Deep-learning surrogate models for history matching with in-situ and surface displacement data

Yifu Han, Francois P. Hamon, Louis J. Durlofsky November 19, 2024

Stanford Doerr Stanford Center School of Sustainability for Carbon Storage

Monitoring Plan and Data Types

- InSAR satellite for surface displacement
- In-situ pressure & saturation in wells

(Peng et al., 2024; Jung et al., 2013)

• Seismic interpreted saturation plumes

Courtesy: Philip Ringrose, Equinor

Motivation for Surrogate Modeling for History Matching

- Goal is to develop an effective surrogate model to replace the (online) simulation runs required during history matching
- This will enable the use of more formal and comprehensive history matching workflows than would otherwise be achievable
- Surrogate model is data-driven training is based on flow simulation results from O(10³) runs
- Once trained, we can use surrogate model to assess impact of different data types and amount of data, effect of data precision and model error, ...

CO2 Storage with Geomechanics

Overall domain \mathbf{m}_{f} contains

100×100×30 cells (300,000 cells)

Dimensions: 120 km imes 120 km imes 2.5 km

Storage aquifer m_s contains

80×80×20 cells (128,000 cells)

Dimensions: $12 \text{ km} \times 12 \text{ km} \times 100 \text{ m}$

Coupled Flow and Quasistatic Geomechanics

$$\nabla \cdot \left(\sum_{j} \rho_{j} x_{j}^{r} \mathbf{v}_{j}\right) + (q^{w})^{r} = \frac{\partial}{\partial t} \left(\sum_{j} \phi \rho_{j} S_{j} x_{j}^{r}\right)$$

Geomechanics

Flow

$$\nabla \cdot \boldsymbol{\sigma} + \rho_m g \nabla z = 0$$

- Simulations performed using GEOS
- Coupled flow-geomechanics simulation required to compute surface displacement
- Coupled simulations are much more expensive (15x) than flow-only runs; pressure and saturation fields are well approximated using:

$$c = \frac{1 - 2\nu}{\phi E} \cdot \left(b^2 \frac{1 + \nu}{1 - \nu} + 3(b - \phi)(1 - b) \right)$$

c – effective rock compressibility

- *E* Young's modulus
- *b* Biot coefficient
- ν Poisson's ratio

Deep-learning-based Surrogate Model

Reservoir simulator (specified well locations/settings)

CO₂ Storage Problem Setup

- 4 vertical injectors, each injects 1 Mt/year
- 30 years continuous injection
- Uncertain geological metaparameters (mean and std. dev. of log-permeability, anisotropy ratio, Young's moduli, etc.)
- Surrogate models: recurrent residual U-Net for pressure & saturation; residual U-Net for surface displacement
- Training set: 4000 flow-only runs, 400 coupled runs
- Training time (A100 GPU): 16 hr each for p & S, 3 hr for surface displacement

Storage aquifer realizations

Surface Displacement Predictions at 30 Years

Stanford Center for Carbon Storage Diver School of Sustainability Energy Science & Engineering

History Matching Problem Setup

- CO₂ saturation and pressure (measured in observation wells) and surface displacement (at 81 observation locations) at 1, 2, 4, 6 & 9 years
- Total of 905 measurements (incl. 405 surf. displ.)
- Hierarchical Markov Chain Monte Carlo (MCMC) requires ~95,000 function evaluations
- 1 coupled run of GEOS 120 min on 32 cores;
 1 surrogate run ~0.15 sec on 1 GPU (~4 hours total)
 (MCMC would take ~21 years with GEOS runs)

synthetic true model

Observations in aquifer (p, S) in **O1** – **O5** and at the surface (d_g)

History Matching Results for Metaparameters (using both in-situ and surface data)

mean log permeability

 $\log_{10}(k_v / k_h)$

History Matching Results for Metaparameters (using both in-situ and surface data)

mean porosity

Young's modulus in overburden

Stanford Center for Carbon Storage

Prior and Posterior CO₂ Saturation (30 years, K-means clustering)

Uncertainty in CO2 plume shapes/sizes reduced

Prior and Posterior Surface Displacement (30 years, K-means clustering)

Summary & Current Directions

- Developed deep-learning surrogate models to enable formal history matching in carbon storage problems
- Implemented surrogate modeling framework for coupled problems
- Demonstrated applicability of Markov Chain Monte Carlo history matching with coupled flow and geomechanics, using in-situ pressure & saturation data and surface displacement data
- Now applying the workflow to realistic geomodels with faults

Summary & Current Directions

• Now applying the workflow to realistic geomodels with faults

SEG Advanced Modeling Corporation (SEAM) CO₂ Project in Gulf of Mexico

(Yoon et al., 2024)

Acknowledgements

- Stanford Center for Carbon Storage
- Stanford Smart Fields Consortium
- SDSS Center for Computation

Thank you

Stanford Stanford Center for Carbon Storage Doerr School of Sustainability Energy Science & Engineering