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Motivation
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 Challenges: 
 Pressure build-up due to CO2 injection can lead to 

fault slip and induced seismicity

 Significant uncertainty exists in flow and 
geomechanical properties

 History matching with coupled flow-geomechanics 
simulations is challenging 

 Goal in this work: 
 Apply data-space inversion (DSI) history matching 

to predict key quantities of interest (QoI)
Rutqvist et al., 2014



Fault Slip Tendency
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Shear stress 𝜏𝜏
Effective normal 
stress 𝜎𝜎n′

Müller et al., 2021

 Fault slip tendency 𝑇𝑇s = 𝜏𝜏
𝜎𝜎n′

, 𝜏𝜏: shear stress, 𝜎𝜎n′ : effective normal stress

 Fault may slip when 𝑇𝑇s ≥ 𝜇𝜇, where 𝜇𝜇 is fault friction coefficient (~0.6)

 𝜎𝜎n′ = 𝜎𝜎n − 𝛼𝛼𝛼𝛼

𝜎𝜎n: normal stress

𝛼𝛼: Biot’s coefficient

𝑃𝑃: pore pressure
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Geomodel Setup: 3D Faulted System
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 Setup partially based on Silva et al. (IJGGC 2023) Gulf of Mexico model

 Storage aquifer: 25 km × 27 km × 60 m, 50 × 50 × 20 cells (50,000 total)

 Entire domain: 33.5 km × 34.5 km × 2660 m, 60 × 60 × 35 cells (126,000 total)



3D Faulted System Simulated in GEOS
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 3 vertical wells, 3 Mt/year CO2 (total) for 50 years

 Single geological scenario, randomly sampled realizations, 
800 prior simulations used to train DSI

 Poisson’s ratio: 𝜈𝜈 ∈ 0.25, 0.30

 Young’s modulus: 𝐸𝐸 ∈ 10, 20 GPa

 Biot’s coefficient: 𝛼𝛼 ∈ 0.8, 1.0

 Fault permeability multipliers:

log10 𝜂𝜂fault1 ∈ −3,0 , log10 𝜂𝜂fault2 ∈ [−3,0)

Fault 2

Fault 1



Posterior models

Model-based 
inversion
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Data-space Inversion (DSI)
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Prior models
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 Under Bayesian framework, 𝑃𝑃 𝒅𝒅full 𝒅𝒅obs = const × 𝑃𝑃 𝒅𝒅obs 𝒅𝒅full 𝑃𝑃 𝒅𝒅full

Data-space inversion

𝒅𝒅full =

𝒅𝒅HM

𝒅𝒅F

Monitoring (pressure, strain)

Forecast (pressure, strain, stress) at a 
few time steps



Effective normal stress

DSI Setup: Observations and Predictions
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 Observed data: pressure and strain data (with noise) in the storage 
aquifer at 2, 4, 6, and 8 years from 4 monitoring wells, 𝑁𝑁obs = 640

 Prediction: pressure, strain, shear stress (𝜏𝜏), effective normal stress (𝜎𝜎n′ ) 
at 50 years 𝑇𝑇s= 𝜏𝜏

𝜎𝜎n′

Pressure

Strain Shear stress

Fault slip tendency



Data-space Inversion: VAE for Parameterization
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 Variational autoencoder (VAE) for spatio-temporal data

Stacked 3D ConvLSTM

Encoder𝐱𝐱1

𝐱𝐱2

𝐱𝐱𝑛𝑛𝑡𝑡

Pressure, strain, 𝝈𝝈𝐧𝐧′ , 𝝉𝝉
High-dimensional data 𝒅𝒅𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟

Decoder

Stacked 3D ConvLSTM

�𝐱𝐱1

�𝐱𝐱2

�𝐱𝐱𝑛𝑛𝑡𝑡

Reconstructed �𝒅𝒅𝐟𝐟𝐟𝐟𝐥𝐥𝐥𝐥

𝒩𝒩 𝟎𝟎, 𝐈𝐈

Low-dimensional
latent variable 𝝃𝝃

Used in HM



Monitors

True model pressure response

History Matching with Synthetic “True” Model
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 Randomly sample flow and geomechanical parameters 
(𝐸𝐸 = 12.6 GPa, 𝜈𝜈 = 0.26, …)

 Generate corresponding realization             true model

 Run fully coupled flow-geomechanics simulation with    
3 injectors, each injecting 1 Mt/year (as in training runs)

 Measure pressure and strain data at 2, 4, 6, & 8 years 
from 4 monitoring wells

 Apply ensemble smoother with multiple data 
assimilation (ESMDA) history matching on the latent 
variables 𝝃𝝃 to provide posterior predictions

Faults



Prior and Posterior Shear Stress (Fault 1, 50 Years)
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 Uncertainty in shear stress reduced
True

Prior

Posterior

 K-means and K-medoids for clustering



Prior and Posterior Effective Normal Stress (Fault 1, 50 Years)
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 Uncertainty in effective normal stress reducedTrue

Prior

Posterior



Prior and Posterior Strain (Top Layer, 50 Years)
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True

Prior

Posterior

 Uncertainty in strain reduced



Prior and Posterior Fault Slip Tendency
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 Fault slip tendency 𝑇𝑇s = 𝜏𝜏
𝜎𝜎n′

, 𝜏𝜏: shear stress, 𝜎𝜎n′ : effective normal stress 

 Average fault slip tendency at 50 years:

Fault 1 Fault 2



Prior and Posterior Geomechanical Parameters
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 Joint DSI inversion of latent variables 𝝃𝝃 and key geomechanical
parameters 𝒎𝒎

𝒅𝒅full = 𝝃𝝃

𝒅𝒅HM

𝒎𝒎

Young’s modulus Poisson’s ratio



Summary and Future Work
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 Applied GEOS for coupled flow-geomechanics in 3D faulted model

 Extended DSI framework to predict pressure, strain, stress, and 
geomechanical parameters using pressure and strain observations

 Applied monitoring well optimization to achieve maximal uncertainty 
reduction in key quantities of interest (e.g., fault slip tendency)

 Future work – integrate geomechanical parameters into optimization 
objectives; evaluate the impact of different observation data types and 
errors; consider more realistic models
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