Data-space Inversion for Prediction of Fault Slip Tendency in CO₂ Storage

Xiaowen He, Su Jiang, Louis J. Durlofsky November 19, 2024

Stanford | Doerr | Stanford Center School of Sustainability | for Carbon Storage

Motivation

Challenges:

- Pressure build-up due to CO₂ injection can lead to fault slip and induced seismicity
- Significant uncertainty exists in flow and geomechanical properties
- History matching with coupled flow-geomechanics simulations is challenging

Goal in this work:

 Apply data-space inversion (**DSI**) history matching to predict key quantities of interest (QoI)

Rutqvist et al., 2014

Fault Slip Tendency

- Fault slip tendency $T_s = \left|\frac{\tau}{\sigma'_n}\right|$, τ : shear stress, σ'_n : effective normal stress
- Fault may slip when $T_s \ge \mu$, where μ is fault friction coefficient (~0.6)

•
$$\sigma'_{\rm n} = \sigma_{\rm n} - \alpha P$$

 σ_n : normal stress

 α : Biot's coefficient

P: pore pressure

Müller et al., 2021

Geomodel Setup: 3D Faulted System

- Setup partially based on Silva et al. (IJGGC 2023) Gulf of Mexico model
- Storage aquifer: 25 km × 27 km × 60 m, 50 × 50 × 20 cells (50,000 total)
- Entire domain: 33.5 km × 34.5 km × 2660 m, 60 × 60 × 35 cells (126,000 total)

3D Faulted System Simulated in GEOS

- 3 vertical wells, 3 Mt/year CO₂ (total) for 50 years
- Single geological scenario, randomly sampled realizations, 800 prior simulations used to train DSI
- Poisson's ratio: $\nu \in [0.25, 0.30]$
- Young's modulus: $E \in [10, 20]$ GPa
- Biot's coefficient: $\alpha \in [0.8, 1.0]$
- Fault permeability multipliers:

 $\log_{10} \eta_{\text{fault1}} \in [-3,0), \ \log_{10} \eta_{\text{fault2}} \in [-3,0)$

• Under Bayesian framework, $P(d_{full}|d_{obs}) = const \times P(d_{obs}|d_{full})P(d_{full})$

DSI Setup: Observations and Predictions

- **Observed data**: pressure and strain data (with noise) in the storage aquifer at 2, 4, 6, and 8 years from 4 monitoring wells, $N_{obs} = 640$
- **Prediction**: pressure, strain, shear stress (τ), effective normal stress (σ'_n)

Data-space Inversion: VAE for Parameterization

Variational autoencoder (VAE) for spatio-temporal data

History Matching with Synthetic "True" Model

- Randomly sample flow and geomechanical parameters $(E = 12.6 \text{ GPa}, \nu = 0.26, ...)$
- Run fully coupled flow-geomechanics simulation with 3 injectors, each injecting 1 Mt/year (as in training runs)
- Measure pressure and strain data at 2, 4, 6, & 8 years from 4 monitoring wells
- Apply ensemble smoother with multiple data assimilation (ESMDA) history matching on the latent variables ξ to provide posterior predictions

True model pressure response

Prior and Posterior Shear Stress (Fault 1, 50 Years)

Prior and Posterior Effective Normal Stress (Fault 1, 50 Years)

Prior and Posterior Strain (Top Layer, 50 Years)

Prior

Uncertainty in strain reduced

Stanford Stanford Center for Carbon Storage Doerr School of Sustainability Energy Science & Engineering

Prior and Posterior Fault Slip Tendency

- Fault slip tendency $T_s = \left| \frac{\tau}{\sigma'_n} \right|$, τ : shear stress, σ'_n : effective normal stress
- Average fault slip tendency at 50 years:

Prior and Posterior Geomechanical Parameters

• Joint DSI inversion of latent variables ξ and key geomechanical parameters m

Summary and Future Work

- Applied GEOS for coupled flow-geomechanics in 3D faulted model
- Extended DSI framework to predict pressure, strain, stress, and geomechanical parameters using pressure and strain observations
- Applied monitoring well optimization to achieve maximal uncertainty reduction in key quantities of interest (e.g., fault slip tendency)
- Future work integrate geomechanical parameters into optimization objectives; evaluate the impact of different observation data types and errors; consider more realistic models

Acknowledgements

- Oleg Volkov and Jian Huang
- Stanford Center for Carbon Storage
- Stanford Smart Fields Consortium
- SDSS Center for Computation

Thank you!

