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This paper presents COBRAPRO, a new open-source Doyle-Fuller-Newman (DFN) model software package with an integrated
closed-loop parameter optimization routine. A key challenge in DFN model parameterization is that parameters measured from cell
tear-down experiments cannot be directly used in simulations, and parameter identification is required to accurately reflect real-
world battery dynamics However, existing open-source DFN codes lack the capability to perform parameter identification and
operate in open-loop mode. COBRAPRO addresses this gap by implementing a systematic parameterization pipeline to accurately
determine parameters using battery current and voltage data. Concepts from structural and practical identifiability are utilized to
determine parameters that can be fixed to their experimental values and parameters that are suitable for optimization. In the
parameter identification process, particle swarm optimization is used to minimize the error between experimental data and
simulation results. Additionally, COBRAPRO incorporates a robust method to determine consistent initial conditions and utilizes a
fast numerical solver for improved performance. We demonstrate COBRAPRO’s parameter identification framework on reference
performance test data obtained from LG INR21700-M50T cells. The parameterized model is validated against driving cycle data,
showing good agreement between the experimental and simulation results.
© 2024 The Electrochemical Society (“ECS”). Published on behalf of ECS by IOP Publishing Limited. All rights, including for
text and data mining, AI training, and similar technologies, are reserved. [DOI: 10.1149/1945-7111/ad7292]
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List of Symbols

ai Specific interfacial area [m2/m3], i ∈ (p, n)
bruggi Bruggeman coefficient [−], i ∈ (p, s, n)
ce,i Electrolyte concentration [mol/m3], i ∈ (p, s, n)
cs,i Solid particle concentration [mol/m3], i ∈ (p, n)
cs i

avg
, Volume averaged solid particle concentration

[mol/m3], i ∈ (p, n)
cs i

bulk
, Bulk solid particle concentration [mol/m3], i ∈ (p, n)

cs i
surf
, Particle surface concentration [mol/m3], i ∈ (p, n)

Di Electrolyte diffusion coefficient [m2/s], i ∈ (p, s, n)
Di

eff Effective electrolyte diffusion coefficient [m2/s], i ∈ (p,
s, n)

Ds,i Solid diffusion coefficient [m2/s], i ∈ (p, n)
F Faraday constant [C/mol]
Iapp Applied current [A]
ji Pore wall flux [mol/(m2 · s)], i ∈ (p, n)
j0,i Exchange current density per unit charge

[mol/(m2 · s)], i ∈ (p, n)
J Total cost function [-]
JSOC,i Electrode cost function [-], i ∈ (p, n)
JV Voltage cost function [-]
ki Reaction rate constant [m2.5/(mol0.5 · s)], i ∈ (p, n)
li Length of domain [m], i ∈ (p, s, n)
Ni X-direction discretization points [-], i ∈ (p, s, n)
Nri Radial discretization points [-], i ∈ (p, n)
q Switch function discreteness factor [-]
Qdis Discharged capacity [Ah]
R Ideal gas constant [J/(K·mol)]
Ri Particle radius [m], i ∈ (p, n)
SOCi State of charge in electrode [−], i ∈ (p, n)
tinit Initialization time [s]
T Cell temperature [K]
t+ Transference number [−]
Ui Open-circuit potential [V], i ∈ (p, n)
Vcell Cell voltage [V]
Vlower

cutoff Lower voltage cut-off limit [V]

Vupper
cutoff Upper voltage cut-off limit [V]

α Perturbation factor [-]
β Correlation index threshold [-]
εi Porosity [−], i ∈ (p, s, n)
εi

solid Solid volume fraction [−], i ∈ (p, n)
εi

filler Binder volume fraction [−], i ∈ (p, n)
κi Electrolyte conductivity [S/m], i ∈ (p, s, n)
κi

eff Effective electrolyte conductivity [S/m], i ∈ (p, s, n)
σi Solid conductivity [S/m], i ∈ (p, n)
σi

eff Effective solid conductivity [S/m], i ∈ (p, n)
φe,i Electrolyte potential [V], i ∈ (p, s, n)
φs,i Solid phase potential [V], i ∈ (p, n)
θi

avg Normalized cs i
avg
, with respect to cs i,

max [−], i ∈ (p, n)
θi

bulk Normalized cs i
bulk
, with respect to cs i,

max [−], i ∈ (p, n)
θi

surf Normalized cs i
surf
, with respect to cs i,

max [−], i ∈ (p, n)
θi

0% Stoichiometric coefficient at 0% SOCi [−], i ∈ (p, n)
θi

100% Stoichiometric coefficient at 100% SOCi [−], i ∈ (p, n)

Acronyms
AD Automatic differentiation
AE Algebraic equation
BMS Battery management system
CV Control volume
DAE Differential algebraic equation
DFN Doyle-Fuller-Newman
ECM Electric circuit model
EIS Electrochemical impedance spectroscopy
ESPM Enhanced single particle model
eVTOL Electric vertical take-off and landing
FDM Finite difference method
FEM Finite element method
FVM Finite volume method
GA Genetic algorithm
GITT Galvanostatic intermittent titration technique
HPPC Hybrid pulse power characterization
LM Levenberg-Marquardt
LIB Lithium-ion battery
LSA Local sensitivity analysis
ML Machine learning
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OCV Open-circuit voltage
ODE Ordinary differential equation
PDE Partial differential equation
PSO Particle swarm optimization
RMSE Root mean square error
RPT Reference performance test
SOC State of charge
SOH State of health
SPM Single particle model
UDDS Urban dynamometer driving schedule

Lithium-ion batteries (LIBs) have emerged as the predominant
choice for energy storage systems due to their high energy and
power densities, and long cycle life.1 LIBs play a crucial role in
enabling the electrification of transportation and grid energy storage.
The U.S. Department of Energy forecasts a substantial market surge
for LIBs, projecting a 5-10 times increase between 2020 and 2030,
reaching up to 2500 GWh by 2030.2

The widespread adoption of LIBs has been closely linked with the
development and utilization of battery models. These models can
vary in complexity and serve diverse purposes, from optimizing
battery design to enhance energy density and fast charging/power
capability,3–5 improving manufacturing processes,6 and advancing
new material development.7 Notably, in the domain of battery design,
models have accelerated design iterations, enabling the swift ex-
ploration of a wide range of design variables and scenarios, leading to
cost-effective and less labor-intensive product development.

Another important application of battery models is battery
monitoring systems (BMS). The widespread integration of LIBs in
applications such as electric vehicles, electric vertical take-off and
landing (eVTOL) aircraft, and grid energy storage necessitates
robust engineering infrastructure to ensure the safety and reliable
operation of batteries. The BMS, comprising a suite of hardware and
software engineering components, utilizes battery models to estimate
unmeasurable internal states such as state of charge (SOC) and state
of health (SOH). Control strategies are deployed to regulate battery
operation, encompassing cell balancing, thermal management, and
charge and discharge control. These strategies aim to reduce cell
aging within the battery pack8 and prevent overcharging or dischar-
ging conditions.9

Three main types of battery models exist: equivalent circuit
models (ECM), data-driven models, and physics-based models.
ECMs use circuit elements such as ohmic resistors and resistor-
capacitor pairs to model the battery dynamics. ECMs have been
widely adopted in conventional BMS due to their low computational
burden and relatively simple implementation.10 However, accurate
ECMs require extensive calibration and offer little to no insight into
the electrochemical states of the battery.11 Data-driven, or machine
learning (ML), models have gained attention for their ability to
model batteries with high accuracy and low computational burden.
MLs are used for tasks such as health estimation,12 predicting
remaining useful life,13 assisting in model identification,14 and
reconstructing images to analyze the microscale architecture of the
cell electrode.15 However, ML models function as black boxes, with
their accuracy heavily depending on the quality, quantity, and
diversity of the training data. As a result, ML models must be
trained on datasets that closely represent the operational conditions
of the targeted application.16 Both ML models and ECMs are
empirical models that can struggle with extrapolation, meaning
they may not perform well outside the range for which they were
trained and validated. Recently, hybrid models17–19 have been
proposed, combining physics-based and ML methods to improve
the predictive capability and physical interpretability of ML models.

Physics-based models use first principles to simulate the battery’s
behavior, providing insights into the internal electrochemical states
within the cell. The most widely accepted and well-known physics-
based model is the Doyle-Fuller-Newman (DFN) or pseudo-two-
dimensional (P2D) model,20 proposed in 1993. The DFN model is
based on porous electrode theory,21 concentrated solution theory,22

and Butler-Volmer kinetics, and is parameterized by physical factors
such as geometric, stoichiometric, concentration transport, and
kinetic parameters. The DFN model has been employed in model-
based battery design,3–5 as well as in advanced BMS to monitor and
control internal electrochemical states for SOC/SOH estimation23

and develop optimal charging strategies.24

The DFN model, also referred to as the P2D model, describes the
macroscale dimension along the through-thickness direction of the
cell, where electrolyte transport and charge conservation in both the
solid and electrolyte occur. Meanwhile, the microscale behavior is
captured by Fickʼs law of diffusion in the pseudo-radial dimension
within the spherical particles. Due to the coupling of the micro and
macroscale dimensions, the DFN model is computationally complex.
The reduced-order counterparts of the DFN model, single particle
model (SPM)25 and enhanced single particle model (ESPM),26,27

both assume the particles can be represented by one spherical
particle per electrode, with SPM ignoring electrolyte dynamics and
ESPM including them. The SPM has been employed in control
applications due to its lower computational burden compared to the
DFN model.28

The DFN model consists of a system of coupled nonlinear partial
differential equations (PDEs) that are numerically discretized to
form a differential algebraic equation (DAE) system. This DAE
system includes ordinary differential equations (ODEs) and alge-
braic equations (AEs), with the AEs acting as constraints. The DFN
model can be discretized using various spatial discretization
methods, such as finite difference method (FDM), finite volume
method (FVM), finite element method (FEM), and spectral
methods.29–31

Solving the DAE system requires consistent initial conditions to
satisfy the AE constraints. In the DFN model, initial guesses for the
algebraic variables are made at the battery equilibrium state when
the current is zero. For instance, the open-circuit potentials (OCPs)
are used as the initial guesses for the solid phase potentials and the
initial SOC is used to calculate the guesses for the solid particle
concentrations. However, when current is applied at t= 0, the
battery deviates from these equilibrium states, and the initial guesses
no longer satisfy the AEs. Therefore, consistent initial conditions are
not known a priori and need to be determined to solve the DFN
model.32,33

To overcome the issue of inconsistent initial conditions, several
methods have been proposed in the context of DFN modeling.
Traditional methods of solving the algebraic constraints require the
use of nonlinear algebraic solvers, which can suffer from conver-
gence issues.32,34 The perturbation approach proposed in Ref. 32
transforms AEs into ODEs using a small perturbation factor. This
approach leverages the robustness and stability of ODE solvers to
iteratively refine the initial conditions, proving to be more effective
in achieving consistent initial conditions than nonlinear AE solvers.
The single-step approach35 improves upon the perturbation approach
by applying a switch function to smoothly transition between the
perturbation and simulation phases, achieving both consistent initial
condition determination and model simulation in a seamless “single
step” for improved computational efficiency.

DFN model parameterization is another major challenge in
implementing the model, as the accuracy and reliability of phy-
sics-based models depend on the correct parameter values. DFN
parameterization methods can be categorized into two approaches.
The first involves cell tear-down to experimentally measure the
parameters.36–38 The second method, called parameter
identification39 or inverse problem,40 is a noninvasive method that
uses the input-output relationship of the DFN model to identify
parameters using battery data. Optimization techniques are used to
minimize the objective function, defined as the error between the
model voltage output and the experimental voltage data, while multi-
objective functions have been proposed to include surface
temperature41 or SOC in the electrodes.42

In cell tear-down experiments, various electrochemical and imaging
techniques can be used to measure the cell parameters. For instance,
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Hg-porosimetry or SEM imaging methods can be used to determine the
porosity, particle radius, and tortuosity in electrodes and separator,
while SEM imaging is commonly used to measure the electrode and
separator thickness and cross-sectional area.36–38 The solid diffusion
coefficient in each electrode can be characterized through half-cell
galvanostatic intermittent titration technique (GITT)36–38 or electro-
chemical impedance spectroscopy (EIS).36 Electrochemical properties
of the electrolyte such as diffusion, conductivity, and transference
number can be characterized using galvanostatic polarization experi-
ments and EIS.43,44 The kinetic parameters such as the reaction rate
constant can be extracted from half-cell EIS measurements.36,38 The
OCP of each electrode can also be measured using half-cell GITT or
low C-rate capacity test experiments.38,45 As not all researchers have
access to the necessary equipment and resources to conduct such
experiments, LiionDB, an online database introduced in Ref. 46, serves
as a valuable resource by offering a searchable repository of experi-
mentally measured parameters from various literature sources.

A common misconception in DFN modeling is that using experi-
mentally measured parameter values from cell tear-down will lead to
accurate model results. The DFN model, like any mathematical model, is
a simplified representation of an actual system and cannot capture all the
intricate physical and chemical processes occurring at different length
and time scales within a battery. Although several extensions of the DFN
model have been proposed, such as the thermal DFN model,47

mechanical DFN model,48,49 and distributed particle-size DFN
model,50 fully accounting for all the physical phenomena occurring in
batteries and the coupling effects between different physical processes
remains challenging. Furthermore, the DFN model assumes perfectly
spherical particles and ignores the heterogeneity in the electrodes,
assuming homogeneous tortuosity and porosity distribution. These
simplifications mean that even accurately measured experimental para-
meters may not directly translate to precise model predictions. This was
demonstrated in Refs. 38 and 51 where the experimentally obtained DFN
parameters had to be tuned for the simulation results to match the
experimental voltage curves. Therefore, careful parameterization
methods must be developed to identify and refine the parameters in
the DFN model, ensuring they are optimized and validated within the
modeling framework to improve the accuracy and reliability of the
simulation results.

Given the overparameterized nature of the DFN model,52

parameter identifiability should be investigated to determine an
identifiable subset of parameters prior to parameter optimization.
Performing parameter identification on a subset of identifiable
parameters, rather than the entire parameter set, can improve
optimization convergence times and reduce overfitting issues.53

Identifiability analysis can be categorized into structural and
practical identifiability.53–57 Structural identifiability refers to the
inherent mathematical properties of a model and whether the model
allows for unique parameter estimation, regardless of the data or
estimation method used.58 Practical identifiability, on the other hand,
assesses whether parameters can be reliably estimated from actual
experimental data, considering real-world constraints such as mea-
surement errors, finite data length, and data informativeness.56

According to Ref. 54, performing both structural and practical
identifiability can improve the reliability of parameter estimation.

The DFN model, a complex system with four coupled nonlinear
PDEs, has been shown to be structurally unidentifiable.59,60 In Ref.
61, the structural identifiability of a decoupled, linearized DFN
model around a specific SOC point was assessed using the system's
transfer function, but the simplifications of linearization limit its
applicability. In Refs. 59 and 60, parameter aggregation was used to
improve identifiability by combining two or more DFN parameters
with indistinguishable effects on the model's output. This process
involves normalizing the DFN model equations with respect to the
electrode and separator thicknesses and radius of the particles to
determine lumped parameters. While parameter lumping does not
make the DFN model structurally identifiable, it helps improve
identifiability by removing redundant parameters from a structural
identifiability standpoint.

Practical identifiability refers to the ability to reliably estimate model
parameters from experimental data. Unlike structural identifiability,
which focuses on the mathematical properties of the model, practical
identifiability considers real-world constraints such as measurement
errors, finite data length, and informativeness of the data.55 Practical
identifiability often requires empirical assessments, such as sensitivity
analysis, to evaluate the feasibility of parameter estimation given input-
output data. Practical identifiability involves not only assessing parameter
sensitivity but also determining whether the impact of each parameter on
the model output is distinguishable from the impact of other
parameters.54,62 Goshtasbi et al.63 utilized extended sensitivity analysis,
averaging sensitivity across multiple local points, and the collinearity
index to compute the similarity between any two parameters. In Refs. 42
and 64, local sensitivity and correlation analysis were conducted to
determine a group of highly sensitive and non-correlated parameters. In
Ref. 65, the QR factorization proposed in Ref. 66 was used to rank the
sensitivity of non-correlated parameters, selecting the top five for
identification. Additionally, some researchers have designed current
input profiles that maximize the practical identifiability of certain DFN
parameters.67

In the past decade, several open-source DFN modeling software
packages have been released by the battery research community. The
first open-source DFN code, DUALFOIL,68 was published by John
Newman in 1998 and written in FORTRAN. Since then, programming
languages such as Python, MATLAB, and Julia have gained prominence
in various engineering domains. Table I shows recent developments in
DFN open-source software, such as LIONSIMBA,30 DEARLIBS,69

fastDFN,70 PyBaMM,31 MPET,71 and PETLION.72 LIONSIMBA was
the first well-documented MATLAB DFN open-source code developed
in 2016 with an accompanying peer-reviewed article.30 LIONSIMBA
offers various options to implement the DFN model, such as Fickʼs law
and polynomial approximation for the microscale equation, 6th order
FDM and spectral methods for the microscale numerical discretization,
and the ability to define current, voltage, or power input profiles.
PyBaMM,31 released in 2019 and written in Python, is one of the most
widely used open-source codes in the battery research community. With
nearly 82 contributors on GitHub as of v24.1, PyBaMM is actively
maintained and constantly improved with new features. PyBaMM is a
highly modular code, that allows users to choose the model type (SPM,
ESPM, DFN, DFN with particle size distribution), discretization method
(FVM with linear interpolation or spectral method), and aging me-
chanism (particle cracking, solid electrolyte interphase growth, lithium
plating).

As shown in Table I, COBRAPRO, PyBaMM, LIONSIMBA,
PETLION, and MPET utilize the efficient SUNDIALS IDA solver.
SUNDIALS is an open-source ODE, DAE, and AE solver package
developed by Lawrence Livermore National Laboratory.73,74 Since
the original code is written in C, several publicly available packages
provide interfaces to SUNDIALS. For instance, PETLION uses
Sundials.jl,75 a Julia package that interfaces with SUNDIALS IDA.
MPET utilizes SciPy,76 which includes a Python wrapper for
SUNDIALS. PyBaMM uses SUNDIALS IDA interfaced from
CasADi,77 which offers SUNDIALS in both Python and
MATLAB versions. Additionally, LIONSIMBA and COBRAPRO
leverage SUNDIALS IDA through the sundialsTB v2.6.2
package,73,74 which provides a MATLAB interface to SUNDIALS.

To determine consistent initial conditions, PyBaMM,
LIONSIMBA, fastDFN, PETLION, and MPET utilize nonlinear
AE solvers to solve the algebraic constraint equation in the DAE.
For instance, SUNDIALS IDACalcIC, a nonlinear AE solver, is
utilized by LIONSIMBA, fastDFN, and MPET while PyBaMM uses
CasADi’s rootfinder function, which is also a nonlinear AE solver.
The fastDFN code implements its own nonlinear AE solver using
Newton’s method. Only DEARLIBS and COBRAPROa utilize the

aThe single-step approach35 involves solving an implicit ODE system to determine
consistent initial conditions. The MATLAB sundialsTB v2.6.2 version of
SUNDIALS IDA is used because it can handle implicit ODEs. In contrast,
CasADi’s MATLAB version of SUNDIALS IDA is limited to solving semi-explicit
ODE systems (CasADi v3.6.5).
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Table I. Comparison of the open-source DFN codes.

Information COBRAPRO DEARLIBS PyBaMM LIONSIMBA fastDFN PETLION MPET

Language MATLAB MATLAB Python MATLAB MATLAB Julia Python

Parameter Optimization
Routine

✓ ✓

Parameter Identifiability
Analysis

✓

Microscale equation Fick’s Law Polynomial
Approximation

Fick’s Law, Polynomial
Approximation

Fick’s Law, Polynomial
Approximation

3rd order Pade
Approximation

Fick’s Law Fick’s Law

Microscale equation
Discretization

FVM, FDM NaN FVM, Spectral Method 6th order FDM,
Spectral Method

NaN FVM CVM

Surface Concentration
Approximation

3rd Order Hermite
Approximation

NaN Linear Interpolation NaN NaN Linear
Interpolation

NaN

Macroscale equation
Discretization

FVM FDM FVM, Spectral Method FVM FDM FVM FVM

DAE Consistent Initial
Conditions

Single-step,
SUNDIALS
IDACalcIC

Single-step CasADi rootfinder SUNDIALS
IDACalcIC

Newton’s method SUNDIALS
IDACalcIC

Gradually Increase
Current/Voltage from

Equilibrium

DAE Solver SUNDIALS IDA ode15s SUNDIALS IDAa SUNDIALS IDA In-house solverb SUNDIALS IDA SUNDIALS IDA

SUNDIALS Version sundialsTB v2.6.2 — CasADi sundialsTB v2.6.2 — Sundials.jl SciPy

Input Options Current Current Current, Voltage,
Power

Current, Voltage,
Power

Current Current, Voltage,
Power

Current, Voltage

a) Note that PyBaMM offers other solvers in addition to the SUNDIALS IDA solver provided by CasADi. b) Crank-Nicolson method used to discretize the DAEs in time, resulting in a system of AEs at each time
step, which are then solved using the bi-conjugate gradient stabilized method.
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robust single-step approach to determine consistent initial condi-
tions.

The open-source DFN codes, PyBaMM, LIONSIMBA, fastDFN,
MPET, and PETLION, operate as open-loop software that requires
known parameters to run the model. In contrast, closed-loop soft-
ware, such as DEARLIBS and COBRAPRO, enable the co-
optimization of parameters through an iterative process using battery
data. Because open-loop software lack parameter optimization
capabilities, they generally rely on uncalibrated, experimentally
measured parameters reported in the literature. As a result, open-
loop software cannot accurately model real-world batteries unless
the correct parameters are obtained through alternative methods.

One such alternative is the co-simulation framework78 developed
in COMSOL Multiphysics®, a widely used commercial FEM soft-
ware. Although COMSOL does not inherently include a parameter
identification routine, the co-simulation framework developed in
Ref. 78 uses LiveLinkTM for MATLAB to enable communication
between MATLAB and COMSOL. This setup allows for closed-
loop parameter identification, where COMSOL simulates the DFN
model and MATLAB’s optimization tools identify the parameters.78

However, COMSOL’s expensive license fee and closed-source code
pose barriers to collaboration and accessibility within the battery
modeling community. GT-AutoLion79 is another commercially
available simulation software, which features a thermally coupled
DFN model to predict cell performance, degradation, and safety but
lacks an embedded parameter optimization routine.

As shown in Table I, DEARLIBS is the only open-source code
besides COBRAPRO that includes a built-in parameter optimization
feature. DEARLIBS was developed in 202169 and uses particle
swarm optimization (PSO) to identify parameters using battery data.
To demonstrate the parameter identification feature, the transport
and kinetic parameters were identified using the 1C discharge curve
obtained from LG INR21700-M50 cylindrical cells and validated
with the urban dynamometer driving schedule (UDDS) driving cycle
profile. However, DEARLIBS uses MATLAB’s Symbolic Math
Toolbox and the ode15s solver, which leads to significantly slow
computation speeds, especially when implementing Fick’s Law
equation for the solid concentration in the particle.

In this paper, we present COBRAPRO (Co-simulation Battery
Modeling for Accelerated Parameter Optimization),80,81 a new
open-source DFN software with the capability to determine accurate
parameters using battery current and voltage data. As experimentally
measured parameters cannot be directly used, COBRAPRO system-
atically parameterizes the DFN model through a three-step process:
structural identifiability to eliminate redundant DFN parameters,
thermodynamic identification to optimize the stoichiometric coeffi-
cients, and practical identifiability to evaluate the sensitivity and
correlation of parameters for the given battery data. The identifiable
parameters are optimized using PSO, with COBRAPRO imple-
menting PSO parallel computing to expedite convergence. This
parameterization pipeline aims to address the overparameterization
and identifiability issues in the DFN model by determining para-
meters that can be fixed to their measured values and parameters that
can be optimized with higher confidence during parameter optimiza-
tion.

To address the computational demands of the DFN model,
COBRAPRO uses the SUNDIALS IDA solver73,74 and automatic
differentiation (AD) with CasADi,77 achieving computation speeds
up to three orders of magnitude faster than DEARLIBS. To
determine consistent initial conditions, COBRAPRO implements
both the robust single-step approach33 and the SUNDIALS
IDACalcIC AE solver, providing users with two options for DAE
initialization.

The paper is structured as follows. An overview of the DFN
model governing equations and parameters is provided, along with
the numerical methods used to spatially discretize the equations. In
COBRAPRO, FVM is used to discretize the macroscale equations,
while both FVM and FDM implementations are used to discretize
the microscale equations, providing users the flexibility to choose

their preferred numerical approach. Subsequently, we delve into the
description of the consistent initial condition methods: the single-
step approach and SUNDIALS IDACalcIC. Following this section,
the proposed DFN parameterization pipeline is discussed in detail. In
the results, the computational efficiency of COBRAPRO is com-
pared with other open-source DFN codes, showing comparable
performance with PyBaMM and LIONSIMBA. A comparison study
was conducted on the single-step approach and SUNDIALS
IDACalcIC methods for determining consistent initial conditions at
various C-rates and node numbers, demonstrating the robustness of
the single-step approach. Finally, a case study is presented to
demonstrate COBRAPRO’s parameter identification pipeline on
reference performance test (RPT) data45 collected from fresh LG
INR21700-M50T cells.82 The parameterized model is validated
against UDDS data, demonstrating good agreement between the
experimental and simulation results.

DFN Governing Equations

The DFN model20 considers two porous electrodes, a separator,
and electrolyte that permeates the pores in the electrode and
separator, as shown in Fig. 1. The porous electrodes consist of
active material particles that are assumed to be perfectly spherical.
The particles are held together in a conductive matrix that acts as an
electron conduction pathway from the current collectors to the active
particles. The lithium-ions shuffle from one electrode to another via
the electrolyte. At the particle-electrolyte interface, namely the
particle surface, intercalation and deintercalation of the lithium-
ions are modeled using charge transfer kinetics. In charging, the
lithium-ions travel from the positive electrode to negative electrode
and vice versa during discharging. As shown in Fig. 1, the DFN
model consists of a macroscale dimension, which refers to the x-
direction, consisting of the two electrodes and separator domains.
The microscale dimension, often called the pseudo-dimension, refers
to the radial direction within the particles in the electrodes.

Table II shows the DFN governing equations and boundary condi-
tions. The equations consist of four PDEs describing the mass transport
and charge conservation in the solid (active material particles) and liquid
(electrolyte) phases, along with one AE for the Butler-Volmer kinetics.83

Specifically, mass transport within the solid particles follows Fick’s Law
in spherical coordinates, governing the solid phase lithium concentration
(cs) dynamics. The lithium-ion concentration (ce) dynamics in the
electrolyte is governed by a diffusion equation with a forcing term.
Charge conservation in both the solid and electrolyte phases is derived

Figure 1. Schematic of a LIB DFN model in charging. The macroscale
describes the cell through-thickness x-direction while the microscale refers to
the r-direction in the particles, often referred to as the pseudo-dimension.
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from Ohm’s law, describing the dynamics for the solid (φs) and
electrolyte (φe) potentials, respectively. The interfacial pore wall flux
(j) at the particle surface is governed by the Butler-Volmer equation.
Refer to Table III for additional DFN equations, including those for cell
voltage and SOC in the electrodes.

To reduce the computational complexity, several approximations
of Fick’s law have been proposed.84 In DEARLIBS, the mass
transport in the particles is approximated using a two-term poly-
nomial approximation (Table I), which assumes the solid concentra-
tion profile to be a parabolic function and solves for the volume
averaged solid concentration (cs i

avg
, ) and surface concentration (cs i

surf
, )

in the form of two ODEs84 given as
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where i ∈ (p, n). Although this method significantly reduces the
computation burden by eliminating the cs,i variables along the r-
direction, the polynomial approximation was shown to display low
accuracy at high C-rates.30 Fick’s law should be implemented to
accurately model the non-linear solid concentration profile at high C-
rates. In COBRAPRO, Fick’s law is implemented while maintaining

computational efficiency by leveraging the SUNDIALS IDA
solver.73,74 In the Results section, we compare the computational
speeds of COBRAPRO and DEARLIBS using Fick’s Law imple-
mentations, demonstrating that the SUNDIALS IDA solver used in
COBRAPRO significantly outperforms the MATLAB ode15s im-
plementation in DEARLIBS.

Table IV presents the parameters required to solve the DFN
model, categorized into geometric, transport, kinetic, concentration,
stoichiometric, OCP, and electric parameters. While transport and
kinetic parameters such as electrolyte diffusion (D), electrolyte
conductivity (κ), solid phase diffusion coefficients (Ds,p, Ds,n), and
reaction rate coefficients (kp, kn) typically vary with temperature and
are often modeled using the Arrhenius equation,85 COBRAPRO
implements an isothermal model and assumes temperature-invariant
parameters. It is also important to remember that the OCP function is
a function of temperature and the OCP must be experimentally
measured from half-cell GITT or low C-rate capacity test experi-
ments at the cell operating temperature. Furthermore, electrolyte
parameters such as the transference number (t+), D, and κ depend on
the electrolyte concentration as shown in Ref. 43. DEARLIBS uses
constant values for t+, D, and κ, whereas COBRAPRO provides the
flexibility to define these parameters as functions of the electrolyte
concentration.

Although the solid diffusion and reaction rate coefficients vary
with SOC in the electrodes,86,87 COBRAPRO treats Ds,p, Ds,n, kp,

Table II. DFN governing equations and boundary conditions.
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and kn as constants to simplify the implementation. Future exten-
sions to COBRAPRO could incorporate the SOC dependence of
these coefficients. In Ref. 88, the SOC-dependence of the solid
diffusion coefficient is implemented by reformulating Fick’s law
using chemical potential as the driving force for diffusion. This
allows a single coefficient to represent the solid diffusion coefficient
as a function of SOC by incorporating the OCP data into the solid
phase diffusion model. In Ref. 87, the SOC-dependence of the
reaction rate constant is addressed using the multiple-species
multiple-reactions (MSMR) approach, instead of the traditional
Butler-Volmer model, to account for multiple electrochemical
reactions and species within the electrode material.

Numerical Methods

Discretization methods.—To solve the DFN model, the four
PDEs shown in Table II require spatial discretization, transforming
them to ODEs and AEs. FDM is the simple to implement but may
require a large number of nodes to ensure mass conservation during
cycling simulations.89 FVM uses the volume integral form of the
governing equation within each control volume (CV), setting the
flux entering a CV equal to the flux leaving the adjacent CV, thereby
ensuring mass conservation by construction.30,89

Figure 2 shows a schematic of the discretization method used in
COBRAPRO. FVM is used to discretize the macroscale variables

along the x-direction, namely the variables ce, φe, and φs. Each CV
along the x-direction has an associated center indicated by k that
spans the interval [xk−1, xk+1] given ∈ [ ]k N1, psn where

= + +N N N Npsn p s n. Each CV has a length of Δxi = li/Ni for

i ∈ (p, s, n). In Fig. 2, ψ̄ refers to the variables c̄e, ϕ̄e, and ϕ̄s, where
the (·)¯ notation refers to the volume averaged value of the variable
within the CV centered at index k.

For the microscale equations, both FDM and FVM implementa-
tions are used to discretize cs,i along the particle’s radial direction,
where each particle is located at xk for k ∈ [1, Np] given i= p and for

∈ [ + ]k N N1,ps psn given i= n. FDM nodes along the r-direction are
indexed from kr ∈ [1, Nri] with equally spaced sections each with a
length of Δri = Ri/Nri for i ∈ (p, n). When using FDM in the radial
discretization, users should check for mass conservation, especially
when simulating multiple cycles.89,90 For FVM, the particle is
spatially discretized into spherical shells along the radial
direction.89 Each spherical shell is considered a CV, which has a
center at index kr spanning the interval [ ]− +r r,k k1 2 1 2r r with a radial
thickness of Δri = Ri/Nri. Since surface concentration cannot be
directly determined using FVM, an approximation technique is
needed to estimate the surface value at k= Nri+ 1/2.
COBRAPRO uses the third-order Hermite polynomial approxima-
tion, as proposed in Ref. 89, due to its higher accuracy compared to
the linear interpolation implemented in PyBaMM.

Refer to Appendix A for the complete discretized DFN equations
in state-space form (Tables A·1, A·2, A·3, and A·4). Appendix A
also includes a demonstration of the FVM derivation for the mass
conservation in the electrolyte.

Differential Algebraic Equations (DAEs).—The discretized
DFN equations constitute a set of ODEs and AEs that can be
represented as a DAE system.91,92 This DAE representation enables
the use of various numerical methods available to solve a dynamical
system.93,94 A DAE in its most general form can be written in
implicit form as

( ̇( ) ( ) ( ) ( )) = [ ]F x x zt t t u t, , , 0 2

where x(t) is the state vector, ̇ ( )x t is the time derivative of the state
vector, z(t) is the algebraic variable vector, and u(t) is the system
input. The Jacobian matrix (∂ ∂ ̇F x) of Eq. (2) is singular because of
the AEs present in the DAE system.

The discretized DFN equations can be written in semi-explicit
DAE form as
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where f is the right-hand side of the differential equation, g is the
AE, x0 is the initial state vector, and z0 is the initial algebraic vector.
To solve a DAE system, it is essential to determine the exact values
of z0 that satisfy the AEs at t= 0, represented as g(x0, z0, u0).
Consistent initial conditions for z0 are identified through a DAE
initialization process, which is further detailed in the Consistent
Initial Conditions section.

The state and algebraic variable vectors and system input in
COBRAPRO are presented as
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where cs,i for i∈ (p, n) is the solid lithium concentration vector, ce,i for
i∈ (p, s, n) is the electrolyte lithium-ion concentration vector, φs,i for
i∈ (p, n) is the solid potential vector, φe,i for i ∈ (p, s, n) is the electric
potential vector, ji for i∈ (p, n) is the pore wall flux vector, and Iapp(t) is
the applied current vector as a function of time. Note that current is not

Table III. Additional equations in the DFN model.
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the only valid input for the DFN model. As shown in Table I,
PyBaMM, LIONSIMBA, PETLION, and MPET support various input
modalities, including voltage and power, providing simulation oper-
ating conditions beyond current-driven scenarios.

Consistent Initial Conditions

COBRAPRO offers two approaches to determine consistent
initial conditions for the DAE system: SUNDIALS IDACalcIC
and single-step approach.35 Both approaches require the user to
provide an initial estimate, given as the open-circuit voltage (OCV)
conditions when the battery is at rest. Initial guesses for the solid
particle concentration (cs,i,0) are calculated using the initial SOC
(SOC0) and the stoichiometric values pertaining to the electrode,

θi
100% and θi

0% for i ∈ (p, n). The solid potential initial guesses are
then calculated using OCP values at cs,i,0, given as ( )U c ci s i s p, ,0 ,

max .
The initial guess for the electrolyte concentration is set equal to the
initial concentration in the electrolyte c0. The initial guesses for the
pore wall flux and electrolyte potential are given as zero as shown in
Table V.

Initialization with SUNDIALS IDACalcIC.—The SUNDIALS
IDA library provides an initialization function called IDACalcIC
that determines the initial algebraic variable values. According to
SUNDIALS IDA documentation,95 IDACalcIC operates by refor-
mulating the semi-explicit DAE given in Eq. (3) into a fully implicit
DAE form given as

Table IV. Summary of DFN model parameters.

Category Symbol Units Description

Geometric
lp m Positive electrode thickness
ls m Separator thickness
ln m Negative electrode thickness
Rp m Positive electrode particle radius
Rn m Negative electrode particle radius
εp − Positive electrode porosity
εs − Separator porosity
εn − Negative electrode porosity

εp
filler − Binder volume fraction in positive electrode

εn
filler − Binder volume fraction in negative electrode

bruggp − Bruggeman coefficient in positive electrode
bruggs − Bruggeman coefficient in separator
bruggn − Bruggeman coefficient in negative electrode
Acell m2 Cell cross-sectional area

Transport
t+ − Transference number
D m2/s Electrolyte diffusion
κ S/m Electrolyte conductivity
Ds,p m2/s Solid diffusion in positive electrode
Ds,n m2/s Solid diffusion in negative electrode
σp S/m Solid conductivity in positive electrode
σn S/m Solid conductivity in negative electrode

Kinetic
kp m2.5/(mol0.5s) Reaction rate in positive electrode
kn m2.5/(mol0.5s) Reaction rate in negative electrode
αa,p − Anodic charge transfer coefficient in positive electrodea

αa,n − Anodic charge transfer coefficient in negative electrodea

αc,p − Cathodic charge transfer coefficient in positive electrodea

αc,n − Cathodic charge transfer coefficient in negative electrodea

Concentration
cs p,

max mol/m3 Maximum solid concentration in positive electrode

cs n,
max mol/m3 Maximum solid concentration in negative electrode

c0 mol/m3 Equilibrium lithium-ion concentration in electrolyte
Stoichiometric

θp
0% − Stoichiometric coefficient in positive electrode at 0% SOC

θp
100% − Stoichiometric coefficient in positive electrode at 100% SOC

θn
0% − Stoichiometric coefficient in negative electrode at 0% SOC

θn
100% − Stoichiometric coefficient in negative electrode at 100% SOC

OCP
Up V OCP function in positive electrode
Un V OCP function in negative electrode

Electric
Rc Ω Contact resistance

a) Charge transfer coefficients set to 0.5 for LIBs.11
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are known (Table V), Eq. (5) simultaneously solves for ̇x0 and z0
using a nonlinear solver that employs the modified version of
Newton’s method.34 The Comparison of Initialization Methods
section compares the IDACalcIC and single-step approach at
different C-rates and node numbers.

Initialization with single-step approach.—In contrast to the
SUNDIALS IDACalcIC method, the single-step approach modi-
fies the AEs into implicit ODEs, eliminating the need for a
nonlinear algebraic solver for the constraint equation g(x0, z0,
u0). As shown in Ref. 35, a perturbation coefficient (α) is applied
to the AEs to convert them to implicit ODEs while a hyperbolic
tangent switch function = ( + ( ( − ))T q t t1 2 1 tanhH init is applied
to the original ODEs shown in Eq. (3). Therefore, the DAE system
in Eq. (3) is converted to a newly constructed nonlinear ODE
system given as

̇ ( ) = ( + ( ( − ))) · ( ( ) ( ) ( )) [ ]
  

x f x zt q t t t t u t
1

2
1 tanh , , 6init

TH

α· ̇ ( ( ) ( ) ( )) = − ( ( ) ( ) ( )) [ ]g x z g x zt t u t t t u t, , , , 7

where q is a weighting factor that controls the discreteness of the
switch function and tinit is the time allocated to find the consistent
algebraic initial conditions z0. Given a sufficiently large q, TH
equals zero for t < tinit, which effectively disables Eq. (6) and
equals one for t > tinit, thereby reactivating the equation. From
t = 0 to t = tinit, Eq. (6) is “turned off” and the system focuses on
solving Eq. (7) to find consistent initial conditions. Once t > tinit,
the ODEs in Eq. (6) are re-engaged, and the system solves both
Eqs. (6) and (7) using the established initial conditions during
t < tinit. According to Ref. 35, the duration tinit should be adjusted
based on the magnitude of the perturbation factor α. In
COBRAPRO, the default parameters are set to q = 1000,
tinit = 5 seconds, and α = 10−3,35 but users have the option to
modify these values to better fit their simulation needs. Smaller

Figure 2. Discretization of LIB cell in the x and r-directions. The macroscale x-direction is discretized using FVM, where each CV is associated with a center xk
and spans the interval [xk−1, xk+1] where ∈ [ ]k N1, psn given = + +N N N Npsn p s n. In the microscale r-direction, the discretization is carried out using either
FDM, where nodes are indexed as kr = [1, Nri], or FVM, where the center of each CV is indexed as kr = [1, Nri] given i ∈ (p, n).

Table V. Initial guess corresponding to OCV conditions.

Variable Positive electrode (i = p) Separator (i = s) Negative electrode (i = n)

cs,i θ θ θ= ( × ( − ) + ) ×c SOC cs p p p p s p, ,0 0
0% 100% 100%

,
max − θ θ θ= ( × ( − ) + ) ×c SOC cs n n n n s n, ,0 0

100% 0% 0%
,
max

φs,i ϕ = ( )U c cs p p s p s p, ,0 , ,0 ,
max − ϕ = ( )U c cs n n s n s n, ,0 , ,0 ,

max

ce,i ce,p,0 = c0 ce,s,0 = c0 ce,n,0 = c0
φe,i φe,p,0 = 0 φe,s,0 = 0 φe,n,0 = 0
ji jp,0 = 0 − jn,0 = 0
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values of α improve the accuracy of the consistent initial
condition solution but increase system stiffness, whereas larger
α values decrease stiffness but reduce solution accuracy.35

Equations (6) and (7) can be reconfigured into an implicit ODE
system in the form ( ( ) ( ) ( ) ̇( ) ̇( ) ̇( )) = x z x zt t u t t t u t 0, , , , , such that

α

̇ ( ) − ( + ( ( − )))⋅ ( ( ) ( ) ( ))
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2
1 tanh , ,
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. 8init

An implicit ODE solver can be used to solve the system described in
Eq. (8). Although CasADi features a built-in SUNDIALS IDA
solver for solving ODE and DAE systems, even in the latest version
(CasADi v3.6.5), SUNDIALS IDA is limited to handling ODE and
DAE systems in semi-explicit form. In the single-step approach, the
DAE system is reformulated as an implicit ODE system (Eq. (8)),
which cannot be expressed in semi-explicit form. Therefore,
COBRAPRO uses the IDA solver from the original SUNDIALS
package (sundialsTB v.2.6.2), which can handle fully implicit ODE
and DAE systems.

Parameter Identification Framework

Figure 3 shows the proposed layered parameterization frame-
work. The first step involves fixing structurally redundant para-
meters, Θredundant, to their cell tear-down measurement values. In the
second step, the stoichiometric coefficients are identified using the
C/20 capacity test data. Then, practical identifiability analysis is
conducted using local sensitivity analysis (LSA) and correlation
analysis to determine a subset of identifiable parameters using the
HPPC profile. The identifiable parameters are then optimized using
the HPPC test data. Finally, the optimized parameters are validated
using the UDDS driving cycle data.

Step 1. Reducing redundant parameters.—In the first step of
model parameterization, we implement parameter aggregation, or
lumping, a technique used in structural identifiability to determine
redundant parameters in the DFN model. The redundant parameters
are fixed to their measured values obtained from cell tear-down
experiments. This procedure ensures that the remaining parameters
can be reliably estimated in subsequent parameter identification
steps.

Parameter lumping involves normalizing the DFN governing
equations and grouping parameters for each normalized
equation.59,60 For example, normalizing Fickʼs law shown in
Eq. (1) reveals a lumped parameter Ds,i/Ri for each electrode
i ∈ (p, n). The lumped parameter indicates that increasing Ds,i and
decreasing Ri leads to the same solid concentration dynamics.
Attempting to identify Ds,i and Ri at the same time can lead to

structural identifiability issues. To circumvent this problem, one
can either identify the lumped parameter Ds,i/Ri

59,60 or fix one of
the parameters to its measured value. In this work, the latter
approach is taken. Thus, Ri is fixed to its measured value from cell
tear-down,38 thereby improving the identifiability of Ds,i from a
structural standpoint. Although Ds,i could be fixed and Ri

estimated instead, typically Ri is easier to measure than Ds,i,
which requires additional half-cell GITT experiments and
analysis.96

The procedure described above is repeated for the other DFN
equations to determine the remaining redundant parameters.
Following the process oulined in Ref. 60, the redundant parameters
are identified as Θredundant = {Acell, lp, ls, ln, εp, εs, εn, Rp, Rn, c0, t+,
bruggp, bruggs, bruggn}.

b Therefore, all geometric parameters as
well as the equilibrium electrolyte concentration c0, and the
transference number t+ are fixed to their measured values.38 We
provide a brief overview of the redundant parameters but refer to
Ref. 60 for detailed derivations.

Structural redundancy can be observed in the Bruggeman
coefficients and porosity from Eqs. (6) and (7). In Eq. (6), Di is

multiplied by εi
bruggi for i ∈ (p, s, n) to yield the effective electrolyte

diffusivity Di
eff. Any combination of Di and εi

bruggi can be multiplied
to yield the same value for Di

eff. Therefore, εi and bruggi are fixed to
their measured values and Di is left to be identified in future steps. A
similar approach is applied in Eq. (7), where κi is treated as the free
variable to be identified later. Given that κi will be identified, t+
becomes redundant in the term κ ( − )+

i
eff RT t

F

2 1 in Eq. (4). Additionally,

Eq. (5) shows that c0 is redundant, since ki is multiplied by c0 in
( = ) = [ ( = )( − ( = )) ( = )]j t k c t c c t c t0 0 0 0i i e s i s i

surf
s i
surf

0, ,
max

, ,
0.5 where

ce(t= 0)= c0 and ( = ) =c t c0s i
surf

s i, , ,0 given i ∈ (p, n).

Step 2. Stoichiometric coefficient identification.—When the
battery is at rest, the cell is under thermodynamic conditions
characterized by the electrode OCPs (Up, Un) and the stoichiometric
coefficients (θ θ θ θ, , ,p p n n

100% 0% 100% 0%), which define the upper and
lower limits of the OCP windows. The electrode OCPs are typically
obtained through half-cell GITT experiments that require cell tear-
down, while the stoichiometric coefficients can be calibration using
OCV or pseudo-OCV data.53,97

In this work, fresh cell C/20 capacity test data is used to identify
the stoichiometric parameters: θ θ θ θΘ = { }, , ,C p p n n20

100% 0% 100% 0% .
The following assumptions are made:

Figure 3. Proposed DFN parameter identification pipeline.

bIt is important to recognize that fixing redundant parameters does not make the DFN
model fully structurally identifiable. As a system of coupled PDEs, the DFN model
lacks a closed-form solution for full structural identifiability unless the equations are
simplified, linearized, and decoupled.61 The aim of this step is not to achieve
complete structural identifiability but to reduce redundant parameters, thereby
improving the reliability of parameter estimation of the remaining parameters.
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Assumption A1: Voltage from the C/20 capacity test is assumed
to be pseudo-OCV since the C/20 rate involves a low current and the
polarization effects are minimal.98

Assumption A2: OCP functions are obtained from GITT half-cell
experiments reported in Ref. 38, listed in Table C1, since the data
used in this study is generated from the same cells tested in Ref. 38.

Assumption A3: Since the stoichiometric coefficients are
identified from C/20 capacity test conducted on a fresh cell, the
identified stoichiometric coefficients are only valid for a fresh cell.
As the cell ages, the fresh cell OCP windows shift99 and the
stoichiometric coefficients require re-identification.

Assumption A4: The maximum particle concentrations (cs p,
max

and cs n,
max ) are calculated using the identified stoichiometric coeffi-

cient values using the theoretical cell capacity equation. Note that
this equation only holds true for a fresh cell.

Leveraging the multi-objective cost function proposed in Ref. 42
for ESPM and implemented in Ref. 89 for SPM, the following
optimization problem is formulated to identify ΘC/20 for the DFN
model:

[ ]
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The multi-objective cost function implemented in Refs. 42 and
89 was modified for the pseudo-OCV identification problem shown
in Eq. (9) by incorporating constraints (d), (e), (f), and (g).
Constraint (d) ensures that the maximum (initial) voltage of the
simulation matches that of the experimental data, where

= ( = )V V t 0sim sim
max and = ( = )V V t 0exp exp

max . Note that constraint (d)
only is valid for a fresh cell, since aged cells exhibit increased
polarization and do not match the OCPs and OCV curves of the fresh
cells. To ensure charge conservation, constraint (e) enforces the
simulated discharged capacity Qdis sim

C
,
20 to be within γ( − )Q1 dis exp

C
,
20

and γ( + )Q1 dis exp
C

,
20 of the experimental discharged capacity.100 As

denoted in Ref. 45, the discharged capacity is defined as the total
capacity extracted from the battery during the C/20 capacity test. In
our analysis, γ= 0.01 such that Qdis sim

C
,
20 is constrained within

Q0.99 dis sim
C

,
20 and Q1.01 dis sim

C
,
20 . Lastly, constraints (f) and (g) are

formulated using the theoretical cell capacity equation,11 valid for
a fresh cell and given as

ε θ θ
=

∣ − ∣
∈ ( ) [ ]Q

Fl A c
i p n

3600
, , 10i

i
solid

i cell s i i i,
max 100% 0%

where Qi is the theoretical capacity of the cell. In this analysis, we
assume that Qi is equal to Qdis exp

C
,
20 calculated from the C/20 capacity

test. This is a valid assumption since the C/20 capacity is taken as
the pseudo-OCV curve.

The optimization problem in Eq. (9) is also subject to the
discretized DAE equations in constraint (a), the lower and upper
bounds of ΘC/20 in constraint (b), and the chemistry-dependent lower
voltage cut-off limit where =V 2.5 Vlower

cutoff for LG INR21700-M50T
cells in constraint (c). The last constraint (h) prevents the surface
concentration of the particles from exceeding the maximum allow-
able solid concentration, ensuring that the exchange current density
per unit charge (j0,i) remains positive in the Butler-Volmer equation.
Note that the objective function could include minimizing the error
between the experimental and simulated incremental capacity or
differential voltage as demonstrated in Ref. 101.

The multi-objective cost function J(Θ)42,89 is defined in terms of
the root mean square error (RMSE) between the experimental and
simulated voltage, SOCp, and SOCn such that

∑

∑

∑
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where Θ refers to a vector of parameters to identify, j is the time
index, N is the total number of data points, Vexp is the experimental
cell voltage, and Vsim is the simulated cell voltage, SOCexp is the
experimental SOC calculated from Coulomb counting, and SOCp

and SOCn are the simulated SOC in the positive and negative
electrodes, respectively.

To solve the optimization problem in Eq. (9), COBRAPRO
implements PSO using parallel computing. PSO is a derivative-free,
population-based optimization method, well-suited to find the global
optimum of a high-dimensional nonlinear optimization problem.102

The optimization process is accelerated through the use of
MATLAB’s Parallel Computing Toolbox, which facilitates the
simultaneous simulation of multiple particles.

It is worth noting that various optimization methods have been
used in the literature to perform parameter optimization. Forman et
al.,52 Zhang et al.,41 and Rajabloo et al.103 have used genetic
algorithm (GA) while Masoudi et al.104 used homotopy optimization
and Santhanagopalan et al.105 used Levenberg-Marquardt (LM)
optimization. Kim et al.106 proposed a deep Bayesian neural network
to identify parameters that requires fewer model simulations
compared to methods such as PSO, GA, and LM.

Step 3. Practical identifiability.—In this step, the practical
identifiability of the remaining parameters, Θ̃ = {R D D, , ,HPPC c s p s n, ,

κ σ σ }k k D, , , , ,p n p n , is investigated through LSA and correlation
analysis to determine a subset of identifiable parameters given the
HPPC profile. The identifiable parameters are then calibrated using
COBRAPRO’s optimization framework using HPPC data. Refer to
Appendix B for a detailed description of the LSA and correlation
analysis implementation.

Given the sensitivity indices and correlation matrix as illustrated
in Appendix B, Algorithm 1 identifies a subset of practically
identifiable parameters using a predefined correlation coefficient
threshold (β).42 Two parameters are considered correlated if the
correlation coefficient exceeds β.
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Algorithm 1. Identify non-correlated parameters Θβ
HPPC

Corr 42

1: Input: Θ̃HPPC (vector containing parameters to analyze), SV SOC,

(vector containing sensitivity index for each parameter in Θ̃HPPC), C
(correlation coefficient matrix), β (correlation coefficient threshold)

2: Output: Θβ
HPPC

Corr

3: Initialize Θ → Θ̃β
HPPC

Corr
HPPC

4: Sort Θβ
HPPC

Corr based on SV SOC, from highest to lowest sensitivity

5: for each highest sensitivity parameter θhighSens in Θβ
HPPC

Corr do

6: for each parameter θ in Θβ
HPPC

Corr do
7: if θ θ≠ highSens then
8: → CC [θhighSens, θ]
9: if β>C then

10: Remove θ from Θβ
HPPC

Corr

11: end if
12: end if
13: end for
14: end for

15: return Θβ
HPPC

Corr

First, the algorithm takes the initial set of parameters, Θ̃HPPC , and
their sensitivity indices, then sorts these parameters from highest to
lowest sensitivity to initialize Θβ

HPPC
Corr . Starting with the parameter

with the highest sensitivity, the algorithm iterates through the other
parameters to check the correlation coefficient between the highest
sensitivity parameter and other parameters. If the correlation
coefficient exceeds β, that parameter is removed from Θβ

HPPC
Corr . The

process is repeated until all parameters in Θβ
HPPC

Corr are evaluated,
resulting in a final set of non-correlated parameters prioritized by
their sensitivity, Θβ

HPPC
Corr .

Parameter optimization.—After conducting practical identifia-
bility analysis and identifying a subset of parameters Θβ

HPPC
Corr that can

be effectively estimated, the HPPC data is then used to optimize the
subset Θβ

HPPC
Corr . As demonstrated in the stoichiometric identification

problem, the multi-objective cost function proposed in Refs. 42 and
89 is leveraged to formulate the following optimization problem:
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where γ= 0.01, ΘHPPC
lb and ΘHPPC

ub refer to the lower and upper

bounds of Θβ
HPPC

Corr , and Qdis sim
HPPC

, and Qdis exp
HPPC

, refer to the discharged
capacity calculated from the HPPC simulation results and the HPPC
experimental data. Similar to the reasoning provided for the ΘC/20

optimization problem, constraint (d) enforces charge conservation
and constraint (e) ensures that j0,i is a positive number.

To solve the optimization problem in Eq. (12), the same PSO
framework using parallel computing is employed as in the stoichio-
metric coefficient identification problem.

Results

Model verification.—To verify COBRAPRO’s implementation of
the DFN model, the simulation results are compared against the results
from COMSOL Multiphysics® at 23 °C. Figure 4a shows a comparison
of the voltage curves at C/3, 1C, and 3C discharge and Fig. 4b shows a
comparison of the electrolyte concentration in the positive electrode,
separator, and negative electrode during 1C discharge at t= 0, 1800,
3600 s. The legends “COBRAPRO: FVM” and “COBRAPRO: FDMcs”
refer to the FVM and FDM discretizations of cs, respectively. Our
simulation results match well with COMSOL and confirms the correct
implementation of our model. For the purpose of comparing our results
with COMSOL, both models were supplied with the LG INR21700-M50
cell parameters obtained from Ref. 38 (Appendix C). In the Parameter
Identification section, experimental validation is provided using para-
meters calibrated through the parameter identification pipeline in
COBRAPRO.

Solver computation speed.—COBRAPRO implements the open-
source packages, CasADi77 and SUNDIALS,73,74 to achieve fast
computation speed comparable to that of PyBaMM and

Figure 4. Verification of simulation results with COMSOL. (a) Cell voltage comparison at C/3, 1C, and 3C in discharge where COBRAPRO: FVM and
COBRAPRO: FDMcs refer to the FVM and FDM discretizations of the solid particle concentration, respectively. (b) Electrolyte concentration at t = 0, 1800,
3600 s during 1C discharge.
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LIONSIMBA. CasADi’s AD is used to convert the AEs to implicit
ODEs in the single-step approach implemented in COBRAPRO.
CasADi’s AD is also used to compute the symbolic Jacobian, which
helps to improve the computation speed compared to numerically
approximating the Jacobian.30 In contrast, DEARLIBS uses the
MATLAB Symbolic Math Toolbox to formulate the DAE equations
and ode15s solver to solve the DAE system in MATLAB symbolic
form, leading to significantly longer computation times.

Figure 5 shows a comparison of the computation time of
COBRAPRO, DEARLIBS, PyBaMM, and LIONSIMBA at 1C
discharge for different number of CVs along the x-direction.
Results are generated using Fick’s law, which was implemented
into DEARLIBS since the original version only included the
polynomial approximation (Table I). For the COBRAPRO results
presented, the solid particle concentration is discretized using FVM.
In this analysis, N refers to the number of CVs in each macroscale
domain (positive and negative electrodes, separator) such that
N= Np = Ns = Nn. For this analysis, the number of CVs along the
radial direction in the particles was kept constant at Nrp = Nrn = 10
across all simulations to maintain manageable simulation timesc in
DEARLIBS.

Figure 5a shows the DAE solver computation times (tsim
solver) in

logarithmic scale. The computation times for DEARLIBS and
COBRAPRO are labeled in red and green, respectively. As N
increases, DEARLIBS experiences a significant increase in compu-
tation time, becoming impractically long due to limitations asso-
ciated with the MATLAB’s ode15s solver. In contrast, COBRAPRO
exhibits a substantial improvement in DAE solver speed, aligning
with the solver efficiencies of LIONSIMBA and PyBaMM.
Compared to DEARLIBS, COBRAPRO’s tsim

solver is two orders of
magnitude (≈257 times) faster at N= 10 and three orders of
magnitude (≈1608 times) faster at N= 20. PyBaMM consistently
achieves the fastest DAE solver time across all N.

Figure 5b shows the total computation time (tsim
total) on logarithmic

scale. The tsim
total includes the total time required to execute the code,

including the formulation of DAE equations (tsim
DAE), determination

of consistent initial conditions, and solving the DAE (tsim
solver). For

DEARLIBS, the significantly high tsim
total is attributed to not only tsim

solver

but also tsim
DAE, as depicted by the dashed red line with circle markers.

This indicates that DEARLIBS’ total computation time is highly
impacted by the inefficiency of setting up the DAE equations
through symbolic differentiation using MATLAB Symbolic Math

Toolbox. In contrast, COBRAPRO’s tsim
total is up to three orders of

magnitude faster than that of DEARLIBS, showing comparable
times to those of LIONSIMBA and PyBaMM. Notably, PyBaMM
maintains a relatively constant tsim

total with increasing N, showing the

lowest tsim
total among the compared codes at higher N.

Comparison of initialization methods.—Figure 6 shows a
comparative analysis between the SUNDIALS IDACalCIC and
single-step approach across various C-rates in discharging and
different numbers of discretization points using parameters from
Ref. 38. The y-axis displays the number of nodes tested, denoted as
N where N= Np = Ns = Nn = Nrp = Nrn, and the x-axis denotes the
C-rates from 1C to 6C in 0.1C increments. In the single-step method,
the perturbation coefficient was set to α= 0.01 while tinit = 5 s and
q= 1000d.

As shown in Fig. 6a, IDACalcIC is unable to determine
consistent initial conditions at 1.7C across all N values, with more
failures observed at N= 5. For the single-step method, consistent
initial conditions were determined for all C-rate and node numbers
tested, as shown in Fig. 6b. This analysis demonstrates that the
single-step approach is more robust than IDACalcIC at various C-
rate and node number configurations.

Parameter identification.—The proposed parameter identifica-
tion pipeline is demonstrated using experimental data obtained from
LG INR21700-M50T cells, sourced from a publicly available
dataset.82 This dataset includes periodic RPTs, which are standar-
dized tests designed to evaluate battery performance. The RPTs
consist of the C/20 capacity test, HPPC, and EIS. Out of the ten cells
tested in this dataset, cell W8 is used for this analysis. The first RPT,
conducted on the fresh cell, is utilized for the identification process.
Leveraging the use of RPTs for parameter identification could
eliminate the need for conducting extra tests solely for parameter
identification purposes.

As shown in Fig. 3, the first step of model parameterization
consists of removing redundant parameters Θredundant = {Acell, lp, ls,
ln, εp, εs, εn, Rp, Rn, c0, t+, bruggp, bruggs, bruggn} by fixing them to
their experimentally measured values reported in Ref. 38. The
experimentally determined parameter values measured from cell
tear-down are listed in Table C1.

Stoichiometric coefficient identification.—After the redundant
parameters are fixed to their cell tear-down values, the C/20
capacity test is used to identify the stoichiometric parameters

Figure 5. Computation speed comparison at 1C discharge for (a) DAE solver time (tsim
solver) and (b) total computation time (tsim

total). N refers to the CVs along the x-
direction in each domain, such that N = Np = Ns = Nn. The radial discrete nodes were set to Nrp = Nrn = 10 for all simulations. In (b), the dashed red lines with
circular and triangular markers denote the DAE formulation time (tsim

DAE) and tsim
solver in DEARLIBS, respectively.

cThe total number of differential and algebraic equations in the DFN model is equal
to the size of the DAE system. There are Nrp × Np + Nrn × Nn equations for the cs,i
variable, Np + Ns + Nn equations for the ce variable, Np + Ns + Nn equations for
the φe variable, Np + Nn equations for the φs,i variable, and Np + Nn for the ji
variable. In summary, there are a total of (Nrp + 4) × Np + (Nrn + 4) × Nn +
2 × Ns equations.

dNote that the perturbation coefficient α = 0.01 was used, which yielded the highest
initialization success rate while maintaining solution accuracy. We also confirmed
that tinit = 5 s is sufficiently long enough for the solution to initialize given
α = 0.01. Furthermore, adjusting q from q = 1000 and q = 100 did not affect the
results for the determination of consistent initial conditions.
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θ θ θ θΘ = { }, , ,C p p n n20
100% 0% 100% 0% . The stoichiometric parameters

are identified using the optimization problem formulated in Eq. (9).
Table VI shows the initial guesses and the upper and lower

bounds of the stoichiometric parameters. The initial guesses are
obtained from the experimentally determined values from cell tear-
down reported in Ref. 38.

The identification results are shown in Fig. 7 with the simulation
results and experimental data exhibiting a good match with a JV of
3.30× 10−3 (11.8 mV), JSOCp of 3.02× 10−4, and JSOCn of

1.09× 10−4 (Table VIII). Table VI reports the identified stoichio-
metric values and the resulting maximum concentration values
determined from the constraints (f) and (g) in Eq. (12).

HPPC identification.—In this section, the practical identifiability
of the remaining unknown parameters, Θ̃ = {R D D, , ,HPPC c s p s n, ,

κ σ σ }k k D, , , , ,p n p n , is assessed with respect to the HPPC profile

to yield the identifiable parameter set Θβ
HPPC

Corr . Subsequently, para-
meter identification is conducted to optimize the parameters in
Θβ

HPPC
Corr using HPPC data.
LSA and correlation analysis are conducted on the parameters in

Θ̃HPPC to assess the model output change due to local perturbations

Figure 6. Comparison of SUNDIALS IDACalcIC and single-step approach35 using parameters from Ref. 38. Y-axis shows the number of nodes tested where
N = Np = Ns = Nn = Nrp = Nrn and the x-axis shows C-rates ranging from 1C to 6C in discharge at every 0.1C increments. (a) SUNDIALS IDACalcIC, (b)
single-step approach with α = 0.01.

Figure 7. C/20 capacity test identification results.

Table VI. Stoichiometric coefficient identification using C/20 dis-
charge data.

Parameter Unit
Lower
bound

Upper
bound

Initial
guess

Identified
value

θp
100% — 0.22 0.34 0.27 0.2647

θn
100% — 0.7 1 0.9014 0.7784

θp
0% — 0.7 1 0.9084 0.8939

θn
0% — 0.015 0.04 0.0279 0.02982

cs p,
max a mol/m3

— — — 55492

cs n,
max a mol/m3

— — — 36690

a) Parameter not identified.

Table VII. Identifiable parameter sets for given correlation index
threshold values.

Identifiable Parameters Correlation Coefficient Threshold

Θ = { }R D D, ,HPPC
Corr

c s p s n
0.8

, , β = 0.8

Θ = { }R D D, ,HPPC
Corr

c s p s n
0.9

, , β = 0.9

Θ = { }R D D D, , ,HPPC
Corr

c s p s n
0.95

, , β = 0.95

Θ = { }R D D D k, , , ,HPPC
Corr

c s p s n p
0.99

, , β = 0.99
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in each parameter and the degree of linear correlation between
parameters. The sensitivity indices and correlation matrix for Θ̃HPPC
are shown in Fig. 8.

Figure 8a shows the sensitivity indices of Θ̃ = {R D, ,HPPC c s p,

κ σ σ }D k k D, , , , , ,s n p n p n, calculated from SV,SOC. As expected, the
sensitivities of σp and σn are nearly zero due to the high conductivity
of the electrode compared to the electrolyte conductivity. Due to
their low sensitivity, σp and σn are removed from the correlation
analysis.

Algorithm 1 is implemented in COBRAPRO, which automati-
cally generates a subset of uncorrelated parameters given a user-
defined correlation coefficient threshold β. For demonstration
purposes, the algorithm is illustrated with β= 0.842 using the results
from Fig. 8. First, ΘHPPC

Corr0.8 is set to the initial parameter vector

Θ̃HPPC . The parameter with the highest sensitivity in ΘHPPC
Corr0.8 , in this

case Rc, is analyzed first. As shown in Fig. 8b, the only parameters
with correlation coefficients lower than 0.8 with Rc are the solid
phase diffusion coefficients Ds,p and Ds,n. Therefore, all parameters

Figure 8. (a) Sensitivity indices of Θ̃HPPC calculated using the HPPC profile and (b) correlation matrix. In the correlation analysis, σp and σn are removed due to
their low sensitivity.

Figure 9. HPPC identification results for ΘHPPC
Corr0.99 .

Table VIII. Comparison of cost function values for HPPC identification and UDDS validation.

Parameters Cost function
Identification

Validation Units
C/20 Discharge HPPC UDDS

ΘHPPC
Corr0.99 JV 11.8 14.8 13.1 [mV]

JV 3.30 × 10−3 4.21 × 10−3 3.60 × 10−3 [-]
JSOCp 3.02 × 10−4 1.33 × 10−3 3.11 × 10−4 [-]
JSOCn 1.90 × 10−4 1.73 × 10−3 1.62 × 10−4 [-]

ΘHPPC
Corr0.95 JV 11.8 16.1 13.7 [mV]

JV 3.30 × 10−3 4.97 × 10−3 3.74 × 10−3 [-]
JSOCp 3.02 × 10−4 1.33 × 10−3 3.20 × 10−4 [-]
JSOCn 1.90 × 10−4 1.73 × 10−3 1.56 × 10−4 [-]

ΘHPPC
Corr0.9 JV 11.8 14.5 15.0 [mV]

JV 3.30 × 10−3 4.14 × 10−3 4.11 × 10−3 [-]
JSOCp 3.02 × 10−4 1.33 × 10−3 3.16 × 10−4 [-]
JSOCn 1.90 × 10−4 1.73 × 10−3 1.59 × 10−4 [-]
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except Ds,p and Ds,n are removed from ΘHPPC
Corr0.8 , resulting in the new

vector Θ = { }R D D, ,HPPC
Corr

c s p s n
0.8

, , . The parameter with the next

highest sensitivity in ΘHPPC
Corr0.8 , Ds,p, is analyzed next. Since Ds,p and

Ds,n have correlation coefficients less than 0.8, Ds,n is not removed
from Θβ

HPPC
Corr . Since all parameters in Θβ

HPPC
Corr have been analyzed, the

algorithm concludes, and the identifiable parameter set for β= 0.8 is
determined as Θ = { }β R D D, ,HPPC

Corr
c s p s n, , .

Table VII shows the identifiable set of parameters determined for
different β values. The β can be considered as a design variable that
will depend on the input current and parameters being studied. In
this analysis, thresholds of 0.8 and 0.9 resulted in the same set of
identifiable parameters. During parameter identification, the para-
meters in Θβ

HPPC
Corr are identified, while the remaining parameters in

Θ̃HPPC that are not included in Θβ
HPPC

Corr are fixed to their experimen-
tally measured values shown in Table C1 of Appendix C.

Among the parameter sets ΘHPPC
Corr0.9 , ΘHPPC

Corr0.95 , and ΘHPPC
Corr0.99 , the set

Θ = { }R D D D k, , , ,HPPC
Corr

c s p s n p
0.99

, , resulted in the lowest RMSE for
the UDDS validation results as shown in Table VIII. Table IX shows
the initial guesses, lower bounds, and upper bounds for the
parameters in ΘHPPC

Corr0.99 . The initial guesses are obtained from the
measured values from cell tear-down, with the initial guess for Rc
obtained from averaging the ohmic resistances extracted from EIS
data at 20%, 50%, and 80% SOC.45 The HPPC identification results
for ΘHPPC

Corr0.99 are shown in Fig. 9 with the simulation and experi-
mental results matching well with a JV of 4.21× 10−3 (14.8 mV),
JSOCp of 1.33× 10−3, and JSOCn of 1.73× 10−3. The UDDS
validation results shown in Fig. 10 demonstrate that the identified
parameters can accurately predict cell voltage and SOC in the
electrodes, with cost function values of JV of 3.60× 10−3 (13.1
mV), JSOCp of 3.11× 10−4, and JSOCn of 1.62× 10−4.

Conclusions

In this paper, we present COBRAPRO, a new open-source
battery model simulation package, capable of parameterizing the
DFN model using experimental current-voltage data. A parameter
identification pipeline is implemented in COBRAPRO, allowing

systematic identification and determination of parameters using
structural and practical identifiability analysis, combined with a
closed-loop optimization routine.

COBRAPRO’s parameter identification framework is demonstrated
on RPT data generated from LG INR21700-M50T cells. In the first step
of DFN model parameterization, redundant parameters are determined
and fixed to their cell tear-down values to improve the identifiability of
the remaining parameters. The C/20 capacity test is used to identify the
stoichiometric parameters while the maximum concentrations are
determined through the theoretical cell capacity equation. Practical
identifiability of the remaining parameters is evaluated for the HPPC
profile, and a subset of identifiable parameters is selected for parameter
identification using HPPC data. The identified parameters are validated
against experimental UDDS data, showing a good match between the
simulated and experimental voltage and SOC in the electrodes.

In addition to COBRAPRO’s parameterization routine, a fast DAE
solver and robust framework for determining consistent initial conditions
are implemented to achieve computational efficiency and ensure reliable
DAE initialization. When benchmarked against other open-source DFN
simulators such as LIONSIMBA and PyBaMM, COBRAPRO demon-
strates comparable computation speed. To determine consistent initial
conditions, the single-step approach is implemented in COBRAPRO,
building upon the methodology established in DEARLIBS. For various
C-rates and node numbers, the single-step approach is shown to be more
robust than the nonlinear AE solver, SUNDIALS IDACalcIC.
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Appendix A. DFN State-space Equations

FVM derivation example: electrolyte concentration, ce(x, t).—
The PDEs defined in Eqs. (2), (3), and (4) are spatially discretized along
the x-direction using FVM. To derive the FVM equations, the governing
equations are integrated over each CV. The derivation is demonstrated
for the electrolyte mass conservation equation.

Figure 10. UDDS validation of identified parameters in ΘHPPC
Corr0.99 .

Table IX. Identification values for parameters in ΘHPPC
Corr0.99 using HPPC data.

Parameter Unit Lower bound Upper bound Initial guess Identified value

Rc Ω 0.001 0.0233 0.0233 0.0059
Ds,p m2/s 5.28 × 10−18 3.03 × 10−12 4.00 × 10−15 3.03 × 10−12

Ds,n m2/s 6.64 × 10−17 1.64 × 10−11 2.42 × 10−14 2.42 × 10−14

kp m2.5/(mol0.5 · s) 2.60 × 10−14 4.89 × 10−8 3.54 × 10−11 2.18 × 10−8

D m2/s 4.90 × 10−12 2.89 × 10−8 3.76 × 10−10 7.62 × 10−11
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As shown in Fig. 2, consider a CV with a center at xk spanning
the interval [xk−1, xk+1] with a length of Δxi = li/Ni for i ∈ (p, s, n).
The integral of Eq. (3) is evaluated from xk−1 to xk+1, resulting in
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where c̄e i k, , is the volume-averaged value of ce,i for the CV centered
at index k, given k ∈ [1, Np] for the positive electrode (i= p),
k ∈ [Np+ 1, Nps] for the separator (i= s), and ∈ [ + ]k N N1,ps psn

for the negative electrode (i= n). For conciseness, we define
Nps = Np+ Ns and = + +N N N Npsn p s n.

Using the central difference method to approximate the flux at
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and substituting into Eq. (A·1) yields the FVM equations for the
mass conservation in the electrolyte phase as follows
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The harmonic mean is used to calculate the effective diffusion
coefficient Di

eff at the edges of the CVs as

ξ ξ
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The first and last CVs in each domain are expressed using the
boundary conditions listed in Eq. (3). For the first CV at k= 1 in the
positive electrode domain, the zero ce flux condition on the interface
between the positive electrode and current collector allows us to
rewrite Eq. (A·4) as
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while the flux continuity boundary condition between the positive
electrode and separator allows us to rewrite Eq. (A·4) at k= Np as
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refers to the interface

between the last CV in the positive electrode (k= Np) and the first
CV in the separator (k= Np + 1).

The discretized states are given in a vector as
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where ce,p is the state vector in the positive electrode, ce,s is the state
vector in the separator, and ce,n is state vector in the negative
electrode. The state-space equations are expressed as

̇ = + [ · ] c c A 9ee c ce e

where

ε
=

( − )
⋮

( − )

[ ]
( − )

⋮
( − )

[ · ]

+

+
×

×

+ + +

+
× ×

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥


a

t j

t j

t j

t j

1

1

0

1

1

. A 11c
i

i

p

N p N

N

N

N N

N N
N

N

,1 ,1

, ,
1

1

, 1 1

,
1

1

e

p p

p

s

ps ps

psn psn
n

psn

ε
=

Δ

−

−( + )

−( + )
⋮ ⋮ ⋮ ⋱ ⋮ ⋮

−

[ · ]

− −
×

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥


x

D D

D D D D

D D D D

D D

1

0 0 ... 0

0 ... 0

0 ... 0

0 ... 0 0

A 10c
i i

p
eff

p
eff

p
eff

p
eff

p
eff

p
eff

p
eff

p
eff

p
eff

p
eff

n N
eff

n N
eff

N N

2

,3 2 ,3 2

,3 2 ,3 2 ,5 2 ,5 2

,5 2 ,5 2 ,7 2 ,5 2

, 1 2 , 1 2

e

psn psn
psn psn

Journal of The Electrochemical Society, 2024 171 090522



Table A·1. State-space representation for mass transport in electrolyte using FVM.

Mass transport in the electrolyte i ∈ (p, s, n)
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Refer to Table A·1 for the state-space equations governing the
mass transport in the electrolyte. Table A·1 also includes the state-
space equations for states adjacent to neighboring domains, such as
c̄e p N, , p, ¯ +ce s N, , 1p , c̄e s Nps, , , and ¯ +ce n Nps, , 1, to accommodate the varying
CV thicknesses across the domains as shown in Eq. (A·7).

Table A·2 shows the state-space equations resulting from FVM
and FDM discretizations for the solid particle concentration equation
(Eq. (1)). As shown in Fig. 2, the FVM state-space variables refer to
the center of the CVs, while in FDM, they refer to the discretized
node locations. In FDM, the solid surface concentration cs i

surf
, is equal

to the last node value at cs i N, , ri for i ∈ (p, n), whereas in FVM, the

solid surface concentration is approximated at + /cs i N, , 1 2ri for i ∈ (p, n)
using the third-order Hermite interpolation.89

Tables A·3 and A·4 show the FVM state-space equations for
charge conservation in the solid and electrolyte phases, respectively.

Note that the approximation
∂
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−
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+
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+
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c c

c x

ln e i k e i k e i k

e i k i
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is used to

derive the discretized equations in Table A·4.
The Butler-Volmer equation (Eq. (5)) is algebraic and does not

require spatial discretization. The volume averaged pore wall flux j̄i
at each CV is expressed as

Table A·2. State-space representation for mass transport in solid particles with FDM and FVM.

FDM: Mass conservation in solid particles i ∈ (p, n)
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FVM: Mass conservation in solid particles i ∈ (p, n)89
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Table A·4. State-space representation for charge conservation in electrolyte using FVM.

Charge Conservation in Electrolyte i ∈ (p, s, n)
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Table A·3. State-space representation for charge conservation in solid particles using FVM.
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Table A·4. (Continued).

Charge Conservation in Electrolyte—Interface equations
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index k.

Appendix B. Parameter Sensitivity and Correlation Analysis

In COBRAPRO, LSA and correlation analysis are implemented
to assess the practical identifiability of parameters for the HPPC
profile. LSA perturbs each parameter around its nominal value to
quantify the impact on the model output. In LSA, the nominal values
are taken from experimentally determined values from cell
tear-down38 to improve the accuracy of LSA. Correlation analysis
quantifies the linear dependence between parameters.

As shown in Refs. 42 and 89, the sensitivity matrix (SV,SOC) is
written as
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where SV is the voltage sensitivity matrix, SSOCp is the positive
electrode SOC (SOCp) sensitivity matrix, SSOCn is the negative
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where yV(tj) is the voltage output vector at time instant tj for j ∈
[1, N], ( )y tV

nom
j is the nominal voltage simulated using the nominal

parameter values at time instant tj, Θq refers to the qth parameter for
q ∈ [1, m], and Θq

nom refers to the nominal value of the qth parameter.
The partial derivative of the voltage with respect to the qth parameter
is numerically calculated by taking the average of the upper and
lower voltage perturbations given as
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refers to the voltage simulated using Θq
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voltage simulated using Θq
lower . In this work, the perturbation factor

was set to ΔΘ = Θ0.05q q
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Similar to SV, the elecrode SOC sensitivity matrices are written
as

where ( )y tSOC ji is the SOCi output vector at time instant tj for j=
[1, tN] and ( )y tSOC i
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j, is the nominal SOCi simulated using the

nominal parameter values at time instant tj. The partial derivative of
SOCi with respect to the qth parameter is written using the same
formulation shown in Eq. (B·3) for the voltage perturbation.

In SV,SOC, each column represents the time-dependent sensitivity
vector for the qth parameter, spanning from time t1 to tN for q ∈ [1,
m]. The sensitivity index of the qth parameter is calculated by taking
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To quantify the correlation between parameters, the correlation
matrix C is calculated as

=

⋯
⋯

⋮ ⋮ ⋱ ⋮
⋯

∈ [ ] [ · ]

⎡

⎣

⎢
⎢
⎢

⎤
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⎥
⎥
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C

C C C

C C C

C C C

b d m, , 1, B 6

d

d

b j b d
j i

1,1 1,2 1,

2,1 2,2 2,

,1 ,2 ,
,

where m equals the total number of parameters being investigated in
the practical identifiability analysis.

Each element in C represents the correlation coefficient between
two parameters. This coefficient is calculated by taking the absolute
value of the linear correlation between two columns in the SV,SOC

matrix given as

σ σ
=

( )
( ) ( )

[ · ]
S S

S S
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cov ,
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V SOC
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V SOC
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V SOC
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V SOCb d,
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V SOC
:,

, is the standard deviation of S b
V SOC
:,

, . The term

( )S Scov ,b
V SOC

d
V SOC

:,
,

:,
, refers to the covariance between S b

V SOC
:,

, and

S d
V SOC
:,

, and is expressed as

∑ μ μ
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where N is the number of rows in the sensitivity matrix SV,SOC and
μ( )S b

V SOC
:,

, represents the mean of S b
V SOC
:,

, .
Since the absolute value is taken in Eq. (B·7), the correlation

coefficient Cb,d is between 0 and 1. A Cb,d value close to 1 signifies
that the bth and dth parameters are highly correlated, while a Cb,d

value near 0 means little to no correlation between the parameters. In
the context of parameter identifiability analysis, a correlation
coefficient threshold (β) can be defined such that if Cb,d > β, the
parameters are considered correlated.

Appendix C. LG INR21700-M50 Cell Parameters from Literature

In Ref. 38, cell tear-down experiments are conducted to obtain
geometric, kinetic, stoichiometric, concentration, and OCP values of
a LG INR21700 M50 celle with a NMC811 positive electrode and
silicon-graphite (Si-Gr) negative electrode. The electrolyte transport
and concentration parameters, namely t+, κ, D, and c0, are obtained
from the experimental results reported in Ref. 43.

eNote that the Bruggeman coefficients are approximated to be 1.5 following the
assumption of perfectly spherical particles in the electrodes.11
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Table C1. LG INR21700 M50 (NMC811/Si-Gr) parameter values from Ref. 38.

Parameter Units Description Positive Electrode (i = p)
Separator
(i = s)

Negative Electrode
(i = n)

li m Thickness 75.6 × 10−6 12 × 10−6 85.2 × 10−6

Ri m Particle radius 5.22 × 10−6 − 5.86 × 10−6

εi − Porosity 0.335 0.47 0.25

εi
filler − Binder volume fraction 0 0 0

εi
solid − Active material volume fraction 0.665 0 0.75

bruggi − Bruggeman coefficient 1.5 1.5 1.5
Ds,i m2/s Solid phase diffusion 4.0 × 10−15 − 3.3 × 10−14

σi S/m Solid phase conductivity 0.2707 − 286.67
ki m2.5/(mol0.5 · s) Reaction rate coefficient 3.54 × 10−11 − 6.72 × 10−12

αa,i − Anodic charge transfer coefficient 0.5 − 0.5
αc,i − Cathodic charge transfer coefficient 0.5 − 0.5
cs i,

max mol/m3 Maximum solid phase concentration 63104 − 33133

c0 mol/m3 Equilibrium concentration in electrolyte 1000 1000 1000

θi
0% − Stoichiometric coefficients at 0% SOC 0.9084 − 0.0279

θi
100% − Stoichiometric coefficients at 100% SOC 0.27 − 0.9014

Acell m2 Cell area 0.1037
F C/mol Faraday constant 96 485
R J/(mol·K) Ideal gas constant 8.314
T K Cell temperature 298.15

Parameter Units Description Expression

Up V Open-circuit potential of NMC811 Up = − 0.8090 × θp + 4.4875 − 0.0428 × tanh(18.5138 × (θp − 0.5542))
−17.7326 × tanh(15.7890 × (θp − 0.3117)) + 17.5842 × tanh(15.9308(θp − 0.3120))

Un V Open-circuit potential of Si-Gr θ= × + − × ( × ( − ))θ−U e1.9793 0.2482 0.0909 tanh 29.8538 0.1234n n
39.3631 n

θ θ− × ( × ( − )) − × ( ( − ))0.04478 tanh 14.9159 0.2769 0.0205 tanh 30.4444 0.6103n n

t+ − Transference number43 = − × ( ) + × ( ) − × ( )

+
+t c c c0.1287 1000 0.4106 1000 0.4717 1000

0.4492

e e e
3 2

D m2/s Electrolyte diffusion43 = × × ( ) − × × ( )

+ ×

− −

−

D c c8.794 10 1000 3.972 10 1000

4.862 10

e e
11 2 10

10

κ S/m Electrolyte conductivity43 κ = × ( ) − × ( ) + × ( )c c c0.1297 1000 2.51 1000 3.329 1000e e e
3 1.5
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Appendix D. Model Accuracy Comparison for FVM versus
FDMcs

A systematic voltage accuracy study is conducted to compare
FVM and FDM for the radial discretization of Fick’s law, which
governs the particle concentration variables, cs,i , where i ∈ (p, n). In
this study, we denote “FVM” as FVM discretization of cs,i and
“FDMcs” as FDM discretization of cs,i. For both FVM and FDMcs
schemes, FVM is used to discretize all other remaining macroscale
variables along the x-direction, e.g., ce, φs,i, and φe. Since
COBRAPRO offers two discretization methods for the solid particle
concentration, users can choose their preferred discretization method
for cs,i.

Figure 11 shows comparison results of the voltage accuracy for
FVM and FDMcs at 1C discharge for different N and Nr, where
N= Np = Ns = Nn and Nr= Nrp = Nrn. Parameters from Ref. 38
were used for both FVM and FDMcs simulations. The baseline is the
voltage simulated at N= 100 and Nr= 100 using FVM, denoted as
VN N

FVM
, r100 ,100

. Figures 11a and 11b show the voltage RMSE (Vrmse)

between the baseline (VN N
FVM

, r100 ,100
) and the voltage simulated at a

specific Nj and Nr,k, denoted asVN N,j r k, . The voltage RMSE is defined
as

∑= ( ( ) − ( )) [ · ]
=

V
N

V i V i
1

C 1rmse

i

N

N N
FVM

N N

1
, ,

2
r j r k100 ,100 ,

where j, k ∈ (3, 5, 10, 15, 20, 25, 30, 40, 50, 60, 70, 80, 90, 100).
Figures 11c and 11d project the three-dimensional graphs of
Figs. 11a and 11b onto the two-dimensional plane (Vrmse versus
Nr), such that each curve represents the Vrmse for a given N as labeled
in the color-coded legend.

We list key takeaway points from Fig. 11 regarding Vrmse and
tsim

total, providing guidelines for selecting the optimal number of N and

Nr to minimize tsim
total without compromising voltage accuracy. Note

that the observations made here are specific to 1C discharge
simulations.

• Key point 1: For both FVM and FDMcs, setting N= 10 for any
Nr maintains voltage accuracy while reducing simulation time. As
shown in Figs. 11c and 11d, the Vrmse does not improve significantly
beyond 10= N, as indicated by the overlapping curves for
10 ⩽ N ⩽ 100. For example, with Nr=10, increasing N from 3 to
10 reduces Vrmse from 0.0079 V to 0.0021 V, improving Vrmse by

Figure 11. Comparison of FVM and FDM used to discretize cs at 1C discharge. FVM: (a) Vrmse as a function of Nr and N, (c) two-dimensional view on the Vrsme

versus Nr plane, (e) total simulation time tsim
total . FDMcs: (b) Vrmse as a function of Nr and N, (d) two-dimensional view on the Vrsme versus Nr plane, and (f) total

simulation time tsim
total.
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73.4%. Increasing N to 40 further reduces Vrmse to 0.0019 V, but
only by 9.52%, while tsim

total increases to 4.442 s (a 252% increase).
Similar results apply to FDMcs, making N= 10 ideal for 1C
discharge.f

• Key point 2: For both FVM and FDMcs, setting Nr=20 for any
N maintains voltage accuracy while reducing simulation time. As
shown in Figs. 11c and 11d, Vrmse decreases exponentially and
shows minimal improvement beyond Nr=20. For example, for FVM
at N= 10, increasing Nr from 3 to 20 reduces Vrmse from 0.0137 V to
0.0008 V, a 94.2% improvement in Vrmse. Increasing Nr to 60
reduces Vrmse by only 37.5%, with tsim

total increasing by 108%. Similar
results apply to FDMcs, making Nr=20 ideal for 1C discharge.

• Key point 3: At the recommended N= 10 and Nr= 20, FDMcs
and FVM yield comparable results, with FDMcs showing slightly
better performance. At N= 10 and Nr=20, the FVM
Vrmse = 0.0008 V and =t 1.751 ssim

total and FDMcs Vrmse = 0.0006 V
and =t 0.955 ssim

total . Although FVM ensures mass conservation,
FDMcs offers higher voltage accuracy because it does not require
approximating the surface solid concentration.89

In general, for given values of N and Nr, Vrmse is smaller at lower
C-rates because slower dynamics cause less rapid changes in the
lithium concentration gradient within the particle and electrolyte.
Because the maximum C-rate in the HPPC and UDDS data used in
this study was 1C, we used N= 10 and Nr=20 for the C/20 capacity
test, HPPC, and UDDS simulations. At C-rates exceeding 1C, more
discretization points are needed due to rapid concentration gradient
changes. For a given current profile, we generally recommend
comparing voltage simulation results with a benchmark solution
that uses many discretization points.
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