Computational Optimization to Minimize Fault Activation

Oluwatobi Raji, Oleg Volkov, Anthony Kovscek, Louis Durlofsky Nov 19, 2024

Stanford | Doerr | Stanford Center School of Sustainability | for Carbon Storage

Motivation

Rutqvist et al., 2014

Challenge:

 Pressure build-up due to CO₂ injection can lead to fault slip and induced seismicity

Goal of this work:

Apply Stanford Unified Optimization
 Framework to determine injection well
 locations that minimize fault activation risk

Stanford Stanford Center for Carbon Storage Doerr School of Sustainability Energy Science & Engineering

Fault Slip Tendency (FST) Minimization

- Fault slip tendency $T_s = \left| \frac{\tau}{\sigma'_n} \right|$, τ : shear stress, σ'_n : effective normal stress
- Fault may slip when $T_s \ge \mu$, μ : fault friction coefficient (~0.6)
- Objective
 - Minimize the maximum value of FST on both faults during the CO₂ injection period by optimizing the locations of 3 injection wells
- Constraint
 - > All injected CO₂ must stay inside storage aquifer

Geomodel Setup: 3D Faulted System*

- Setup partly based on Silva et al. (IJGGC 2023) Gulf of Mexico model
- Entire domain: $41 \text{ km} \times 42 \text{ km} \times 4100 \text{ m}$, $60 \times 60 \times 30 \text{ cells}$ (108,000 total)
- Storage aquifer: $25 \text{ km} \times 27 \text{ km} \times 100 \text{ m}$, $50 \times 50 \times 20 \text{ cells}$ (50,000 total)

*Model developed by Xiaowen He

Geomodel Setup: 3D Faulted System*

- Fault 1: Azimuth = 25°, Dip = 60°
- Fault 2: Azimuth = 20°, Dip = 60°

*Model developed by Xiaowen He

Model Description (Single Realization)

- 3 vertical fully perforated wells
- 1.5 Mt/year CO₂ in each well for 50 years
- Stress regime
 - > Vertical Stress = 0.24 MPa/km
 - Max. Horizontal Stress = 0.18 MPa/km
 - Min. Horizontal Stress = 0.15 MPa/km
 - Poisson's ratio, $\nu = 0.315$
- Young's modulus, E = 15 GPa
- Biot's coefficient, $\alpha = 0.9$
- Fault Permeability = 0.1 mD

Optimization Workflow using UOF

- Repair procedure ensures a minimum well spacing of 1 km
- Objective function is maximum FST over the injection period
- Constraint ensures all injected CO₂ remains in storage aquifer
- Core optimizer for this work is
 Differential Evolution

Zou et al. (2022, 2023)

Differential Evolution (DE) – Particle *i*, Iteration *k*

$$\mathbf{x}_{i}^{k} = \mathbf{u}_{best}^{k} + w_{m}(\mathbf{u}_{i,r1}^{k} - \mathbf{u}_{i,r2}^{k})$$

- Population (N) = 8
- Mutation factor (w_m) = 0.5
- Crossover factor $(c_f) = 0.7$
- DE strategy (mutation & crossover methods) = DE/best/1/bin

Selection

 $\mathbf{u}_{i}^{k+1} = \begin{cases} \mathbf{u}_{i}^{k} & \text{if } f(\mathbf{u}_{i}^{k}) < f(\widehat{\mathbf{u}}_{i}^{k}) \\ \widehat{\mathbf{u}}_{i}^{k} & \text{if } f(\widehat{\mathbf{u}}_{i}^{k}) < f(\mathbf{u}_{i}^{k}) \end{cases}$

Price et al., 2005

Heuristic Well Placement

Stanford Center for Carbon Storage

- 0.42

Differential Evolution Optimizer Performance

Optimization Results

Optimization Results

0.43

Conclusions

- Optimization framework found a configuration that minimized fault activation risk while ensuring all CO₂ stayed in the storage aquifer
- Optimal well placement is affected by fault geometry, reservoir heterogeneity and initial conditions
- FST experiences slow (approximately linear) growth over the injection period and remains below the risk threshold for the full operation
- Slip tendency at the base of the fault is higher than in other regions, suggesting that monitoring should be performed in that region

Acknowledgements

- Xiaowen He, Arjun Kohli, Jian Huang
- Stanford Center for Carbon Storage
- Stanford Smart Fields Consortium
- SUETRI-A Research Group
- SDSS Center for Computation

Thank you!

Stanford Stanford Center for Carbon Storage Doerr School of Sustainability Energy Science & Engineering