Deep Learning Framework for History Matching CO₂ Storage with 4D Seismic and Monitoring Well Data

Nanzhe Wang & Louis J. Durlofsky November 19, 2024

Stanford | Doerr | Stanford Center School of Sustainability | for Carbon Storage

General Motivation

- Monitoring wells in CO₂ storage operations provide data at particular areal locations that are highly resolved in the vertical direction
- 4D seismic data can provide global estimates of saturation at one or more time steps, though these data are of limited spatial resolution
- Deep learning surrogates have been shown to accelerate history matching computations
- Constructing two separate surrogates may be simpler than one all-purpose approach

Time-Lapse (4D) Seismic Data

- In practice, seismic interpretations obtained through geophysical inversion
- Time-lapse seismic data considered here are in the form of estimated CO₂ saturation fields (i.e., seismic interpretations)

3D U-Net Surrogate Model for Interpreted Seismic Data

1D U-Net Surrogate Model for Borehole Data

History Matching Framework

Problem Setup

- Injection rate: 0.5 Mt/year
- Time frame: 1 year
- 1 monitoring well, 100 m from injector

Top layer with well locations

3D geomodel parameters

nx, ny, nz	128, 128, 35
$\Delta x, \Delta y, \Delta z$	7 m, 7 m, 2 m
Horizontal correlation length: <i>I_h</i>	40 (0.31 <i>L</i> _x)
Vertical correlation length: I_v	3.5 (0.1 <i>L_z</i>)
Mean of log <i>k</i> : µ _{log k}	U [2 , 6]
Standard deviation of log k: $\sigma_{\log k}$	U [1.0 , 2.5]
Permeability anisotropy ratio: log ₁₀ (k _v /k _h)	U [-2, 0]
Parameter d (in $\phi = d \cdot \log k + e$)	U [0.02, 0.05]
Parameter e (in $\phi = d \cdot \log k + e$)	U [0.05, 0.12]

Seismic Surrogate Model Performance

Datasets: training – 3500 realizations; testing – 500 realizations

Monitoring Well Surrogate Performance

Datasets: training – 3500 realizations; testing – 500 realizations

Stanford Stanford Center for Carbon Storage Divers School of Sustainability Energy Science & Engineering

History Matching Setup

- Synthetic true model: randomly sampled metaparameters and random realization, simulated with GEOS
- Measurements:
 - Monitoring well data: saturation from 12 to 120 days (10 time steps, all 35 layers)
 - > Interpreted seismic data: interpreted saturation at 60 days and 120 days
 - Saturation monitoring error std dev: 5% of S_{mon-max}
 - Seismic error std dev: 10% of S_{seis-max}
- Method: Hierarchical Markov Chain Monte Carlo (MCMC) (from Yifu Han)

History Matching Setup

• Scenario 1: Just use borehole data at first 10 time steps

• Scenario 2: Borehole data at 10 time steps + seismic data at 2 time steps

History Matching Results

Representative Realizations with Seismic (y-z cross-sections)

Prior Realizations

Posterior Geomodel Realizations

- High-resolution geomodel realizations are obtained during history matching

Summary and Future Work

- Constructed a 3D U-Net surrogate model to predict seismic scale saturation
- Constructed a 1D U-Net surrogate model to predict high-resolution saturation monitoring well data
- Applied an MCMC-based history matching procedure using both surrogate models and both data types
- Better estimates of geological metaparameters and larger uncertainty reduction achieved using both seismic and monitoring well data
- Currently, applying history matching workflow to GeoCquest Field Validation (GFV) project, and considering data-weighting strategies

Acknowledgements

- Yifu Han and Oleg Volkov
- Stanford Center for Carbon Storage
- Smart Fields Consortium
- SDSS Center for Computation