Learning CO2 plume migration in faulted reservoirs with Graph Neural Networks

Xin Ju^a, Francois P. Hamon^b, Gege Wen^a, Rayan Kanfar^a, Mauricio Araya-Polo^b, Hamdi Tchelepi^a

^aDepartment of Energy Science and Engineering, Stanford University ^bTotalEnergies EP Research and Technology USA

Stanford | Doerr | Stanford Center School of Sustainability | for Carbon Storage

Outline

- Background & Motivations
- Methods
- Results & Analysis
- Conclusions

Predicting CO2 plume migration in faulted geological reservoirs with DL-based models

- **Faults** could potentially lead to hazards, such as induced seismicity, or CO2 leakage.
- Fast deep-learning-based (DL) surrogate models are needed to quantify the uncertainty in the geological model.

Predicting CO2 plume migration in faulted geological reservoirs with DL-based models

- **Faults** could potentially lead to hazards, such as induced seismicity, or CO2 leakage.
- Fast deep-learning-based (DL) surrogate models are needed to quantify the uncertainty in the geological model.
- **Unstructured** and **highly refined** mesh are used to conform to complex fault lines.

(A. Mazuyer, Sismage-CIG, B. Wendebourg, and F. Lepage)

Current limitations

- Most of current DL-based models are limited to cartesian meshes with simple geometries.
 - **CNN-Based models**

FNO models

Structured grid input

- Fixed and structured grid input.
- Difficult to handle realistic reservoir models

Fixed stencils

(Tang, Ju, and Durlofsky. 2022)

(Wen et al. 2023)

Our solutions: graph-based surrogate models

- All mesh-based simulations can be represented as graph data
- Graph representation allows us to handle complex geological features
- Our model can essentially operate on arbitrary subsurface simulation data

Method: Input and output graph representation

Method: Input and output graph representation

7

Method: Input and output graph representation

Method: Graph-based surrogate model architecture

(Ju et al. 2024)

Method: Graph-based surrogate model architecture

Method: Graph-based surrogate model architecture One MGN-LSTM Update

Step 2: Compute all "Flux" terms from node values

Method: Training/testing dataset description and error metric

Training samples

- We generate 500 realizations of 1 km x 1 km x 1 m synthetic geological models, using a **9:1** training/testing split ratio.
- The mean and standard deviation of log-permeability are 3.912 ln(mD) and 0.5 ln(mD), respectively.
- The synthetic models differ in their **permeability**, **mesh configuration**, and **well location**.
- To quantify the prediction accuracy for gas saturation, we use the **plume saturation error**, δ^{s_g}

$$\delta^{s_g} = \frac{1}{\sum_{i,n} I_i^n} \sum_{n=1}^{n_T} \sum_{i=1}^{n_C} I_i^n |s_{g,i}^n - \hat{s}_{g,i}^n|,$$

$$I_i^n = 1 \text{ if } (s_{g,i}^n > 0.01) \cup (|\hat{s}_{g,i}^n| > 0.01),$$

Predicting complex spatiotemporal dynamics in faulted storage reservoir

Surrogate

Unseen meshes (Mesh 472) and rolling out for 500 days (11 steps)

Ground truth

13

Stanford Stanford Center for Carbon Storage Doerr School of Sustainability Energy Science & Engineering

MGN-LSTM can extrapolate beyond the training period

Stanford Stanford Center for Carbon Storage Doerr School of Sustainability Energy Science & Engineering

MGN-LSTM can generalize to new meshes, well locations, and permeabilities

• Five representative cases show an excellent agreement with the HF simulations after 950 days.

MGN-LSTM is an accurate and fast surrogate model

• The median plume error for the extrapolated ranges (950 days) in the testing set is only **1.2%**.

 MGN-LSTM demonstrates a nearly 160-fold speedup compared to high-fidelity simulator.

^a On an NVIDIA Tesla A100 GPU, single-batch inference run

^b On an Intel Xeon E5-2695 v4, single-core serial run

Conclusions

- Developed a graph-based neural surrogate model (MGN-LSTM) that can operate on unstructured meshes and naturally handle geological fault structures.
- MGN-LSTM exhibits excellent generalizability to mesh configurations, well locations, and permeability fields.
- MGN-LSTM is an accurate and fast surrogate model.
- A promising tool to accelerate the process of uncertainty quantification of CCS storage formations with faults.

^a On an NVIDIA Tesla A100 GPU, single-batch inference run ^b On an Intel Xeon E5-2695 v4, single-core serial run

Thank you!

Stanford Stanford Center for Carbon Storage *Energy Science & Engineering*

Method: Graph-based surrogate model architecture

The proposed MGN-LSTM model is designed to learn the spatiotemporal evolution of the selected dynamic variable (pressure or CO2 saturation) of the two-phase flow problem:

$$\hat{\mathbf{Y}}^0 = \mathbf{Y}^0,$$
$$\hat{\mathbf{Y}}^{n+1} = f_{\text{MGN-LSTM},\theta} (\mathcal{G}, \hat{\mathbf{Y}}^n, \mathbf{M}, \mathbf{F}), \ n \in \{1, \dots, n_T\},$$

(Ju et al. 2024)

Performance comparisons against grid-based models

1000

• Interpolated node feature

Model	11-step	19-step	# parameters
MGN-LSTM	0.0081	0.01188	1,381,501
Node-based MGN-LSTM	0.0114	0.0176	1,581,569
U-FNO	0.0450	0.0657	1,941,313
CNN	0.0504	0.0786	1,675,873

(Wen et al. 2023)

 MGN-LSTM outperforms all other models in terms of plume saturation errors over both 11-step (550 days) and 19- step (950 days) rollouts by a large margin.

Current limitations

• Most of current DL-based models are limited to cartesian meshes with simple geometries.

Fourier neural operator-based models

The Fast Fourier Transform
block used in FNO assumes that
the underlying simulation data is
structured

(Wen et al. 2023)

Method: Graph-based surrogate model architecture

The proposed MGN-LSTM model is designed to learn the spatiotemporal evolution of the selected dynamic variable (pressure or CO2 saturation) of the two-phase flow problem:

$$\hat{\mathbf{Y}}^0 = \mathbf{Y}^0,$$
$$\hat{\mathbf{Y}}^{n+1} = f_{\text{MGN-LSTM},\theta} (\mathcal{G}, \hat{\mathbf{Y}}^n, \mathbf{M}, \mathbf{F}), \ n \in \{1, \dots, n_T\},$$

(Ju et al. 2024)

Method: Graph-based surrogate model architecture

Method: Evaluation metrics

• To quantify the prediction accuracy for gas saturation, we use the plume saturation error, δ^{sg}

$$\delta^{s_g} = \frac{1}{\sum_{i,n} I_i^n} \sum_{n=1}^{n_T} \sum_{i=1}^{n_C} I_i^n |s_{g,i}^n - \hat{s}_{g,i}^n|,$$

$$I_i^n = 1 \text{ if } (s_{g,i}^n > 0.01) \cup (|\hat{s}_{g,i}^n| > 0.01),$$

• We use the relative error, δ^{p_g} , defined below to evaluate the prediction accuracy for pore pressure

$$\delta^{p_g} = \frac{1}{n_C n_T} \sum_{n=1}^{n_T} \sum_{i=1}^{n_C} \frac{|p_{g,i}^n - \hat{p}_{g,i}^n|}{p_{g,init}}$$

Method: Graph construction

PEBI: Unstructured grids (a.k.a. Voronoi mesh) constructed by connecting the perpendicular bisectors of the edges of the Delaunay triangulation (Heinrich 1987)

Method: Graph construction

There are **no connection** between cells along fault lines

Node represents **cell**, locating at the center of each cell. The **connection** between neighboring cells forms an **edge**.

Predicting CO2 plume migration in faulted geological reservoirs with DL-based models

- **Faults** could potentially lead to hazards, such as induced seismicity, or CO2 leakage.
- Fast deep-learning-based (DL) surrogate models are needed to quantify the uncertainty in the geological model.

$$\nabla \cdot \left(\sum_{j} \rho_{j} x_{j}^{r} \mathbf{v}_{j}\right) + q^{r} = \frac{\partial}{\partial t} \left(\sum_{j} \phi \rho_{j} S_{j} x_{j}^{r}\right)$$
$$\mathbf{v}_{j} = -\frac{\mathbf{k} k_{rj}(S_{j})}{\mu_{j}} \left(\nabla p_{j} - \rho_{j} g \nabla z\right)$$

(https://www.geos.dev/)

Stanford Stanford Center for Carbon Storage Devery School of Sustainability Energy Science & Engineering

Method: Dataset description

- We generate a total of 500 realizations of the synthetic geological models of size 1 km x 1 km x 1 m. Each realization contains 19 timesteps.
- The mean and standard deviation of log-permeability are 3.912 ln(mD) and 0.5 ln(mD), respectively, which results in an average permeability of 50 mD in the reservoir.
- The synthetic models differ in their **geological parameters (permeability)**, **mesh configuration**, and **well location.**

Results and analysis: ablation tests

Perform better than interpolation based models

Casa	Node	Edge	Node
Case	input	input	output
Baseline	$s_{g,i}^n, V_i, k_i, \boldsymbol{n}_i, \boldsymbol{x}_i$	$egin{array}{c c} oldsymbol{x}_j - oldsymbol{x}_i, \ oldsymbol{x}_j - oldsymbol{x}_i \ oldsymbol{x}_j \ oldsymbol{x}_j - oldsymbol{x}_i \ oldsymbol{x}_j \ oldsymbo$	$s_{g,i}^{n+1}$
Static transmissibility	$s_{g,i}^n, V_i, k_i, \boldsymbol{n}_i, \boldsymbol{x}_i$	$\begin{vmatrix} \mathbf{x}_i - \mathbf{x}_j, \\ \mathbf{x}_i - \mathbf{x}_j , \\ T_{i,j} \end{vmatrix}$	$s_{g,i}^{n+1}$
Relative permeability	$s_{g,i}^{n}, V_{i}, k_{i}, \boldsymbol{n}_{i}, \boldsymbol{x}_{i}, k_{r,i}(s_{g,i}^{n-1})$	$egin{array}{c c} oldsymbol{x}_i - oldsymbol{x}_j, \ oldsymbol{x}_i - oldsymbol{x}_j \end{bmatrix}$	$s_{g,i}^{n+1}$
Static transmissibility Relative permeability	$s_{g,i}^{n}, V_{i}, k_{i}, \boldsymbol{n}_{i}, \boldsymbol{x}_{i}, k_{r,i}(s_{g,i}^{n-1})$	$\begin{vmatrix} \mathbf{x}_i - \mathbf{x}_j, \\ \mathbf{x}_i - \mathbf{x}_j , \\ T_{i,j} \end{vmatrix}$	$s_{g,i}^{n+1}$

Stanford Doerr School of Sustainability Energy Science & Engineering