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Monitoring Plan and Data Types
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Motivation for Surrogate Modeling for History Matching

= Goalis to develop an effective surrogate model to replace the (online)
simulation runs required during history matching

=  This will enable the use of more formal and comprehensive history
matching workflows than would otherwise be achievable

=  Surrogate model is data-driven — training is based on flow simulation
results from O(103) runs

=  Once trained, we can use surrogate model to assess impact of different
data types and amount of data, effect of data precision and model error, ...
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CO:2 Storage with Geomechanics
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Coupled Flow and Quasistatic Geomechanics
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= Simulations performed using GEOS
= Coupled flow-geomechanics simulation required to compute surface displacement

= Coupled simulations are much more expensive (15x) than flow-only runs; pressure
and saturation fields are well approximated using:

¢ — effective rock compressibility
1-—2v ( 1+v ) E — Young’s modulus

C=—34F b?———+3(b — ¢)(1 - b) b — Biot coefficient
v — Poisson’s ratio
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Deep-learning-based Surrogate Model

= Reservoir simulator (specified well locations/settings)

geomodel m dynamic states x
f(m) _
-
permeability, porosity saturation pressure surface displ.
= Surrogate to evaluate new geomodel: %= f(m;0) =~ f(m)
0: deep neural network parameters
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CO2 Storage Problem Setup

Storage aquifer
realizations

= 4 vertical injectors, each injects 1 Mt/year
= 30 years continuous injection

® Uncertain geological metaparameters (mean and std. dev. of
log-permeability, anisotropy ratio, Young’s moduli, etc.)

= Surrogate models: recurrent residual U-Net for pressure &
saturation; residual U-Net for surface displacement

" Training set: 4000 flow-only runs, 400 coupled runs

" Training time (A100 GPU): 16 hr each forp & S, 3 hr for
surface displacement
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CO2 Saturation Predictions at 30 Years (new test cases)

Realization 1 Realization 2 Realization 3

O-logk = 19, kv/kh= 0.04 Jlogk = 21, kv/kh= 0.02 Ulogk = 24, kv/kh= 0.03
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Surface Displacement Predictions at 30 Years
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History Matching Problem Setup

surface

= (COz2 saturation and pressure (measured in observation displacements

wells) and surface displacement (at 81 observation
locations) at 1, 2, 4, 6 & 9 years

= Total of 905 measurements (incl. 405 surf. displ.)

= Hierarchical Markov Chain Monte Carlo (MCMC)
requires ~95,000 function evaluations

= 1 coupled run of GEOS — 120 min on 32 cores;
1 surrogate run ~0.15 sec on 1 GPU (~4 hours total)
(MCMC WOUId take ~21 years W|th GEOS runS) Observations in aquifer (p, S) in

O1 - O5 and at the surface (d,)
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History Matching Results for Metaparameters
(using both in-situ and surface data)
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History Matching Results for Metaparameters
(using both in-situ and surface data)
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Prior and Posterior CO2 Saturation (30 years, K-means clustering)

- Uncertainty in CO2 plume shapes/sizes reduced
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Prior and Posterior Surface Disp
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Summary & Current Directions

= Developed deep-learning surrogate models to enable formal history
matching in carbon storage problems

= |mplemented surrogate modeling framework for coupled problems

= Demonstrated applicability of Markov Chain Monte Carlo history matching
with coupled flow and geomechanics, using in-situ pressure & saturation
data and surface displacement data

= Now applying the workflow to realistic geomodels with faults
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Summary & Current Directions

=  Now applying the workflow to realistic geomodels with faults

SEG Advanced Modeling Corporation
(SEAM) CO2 Project in Gulf of Mexico

Main reservoir

(Yoon et al., 2024)
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Thank you
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