Probabilistic Plume Migration
Prediction using ML at the GFV Site

Catherine Callas
Gege Wen, Isaac Ju, Sally M. Benson
Nov 19, 2024

Stanford | Doerr Stanford Center
School of Sustainability |[for Carbon Storage



Motivation

The GFV site is characterized by small-scale heterogeneity, which
requires high-resolution numerical simulation with fine temporal
resolution

Combined with the highly nonlinear governing PDEs, multi-physics
problems, multiscale heterogeneity and inherent uncertainty in the
subsurface leads to computationally expensive numerical simulations

We want an option that allows to maintain the high temporal and spatial
resolution and complexity of the simulations and accuracy, but is a faster
alternative
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CCSNet.ai, a general-purpose Al-based reservoir
simulator, can be used to capture uncertainty space

CCSNet.ai provides instant, full-physics multiphase
flow simulation predictions with high resolution and
comparable accuracy to numerical simulation.
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Procedure to develop ML models for predicting CO2 storage

Step 1. Input Step 3. Output
. Pressure
R
i Step 2. distribution
Run a numerical
/ simulator to collect the \ CO, gas
training dataset saturation

Geological model

Sweep efficiency

Rock properties
Solubility

S / trapping
Train and serve machine

Injection plan learning model e e e
Modified from Wen et al. (2021)
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Training Dataset Generation

500+ numerical simulations were run in E300
Using uniform cartesian grid with dimensions 3.3m x3.3m x0.3m

Uses 90+ different rocktype geomodels with additional realizations
were generated by sampling k;,, k,, and &

Composite rock directional relative permeability and composite rock Pc
curves were used

Imbibition rel perm curves used Land Trapping model
67 days of injection of 150 tons/day and 60 days post-injection
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GFV U-FNO Model

Architecture

3D U-FNO
Single step time
Irl:m)puts: kx, kz, porosity, rocktype cell

Includes: hysteresis, directional
relative permeability curves,
composite rock modeling

Output: Gas saturation

Accuracy

Training Relative Loss= 3.2%
Test Relative Loss = 6%
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Gas saturation
prediction at cross-
section over time
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Model results in 80,707x average speed up in runtime

E300 runs are parallelized on 30 CPU on one machine

Average E300 run UFNO Inference Time
time (s)? (s)®

208,224 0.06 (1 timestep)
2.58 (43 timesteps)

a AMD EPYC 7543, 30-core parallel run
b On an NVIDIAA100 GPU
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CO‘ 20 rC Home Realization 1 Realization 2 Realization 3 Realization 4

Otway Stage 4 GeoCquest Field Verification

This project demonstrates the power of machine learning models for probabilistic plume migration predictions and inverse modeling. The Stanford-
developed machine learning model, CCSNet.ai, provides accurate flow simulation outputs 105 times faster than traditional numerical simulations
(Wen et al., 2022, 2023). The significant improvement in computational efficiency can facilitate a probabilistic assessment of plume arrival times,
shapes, and exhaustive exploration of the impact of geology heterogeneity at the GFV. As an example, we found that for a conditioned permeability
map with the same well log, lateral and vertical correlation, and different random seeds, the plume radius can vary 60%. By running simulations for
500 different realizations of the same permeability field, we can calculate the probability that the plume will migrate different distances in the
reservoir (bottom of Figure 102). As shown, for this example, there is 95% probability the plume will migrate 1000 m from the injection well, but only
about 5% probability that it will migrate up to 2500 m. Performing these 500 simulations took less than 2.5 seconds. We have run over 400 simulations
to train a high-resolution version of CCSNet.ai to support probabilistic assessment of plume migration for the GFV experiment as well as, supporting
inverse modelling after the data is collected.




Probabilistic Gas Saturation over Time

Probability of Breakthrough at CRC8 5% 50% >80%

Top Layer 33 days 51 days 65 days
Middle Layer (fastest) 13 days 19 days 23 days
Bottom Layer 19 days 33 days 45 days

Probabilistic Gas Saturation injection day 23
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3D Video of probabilistic gas saturation
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Gas saturation profile at CRCS:

Probabilistic Gas Saturation
Prabability vs Depth at CRCS at day = 2

Average Predicted Gas Saturation
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Sensitivity Study: Impact of Composite Rock Rel Perms

Changing composite rock rel perms from
50/50 to 90% low perm/ 10% high perm
decreases the breakthrough time by 3-

c ite C Sand & Sil Hori |
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Future Work

Adding additional parameters to vary such as:
= Composite rock make up in directional rel perms
= Directional Pc curves

= Permeability ranges

= Horizontal correlation length of rocktype cell id

Extend model for full injection time and investigate changes in model
architecture

Create model for the post-injection period

History matching

e
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Thank You for listening



Appendix



Sensitivity Study: Perforation Interval

breakthrough time (range: O
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Impact of perforation interval & composite rock rel perms
on one realization

Extending perforation + 90/10 Composite Rel
interval Perms
Breakthrough Time: 23 days 27 days 25 days

Withoutseismic_35_case_7, t=23days, Option2a ?%IS( 0 Option 2b, 50/50 Option 2b, 9010
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Impact of perforation interval & composite rock rel perms
on one realization

Withoutseismic 35 option 2a Withoutseismic 359010 option 2b
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Average pressure buildup

Cross Section of Average Pressure Buildup at Injection Well over time
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Composite Siltstone and Coarse Sandstone is the primary

rock type in the fastest layers

1 Homogeneous coarse sandstone (Code: 0)

2 [Composite of siltstone and fine sandstone (Code: 1 and 6)

Fastest moving layer in the middle is on average rock type 3 & 5

IComposite of siltstone and coarse sandstone (Code: 2 and 7)

2nd fastest |ayer mOStIy rock type 3 and 5 4 [Composite of mudstone and fine sandstone (Code: 3 and 8)

5 IComposite of mudstone and coarse sandstone (Code: 4 and 9)
6 |[Homogeneous carbonate cement (Code:10)

RockType ID

Probabilistic Gas Saturation t=25 Average Permx
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Probabilistic Plume: One w/ seismic, one w/o seismic

Probability Contour Plot at time t=23 and y=76 with seismic
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Inter-geomdel vs. Intra-geomodel

(between geomodels vs. within geomodel)

Inter-Geomodel Intra-Geomodel

Average
Breakthrough
Time

21.5 days 21.4 days

Standard
Deviation
Breakthrough
Time

4.3 days 1.7 days
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Breakthrough Time Varnation for Selected Geomodels
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Key Takeaways
Rock type is a driving factor plume differences

Directional relative permeabilities have strong influence on breakthrough
time

FNO vs. UFNO (UFNO outperformed)
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