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Predicting CO2 plume migration in faulted geological reservoirs
with DL-based models

« Faults could potentially lead to hazards, such as induced seismicity, or CO2 leakage.

» Fast deep-learning-based (DL) surrogate models are needed to quantify the uncertainty in the
geological model.

-
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Predicting CO2 plume migration in faulted geological reservoirs
with DL-based models

« Faults could potentially lead to hazards, such as induced seismicity, or CO2 leakage.

» Fast deep-learning-based (DL) surrogate models are needed to quantify the uncertainty in the
geological model.

* Unstructured and highly refined mesh are used to conform to complex fault lines.

(A. Mazuyer, Sismage-CIG,B. Wendebourg, and F. Lepage)
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Current limitations

* Most of current DL-based models are limited to cartesian meshes with simple geometries.

CNN-Based models

CNN on an image:

Fixed stencils

(Tang, Ju, and Durlofsky. 2022)

FNO models

Global grid (x-y view)

Local refinements (x-y view)
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(Wen et al. 2023)
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Fixed and structured grid
input.

Difficult to handle realistic
reservoir models




Our solutions: graph-based surrogate models

« All mesh-based simulations can be represented as graph data
» Graph representation allows us to handle complex geological features

« Our model can essentially operate on arbitrary subsurface simulation data

Node features

Graph construction H Graph Neural w
Edge features Networks

Input Graph data Output Graph data

sed simulations
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Method: Input and output graph representation

Faulted regio

Internal cells
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Method: Input and output graph representation
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Method: Input and output graph representation
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Method: Graph-based surrogate model architecture

State t State t+1

Faulted region

Learned simulator

Sg(t+1) = Asg+ s4(t)

(Ju et al. 2024)
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Method: Graph-based surrogate model architecture

State t

Faulted region

—_——

Step 1. Graph construction Step 2. Edge-based Flux

computation
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Learned simulator

———

State t+1

Sg(t+1) = Asg+ s4(t)

Step 3. Node Update (Ju et al. 2024)
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Method: Graph-based surrogate model architecture
One MGN-LSTM Update

e;; = fM(v;, v, e;)

Step 2: Compute all “Flux” terms
from node values

e
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Method: Training/testing dataset description and error metric

Mesh #1 Mesh #2 «  We generate 500 realizations of 1 km x 1 km x 1 m
Well loc.(479, 555)

e synthetic geological models, using a 9:1 training/testing split
' ratio.

o>

* The mean and standard deviation of log-permeability are
3.912 In(mD) and 0.5 In(mD), respectively.

* The synthetic models differ in their permeability, mesh
configuration, and well location.

Training samples

» To quantify the prediction accuracy for gas saturation,
we use the plume saturation error, §°

1 n
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Predicting complex spatiotemporal dynamics in faulted storage
reservoir

Unseen meshes (Mesh 472) and rolling out for 500 days (11 steps)

Ground truth Surrogate Gas plume error
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MGN-LSTM can extrapolate beyond the training period

Simulation
Sg
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MGN-LSTM can generalize to new meshes, well locations, and

ermeabilities

Unseen Meshes

Mesh #484 Mesh #494 Mesh #469 Mesh #490 Mesh #497
Well loc.(488, 580)

™ Well

loc.(525, 453)  Well loc.(557, 497) Il loc.(446, 572)

o3

Realization

Simulation
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Five representative cases show
an excellent agreement with the
HF simulations after 950 days.




MGN-LSTM is an accurate and fast surrogate model

Rollout

(a) 0 Gas saturation
10 /0 v Mesh # 468
v Mesh # 484
114 ¢ e + ¢ v Mesh # 494
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191 ~7 v wvy 4‘ ' v .
0.010 0.015 0.020 0.025 0.030
Gas plume error
GEOS

MGN-LSTM avg.
inference time (s)?

run time (s)P

11-step rollout (550 days)

0.18

2212

19-step rollout (950 days)

0.31

49.02

2 0On an NVIDIA Tesla A100 GPU, single-batch inference run
b On an Intel Xeon E5-2695 v4, single-core serial run
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The median plume error for the
extrapolated ranges (950 days) in
the testing set is only 1.2%.

MGN-LSTM demonstrates a nearly
160-fold speedup compared to
high-fidelity simulator.
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Conclusions

* Developed a graph-based neural surrogate model (MGN-LSTM) that
can operate on unstructured meshes and naturally handle geological
fault structures.

«  MGN-LSTM exhibits excellent generalizability to mesh configurations,
well locations, and permeability fields.

* MGN-LSTM is an accurate and fast surrogate model.

« A promising tool to accelerate the process of uncertainty quantification @ Gas saturstion i
of CCS storage formations with faults. Lo " s
119 '—"'V _| . v- MeSh”4.g7
0.010 0.015 Gas plﬂomzeo error 0.025 0.030
porLSTS, | omime o
11-step rollout (550 days) 0.18 2212
19-step rollout (950 days) 0.31 49.02

20n an NVIDIA Tesla A100 GPU, single-batch inference run
b On an Intel Xeon E5-2695 v4, single-core serial run

e
Stanford Stanford Center for Carbon Storage 17

Doerr School of Sustainability Eﬂefgy Science & Eﬂg/ﬂeef/l’)g



Thank you!
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Method: Graph-based surrogate model architecture

Input state Next state Rolling out t times

Faulted region

MGN-LSTM

———————————————————————————

| |
—> Encoder . BEFSIVISIEM . Decoder
Processor '

Recurrent memories

n+1 n+t
Sg Sg

The proposed MGN-LSTM model is designed to learn the spatiotemporal evolution of the selected dynamic
variable (pressure or CO2 saturation) of the two-phase flow problem:

Y0 =Y°,
Y"1 = fuen-rstme (G YSMF), n € {1,..,n7},

(Ju et al. 2024)

e
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Performance comparisons against grid-based models

* Interpolated node feature
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MGN-LSTM 0.0081 0.01188 1,381,501
Node-based MGN-LSTM 0.0114 0.0176 1,581,569
U-FNO 0.0450 0.0657 1,941,313
CNN 0.0504 0.0786 1,675,873

(Wen et al. 2023)
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MGN-LSTM outperforms all other
models in terms of plume saturation
errors over both 11-step (550 days)
and 19- step (950 days) rollouts by a

large margin.
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Current limitations

* Most of current DL-based models are limited to cartesian meshes with simple geometries.

Fourier neural operator-based models

CcO2

Simulation

Z 1700

Predictions

Z 1700

Z 700 Qg il

Comparison

(Wen et al. 2023)
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Method: Graph-based surrogate model architecture

Input state Next state Rolling out t times

Faulted region

MGN-LSTM

———————————————————————————

| |
—> Encoder . BEFSIVISIEM . Decoder
Processor '

Recurrent memories

n+1 n+t
Sg Sg

The proposed MGN-LSTM model is designed to learn the spatiotemporal evolution of the selected dynamic
variable (pressure or CO2 saturation) of the two-phase flow problem:

Y0 =Y°,
Y"1 = fuen-rstme (G YSMF), n € {1,..,n7},

(Ju et al. 2024)
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Method: Graph-based surrogate model architecture

Input state Next state Rolling out t times

I |
—> Encoder _ RERSIVRSMM . Decoder
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Stanford Stanford Center for Carbon Storage 3
Doerr School of Sustainability Eﬂefgy Science & Eﬂg/ﬂee/’/l’)g



Method: Evaluation metrics

» To quantify the prediction accuracy for gas saturation, we use the plume saturation error, §°9

1
- Zi,nlin
I'=1if (s§; >0.01)u(

s nr nec ynj.n _ an

85| > 0.01),

* We use the relative error, 679, defined below to evaluate the prediction accuracy for pore pressure

n ATl
anl i=1

Pg, init
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Method: Graph construction

PEBI: Unstructured grids (a.k.a. Voronoi mesh) constructed by connecting the
perpendicular bisectors of the edges of the Delaunay triangulation (Heinrich
1987)

Faulted region
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Method: Graph construction

Faulted region

~/T\ There are no connection between cells along
g AL fault lines
S
AT
e

Node represents cell, locating at the center of

) each cell. The connection between neighboring
A TG cells forms an edge.

Cell-based mesh
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Predicting CO2 plume migration in faulted geological reservoirs
with DL-based models

« Faults could potentially lead to hazards, such as induced seismicity, or CO2 leakage.

» Fast deep-learning-based (DL) surrogate models are needed to quantify the uncertainty in the
geological model.

9
V- (Zjpixvi) + a7 = o (Z;00;5;%])
ey, (S))
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I'=1if (sj; > 0.01) u (|37 >0.01),

(https://www.geos.dev/)
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Method: Dataset description

« We generate a total of 500 realizations of the synthetic
geological models of size 1 km x 1 km x 1 m. Each
realization contains 19 timesteps.

* The mean and standard deviation of log-permeability are
3.912 In(mD) and 0.5 In(mD), respectively, which results
in an average permeability of 50 mD in the reservoir.

« The synthetic models differ in their geological

parameters (permeability), mesh configuration, and
well location.

Stanford Center for Carbon Storage
Energy Science & Engineering

Stanford

Doerr School of Sustainability




Results and analysis: ablation tests

Perform better than interpolation based models

11-step plume saturation error
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