Graph Network Surrogate Model for Optimizing the Placement of Horizontal Wells for CO₂ Storage

Haoyu Tang & Louis J. Durlofsky November 19, 2024

Stanford | Doerr | Stanford Center School of Sustainability | for Carbon Storage

General Motivation

- Well placement optimization is often performed using population-based stochastic search algorithms (e.g., particle swarm optimization, genetic algorithms, differential evolution)
- These optimizations are computationally expensive due to the large number (~1000s) of simulation runs required
- Reduced-order/surrogate models can greatly improve optimization efficiency, but challenges exist for cases with changing well locations
- ☐ Here we use graph neural networks, with separate networks to predict global pressure and saturation, and a third network for bottom-hole pressure

3D Graph & Computational Graph

Input Features for GNN

Edge features: transmissibility and geometric quantities

Node features

- Current pressure & saturation (P₀, S₀)
- Permeability (k)
- Depth (d)
- Porosity (ϕ)
- Well index of the cell (WI)
- Injection mass rate by perforation (q_{ini})
- One hot encoding for different types of nodes (e)
- Current time step length (δt)

3D Geological Carbon Sequestration

Model parameters

- Mt. Simon formation (Illinois Basin)
- 82 x 82 x 20 grid (134,480 cells, structured grid)
- 8.5 km x 8.5 km x 122 m
- 4 horizontal injectors
- Each well injects 0.5 Mt/year for 20 years
- Using Eclipse 300 CO2STORE for training runs
- Deep-learning setup
 - 200 simulations with random horizontal well configurations (4 wells in each case)
 - 100 for training, 50 for validation, 50 for testing
 - Median errors for test set: 4% for pressure and 6% for saturation

Horizontal Well (Random) Configurations

Test Case with P₅₀ Error Saturation at 20 years (10 Steps)

(wells projected onto top layer)

- 0.5

0.4

- 0.3

- 0.2

- 0.1

Test Case with P₅₀ Error Pressure at 20 years (10 Steps)

(wells projected onto top layer)

P₅₀ Error Test Case Bottom-hole Pressures

Footprint Ratio Calculation

 $R^i_{fp} = V^i_{fp}/V_{tot}$

 V_{fp}^i : CO₂ footprint (at 20 years) for test case *i* V_{tot} : total bulk volume of storage aquifer

Optimization Setup

□ Simulation parameters

- Optimize locations of four horizontal injectors to minimize the CO₂ footprint ratio
- Well geometric constraints (in table)
- Maximum BHP (276 bar) and CO₂ retention constraints
- Run for 20 years (ECLIPSE CO2STORE)
- Optimization setup
 - Optimization method: differential evolution
 - Population size: 24
 - Terminate when obj. fcn. change is less than 1% over 20 iterations, or after 50 iterations

No.	Constraint type	Number
1.	Maximum well length	1200 m
2.	Minimum well length	$480 \mathrm{m}$
3.	Minimum interwell distance	$720 \mathrm{m}$
4.	Minimum well-to-boundary distance	$424 \mathrm{m}$
5.	Maximum heel-to-toe difference in depth	$0 \mathrm{m}$

Progress of Optimizations

- GNSM speedup ~120x
- 6 GNSM runs versus 3 simbased opt runs
- Best GNSM run outperforms
 best simulation-based run

Optimized CO₂ Footprint

Stanford Stanford Center for Carbon Storage Doerr School of Sustainability Energy Science & Engineering

Summary & Current Work

Developed a graph network surrogate model for 3D CCS problem with changing horizontal well locations

- Achieved reasonable accuracy for global pressure and saturation states and for well bottom-hole pressures
- Applied the GNSM for well placement optimization with constraints; achieved ~120x speedup in DE optimization runs
- Currently investigating extrapolation to new geomodels, considering other network architectures like graph transformers and graph U-Net

Acknowledgements

- BHP (through GeoCquest II), Stanford Smart Fields Consortium, Stanford Center for Carbon Storage
- Oleg Volkov, Su Jiang, Dylan Crain, Amy Zou
- □ SDSS Center for Computation

Backup Slides

GNN Model Architecture

• X : input to the encoder (multilayer perceptron, MLP)

Gⁿ : current state graph (including node and edge features)

- G⁰: current encoded graph and input to the processor
 - **Gⁱ** : output of message passing graph network *i* (MPGN)
- Y: output of the decoder (MLP)

Gⁿ⁺¹ : predicted future state graph (pressure/saturation at next time step)

New Realizations – Extrapolation Test

- □ Different permeability & porosity fields
- □ Deep-learning setup
 - No retraining
 - 100 test case configurations each

Errors for State Variables New Realizations (1–3)

