rate: 1 Mt/year
- Injection period: 30 years
- Sequential placement of two monitoring wells

Define monitoring goal

Quantity of interest (QoI):

- CO₂ footprint
- Pressure buildup
- Surface displacement

Goal: maximize uncertainty reduction of Qol

Partially Observable Markov Decision Process (POMDP)

- Sequential decision making problem
- Number of monitoring wells: 2
- Uncertain parameters: geological hyperparameters and permeability fields
- Prior: s₁, Posterior: s₂
- Locations of two monitoring wells: y₁, y₂
- Monitoring-well data: d_{obs}
- History matching: $\mathbf{s}_2 = F(\mathbf{s}_1, \mathbf{y}_1, \mathbf{d}_{obs}^1)$

History matching – hierarchical data assimilation

Surrogate comparisons – CO₂ plume at 30 years

History matching problem setup

- Observed data from the first monitoring well: pressure and CO₂ saturation
- Uncertain parameters: h, m
- Sequential Monte Carlo-based approximate Bayesian computation (SMC-ABC)
- One-to-two order of magnitude speedup relative to reference method (rejection sampling)

h: hyperparameters

m: permeability

History matching results

Stanford Center for Carbon Storage

Online planning – Monte Carlo tree search

Comparison of static and sequential design

Static monitoring design

Sequential monitoring design

True model 2: static vs. sequential design

Static monitoring design

Sequential monitoring design

Locations of monitoring wells for the two true models

Summary and Future Work

- Developed a sequential monitoring design framework based on surrogate modeling, hierarchical data assimilation, and online planning algorithms
- Formulated sequential monitoring design problem as a partially observable Markov decision process (POMDP)
- Applied sequential Monte Carlo-based approximate Bayesian computation algorithm for the history matching (data assimilation) step
- In future work, plan to refine sequential hierarchical data assimilation and apply the monitoring design framework to more realistic problems

Acknowledgments

Surrogate model code from Yifu Han and Dylan Crain

Stanford Center for Carbon Storage

Stanford Smart Fields Consortium

Stanford Graduate Fellowship

SDSS Center for Computation

Backup slides

Saturation comparison (y-z cross-sections)

Prior saturation samples

