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Exergy-based control strategies for ground hybrid electric
vehicles (HEVs) enable to pursue unconventional optimiza-
tion goals that are inaccessible when standard energy-based
modeling frameworks based on fuel consumption minimiza-
tion are used. In this work, we formulate and solve offline
and online exergy-based optimization strategies for military
HEVs aimed at the minimization of genset exergy destruction
and thermal emissions to increase vehicle efficiency and min-
imize the risk of thermal imaging detection, respectively. We
refer to the offline version of these strategies as exergy min-
imization strategies (ExMSs). Adaptive ExMSs (A-ExMSs)
are then formulated for online implementation. Moreover,
charge increasing ExMSs and A-ExMSs are developed to
charge the battery as much as possible during a driving mis-
sion followed by a silent watch phase. To assess the perfor-
mance of the proposed strategies, the results obtained by the
ExMSs and A-ExMSs are compared to the benchmark solu-
tions obtained by Dynamic Programming.

1 Introduction
Exergy is defined as the maximum useful work that

can be obtained from a thermodynamic system or process
with respect to a given reference state [1]. Exergy analy-
sis is a thermodynamic analysis technique routed in the first
and second laws of thermodynamics [2] that provides new
design and control opportunities over conventional energy-
based approaches. First, exergy analysis enables to quantify
the irreversibilities of a process, identify the sources of ineffi-
ciency, and assess the quality, rather than just the quantity, of
energy transfers [3]. Exergy-based optimization can be pur-
sued to minimize exergy destruction, a quantity that accounts
for all the irreversibilities of a process, and is not quantifiable
through energy-based methods.

Exergy analysis has been proposed for a variety of ap-

plications, such as the optimization and control of power
plants [4], photovoltaic systems [5], and aerospace technolo-
gies [6]. For instance, several exergy-based control strate-
gies have been studied in the context of energy conversion
systems in buildings [7]. In [8], after assessing the exergy
balance of a building, an exergy-based model predictive con-
trol is developed to minimize the exergy destruction of a
heating, ventilation, and air conditioning (HVAC) system.
In the context of ground vehicles’ powertrains, exergy con-
trol strategies have been developed to enhance the perfor-
mance of Internal Combustion Engines (ICEs) [9]. In [10],
the ICE exergetic efficiency is maximized by an optimal con-
troller, achieving lower fuel consumption than the traditional
energy-based combustion control. Moreover, a comprehen-
sive exergy modeling framework for hybrid electric vehicles
(HEVs) is developed in [11]. The vehicle exergetic balance
is assessed through the quantification of exergy transfer and
destruction for each component of the powertrain. The study
shows that the battery exergy destruction and losses are, in
practice, negligible when compared to the ones from the ICE,
which in turn contributes to about 80% of the overall exergy
losses of the vehicle, when the Worldwide Harmonized Light
Vehicles Test Procedure driving cycle is used.

While the automotive market is shifting towards battery
only electric vehicles adoption, military vehicles are moving
towards hybridization [12]. The full electrification of mili-
tary powertrains is not practical due to the high weight of the
battery pack, the limited range [13], and the logistical chal-
lenges associated with charging a fully electric vehicle on
the battlefield. Although HEVs have been traditionally con-
trolled through energy-based management strategies to opti-
mize the onboard energy flow [14], exergy-based approaches
are particularly useful in military applications to pursue non-
standard optimization goals. For instance, the reduction of
thermal imaging detection is a critical goal for military vehi-
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cles that cannot be achieved by standard energy management
strategies. Moreover, unconventional requirements must be
satisfied during some military operations by the control strat-
egy. For instance, the battery needs to be charged as much
as possible for those driving missions that are followed by a
silent watch operation. During silent watch, the battery pack
is the only active power source which provides the necessary
power to all the auxiliary systems in the vehicle.

Two exergy-based management strategies for HEVs are
proposed in [15], leveraging the exergetic modeling frame-
work developed in [11]. In [15], the proposed strategies are
solved offline through Dynamic Programming (DP). Hence,
a gap remains in the realm of real-time deployable strategies.
This paper seeks to address this gap by proposing a solution
in the form of adaptive online strategies.

Several online energy-based strategies for HEVs have
been proposed in the literature, such as rule-based [16],
model-predictive control [17], reinforcement learning algo-
rithms [18], and equivalent consumption minimization strat-
egy (ECMS) [19]. The ECMS aims to minimize the equiv-
alent fuel consumption, defined as the sum of the actual
fuel consumption and a virtual fuel consumption associated
with battery usage. The battery virtual fuel consumption is
weighted through an equivalence factor. The value of equiv-
alence factor that guarantees charge-sustainability, which is
driving cycle dependent, corresponds to the optimal co-state
value in the Pontryagin’s Minimum Principle formulation
(PMP) of the energy management strategy [19]. For real-
time operation, adaptive-ECMS (A-ECMS) strategies are de-
veloped to update the equivalence factor online using the
feedback from the battery SOC [20].

In this paper, we utilize the exergy-based modeling
framework introduced in [15] to develop offline and on-
line (adaptive) exergy-based control strategies. We refer to
these strategies as exergy minimization strategies (ExMS)
and adaptive exergy minimization strategies (A-ExMS), re-
spectively. The main contributions of this study are as fol-
lows:

1. Formulation of two exergy-based control strategies for
hybrid electric ground military vehicles in the form of
exergy minimization strategies aimed at the minimiza-
tion of genset exergy destruction (ExMSdest) and ther-
mal emissions (ExMSthermal) to optimize the overall ve-
hicle efficiency and minimize the risk of thermal imag-
ing detection.

2. Formulation of A-ExMSs for online implementation.
3. Development of charge sustaining (CS) and charge in-

creasing (CI) ExMSs to achieve different battery state
of charge targets at the end of the mission. Specifically,
a CI ExMS is designed to charge the battery for silent
watch mission readiness. This is achieved with the for-
mulation of a new penalty function in the optimization
problem.

4. Comparative analysis between ExMSs, A-ExMSs, and
the benchmark solution from DP.

The remainder of the paper is organized as follows. In
Sec.2, the series HEV and its components are modeled and

the exergy model of the genset system is presented. Sec.3
formalizes the optimal control problems for the standard
ECMS and the ExMSs in terms of exergy destruction and
thermal emissions minimization. In Secs.4 and 5, the charge
sustaining and charge increasing ExMS and A-ExMS are
formulated. Finally, the solutions obtained through the pro-
posed strategies are shown and compared in Sec.6, and con-
clusions are carried out in Sec.7.

2 HEV model
The model of the series military HEV considered in

this study borrowed from [15] (and based on the previous
works [21] and [22]) is shown in Fig.1. The main powertrain

Pb

GB

Pb

ICE

Gen

Tank

Pgen
Pbatt

Battery

GB

Pmot,e

Pmot,e

Peng

Pw
4

Pw
4

GB Mot

GB

Pmot,e

Pmot,e

Pw
4

Pw
4

Mot

Mot

Mot

Pmot,mPmot,m

IM

Genset

AC-DC

AC-AC

Fig. 1. Series HEV configuration [15]

components are: a 260kW diesel ICE, a 268kW electric in-
duction generator, a 10.9kWh lithium-ion battery pack, and
four 95kW Interior Permanent Magnet Synchronous in-hub
Motors (IPMSM). The generator, the battery pack, and the
electric traction motors are connected through the AC-DC
and AC-AC converters [23]. In this work, we describe the
exergetic models of the electric generator and the ICE, while
we recall the energetic model of the electric motors, battery,
generator, and ICE (details on the exergy models of these
components can be found in [11], [15]). In the remainder of
the paper, when computing the exergetic terms, the reference
state is defined by the environment pressure P0 = 1bar and
temperature T0 = 25◦C [11].

2.1 Vehicle longitudinal dynamics
The energy balance along the vehicle longitudinal axis is

used to obtain an expression for the power at the wheels Pw =
v
(
Mv̇+Mgsinθ+CrMgcosθ+ 1

2 ρaACxv2
)
+ Pbrake, where

v is the vehicle velocity, M is the vehicle mass, g is the accel-
eration due to gravity, Pbrake is the mechanical brake power,
Cr and Cx are the roll and drag coefficients, respectively, ρa
is the air density, A is the frontal area of the vehicle, and θ is
the road slope .

2.2 Electric traction motors
The traction power is provided by four IPMSM electric

traction motors. Each motor is characterized by the static ef-
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ficiency map (shown in [11]) which is a function of motor
speed ωmot and torque τmot. The electric power Pmot,e re-
quired by each individual electric motor is a function of the
motor efficiency ηmot, gearbox efficiency ηGB, and power re-
quested at the wheels Pw:

Pmot,e =


Pw

4·ηGB·ηmot
, if Pw ≥ 0

Pw·ηGB·ηmot
4 , if Pw < 0

(1)

Moreover, the following balance equation is satisfied un-
der the assumption that the efficiency of the AC-DC and AC-
AC converters is unitary: Pe = 4Pmot,e +Paux = Pgen +Pbatt,
where Pgen and Pbatt are the generator and battery power re-
spectively, and Paux is the power required by the onboard
auxiliary systems.

2.3 Battery model
The battery pack is composed of NS=124 cells connected

in series and NP=5 cells connected in parallel (124S5P con-
figuration), with Nickel Manganese Cobalt (NMC) /Graphite
cells modeled through a zero-order equivalent circuit model
(ECM). The experimental data in [24] and [25] are used to
obtain the ECM internal resistance R0,cell and open circuit
voltage OCVcell (see Figs.2 and 3 in [15] ). Since electri-
cal modularity [26] is assumed for all the cells, the cell-level
electrical parameters are upscaled to the pack-level through
the following equations: R0,batt =

NS
NP

· R0,cell, OCVbatt =
NS ·OCV0,cell,Qbatt = NP ·Qcell, where R0,batt, OCVbatt, and
Qbatt are the battery pack internal resistance, open circuit
voltage, and capacity, respectively. The battery pack SOC
rate, ˙SOC, is calculated as follows:

˙SOC =− Ibatt

Qbatt
,

with Ibatt =
OCVbatt −

√
OCVbatt

2 −4R0,battPbatt

2R0,batt

(2)

where Ibatt is the battery pack current.

2.4 Electric generator
The generator power losses are divided into stator cop-

per losses PSCL,gen, rotor copper losses PRCL,gen, iron losses
Piron,gen, and friction losses Pfric,gen [27]. Once the power
losses are obtained through the induction machine (IM)
equivalent circuit model [15], the electric generator effi-
ciency ηgen is calculated as follows:

ηgen =
Pgen

Pgen +
(
PSCL,gen +PRCL,gen +Piron,gen +Pfric,gen

)
(3)

The generator temperature, Tgen, evolves over time according
to the following first order thermal dynamics:

Cgen · Ṫgen = Q̇heat,gen +PSCL,gen +PRCL,gen +Piron,gen +Pfric,gen

Q̇heat,gen = hout,gen(T0 −Tgen)
(4)

where Q̇heat,gen is the heat exchange between the generator
and the environment, and hout,gen is the relative convective
heat transfer coefficient.

The exergy destruction, Ẋdest,gen, the exergy transfer due
to heat exchange between the generator and the enviorn-
ment, Ẋheat,gen, and the useful work, Ẋwork,gen, are computed
through the following equations from [15]:

Ẋheat,gen =

(
1− T0

Tgen

)
· ˙Qheat,gen

Ẋwork,gen =−ωgen · τgen

Ẋdest,gen =−
T0 · (PSCL,gen +PRCL,gen +Piron,gen +Pfric,gen)

Tgen
(5)

The generator exergetic terms are shown as speed-torque
maps in [15].

2.5 Internal combustion engine
The ICE instantaneous fuel consumption, ṁ f , is quanti-

fied through the engine speed-torque (ωeng-τeng) map shown
in [28]. The engine power, Peng, is a function of generator
power and efficiency ηgen: Peng =

Pgen
ηgen

.
The exergetic model of the ICE from [28] is used to map

each ICE exergy rate term as a function of ωeng and τeng.
The exergy destruction rate Ẋdest,eng accounts for the combus-
tion irreversibilities Ẋcomb,eng, the mechanical losses related
to friction Ẋfric,eng, and the exergy destruction of unmod-
eled phenomena Ẋothers,eng: Ẋdest,eng = Ẋcomb,eng + Ẋfric,eng +
Ẋothers,eng. While the exergy terms Ẋheat,eng and Ẋexh,eng quan-
tify the output exergy transfer due to the heat exchange be-
tween in-cylinder mixture and cylinder’s walls and due to the
exhaust gases, respectively, the fuel exergy Ẋfuel,eng, and the
intake air exergy flow Ẋintk,eng are the input exergy transfer
terms.

2.6 Genset
The strategies proposed in this work aim at minimizing

genset exergy destruction and exergy transfer due to heat ex-
change between the genset and the environment. The exergy
destruction of the genset is expressed as the sum of the ex-
ergy destruction of ICE and generator:

Ẋdest,genset = Ẋdest,eng + Ẋdest,gen (6)

Since the powertrain component operating at the highest
temperature is the one that can be detected more easily by
thermal imaging, the ExMSthermal aims to minimize the ex-
ergy transfer due to heat exchange between generator and
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environment, and ICE and environment. Hence, the genset
exergy transfer due to heat exchange is defined as follows:

Ẋheat,genset =min(Ẋheat,eng(t,Pbatt,Tgen), Ẋheat,gen(t,Pbatt,Tgen))
(7)

based on the formulation in [15].

3 Optimal control problems
The exergy-based strategies are formulated as con-

strained finite-time optimal control problems to achieve the
optimal power-split between the powertrain power sources
over a selected driving mission:

P∗
batt =argmin

Pbatt

∫ t f

t0
cr(SOC(t),Pbatt(t),Pmot,e(t))dt

subject to SOCtarget − ε ≤ SOC(t f )≤ SOCtarget + ε

Ibatt,min ≤ Ibatt(t)≤ Ibatt,max

Pbatt,min ≤ Pbatt(t)≤ Pbatt,max

Pgen,min ≤ Pgen(t)≤ Pgen,max

Peng,min ≤ Peng(t)≤ Peng,max

SOCmin ≤ SOC(t)≤ SOCmax

˙SOC(t) =− Ibatt(t)
Qbatt

(8)

where t0 and t f are the initial and final time instants of
the driving mission, cr is a running cost (that is specified
later), Pbatt is the control variable, SOC is the state variable,
and Pe is the exogenous input of the optimal control prob-
lem. A global constraint on the final SOC is imposed to
reach the SOCtarget at the end of the mission, within a tol-
erance ε. Moreover, local constraints are imposed to guar-
antee the components physical operation limits, such as the
minimum Pgen,min, and maximum Pgen,max generator power,
the minimum Peng,min and maximum Peng,max engine power,
the minimum Pbatt,min and maximum Pbatt,max battery power,
and the minimum Ibatt,min and maximum Ibatt,max battery cur-
rents. Moreover, the state variable must be mantained in the
SOC operating range [SOCmin,SOCmax] throughout the driv-
ing mission.

The strategies proposed in this work are summarized in
Table 1. These are categorized based on three criteria. First,
they are differentiated based on the final (or target) SOC, i.e.,
charge sustaining versus charge increasing strategies. The
second differentiation is between offline and online strate-
gies. Finally, the strategies are differentiated based on the
objective function they minimize, i.e., fuel consumption, ex-
ergy destruction, or exergy transfer due to heat exchange.

While the ECMS and A-ECMS minimize the fuel con-
sumption, the ExMSdest and A-ExMSdest are designed to
minimize exergy destruction. Finally, the ExMSthermal and
A-ExMSthermal target the minimization of thermal emissions.
Relying on the exergy-based strategies formulation devel-
oped in [15], the running costs used for the strategies pro-
posed in this work are reported in Table 2.

4 Offline exergy minimization strategies
Similarly to the ECMS, the ExMS converts the global

optimization problem to an instantaneous minimization
problem, suitable for online control. In this work, the stan-
dard ECMS, the ExMS for the minimization of exergy de-
struction, and ExMS for the minimization of thermal emis-
sions are formulated to minimize, at each time step, the re-
spective Hamiltonian function.

Relying on the PMP formulation, the Hamiltonian func-
tion H for the problem defined in Sec. 3 is written as follows:

H(SOC(t),Pbatt(t), t) = cr(SOC(t),Pbatt(t), t)

+(λ(t)+wCS/CI(t)) · ˙SOC(SOC(t),Pbatt(t), t) (9)

where λ is the equivalence factor, and wCS and wCI are
the additive penalty functions for the charge sustaining and
charge increasing strategies, respectively (refer to the follow-
ing subsections for their formulation). As reported in Table
2, cr corresponds to the ṁ f , Ẋdest,genset, and Ẋheat,genset for the
ECMS, ExMSdest, and ExMSthermal, respectively. For the of-
fline ExMSs, the equivalence factor λ is selected to minimize
the cost over a specific driving mission, while satisfying the
final SOC constraint. Hence, the bisection algorithm is ap-
plied offline to select the appropriate value of the constant λ

through the iterative process described in [14].

4.1 Charge sustaining ExMS and charge increasing
ExMS

The charge sustaining and charge increasing ExMS are
developed to meet two different vehicle application require-
ments, i.e., regular driving, and driving followed by silent
watch mission, respectively. These are achieved by setting
different values for the final SOC target.

4.1.1 Charge sustaining ExMS
The charge sustaining ExMS aims to obtain a final SOC

equal to the initial SOC:

SOCtarget = SOC(t0) (10)

This CS ExMS is appropriate for standard HEV appli-
cations where the goal is to obtain the most energeti-
cally/exergetically efficient solution, without depleting the
battery charge.

For the CS ECMS and CS ExMS, the additive CS
penalty function, wCS, is used to guarantee that the SOC is
maintained within the operating range [SOCmax,SOCmin]:

wCS(SOC) =


0, if SOCmin ≤ SOC(t)≤ SOCmax

−K, if SOC(t)> SOCmax

+K, if SOC(t)< SOCmin
(11)

where K is a tuning parameter [14].
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Table 1. Summary of the strategies. Note that (NP) and (P) refer to the CI ExMSs without and with wCI penalty, respectively.

Strategy Optimality SOCtarget Penalty Equivalence

of the solution function factor

Charge sustaining

ECMS If the equivalence
factor is optimally
tuned, the solution is
optimal

SOC(t0)
wCS: penalty to
satisfy state
constraints

Offline
calibrationExMSdest

ExMSthermal

A-ECMS Suboptimal solution:
higher objective
function than optimal
solution

SOC(t0)
wCS: penalty to
satisfy state
constraints

Online
adaptationA-ExMSdest

A-ExMSthermal

Charge increasing

ECMS(NP) Suboptimal solution:
final SOC not reached SOCmax − εCI No penalty

Offline
calibrationExMSdest(NP)

ExMSthermal(NP)
Almost identical to op-
timal DP solution

ECMS(P) Close to optimal
solution: final SOC
reached SOCmax − εCI

wCI: penalty to
reach final
desired SOC

Offline
calibrationExMSdest(P)

ExMSthermal(P)
Almost identical to op-
timal DP solution

A-ECMS Suboptimal solution:
higher objective
function than optimal
solution

SOCmax − εCI No penalty
Online
adaptationA-ExMSdest

A-ExMSthermal

Table 2. Running costs for the different control strategies [15]

Strategy Running cost cr

ECMS, A-ECMS ṁ f

ExMSdest, A-ExMSdest Ẋdest,genset

ExMSthermal, A-ExMSthermal Ẋheat,genset

4.1.2 Charge increasing ExMS and ECMS
The charge increasing ExMS is designed for specific

military applications in which the driving mission is followed
by a silent watch. Its purpose is to charge the battery to a
high SOC to provide maximum energy availability before the
silent watch:

SOCtarget = SOCmax − εCI (12)

where the tolerance εCI is introduced to prevent exceeding
the SOC upper limit.

A newly proposed additive penalty function wCI is im-
plemented to guarantee the final SOC target is met. The new
additive penalty function wCI for CI ExMS is formulated as
a proportional-integral (PI) controller to maintain the SOC

near the SOCtarget.:

wCI(SOC) =


cP(SOCtarget −SOC(t))+ cI

∫ t
t0(SOCtarget −SOC(t)),

if 0 < Pe ≤ Pe,th and SOCtarget − ε ≤ SOC ≤ SOCmax

0,
if Pe < 0 or Pe > Pe,th or SOC ≤ SOCtarget − ε

(13)
where cP, cI are the proportional and integral gains of the
penalty function, and Pe,th is a electric power threshold. The
additive penalty function is formulated to be active (different
from zero) in the last portion of the driving mission when
the power requested Pe is positive and lower than the thresh-
old Pe,th. Pe,th is a tuning parameter that must be selected
greater than the Pe value towards the end of the mission. The
additional activation condition on the SOC (SOCtarget − ε ≤
SOC ≤ SOCmax) leads to the activation of the penalty only
when the SOC has already reached a value near the maxi-
mum. The penalty function wCI proves to be necessary for
the ECMS and ExMSdest: when tested on the driving sce-
nario presented in Sec.6, both strategies without the penalty
function wCI cannot satisfy the final SOC constraint due to
battery discharging in the last portion of the driving mission.
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5 Adaptive ExMS
The selection of the optimal equivalence factor is a sig-

nificant hurdle for the online implementation of the ExMS
due to lack of knowledge of the driving mission. If a sub-
optimal equivalence factor value is selected, the ExMS leads
to a suboptimal solution, and does not guarantee the con-
straints on the final SOC. Hence, the A-ExMS is introduced
to update the equivalence factor during the driving mission,
so that an initial suboptimal guess of the equivalence factor
is corrected online.

In this work, the adaptation method proposed in [29] for
A-ECMS is extended to the formulation of the A-ExMSs.
This approach aims to maintain the SOC value near the
SOCtarget by counteracting the SOC deviations. At each time
step, a PI controller takes as input the actual SOC value,
SOC(t), and updates the equivalence factor, λ(t), to regulate
the SOC to the SOCtarget:

λ(t) = λ(t0)+ cA
P(SOCtarget −SOC(t))+ cA

I
∫ t

t0(SOCtarget −SOC(t))dt
(14)

where λ(t0) is the initial λ value; cA
P and cA

I are the propor-
tional and integral gains, respectively. If the SOC(t) is higher
than SOCtarget, λ is decreased to encourage battery discharg-
ing; on the contrary, if the SOC(t) is lower than SOCtarget,
λ is raised to encourage battery charging. As for any PI
controller, the proportional and integral gains must be tuned
in order to ensure convergence of the SOC to the SOCtarget
value, avoiding, at the same time, an unstable behavior of
the solution. Moreover, also the selection of the initial λ(t0)
value influences the solution.

CS and CI A-ExMSs are designed to achieve different
final SOC values. The SOCtarget for the CS ExMS can be
expressed as in the equation (10). The equivalence factor is
updated at each time step through equation (14). The CI A-
ExMS is formulated under the realistic assumption that while
we are aware of an upcoming silent watch, the exact moment
the silent watch will begin is not known. Hence, over the
mission, the battery is charged to reach the SOCtarget as fast
as possible in anticipation of an upcoming silent watch phase
(the constant SOCtarget is expressed as in equation (12)). It is
worth noting that before reaching the SOCtarget, the equiva-
lence factor is kept constant λ = λ(t0), and the control vari-
able is selected to charge the battery as much as possible.
Once the SOC reaches the SOCtarget for the first time, it is
then maintained near the SOCtarget by updating the equiva-
lence factor through equation (14) for the remaining portion
of the mission.

In general, an optimal control policy, whether aimed to
minimize fuel consumption or exergy losses, is not designed
to ensure drivability constraints [30], thus potentially caus-
ing powertrain noise, vibration, and harshness [31]. Previous
studies have proposed methods to address the driviability is-
sues for the standard ECMS [31, 32].

In this work, the sensitivity function approach proposed
in [30] is adopted to modify the ECMS, ExMS, and A-ExMS
solutions to tackle undesired high-frequency component in
the ICE power request. At each time step ∆t, the ECMS,

ExMS or A-ExMS selects the control variable Pbatt(t) to min-
imize the Hamiltonian H(t), and the sensitivity function is
calculated as:

S(t) =
∣∣∣∣ H(t)−H(t −∆t)
Pgen(t)−Pgen(t −∆t)

∣∣∣∣ (15)

If the sensitivity function is higher than a given sensitivity
function threshold Sth, the selected control variable is im-
plemented at time t; otherwise, if the sensitivity function is
lower than Sth, the selected control is discarded and a sub-
optimal Pbatt candidate1 is implemented. Careful considera-
tion must be payed to the selection of the sensitivity thresh-
old Sth, in order to avoid chattering behavior. Once an appro-
priate Sth value is selected, the sensitivity function discards
those control candidates which lead to low variations in the
cost function, or high variations in the generator power be-
tween consecutive time steps, avoiding the undesired chat-
tering behavior. In Sec.6, a sensitivity analysis is conducted
to find the appropriate sensitivity threshold value.

6 Results
The offline ExMSs are solved for the military vehi-

cle model described in Sec.2. The results obtained by the
ECMS, ExMSs, and A-ExMSs are compared with the re-
spective optimal DP solutions. In the remainder of the pa-
per, the symbols DPfc, DPdest, and DPthermal are used to in-
dicate the solution obtained by DP to the ECMS, ExMSdest,
and ExMSthermal optimal control problems, respectively. It
is worth noting that the SOCmin and SOCmax are set to 40%
and 80%, respectively, for all the simulations.

6.1 Sensitivity analysis
The ECMS and ExMSs are tested over the Munson driv-

ing mission to assess the presence of chattering behavior.
Since the Munson is characterized by a constant velocity pro-
file [15], the power requested at the wheels Pw is constant for
almost the whole driving mission and the presence of chat-
tering behavior of the generator power is regarded as an in-
dicator of numerical instabilities.

An undesired chattering behavior is observed while test-
ing the ExMS for minimization of thermal emissions over
the Munson mission. A sensitivity analysis is carried out
to select the appropriate Sth value, analyzing the solutions
obtained by the ExMS with different values of Sth: 0.0001,
0.001, 0.01, 0.1. To evaluate the ExMS solution for each Sth,
both the reduction of chattering behavior and performance
are assessed. The performance is quantified by comparing
the exergy losses to the one obtained through DP and as-
sessing the final SOC at the end of the mission, which are
reported in Table 3 for each value of Sth. On the other hand,
the chattering behavior is assessed through the analysis of

1The sub-optimal candidate is selected as the battery power that mini-
mizes the cost function between the ones that lead to a sensitivity function
lower than the threshold.
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the power profiles obtained by the ExMS with different val-
ues of the sensitivity threshold, shown in Fig.2. The increase
of the Sth value leads to lower chattering behavior but slightly
lower performance. Based on the obtained results, Sth=0.001
is selected as a good compromise between chattering avoid-
ance and good performance, and is adopted in the following
simulations.

Fig. 2. Power requested at the wheels, generator and battery power
profiles obtained by the ExMS for minimization of thermal emissions
over Munson for different Sth values

6.2 Charge sustaining ExMS
The realistic military driving mission DCE5 [33] is used

to solve the proposed strategies. The DCE5 is characterized
by a variable velocity profile shown in Fig.3; the slope and
auxiliary power are equal to zero for the whole mission.

Fig. 3. Velocity, slope, and auxiliary power profiles of the DCE5 driv-
ing mission

While the equivalence factor is calibrated offline
through the bisection algorithm for the offline ECMS and
ExMSs, the A-ECMS and A-ExMSs update the equivalence
factor online at each time step. To test the adaptation abil-
ity of the A-ECMS and A-ExMSs, a suboptimal initial value

of the equivalence factor λ(t0) is selected for each strategy.
The optimal values λopt of the equivalence factors calibrated
offline, and the λ(t0) values for the adaptive strategies are
reported in Table 4, respectively.

The proportional and integral gains are parameters of the
A-ExMS that need to be properly calibrated to obtain an ob-
jective function value J close to the DP optimal one J∗, while
operating in charge sustaining (−1% ≤ ∆SOC ≤ 1%, with
∆SOC = SOC(t f )−SOC(t0)). For each strategy (A-ECMS,
A-ExMSdest, and A-ExMSthermal), the solution is obtained
over the first 10 minutes of the DCE5 mission for different
values of cA

P and cA
I ; the results in terms of ∆SOC and J

J∗ are
reported in Tables 5, 6, and 7. Based on the presented re-
sults, the cA

P and cA
I values are selected for each strategy, as

highlighted in bold within the Tables: cA
P=32 and cA

I =0.2 for
the A-ECMS, cA

P=2.5 and cA
I =0.07 for the A-ExMSdest, and

cA
P=1 and cA

I =0.0075 for the A-ExMSthermal.
Once the tuning parameters are selected, the proposed

strategies are tested over the whole DCE5 mission. In Fig.4,
the generator, battery, and braking power selected by the dif-
ferent management strategies are depicted as functions of the
power requested at the wheels. Analyzing the energy-based
strategies results in the first column of Fig.4, it is possible
to note that the power-split obtained by DPfc and ECMS are
almost identical, while some differences are present in the A-
ECMS power profiles. These differences are caused by the
different equivalence factor profiles, shown in the lower sub-
plot of Fig.5. Since the initial λ value is higher than λopt, the
battery is charged at the beginning of the mission by the A-
ECMS, while the other algorithms tend to discharge the bat-
tery. As a consequence, the SOC profile obtained by the A-
ECMS is visibly different compared to the other algorithms.
A small difference is also present between the ECMS and
DPfc SOC profiles. Although ECMS leads to a quasi-optimal
solution, the equivalence factor should vary during the mis-
sion to obtain a solution identical to DPfc, based on the PMP
theory [14]. Indeed, the fictitious equivalence factor for DPfc
varies over time with a slightly decreasing trend. The DPfc
fictitious λ values correspond to the λ values that should be
used in the ECMS in order to select the same Pbatt selected
by DP over the mission.

The ExMSdest and A-ExMSdest lead to a similar power-
split to the one obtained with ECMS and A-ECMS, respec-
tively. The similarities between the control policy of the
exergy-based strategies for minimization of exergy destruc-
tion and energy-based strategies can be explained by the fact
that those exergy-based strategies aim to minimize the irre-
versibilities, which is comparable to the energy-based strate-
gies implicit minimization of system inefficiencies to reduce
fuel consumption. Also in this case, due to the higher ini-
tial equivalence factor, the battery is charged at the begin-
ning by the A-ExMSdest, while the ExMSdest and DPdest tend
to discharge the battery. Afterward, the ExMSdest equiva-
lence factor is correctly updated and progressively converges
to the optimal ExMSdest one, as shown in the second column
of Fig.5. As a consequence, the SOC profiles display dif-
ferent trends at the beginning, overlapping in later phases of
the mission. The slight difference between SOC profiles ob-
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Table 3. Sensitivity function analysis

ExMSthermal DP

Sth 0.0001 0.001 0.01 0.1

Xheat,genset(kJ) 742.01 (+0.28%) 743.02 (+0.43%) 743.04 (+0.43%) 616.29 (-16.7%) 739.83 (0.0%)

SOC(t f ) 49.63% 49.61% 49.61% 46.56% 49.50%

Fig. 4. Generator, battery and mechanical brake power profiles as a function of power requested at the wheels for all the charge sustaining
strategies over the DCE5 mission. Column (a) shows the energy-based strategies; column (b) the exergy-based strategies for minimization
of exergy destruction; column (c) the exergy-based strategies for minimization of thermal emissions

Table 4. Optimal equivalence factor and initial equivalence factor for
the adaptive strategies

A-ECMS A-ExMSdest A-ExMSthermal

λopt 2.21 0.77 5.60·10−2

λ(t0) 3 1 0.1

tained by ExMSdest and DPdest are once again explained by
the suboptimality of the constant equivalence factor for the
ExMSdest.

The exergy-based strategies for minimization of thermal
emissions lead to very different power-splits compared to the
other strategies. As shown in the third column of Fig.4, the
battery power Pbatt selected by thermal emissions abruptly
change when the power requested at the wheels is about
80 kW. Indeed, all three ExMSthermal, A-ExMSthermal, and
DPthermal select specific generator powers between 7 and 15
kW, and over 100kW in order to minimize the exergy transfer
due to heat exchange. The high Pgen are selected to operate
the ICE at high speed, reducing the in-cylinder gas tempera-
ture and the heat transfer between the ICE and the environ-
ment [15].

Table 5. SOC deviation from the SOCtarget and
m f
m∗

f
obtained by the

A-ECMS for different values of cA
P and cA

I over the first 10 minutes of
DCE5

∆SOC(%)
cA

P ṁ f
ṁ∗

f

cA
P

16 32 64 128 16 32 64 128

cA
I

0.05 0.45 0.9 1.08 1.01

cA
I

0.05 1.02 1.02 1.02 1.02

0.1 0.7 0.56 0.76 0.83 0.1 1.02 1.01 1.02 1.02

0.2 0.67 0.60 0.58 0.65 0.2 1.02 1.01 1.01 1.02

0.4 1.12 0.71 0.56 0.56 0.4 1.02 1.02 1.02 1.02

Fuel consumption, genset exergy destruction, and genset
exergy transfer due to heat exchange are quantified in Fig.6 to
compare the performance of the different control algorithms
over the DCE5 mission. The solutions obtained through
DPdest and ExMSdest are comparable to those obtained by the
DPfc and standard ECMS, achieving at most 0.3% more fuel
consumption and 1.1% less exergy destruction than standard
DPfc. On the other hand, the ExMSthermal for minimization of
thermal emissions and DPthermal achieve significant reduction
(over 30%) of thermal emissions proving to be a suitable ap-
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Fig. 5. SOC and equivalence factor profiles obtained by all the charge sustaining strategies over the DCE5 mission. Column (a) shows
the energy-based strategies; column (b) the exergy-based strategies for minimization of exergy destruction; column (c) the exergy-based
strategies for minimization of thermal emissions

Table 6. SOC deviation from the SOCtarget and
Ẋdest,genset
Ẋ∗

dest,genset
obtained

by the A-ExMSdest for different values of cA
P and cA

I over the first 10
minutes of DCE5

∆SOC
cA

P Ẋdest,genset
Ẋ∗

dest,genset

cA
P

1.25 2.5 5 10 1.25 2.5 5 10

cA
I

0.0175 0.33 0.08 0.35 0.72

cA
I

0.0175 1.02 1.01 1.01 1.01

0.035 2.99 1.47 0.6 0.5 0.035 1.04 1.02 1.01 1.01

0.075 0.75 0.8 0.72 0.54 0.075 1.02 1.01 1.01 1.01

0.15 2.1 1.88 1.15 0.65 0.15 1.03 1.03 1.02 1.01

Table 7. SOC deviation from the SOCtarget and
Ẋheat,genset
Ẋ∗

heat,genset
obtained

by the A-ExMSthermal for different values of cA
P and cA

I over the first
10 minutes of DCE5

∆SOC
cA

P Ẋheat,genset
Ẋ∗

heat,genset

cA
P

0.25 0.5 1 2 0.25 0.5 1 2

cA
I

0.0015 -2.46 -1.39 -0.05 0.84

cA
I

0.0015 1.02 1.01 1.01 1.02

0.0035 1.47 -1.04 -0.41 0.22 0.0035 1.04 1.01 1.01 1.02

0.0075 -1.38 -0.70 -0.38 0.08 0.0075 1.02 1.01 1.01 1.02

0.015 1.31 0.06 -0.16 0.01 0.015 1.02 1.02 1.01 1.02

proach to avoid thermal imaging detection in military appli-
cations, but producing at least 19% higher fuel consumption
and 28% higher exergy destruction than the energy-based
strategies. The adaptive ECMS and ExMSs achieve slightly
suboptimal solutions, reaching around 2% higher objective
function than the respective optimal DP solutions.

0

1

2

0

5

10
4

Fig. 6. Cumulative fuel consumption, genset exergy destruction,
and genset exergy transfer due to heat exchange obtained by charge
sustaining ECMS, ExMSs, and DP

6.3 Charge increasing ExMS
The CI ExMSs and A-ExMSs are tested over the DS

driving scenario composed of two different military driv-
ing missions (A and B) and two silent watch phases. The
velocity, slope and auxiliary power profiles required during
the driving scenario are shown in Fig.7. The driving mis-
sions are characterized by varying velocity and slope pro-
files, while the Paux=2.6kW is constant for both missions.
During the silent watch, the vehicle velocity is equal to zero,
and the electric power requested by the auxiliaries oscillates
between 2.125kW and 1.5kW. In this scenario, two optimal
control problems are solved, one for each driving mission.
The initial SOC for the second control problem (mission B)
corresponds to the SOC obtained at the end of the first silent
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watch. Moreover, it is worth specifying that the final desired
SOC (SOCtarget = 80%) has to be reached at the end of each
mission.

Fig. 7. Velocity, slope, and auxiliary power profiles of the DS sce-
nario, characterized by the two driving missions A and B, each fol-
lowed by a silent watch.

For the CI A-ECMS and A-ExMSs, the proportional
and integral gains are calibrated over the driving mission A
of the DS scenario, to obtain an objective function value
J close to the DP one, i.e., J∗, and charge the battery as
much as possible, reaching an final SOC equal or greater
than SOCtarget at the end of the mission (∆SOC ≥ 0, with
∆SOC = SOC(t f )− SOCtarget). For each strategy, the so-
lution is obtained for different values of cA

P and cA
I , with

the same initial equivalence factor. The ∆SOC and the J
J∗

obtained for every combination of cA
P and cA

I by the CI A-
ECMS, A-ExMSdest, and A-ExMSthermal are reported in Ta-
bles 8, 9, and 10, respectively. Based on the presented re-
sults, the cA

P and cA
I values are selected for each strategy,

as highlighted in bold within the Tables: cA
P=64 and cA

I =0.8
for the A-ECMS, cA

P=20 and cA
I =0.5 for the A-ExMSdest, and

cA
P=1 and cA

I =0.035 for the A-ExMSthermal. After the calibra-
tion process, the tuned A-ECMS, and A-ExMSs are tested
over the whole DS driving scenario (not just the mission A
used for calibration of cP and cI). Since mission B of the
DS driving scenario is different from mission A, the adap-
tive strategies are hence tested on different driving conditions
from the tuning ones.

The results obtained by the offline ECMS and ExMSs
with (P) and without (NP) the penalty function formulated in
Sec.4, and by the A-ECMS, and A-ExMSs, are compared to
the benchmark DP solution over the DS driving scenario. For
the ECMS and ExMSdest with penalty function, the power
threshold Pe,th=3kW is selected greater than the electrical
power requested towards the end of the mission (Pe=2.5kW)

Table 8. SOC deviation from the SOCtarget and
m f
m∗

f
obtained by the

A-ECMS for different values of cA
P and cA

I over the mission A of the
DS scenario

∆SOC
cA

P ṁ f
ṁ∗

f

cA
P

16 32 64 128 16 32 64 128

cA
I

0.4 0 0 -0.03 -0.015

cA
I

0.4 1.16 1.16 1.15 1.15

0.8 0 0 0 -0.02 0.8 1.15 1.15 1.14 1.15

1.6 0 0 0 0 1.6 1.15 1.14 1.14 1.15

3.2 -0.05 0 0 0 3.2 1.21 1.18 1.15 1.15

Table 9. SOC deviation from the SOCtarget and
Ẋdest,genset
Ẋ∗

dest,genset
obtained

by the A-ExMSdest for different values of cA
P and cA

I over the mission
A of the DS scenario

∆SOC
cA

P Ẋdest,genset
Ẋ∗

dest,genset

cA
P

5 10 20 40 5 10 20 40

cA
I

0.125 0 0 -0.04 -0.18

cA
I

0.125 1.12 1.11 1.11 1.11

0.25 0 0 0 -0.03 0.25 1.11 1.11 1.11 1.11

0.5 0 0 0 0 0.5 1.10 1.11 1.10 1.11

1 -0.1 0 0 0 1 1.15 1.13 1.12 1.11

Table 10. SOC deviation from the SOCtarget and
Ẋheat,genset
Ẋ∗

heat,genset
ob-

tained by the A-ExMSthermal for different values of cA
P and cA

I over
the mission A of the DS scenario

∆SOC
cA

P Ẋheat,genset
Ẋ∗

heat,genset

cA
P

0.5 1 2 4 0.5 1 2 4

cA
I

0.0015 1 1 1 1

cA
I

0.0015 1.18 1.18 1.18 1.18

0.0035 1 1 1 1 0.0035 1.17 1.17 1.17 1.18

0.0075 -0.22 0.20 0.15 0.05 0.0075 1.19 1.19 1.18 1.18

0.015 -0.97 -0.93 -0.85 -0.7 0.015 1.23 1.21 1.20 1.19

in order to activate the penalty in the last minutes of the mis-
sion. On the other hand, for the ExMSthermal, the penalty
function does not need to be active since the final SOC con-
straint is already satisfied without the penalty function and,
consequently, Pe,th is selected to be equal to 0kW.

Starting with the energy-based strategies, the power-
split obtained by the CI ECMS(NP), ECMS(P), A-ECMS
and DPfc over the whole DS are shown as a function of the
power requested at the wheels in first column of Fig.8. For
the sake of clarity, a zoom of the power profiles against time
over the first mission A of the DS are provided in Fig.9.
ECMS with and without penalty and DPfc lead to similar
power-split: the main differences between the control poli-
cies are related to a more frequent use of the mechanical
brakes by ECMS(NP) and ECMS(P), achieving a slightly
less efficient solution than DPfc. Moreover, the use of the
penalty function in the ECMS(P) leads to a higher generator
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power than the ECMS(NP) in the last minutes of each driving
mission, avoiding battery discharging and enabling to reach
the desired final SOC at the end of each mission. On the
other hand, the A-ECMS selects significantly different gen-
erator and battery powers compared to the other algorithms.
At the beginning of each mission, the battery is charged using
the minimum battery power Pbatt,min to reach the SOCtarget in
the shortest possible time. After the SOCtarget is reached for
the first time, A-ECMS selects higher battery powers than
the other algorithms to discharge the battery and maintain
the SOC near the SOCtarget. However, since the A-ECMS
operates near the SOCmax for a long period of time, the me-
chanical brakes are frequently used to satisfy the constraint
on the SOC upper limit (SOC ≤ SOCmax), reducing the ve-
hicle efficiency. SOC profiles in the first column of Fig.10
show that all the energy-based strategies reach the final de-
sired SOC at the end of each mission, except for the ECMS
without penalty function. In the lower subplot of Fig.10, the
equivalence factor profile is shown. The equivalence factor
is not represented during the silent watch phases, since the
battery is the only active power source, and no power-split
control strategy is needed.

Similar considerations can be drawn about the power-
split, SOC, and equivalence factor profiles obtained by the CI
ExMS and A-ExMS for minimization of exergy destruction.
For ExMSdest as well, using the penalty function is essential
to satisfy the final SOC constraint at the end of the mission.

Once again, the exergy-based strategies for minimiza-
tion of thermal emissions obtain significantly different re-
sults from the energy-based strategies and exergy-based
strategies for minimization of exergy destruction. The use
of the penalty function is not necessary for the ExMSthermal,
since the SOCtarget is reached at the end of each mission by
the ExMSthermal without penalty. This result is explained
by the fact that the ExMSthermal(NP) selects a generator
power higher than zero to minimize the exergy transfer due
to heat exchange towards the end of the mission, conse-
quently charging the battery. Therefore, the power thresh-
old for the ExMSthermal(P) and ExMSthermal(P) is selected to
be equal to zero to avoid the activation of the penalty func-
tion. The performance obtained by the ExMSthermal(P) and
ExMSthermal(NP) are comparable to the benchmark solution
provided by DP, achieving a negligibly higher (0.1%) exergy
loss. Even the CI A-ExMSthermal meets the final SOC con-
straint by reaching the maximum SOC at the end of each mis-
sion. The generator power is kept as high as possible in the
last portion of the mission to minimize thermal emissions,
consequently maintaining the SOC equal to the maximum
value.

The cumulative fuel consumption, exergy destruction,
and exergy transfer due to heat exchange obtained by all the
algorithms over the whole DS driving scenario are reported
in Fig.11. In contrast to the CS ECMS and ExMSs, the CI
ECMS and ExMSs obtain suboptimal results compared to the
DP benchmark. While the solutions obtained by the ECMS
and ExMSdest without penalty achieve lower fuel consump-
tion and exergy loss than DPfc and DPdest because the final
SOC constraint is not met, the ECMS and ExMSdest with

penalty lead to slightly (around 1%) higher fuel consumption
and exergy destruction than DPfc and DPdest, respectively.
On the other hand, the ExMSthermal with and without penalty
achieves almost identical results to DPthermal, with only a
negligibly higher exergy loss. Due to completely different
control policies, the solutions obtained through the adaptive
A-ECMS and A-ExMSs differ from the DP optimal results,
achieving significantly higher fuel consumption and exergy
loss. Since the SOC is maintained close to the SOC upper
limit for almost the whole mission, the regenerative braking
is often avoided with the consequent decrease in the ener-
getic and exergetic efficiency of the solution.

Finally, to assess the real-time capability of the proposed
strategies, the computational time is quantified. Since the
computational time is significantly lower than the duration
of the driving scenario, the applicability of the ExMS and
A-ExMS for online control is demonstrated. The computa-
tional time required to solve the strategies over the DCE5
mission and the DS driving scenario with 2 silent watch
phases are about 6 and 19 seconds, respectively. The exper-
iments were run on a computer with an AMD EPYC 7713
64-Core processor running at 2 GHz, with 512 GB of RAM.
Given the same vehicle model and the same driving mission,
the computational times required to solve the energy-based
and exergy-based strategies over the same driving mission
are very close.

7 Conclusions
In this work, the exergy minimization strategies for

ground HEVs online control are formulated. First, all main
components of a series military M-ATV are modeled from
the energetic standpoint and the genset exergy model is for-
mulated by relying on the exergetic framework developed
in [11], and adopting the comprehensive ICE exergy model
developed in [28]. Afterward, based on the formulation of
the ECMS, the exergy minimization strategies are developed
as online strategies to minimize genset exergy destruction
and thermal emissions, respectively. While the first ExMSdest
aims at the minimization of genset irreversibilities to in-
crease the vehicle efficiency, the second ExMSthermal can be
used in military applications to prevent thermal imaging de-
tection from adversary units. Moreover, the A-ExMSs are
formulated as online control strategies that adapt the equiva-
lence factor in real-time.

The CS and CI ExMSs are developed to obtain different
final SOC at the end of the driving mission. The CS ExMS
aims to achieve charge sustainability and enables to obtain
the most energetically/exergetically efficient solution, with-
out depleting the battery charge; on the other hand, the CI
ExMS is useful for military driving missions followed by a
silent watch, recharging the battery as much as possible be-
fore the silent watch phase.

The CS and CI ExMSs and A-ExMSs are tested over the
DCE5 mission and a complex driving scenario, respectively,
and their results are compared to the respective benchmark
solutions provided by DP. While the CS ExMSs closely mir-
ror the control policy of the respective DP solutions, the CS
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Fig. 8. Generator, battery, and mechanical brake power profiles as a function of power requested at the wheels for all the charge increasing
strategies over the DS scenario. Column (a) shows the energy-based strategies; column (b) the exergy-based strategies for minimization of
exergy destruction; column (c) the exergy-based strategies for minimization of thermal emissions

Fig. 9. Generator, battery, and mechanical brake power profiles as a function of time for all the charge increasing strategies over the driving
mission A of the DS scenario. Column (a) shows the energy-based strategies; column (b) the exergy-based strategies for minimization of
exergy destruction; column (c) the exergy-based strategies for minimization of thermal emissions

A-ExMSs obtains slightly higher exergy loss than DP. More-
over, the proposed penalty function for the CI ECMS and
ExMSs allows the battery to be charged as much as pos-
sible during the mission, obtaining fuel consumption and
exergy loss slightly higher (around 1%) than the respective
DP benchmark solutions. For the online application, the A-

ECMS and A-ExMSs achieve significantly higher fuel con-
sumption and exergy loss than DP.

Notation
batt, cell Subscripts for battery pack and battery cell, re-

spectively

12 Copyright © by ASME

Journal of Dynamic Systems, Measurement, and Control. October 24, 2023;
Accepted manuscript posted October 01, 2024. 10.1115/1.4066764
Copyright (c) 2024 by ASME

Ac
ce

pt
ed

 M
an

us
cr

ip
t N

ot
 C

op
ye

di
te

d D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/dynam

icsystem
s/article-pdf/doi/10.1115/1.4066764/7384706/ds-23-1299.pdf by Stanford U

niversity user on 15 O
ctober 2024



Fig. 10. SOC and equivalence factor profiles obtained by all the charge increasing strategies over the DS scenario. Column (a) shows
the energy-based strategies; column (b) the exergy-based strategies for minimization of exergy destruction; column (c) the exergy-based
strategies for minimization of thermal emissions
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Fig. 11. Cumulative fuel consumption, genset exergy destruction,
and genset exergy transfer due to heat exchange obtained by charge
increasing ECMS, ExMSs, and DP over the DS scenario

dest, heat Subscripts for exergy destruction and heat ex-
change

eng, gen, mot Subscripts for internal combustion engine,
generator, and motor, respectively

χ̇ Time derivative of a variable χ

0 Reference state

Nomenclature
A Frontal area (m2)
C Thermal capacity (J/K)
Cr,Cx Roll and drag coefficients (−),(−)
Fbrake Brake mechanical force (N)
hout Convective coefficient (W/K)
Icell Cell current (A)

J Cost function
LHV Fuel lower heating value (J/kg)
M Vehicle mass (kg)
P Power (W)
NP Number of battery cells connected in parallel (−)
NS Number of battery cells connected in series (−)
Pfric,gen Friction power loss of generator (W)
Piron,gen Iron power loss of generator (W)
PRCL,gen Rotor copper power loss of generator (W)
PSCL,gen Stator copper power loss of generator (W)
Pw Power required at the wheels (W)
R0,cell Internal resistance of a cell (Ω)
OCVcell Open circuit voltage of a cell (V)
Qcell Capacity of a cell (Ah)
Qheat,cell Convective heat exchanged between cell and en-

vironment (J)
λ Equivalence factor (−)
T Temperature (K)
τ Torque (Nm)
SOC State of charge of the battery (−)
v Vehicle speed (m/s)
X Exergy (J)
Xcomb,eng Exergy destruction due to combustion irre-

versibilities (J)
Xexh,eng Exergy transfer of exhaust gas (J)
Xfric,eng Exergy destruction due to friction (J)
Xfuel,eng Exergy related to fuel (J)
Xintk,eng Exergy related to intake air (J)
Xothers,eng Exergy destruction of unmodeled phenomena (J)
Xwork,eng Exergy related to work (J)
η Energy efficiency (−)
θ Slope (rad)
ρa Air density (kg/m3)
ω Rotating speed (rad/s)
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