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Predicting CO2 plume migration in faulted geological reservoirs 
with DL-based models
• Faults could potentially lead to hazards, such as induced seismicity, or CO2 leakage.

• Fast deep-learning-based (DL) surrogate models are needed to quantify the uncertainty in the 
geological model.
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Predicting CO2 plume migration in faulted geological reservoirs 
with DL-based models
• Faults could potentially lead to hazards, such as induced seismicity, or CO2 leakage.

• Fast deep-learning-based (DL) surrogate models are needed to quantify the uncertainty in the 
geological model.

• Unstructured and highly refined mesh are used to conform to complex fault lines.

(A. Mazuyer, Sismage-CIG,B. Wendebourg, and F. Lepage)
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Current limitations
• Most of current DL-based models are limited to cartesian meshes with simple geometries.

CNN-Based models

(Tang, Ju, and Durlofsky. 2022)

• Fixed and structured grid 
input. 

• Difficult to handle realistic 
reservoir models

Fixed stencils

(Wen et al. 2023)

FNO  models

Structured grid input
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Our solutions: graph-based surrogate models
• All mesh-based simulations can be represented as graph data

• Our model can essentially operate on arbitrary subsurface simulation data 

• Graph representation allows us to handle complex geological features

Mesh-based simulations

Graph construction Graph Neural 
Networks

Output Graph dataInput Graph data

Node features

Edge features



Method: Input and output graph representation
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Method: Input and output graph representation
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Method: Input and output graph representation
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𝑠𝑠𝑔𝑔(𝑡𝑡) 𝑠𝑠𝑔𝑔(𝑡𝑡 + 1)
MGN-LSTM

𝑠𝑠𝑔𝑔(𝑡𝑡 + 1) = Δ𝑠𝑠𝑔𝑔+ 𝑠𝑠𝑔𝑔(𝑡𝑡)

Method: Graph-based surrogate model architecture
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(Ju et al. 2024)

Learned simulator



𝑠𝑠𝑔𝑔(𝑡𝑡) 𝑠𝑠𝑔𝑔(𝑡𝑡 + 1)
MGN-LSTM

Δ𝑠𝑠𝑔𝑔

𝑠𝑠𝑔𝑔(𝑡𝑡 + 1) = Δ𝑠𝑠𝑔𝑔+ 𝑠𝑠𝑔𝑔(𝑡𝑡)

Step 1. Graph construction Step 2. Edge-based Flux
computation

Step 3. Node Update

Method: Graph-based surrogate model architecture
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(Ju et al. 2024)

Learned simulator
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Method: Graph-based surrogate model architecture
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Step 2: Compute all “Flux” terms
from node values

𝐞𝐞𝑖𝑖𝑖𝑖′ = 𝑓𝑓𝑀𝑀(𝐯𝐯𝑖𝑖 , 𝐯𝐯𝑗𝑗 ,𝐞𝐞𝑖𝑖𝑖𝑖)

Step 3: Aggregate edge-based fluxes to update all
node values.
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𝐯𝐯𝑖𝑖′ = 𝑓𝑓𝑉𝑉(𝐯𝐯𝑖𝑖 , �
𝑗𝑗∈𝒩𝒩(𝑖𝑖)

𝐞𝐞𝑖𝑖𝑖𝑖′)

One MGN-LSTM Update



Method: Training/testing dataset description and error metric
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• We generate 500 realizations of 1 km x 1 km x 1 m 
synthetic geological models, using a 9:1 training/testing split 
ratio.

• The mean and standard deviation of log-permeability are 
3.912 ln(mD) and 0.5 ln(mD), respectively.

• The synthetic models differ in their permeability, mesh 
configuration, and well location.

Training samples
• To quantify the prediction accuracy for gas saturation, 

we use the plume saturation error, 𝛿𝛿𝑠𝑠𝑔𝑔

𝛿𝛿𝑠𝑠𝑔𝑔 =
1

∑𝑖𝑖,𝑛𝑛𝐼𝐼𝑖𝑖𝑛𝑛
∑𝑛𝑛=1
𝑛𝑛𝑇𝑇 ∑𝑖𝑖=1

𝑛𝑛𝐶𝐶 𝐼𝐼𝑖𝑖𝑛𝑛 𝑠𝑠𝑔𝑔,𝑖𝑖
𝑛𝑛 − 𝑠̂𝑠𝑔𝑔,𝑖𝑖

𝑛𝑛 ,

𝐼𝐼𝑖𝑖𝑛𝑛 = 1 if 𝑠𝑠𝑔𝑔,𝑖𝑖
𝑛𝑛 > 0.01 ∪ 𝑠̂𝑠𝑔𝑔,𝑖𝑖

𝑛𝑛 > 0.01 ,



Ground truth Surrogate Gas plume error

Unseen meshes (Mesh 472) and rolling out for 500 days (11 steps) 
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Predicting complex spatiotemporal dynamics in faulted storage 
reservoir
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MGN-LSTM can extrapolate beyond the training period 
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MGN-LSTM can generalize to new meshes, well locations, and 
permeabilities

• Five representative cases show
an excellent agreement with the
HF simulations after 950 days.



MGN-LSTM is an accurate and fast surrogate model
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• The median plume error for the 
extrapolated ranges (950 days) in 
the testing set is only 1.2%.

MGN-LSTM avg.
inference time (s)a

GEOS
run time (s)b

11-step rollout (550 days) 0.18 22.12

19-step rollout (950 days) 0.31 49.02

Gas plume error

1.0 %

1.2 %

a On an NVIDIA Tesla A100 GPU, single-batch inference run
b On an Intel Xeon E5-2695 v4, single-core serial run

• MGN-LSTM demonstrates a nearly 
160-fold speedup compared to 
high-fidelity simulator.



Conclusions
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• Developed a graph-based neural surrogate model (MGN-LSTM) that 
can operate on unstructured meshes and naturally handle geological 
fault structures. 

• MGN-LSTM exhibits excellent generalizability to mesh configurations, 
well locations, and permeability fields.

• MGN-LSTM is an accurate and fast surrogate model.

• A promising tool to accelerate the process of uncertainty quantification 
of CCS storage formations with faults.



Thank you!



Method: Graph-based surrogate model architecture
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𝐘̂𝐘0 = 𝐘𝐘0,
𝐘̂𝐘𝑛𝑛+1 = 𝑓𝑓MGN−LSTM,𝜃𝜃 𝒢𝒢, 𝐘̂𝐘𝑛𝑛,𝐌𝐌,𝐅𝐅 , 𝑛𝑛 ∈ 1, … ,𝑛𝑛𝑇𝑇 ,

The proposed MGN-LSTM model is designed to learn the spatiotemporal evolution of the selected dynamic 
variable (pressure or CO2 saturation) of the two-phase flow problem:

(Ju et al. 2024)
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Performance comparisons against grid-based models
• Interpolated node feature 

• MGN-LSTM outperforms all other 
models in terms of plume saturation 
errors over both 11-step (550 days) 
and 19- step (950 days) rollouts by a 
large margin.

(Wen et al. 2023)
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Current limitations
• Most of current DL-based models are limited to cartesian meshes with simple geometries.

Fourier neural operator-based models

(Wen et al. 2023)

CO2 Pressure
Simulation

Predictions

Comparison

• The Fast Fourier Transform 
block used in FNO assumes that 
the underlying simulation data is 
structured



Method: Graph-based surrogate model architecture
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𝐘̂𝐘0 = 𝐘𝐘0,
𝐘̂𝐘𝑛𝑛+1 = 𝑓𝑓MGN−LSTM,𝜃𝜃 𝒢𝒢, 𝐘̂𝐘𝑛𝑛,𝐌𝐌,𝐅𝐅 , 𝑛𝑛 ∈ 1, … ,𝑛𝑛𝑇𝑇 ,

The proposed MGN-LSTM model is designed to learn the spatiotemporal evolution of the selected dynamic 
variable (pressure or CO2 saturation) of the two-phase flow problem:

(Ju et al. 2024)



Method: Graph-based surrogate model architecture

23



Method: Evaluation metrics
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𝛿𝛿𝑠𝑠𝑔𝑔 =
1

∑𝑖𝑖,𝑛𝑛𝐼𝐼𝑖𝑖𝑛𝑛
∑𝑛𝑛=1
𝑛𝑛𝑇𝑇 ∑𝑖𝑖=1

𝑛𝑛𝐶𝐶 𝐼𝐼𝑖𝑖𝑛𝑛 𝑠𝑠𝑔𝑔,𝑖𝑖
𝑛𝑛 − 𝑠̂𝑠𝑔𝑔,𝑖𝑖

𝑛𝑛 ,

𝐼𝐼𝑖𝑖𝑛𝑛 = 1 if 𝑠𝑠𝑔𝑔,𝑖𝑖
𝑛𝑛 > 0.01 ∪ 𝑠̂𝑠𝑔𝑔,𝑖𝑖

𝑛𝑛 > 0.01 ,

• To quantify the prediction accuracy for gas saturation, we use the plume saturation error, 𝛿𝛿𝑠𝑠𝑔𝑔

• We use the relative error, 𝛿𝛿𝑝𝑝𝑔𝑔, defined below to evaluate the prediction accuracy for pore pressure

𝛿𝛿𝑝𝑝𝑔𝑔 =
1

𝑛𝑛𝐶𝐶𝑛𝑛𝑇𝑇
∑𝑛𝑛=1
𝑛𝑛𝑇𝑇 ∑𝑖𝑖=1

𝑛𝑛𝐶𝐶 𝑝𝑝𝑔𝑔,𝑖𝑖
𝑛𝑛 − 𝑝̂𝑝𝑔𝑔,𝑖𝑖

𝑛𝑛

𝑝𝑝𝑔𝑔, init



PEBI: Unstructured grids (a.k.a. Voronoi mesh) constructed by connecting the 
perpendicular bisectors of the edges of the Delaunay triangulation (Heinrich 
1987)
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Method: Graph construction
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There are no connection between cells along 
fault lines

Node represents cell, locating at the center of 
each cell. The connection between neighboring 
cells forms an edge. 

Method: Graph construction
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Predicting CO2 plume migration in faulted geological reservoirs 
with DL-based models
• Faults could potentially lead to hazards, such as induced seismicity, or CO2 leakage.

• Fast deep-learning-based (DL) surrogate models are needed to quantify the uncertainty in the 
geological model.

(https://www.geos.dev/)

∇ ⋅ ∑𝑗𝑗𝜌𝜌𝑗𝑗𝑥𝑥𝑗𝑗𝑟𝑟𝐯𝐯𝑗𝑗 + 𝑞𝑞𝑟𝑟 =
𝜕𝜕
𝜕𝜕𝑡𝑡 ∑𝑗𝑗𝜙𝜙𝜌𝜌𝑗𝑗𝑆𝑆𝑗𝑗𝑥𝑥𝑗𝑗𝑟𝑟

𝐯𝐯𝑗𝑗 = −
𝐤𝐤𝑘𝑘𝑟𝑟𝑟𝑟 𝑆𝑆𝑗𝑗

𝜇𝜇𝑗𝑗
∇𝑝𝑝𝑗𝑗 − 𝜌𝜌𝑗𝑗𝑔𝑔∇𝑧𝑧

𝛿𝛿𝑠𝑠𝑔𝑔 =
1

∑𝑖𝑖,𝑛𝑛𝐼𝐼𝑖𝑖𝑛𝑛
∑𝑛𝑛=1
𝑛𝑛𝑇𝑇 ∑𝑖𝑖=1

𝑛𝑛𝐶𝐶 𝐼𝐼𝑖𝑖𝑛𝑛 𝑠𝑠𝑔𝑔,𝑖𝑖
𝑛𝑛 − 𝑠̂𝑠𝑔𝑔,𝑖𝑖

𝑛𝑛 ,

𝐼𝐼𝑖𝑖𝑛𝑛 = 1 if 𝑠𝑠𝑔𝑔,𝑖𝑖
𝑛𝑛 > 0.01 ∪ 𝑠̂𝑠𝑔𝑔,𝑖𝑖

𝑛𝑛 > 0.01 ,



Method: Dataset description
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• We generate a total of 500 realizations of the synthetic 
geological models of size 1 km x 1 km x 1 m. Each 
realization contains 19 timesteps. 

• The mean and standard deviation of log-permeability are 
3.912 ln(mD) and 0.5 ln(mD), respectively, which results 
in an average permeability of 50 mD in the reservoir. 

• The synthetic models differ in their geological 
parameters (permeability), mesh configuration, and 
well location.
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Results and analysis: ablation tests
Perform better than interpolation based models
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