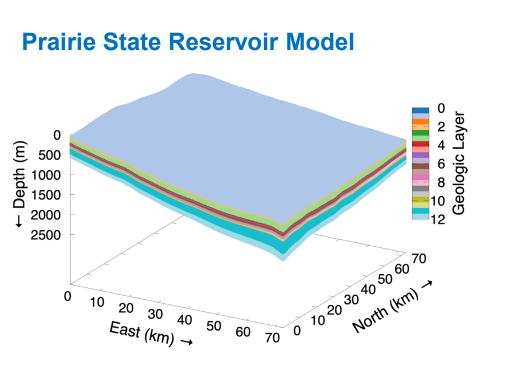
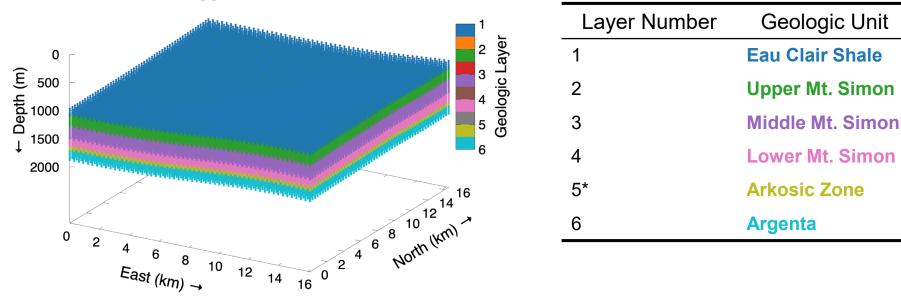
Illinois Storage Corridor – Enhanced Framework for Monitoring and History Matching

Dylan Crain & Louis Durlofsky

Nov 19, 2024


Stanford | Doerr | Stanford Center School of Sustainability | for Carbon Storage

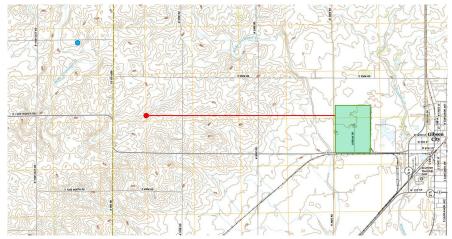
Illinois Storage Corridor: ISC


- ISC project:
 - > Mitigate CO₂ emissions in Illinois
 - Acceleration of commercial CCUS
 - Region with proven storage performance
- Prairie State Generating Company (PSGC)
 - Coal-fired power plant
- One Earth Energy (OEE)
 - > Ethanol production plant
- Acquire Class VI injection permits for both sites
 - > Through submission to the EPA

Geology of Prairie State Site

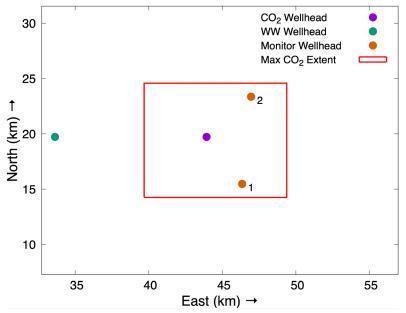
Layer Number	Geologic Unit
1	Maqueketa Shale
2	Trenton
3	Platteville
4	Upper Joachim
5	Lower Joachim
6*	St. Peter
7	Everton Dolomite
8*	Everton Sandstone
9	Upper Shakopee
10	Middle Shakopee
11	Lower Shakopee
12	Oneota

Geology of One Earth Energy Site



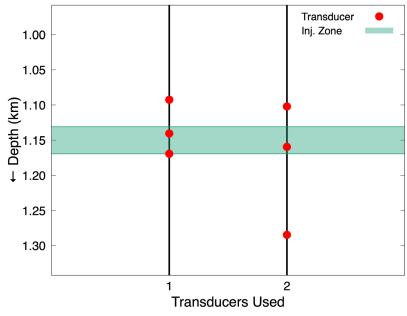
One Earth Energy Reservoir Model

CO₂ Injection Plan


Pipeline for PSGC Site

- PSGC injection
 - > Inject around 1 Mt/year
 - > Two horizontal injection wells
 - Single wellhead
- OEE injection
 - > Initially ~0.5 Mt/year
 - > Goal is to be a hub: 4.5 Mt/year
 - Multiple planned injection wells
- CO₂ transportation
 - Both sites will utilize pipelines
 - > Buried 5 ft below the surface

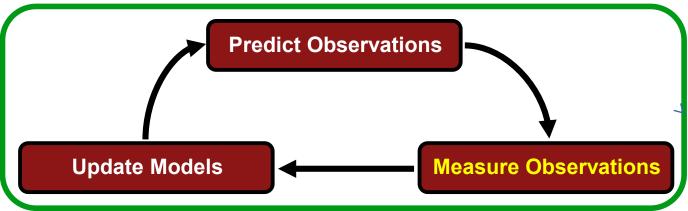
Monitoring Plan


Proposed Monitoring at PSGC

- Time-lapse 2D seismic
- Above-zone wells (AZM)
 - Above confinement shale
 - > Fluid sampling
 - > Temperature sensing
- In-zone wells (IZM)
 - Yearly saturation logging
 - Pressure transducers
- OEE will begin with one IZM
 - > Expand after 5 years

Monitoring Plan

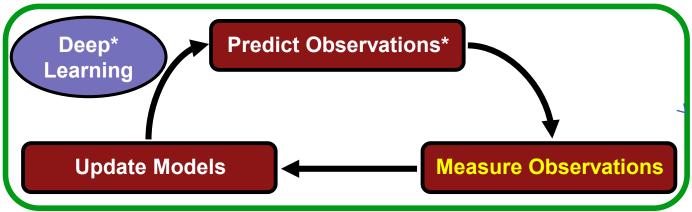
Proposed Monitoring at PSGC


- Time-lapse 2D seismic
- Above-zone wells (AZM)
 - Above confinement shale
 - > Fluid sampling
 - > Temperature sensing
- In-zone wells (IZM)
 - Yearly saturation logging
 - Pressure transducers
- OEE will begin with one IZM
 - > Expand after 5 years

Framework Workflow

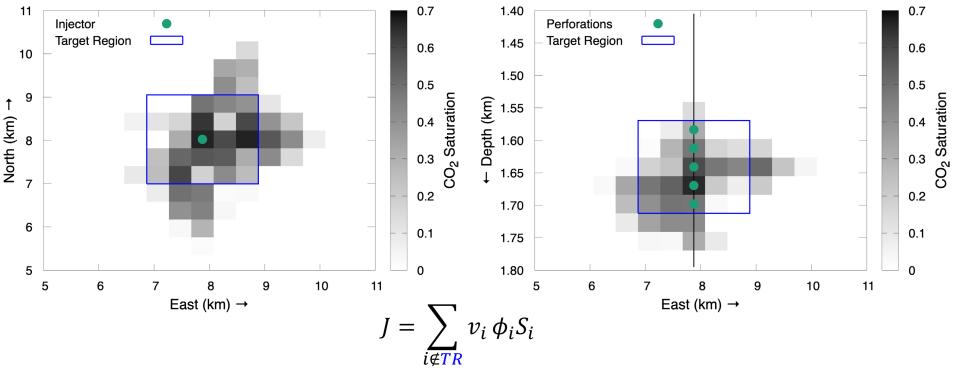
Determine Monitoring Well Locations

History Matching (ESMDA)



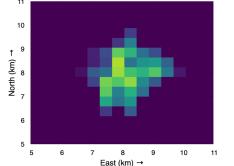
Framework Workflow

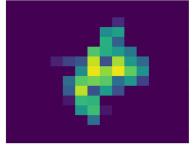
Determine Monitoring Well Locations



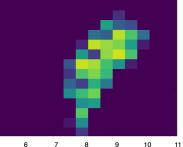
History Matching (ESMDA)

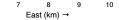
Quantity of Interest: J

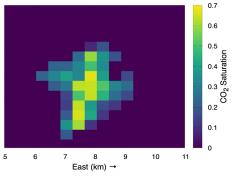


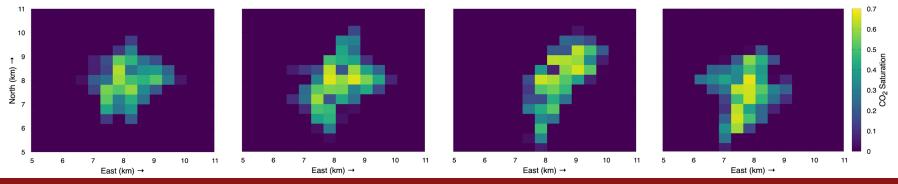

Side View

Stanford Center for Carbon Storage


Deep Learning Enhancement: Overhead View DL Predictions *DL mo


*DL model by Yifu Han




11 5 6 7 8 9 10 11 East (km) →

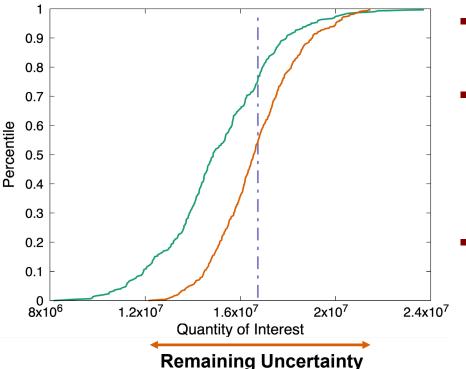
Simulation Results

5

Stanford Stanford Center for Carbon Storage Doerr School of Sustainability Energy Science & Engineering

History Matching with Localization **ESMDA Algorithm**

- 1. Define number of assimilation steps N_a & coefficients α_i
- 2. For $i = 1 ... N_a$
 - a) Simulate the ensemble


b) Perturb observations: $\mathbf{d}'_{obs} = \mathbf{d}_{obs} + \sqrt{\alpha_i} C_D^{1/2} \mathbf{z_d}$

c) Update model parameters: $m_f^j + C_{md_h}^f \left(C_{d_h d_h}^f - \alpha_j C_D \right)^{-1} \left(\mathbf{d}'_{obs,j} - \mathbf{d}_{\mathbf{h},j} \right)$

Localization

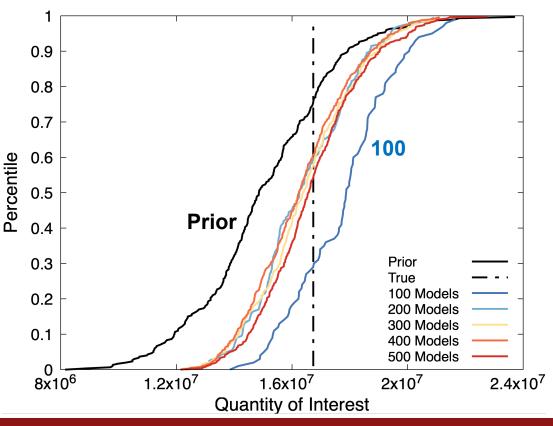
- Anomalous behavior occurs in some cases (small ensemble size, low errors)
- Can be prevented using localization (here with the Gaspari-Cohn function)
- Update only geomodel properties that are "close" to observations

Posterior Uncertainty Reduction

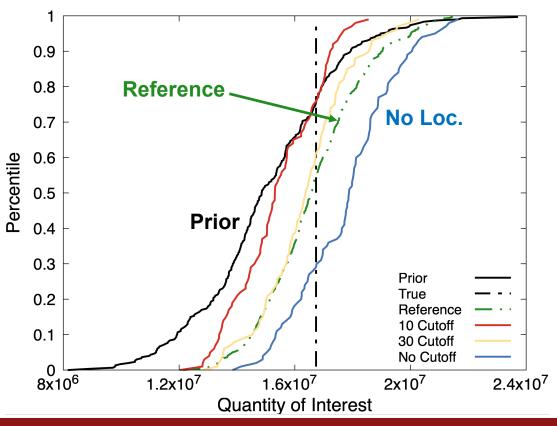
History Matching for Optimal Monitoring

Green curve:

Prior distribution (CDF)


Orange curve:

- History matched posterior
- Determined from optimization
- ESMDA used for history matching


Purple line:

- > True model value for J
- > Source of data for monitoring

Varying Ensemble Size

Varying Localization Cutoffs with 100 Models

Summary and Future Work

Summary

- Framework developed to optimally monitor and history match CCUS fields
- Provided recommendations for in-zone monitoring wells in ISC project
- Extended the framework with a deep learning architecture
- Enhanced ESMDA through parameter exploration (using DL model)

Future work

- Continue to investigate ESMDA with differing localization techniques
- Assess treatments to avoid ensemble collapse

Acknowledgements

- Yifu Han & Wenchao Teng
- Sally Benson & Sarah Saltzer
- Roland Okwen (University of Illinois at Urbana-Champaign)
- SDSS Center for Computation
- For funding:
 - > U.S. Department of Energy Project DE-FE0031892
 - Stanford Center for Carbon Storage (SCCS)
 - Stanford Smart Fields Consortium (SFC)