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Abstract
This article introduces an advanced state-of-charge (SOC) estimation method customized for 28 V 
LiFePO4 (LFP) helicopter batteries. The battery usage profile is characterized by four consecutive 
current pulses, each corresponding to distinct operational phases on the helicopter: instrument 
check, key-on, recharge, and emergency power output stages. To establish a precise battery model 
for LFP cells, the parameters of a second-order equivalent-circuit model are identified as a function 
of C-rate, SOC, and temperature. Furthermore, the observability of the battery model is assessed 
using extended Lie derivatives. The signal-to-noise ratio (SNR) of the open-circuit voltage (OCV)–SOC 
relation is analyzed and employed to evaluate the estimator’s resilience against OCV flatness. The 
extended Kalman filter (EKF) and the unscented Kalman filter (UKF) are utilized for SOC estimation. 
The results emphasize the significance of meticulously choosing process and sensor noise covari-
ance matrices to achieve a resilient SOC estimator for LFP cells. Furthermore, the UKF demonstrates 
superior robustness against OCV–SOC relationships compared to the EKF. Lastly, the UKF is selected 
for testing across various aircraft usage scenarios at 10°C, 25°C, and 45°C. The resultant root mean 
square errors for SOC estimation at these different temperatures are consistently below 2%, thereby 
validating the effectiveness of the UKF SOC estimation approach.
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1. � Introduction

As auxiliary power sources for aircraft, aviation 
battery packs primarily serve as emergency and 
engine-starting power sources [1]. Their main appli-

cations are as follows [2]: (1) acting as a vital emergency 
power source, ensuring a stable power supply to critical 
onboard systems during fluctuations in generator power; 
(2) supplying electrical power for checking instruments 
and starting the engine of the aircraft; (3) mitigating tran-
sient voltage fluctuations during onboard power source 
transitions. In the aviation sector, lithium-ion battery packs 
have gained prominence [3], and LiFePO4 (LFP) battery 
technology has emerged as the preferred choice due to 
its thermal stability and cost-effectiveness [4].

Monitoring lithium-ion batteries in real time neces-
sitates a battery management system (BMS) [5]. State-
of-charge (SOC) estimation is one of the fundamental 
functions of BMS [6, 7]. Coulomb counting is a straight-
forward method to estimate the cell SOC, involving 
current integration over time [8]. However, as an open-
loop estimation method, Coulomb counting is sensitive 
to initial SOC and current sampling accuracy [9]. To 
enhance SOC estimation robustness, Kalman filter 
(KF)-based estimation algorithms including the unscented 
Kalman filter (UKF) and extended Kalman filter (EKF) are 
employed to enable closed-loop estimation [10]. In EKF- 
and UKF-based SOC estimation methods, the difference 
between the battery model predicted output and 
measurements at the present step is fed back to the 
observer to correct the estimated states [11, 12]. EKF relies 
on linearized battery governing equations, may introduce 
errors, especially for highly nonlinear models [13, 14], 
whereas UKF utilizes the unscented transform to derive 
statistics for the process noise covariance [15], eliminating 
the need to compute derivatives of the battery model 
[16]. UKF has been shown to outperform the EKF 
regarding estimation accuracy while maintaining compat-
ible computational complexity [17].

OCV–SOC lookup table is employed in EKF and UKF 
for SOC estimations [18]. For LFP batteries, OCV–SOC 
curves are relatively flat, increasing the SOC estimation 
uncertainty. In [19], OCV is divided into three regions: 
plateau range, steep-slope range, and gentle-slope range. 
Only the gentle-slope range is used in the closed-loop 
SOC estimation. In [20], two consecutive linear filtering 
stages are used for OCV estimation. In the initial stage, 
a recursive least squares filter is employed to evaluate 
the parameters of the equivalent-circuit model (ECM), and 
a fading Kalman filter compensating for LFP OCV modeling 
errors with a forgetting factor is used in the second stage. 
In [21], a weighted average function integrates SOC esti-
mation obtained through Coulomb counting and the 
OCV-based method to forecast the SOC in the LFP 
battery pack. In [22], a pseudo-OCV is introduced to 
create a comprehensive LFP OCV for SOC estimation. 
The SOC estimation error across the entire range remains 

below 3%. Although the reconstructed LFP OCV improves 
OCV slopes, it does introduce voltage errors. In [23], differ-
ential voltage (DV) analysis is used as an indicator for 
inferring SOC information. To ensure robust SOC and 
capacity estimation, three feature points (at 13%, 70%, and 
92.5% SOC positions) are captured from the incremental 
capacity (IC) or DV curves [24]. It is important to note that 
IC curve- and DV curve-based SOC estimation schemes 
are most effective when applied under conditions of low 
C-rate currents. Utilizing the single particle model (SPM), 
the concentration of lithium ions within the phase-
changing electrodes was estimated considering the 
phase-moving boundary in an LFP electrode [25]. In [26], 
the electrochemical impedance spectroscopy (EIS) of 
LFPLi4Ti5O12 cells was studied, which showed a strong 
dependence on SOC at reasonably fast frequencies (ω > 
1 rad/s). Such impedance was then used as a distinctive 
feature for accurately identifying the SOC [26]. Additionally, 
the expansion force of LFP pouch cells is employed as an 
essential parameter for SOC estimation [27, 28]. The 
force-aided SOC estimation method offers improved 
accuracy compared to voltage-based methods, although 
real-time measurement of battery force remains  
challenging.

Evaluating battery model observability is a crucial 
step before designing state estimation algorithms [29]. 
For a nonlinear ECM, the observability matrix is derived 
using the Lie derivative [30]. A nonlinear battery model 
is deemed weakly observable when its observability 
matrix is full rank, enabling the exclusive reconstruction 
of states through output measurements and input [31]. 
The condition number of the observability matrix gauges 
the degree of measurement errors that impact estimation 
results. A high condition number implies that even a small 
measurement noise could be  magnified, resulting in 
substantial errors in state estimation [32, 33]. In [34], the 
influence of current, uncertain parameters, and fitting 
methods of OCV on ECM observability were investigated.

The signal-to-noise ratio (SNR) of OCV is defined as:
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where OCV and noise values are stored as vectors of 
length N. OCVn and noisen are the nth value in the OCV 
and noise vectors, respectively. Generally, a high SNR 
means less noise is mixed with the signal and better signal 
quality is achieved. Hence, a high SNR value is desirable 
for state estimation. The noise can arise from errors in 
voltage measurement and inaccuracies in the model’s 
output voltage predictions. More specifically, voltage 
measurement errors may stem from inaccuracies in the 
voltage sensors, while inaccuracies in the battery model 
can result in errors in output voltage predictions [35].
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For LFP cells, the flat OCV–SOC profiles can lead to 
a low SNR [36, 37]. The impact of low SNR in the flat OCV 
region on estimator performance has not been fully 
explored. Extended Lie derivatives, an enhanced version 
of Lie derivatives, consider the effects of input and its 
derivatives on system observability [38]. Given the 
substantial impact of input current on system observ-
ability, investigating system observability using extended 
Lie derivatives is critical.

SOC estimation algorithms necessitate validation 
data from operational profiles under representative condi-
tions [39]. While automotive battery testing often uses 
driving profiles like the Federal Urban Driving Schedule 
(FUDS) [40], or its European [41] or Asian equivalents [42], 
aviation-specific battery usage profiles that encompass 
representative operating conditions are scarce [43].

Several research gaps in SOC estimation for LFP 
batteries employed as auxiliary power sources in aviation 
applications can be outlined as follows. Most SOC estima-
tion algorithms have been developed and validated in the 
context of electric vehicle scenarios. In contrast, research 
on SOC estimation for aviation applications is limited. For 
ECM-based SOC estimators, understanding the model 
observability with extended Lie derivative and its impact 
on estimator’s performance are still lacking. In the case 
of LFP cells, the effects of OCV flatness on SOC estima-
tion by observers need to be quantified and investigated. 
The LFP cell hysteresis is not modeled in this article since 
the operating conditions targeted in this work are 
primarily for the discharge conditions of the battery.

The following contributions have been made to 
this article:

	 1.	 Due to the lack of accessible datasets on 
helicopter battery duty cycles, we characterized 
the aviation duty cycle and collected data at three 
temperatures across five LFP cells.

	 2.	 We identified and validated a second-order ECM 
based on SOC, temperature, and current, 
investigating its observability using extended 
Lie derivatives.

	 3.	 We introduced the SNR to quantify the impact of 
LFP OCV flatness on SOC estimator performance.

	 4.	 We designed and validated EKF and UKF 
algorithms for SOC estimation, calibrating the 
filters based on a sensitivity study of process 
covariance (Q) and measurement noise 
covariance (R).

2. � Duty Cycle Development 
and Experimental Tests

The 28 V lithium-ion battery pack shown in Figure 1 (in 
orange) is used as an auxiliary power and emergency 
energy source [44]. As shown in Figure 2, the battery pack 

considered in this study consists of eight modules 
connected in series, where each module is composed of 
four cells connected in parallel. Hence, the overall configu-
ration of the battery pack is 4P8S.

As depicted in Figure 2, the pack voltage Vpack and 
pack current ipack are derived from the cell voltages Vcell 
and cell current icell as follows:

	 ∗= = 8pack s cell sV N V N 	 Eq. (2)

	 ∗= = 4pack p cell pi N i N 	 Eq. (3)

and the power output of the battery pack Ppack is 
described as:

	 = =∗ ∗ ∗ ∗pack pack pack s p cell cellP V i N N V i 	 Eq. (4)

In this study, the heterogeneity within the cells is 
ignored [45].

The battery pack operates through five consecutive 
phases: rest, instrument check, key-on, recharge, and 

  FIGURE 1    28 V Li-ion aircraft battery.
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  FIGURE 2    28 V LFP battery pack topology (4P8S).
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emergency power output, as illustrated in Figure 3. The 
duty cycle is designed to simulate the operating condi-
tions of an aviation battery pack. C-rate is a measure of 
the rate at which a battery is discharged relative to its 
nominal capacity. The signs of the discharge current and 
charge current are positive and negative, respectively. 
The detailed modeling of helicopter dynamics including 
motor and drivetrain characteristics is not within the 
scope of this article. The design principles of these phases 
are detailed as follows.

•	Instrument check (Duration: t1): The battery is 
discharged at a low C-rate for the pilot to check the 
instruments before starting the engine. The applied 
current in this stage is denoted as I1.

•	Key-on (Duration: t2): The battery is discharged at a 
moderate C-rate for a short period to ignite the 
engine. The applied current in this stage is denoted 
as I2.

•	Recharge (Duration: t3): The battery is charged at a 
low C-rate for a long duration. The applied current in 
this stage is denoted as I3.

•	Emergency power output (Duration: t4): The 
battery is discharged at a high C-rate to meet the 
power requirements such as emergent take-off and 
landing. The applied current in this stage is denoted 
as I4.

In this study, three different usage profiles are 
designed by adjusting the length of t1, t2, t3, and t4, as 
shown in Table 1. In Scenario 1 (S1), the duty cycle is 
designed to simulate a long-time emergency power 
output requirement, with t4 set to 600 s. Conversely, in 
Scenario 2 (S2), the duty cycle simulates a short-time 
emergency power output, with the emergency power 

output duration t4 set to 200 s. Finally, in Scenario 3 (S3), 
the duty cycle simulates a long-time instrument check, 
with the duration of the instrument check t1 set to 600 
s. Three aircraft usage profiles (S1, S2, and S3) are 
employed to 26,650 cylindrical LFP cells whose specifica-
tions are listed in Table 2.

Here, I1, I2, I3, and I4 are set to 0.3C (0.75A), 0.7C (1.75A), 
−0.1C (0.25A), and 1C (2.5A), respectively, to generate 
representative battery usage profile for the 28 V aviation 
batteries used in this article.

The cell testing equipment available at the Stanford 
Energy Control Lab is depicted in Figure 4 [46]. The cells 
are placed in the AMEREX IC500R thermal chamber and 
are cycled using the Arbin LBT21024.

The LFP cells are tested at three temperatures (10°C, 
25°C, and 45°C). The 1C cell capacity test, galvanostatic 
intermittent titration technique (GITT) test, UDDS test, 
and experiments with three aircraft usage profiles 
are conducted.

For 1C cell capacity test, the cell is first charged fully 
with a constant current–constant voltage (CC-CV) protocol 
at 1C until the cell voltage reaches the upper cut-off 
voltage of 3.65 V. Then the cell voltage is maintained at 
3.65 V until the cell current decreases to 1/30C. After 1-h 
rest, the cell is discharged at 1C until the cell voltage 
reaches 2.0 V. The capacity test results for five cells are 
listed in Appendix A. For GITT discharge testing shown 
in Figure 5, the cell is first fully charged, and then the GITT 
is conducted, employing a constant current titration (0.2C) 
of 10% SOC increment. A 2-h rest period ensures the cells 
reach equilibrium, and the voltage at the end of each rest 
period is extracted and plotted against SOC to generate 
the discharging OCV. The GITT protocol is performed 
throughout the entire SOC range until the cell terminal 
voltage drops to a lower cut-off voltage of 2.1 V. For the 
charging GITT, the magnitude and duration of the charging 
current during the charging GITT procedure are the same 
as those of the discharging GITT procedure. The charging 
GITT test stops when the cell voltage reaches the upper 
cut-off voltage of 3.65 V. The UDDS tests are conducted 
for ECM validation.

  FIGURE 3    Duty cycle of the aircraft batteries composed of 
four constituent stages: instrument check (duration—t1, 
current—I1), key-on (duration—t2, current—I2), recharge 
(duration—t3, current—I3), and emergency power output 
(duration—t4, current—I4), respectively. The signs of the 
discharge current and charge current are positive and 
negative, respectively.
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TABLE 1  Duty cycle scenarios.

t1 [s] t2 [s] t3 [s] t4 [s]
Scenario 1 (S1): long-time 
emergency output

150 20 200 600

Scenario 2 (S2): short-time 
emergency output

150 20 200 200

Scenario 3 (S3): long-time 
instrument check

600 20 200 100
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TABLE 2  26,650 cylindrical LFP cell specification.

Nominal capacity 2.5 Ah
Nominal voltage 3.3 V
Cathode chemistry LiFePO4

Anode chemistry Graphite
© SAE International
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3. � ECM Parameter  
Identification

In this section, a second-order ECM is formulated. The 
governing equations of the ECM are:

	 ( ) ( ) ( )= − − − ∗1 2 0,V t OCV SOC T V V R i t 	 Eq. (5)

	 ( )= −

1 1
1 1 1

1 1V i t V
C R C

	 Eq. (6)

	 ( )= −

2 2
2 2 2

1 1V i t V
C R C

	 Eq. (7)

	 ( )−=
∗



1
3600 cell

SOC i t
Q 	 Eq. (8)

where V(t) is the battery terminal voltage; two RC branches 
(R1, C1, R2, C2) are used to model the dynamic response 
of the cell voltage; V1 and V2 are the voltage across R1 and 
R2, respectively; i(t) is the input current; and R0 is the series 
resistance. The RC parameters (R1, C1, R2, C2) depend on 
SOC, temperature T, and directional current i; OCV is a 
nonlinear function of SOC and temperature T; 1,V  2 ,V  and 
SOC  are the time derivatives of V1, V2, and SOC, respectively.

The state-space representation of the second-order 
ECM is given by:
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R C CV V
V V i

R C C
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Q
	

Eq. (9)

where x = [V1, V2, SOC] is the state vector A and B are the 
state and input matrices, respectively.

3.1. � RC Parameter Identification 
Results

In this section, the RC parameters of the battery models 
are determined using the GITT data. The OCV is deter-
mined by cycling the battery with the discharging GITT 

Thermal
chamberArbin

Tested cells

Host
computer

  FIGURE 4    Battery testing equipment at Stanford Energy 
Control Lab.
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  FIGURE 5    GITT test procedure (T = 25°C) at discharge and charge directions. (a) Charge GITT current profile. (b) Discharge GITT 
current profile. (c) Charge GITT voltage and SOC. (d) Discharge GITT voltage and SOC.
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data as shown in Figure 5. The cell OCV versus SOC 
profiles at 10°C, 25°C, and 45°C are plotted in Figure 6. 
It can be found that the OCV demonstrates dependency 
on temperature and current direction. R0 is identified 
using the voltage drop over the pulse current. Time 
constants are determined by fitting the ECM voltage to 
the experimental voltage relaxation process. Finally, R1 
and R2 are identified by fitting the ECM voltage to the 
experimental voltage with pulse and relaxation process. 
The RC parameter identification process and identifica-
tion results are elaborated in Appendix B. The identified 
R0 at 10°C, 25°C, and 45°C are plotted in Figure 7. The 
identified ECM is validated with the experimental UDDS 
data as shown in Figure 8. The RMSEs of the voltage 
predictions are 5.3 mV, 5.0 mV, 4.7 mV at 10°C, 25°C, 
and 45°C, respectively. These results validate the 
identified ECM.

3.2. � ECM Observability Analysis 
with Extended Lie Derivative

The observability of the battery model is investigated 
using the extended Lie derivatives [47]. For a nonlinear 
system given by:

	 ( )= ,x f x u 	 Eq. (10)

	 ( )= ,y h x u 	 Eq. (11)

where xϵRn denotes the state vector, uϵRp is the system 
input vector, and yϵRm is the system output; f(x, u) is the 
state-space representation of the ECM as shown in 
Equations 2 and 3; h(x, u) is a smooth continuous nonlinear 
function as shown in Equation 1. The observability matrix 
  is calculated with extended Lie derivatives −1n

fL  [29]:

  FIGURE 6    Discharge OCV versus SOC at 10°C, 25°C, and 45°C.
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  FIGURE 7    Cell R0 identification results as a function of SOC, current, and temperature.
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	 7

  FIGURE 8    ECM predicted voltage vs. experimental voltage with UDDS profiles (a) at 10°C (b), 25°C (d), and 45°C (f); Voltage 
prediction error at 10°C (c), 25°C (e), and 45°C (g).
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where y  and y  are the first and second derivative of y 
with respect to time t, respectively; hx and hu are the 
derivatives of h with respect to x and u, respectively.

For a second ECM expressed in Equation 9, the state-
space presentation f can be written as:
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Furthermore, the extended Lie derivatives of the 
voltage (Equation 5) with respect to x are calculated as:
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The resulting observability matrix ×3 3  is derived 
as follows:

	 ( ) ( ) ( )
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Q R C R C
di d OCV d OCVi
dt dSOC dSOC

Q Q R C R C



	
Eq. (15)

The measure of the system observability can 
be quantified with the condition number κ of the observ-
ability matrix, which is given as [29]:

	 ( )κ −= 1|| |||| ||   	 Eq. (16)

where ‖  ⋅ ‖ is the largest singular value of the matrix 
(calculated with svd function in MATLAB in this work).

Given that the nature of R1, R2, C1, C2, OCV, and Qcell 
are functions of current, SOC, and temperature, input 
current and temperature impact the observability 
matrix .

First, the ECM observability dependence on input 
current i is evaluated. Different input currents (1C, 1.5C, 
and 2C) are employed for the ECM. The voltage profiles 
versus SOC with 1C, 1.5C, and 2C discharge are shown 
in Figure 9(a). The condition number κ in logarithmic 
scale (log10) at these discharge C-rates is plotted in 
Figure 9(b). The condition number is noted to rise as the 
current magnitude decreases. This result indicates that 
the ECM observability can be  improved with a higher 
C-rate.

Further, we explore the impact of temperature on 
ECM observability. The 1C discharge voltage profiles 
versus SOC at 10°C, 25°C, and 45°C are utilized in the 
second-order ECM condition number as shown in Figure 
10(a). The condition number κ in logarithmic scale at 
these temperatures is depicted in Figure 10(b). Since 
the OCV and RC parameters are considered as a 
function of temperatures, the condition number varies 
at different temperatures. At a low SOC range (<0.2), 
the condition number at 45°C is higher than that at 
25°C and 10°C. When the SOC reaches 0.9–1, the condi-
tion number at 10°C becomes the largest among the 
three temperatures.

Across the middle SOC range (0.2–0.9), the condition 
numbers at these temperatures overlap. This is caused 
by the nonlinear coupling between the ECM parameters 
and temperatures.

As seen from the observability matrix in Equation 15, 
the gradient of OCV with respect to SOC (dOCV/dSOC) 
is a crucial metric of system observability. Since the OCV–
SOC of the LFP is flat, a small noise on the OCV will lead 
to significant dOCV/dSOC variations and potentially cause 
large SOC estimation errors.
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3.3. � Impact of OCV Flatness on 
Estimator Design with  
Signal-to-Noise Ratio

The OCV slope with respect to SOC (dOCV/dSOC)n is 
defined as:

	 +

+

  −
=  − 

1

1

n n

n nn

dOCV OCV OCV
dSOC SOC SOC

	 Eq. (17)

where OCV and SOC are stored as vectors; OCVn and 
SOCn are the nth value in the OCV and SOC vectors.

To further quantify the impact of the OCV flatness 
on the ECM observability, the SNR is adopted. In this 
context, we assume the presence of white Gaussian noise 
with a mean value of 1 mV added to the OCV. The resulting 
SNROCV is calculated as 55 dB using Equation 1, as illus-
trated in Figure 11. The choice of noise with a mean value 
of 1 mV is deliberate, as this value aligns with the typical 
accuracy ranges of voltage sensors used in BMSs and 
battery voltage prediction models. The resulting 
dOCV/dSOC with added noise is plotted in Figure 11(b). As 
depicted in Equation 15, the dOCV/dSOC plays a crucial 
role in the observability matrix. Any change in the 
dOCV/dSOC results in a corresponding alteration in the 

  FIGURE 10    Voltage response with 1C discharge current at 10°C, 25°C, and 45°C (a). The observability matrix condition 
number (b).
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  FIGURE 9    Voltage response with 1C, 1.5C, and 2C discharge current at 25°C (a). The observability matrix condition number (b).
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observability matrix. Furthermore, the condition number 
κ, computed using Equation 19, relies on the observability 
matrix. Therefore, it is important to explore the influence 
of OCV flatness on both dOCV/dSOC and the condition 
number, especially under conditions of SNR variations 
caused by the introduction of noise to the OCV.

The SNR, in decibels, of (dOCV/dSOC) vector is 
computed as the ratio of its summed squared magnitude 
to that of the added noise vector noise:

	

( )

( )=

=

 
Σ 

=  
 Σ 
 

/

2

1
10 2

1

/ ,

/
20log

dOCV dSOC

N
n n

N
n n

SNR dOCV dSOC noise

dOCV dSOC

noise

	 Eq. (18)

Also, the SNR of condition number κ in the observ-
ability matrix can be calculated as:

( )κ

κ
κ

=

=

 
Σ 

=  
 Σ 

2
1

10 2
1

, 20log
N
n n

N
n n

SNR noise
noise

	 Eq. (19)

where N is the length of the condition number κ vector; 
κn is the nth κ vector.

The OCV is pivotal in the SOC estimation using the 
OCV–SOC lookup table method. To measure the resil-
ience of SOC estimation employing the OCV–SOC lookup 
table against OCV flatness, the SNR of the SOC estimation 
solely based on the OCV–SOC lookup table is evaluated 
in the presence of small noise added to the OCV. Similarly, 
the SNR for SOC estimation utilizing only the OCV–SOC 
lookup table is expressed as follows:

	



( )


− −
− −

− −=

=

 
 Σ
 =
 

Σ 
 

2

1

10 2
1

,

20log

look up table

n

look up tableSOC

N
look up tablen

N
n n

SNR SOC noise

SOC

noise

	 Eq. (20)

where N is the length of  − −look up tableSOC  vector estimated 
only with the OCV–SOC lookup table method; 


− − nlook up tableSOC  is the nth  − −look up tableSOC  vector.
The SNR results of dOCV/dSOC with Equation 18 are 

depicted in Figure 12. It can be noted that the SNR of 
dOCV/dSOC decreases below 0 dB, even when 55 dB 
noise is added to the OCV. On the logarithmic scale, the 
negative SNR means the signal level is smaller than the 
noise level and it is difficult to distinguish the desired 
signal from the noise. This result illustrates that even if a 
minor noise (noise mean value = 1 mV, SNROCV = 55 dB) is 
introduced to the OCV signal, the prediction error of 
dOCV/dSOC caused by the noise will increase vastly. The 
SNR decay also signifies the impact of OCV flatness on 
the SOC estimator. Specifically, for the SOC range of 
0.4–0.6 and 0.8–0.9, the SNR drops to −25 dB. This indi-
cates that the dOCV/dSOC at these regions is most sensi-
tive to uncertainty and can lead to the most significant 
estimation errors. Also, this means that the robustness 
of the ECM could be better in these regions.

Since dOCV/dSOC is an essential term in the system 
observability matrix, as shown in Equation 15, a slight 
noise would inevitably impact the ECM observability and 
increase the opportunity of losing the rank of the observ-
ability matrix. Furthermore, the SNR of the condition 
number κ in the observability matrix after the OCV noise 

  FIGURE 11    OCV and OCV with added white Gaussian noise (noise mean value = 1 mV, SNROCV = 55 dB) (a); dOCV/dSOC and 
dOCV/dSOC with added white Gaussian noise (noise mean value = 1 mV, SNROCV = 55 dB) (b).
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is added is shown in Figure 13. It can be observed that 
the SNR is below 30 dB across the entire SOC range. 
Similarly, the relatively lower SNR regions are SOC ranges 
of 0.4–0.6 and 0.8–0.9. This finding also verifies that the 
ECM observability within these SOC regions is most 
susceptible to OCV noise. Therefore, it can be inferred 
that the effect of the OCV flatness of LFP batteries on 
ECM observability can be quantified with SNR.

Lastly, the SNR of the SOC estimation with only the 
SOC–OCV lookup table after the OCV noise is added is 
shown in Figure 14. All the SNRs calculated with Equation 

20 decrease below 40 dB. In addition, the SNR of SOC 
regions of 0.4–0.6 and 0.8–0.9 remain the lowest. This 
result illustrates that the LFP OCV noise with a mean value 
of 1 mV will lead to large SOC estimation errors with only 
the OCV–SOC lookup table and the largest SOC estimation 
errors appear in the SOC ranges of 0.4–0.6 and 0.8–0.9.

To sum up, the SNR can analyze the impact of the 
LFP OCV on ECM observability and SOC estimation with 
the OCV–SOC lookup table method. The most susceptible 
SOC regions, due to OCV flatness, can be positioned with 
the lowest SNR values.

  FIGURE 13    SNR of observability matrix condition number (SNRκ) after white Gaussian noise is added to the OCV (noise mean 
value = 1 mV) at different SOC ranges.
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  FIGURE 12    SNR of dOCV/dSOC (SNRdOCV/dSOC) after white Gaussian noise is added to the OCV (noise mean value = 1 mV) at 
different SOC ranges.
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4. � SOC Estimator Design,  
Robustness Analysis, and 
Implementation with  
Aircraft Usage Profiles

In this section, the ECM-based EKF and UKF are devel-
oped for SOC estimation. The robustness of the SOC 
estimator against input noise is analyzed. The SOC esti-
mator sensitivity with different process covariances Q 
and measurement noise covariances R are investigated. 
The aircraft usage profiles are used to evaluate the effec-
tiveness of the SOC estimator.

4.1. � Observer Design with ECM
The discrete-time state-space of the ECM in Equation 9 
is given as [48]:
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	 Eq. (22)

To implement the EKF, the ECM state-space function 
must be  linearized using the Taylor series around the 
present estimated state ˆkx  at time step k. The calculation 
process of the Jacobian matrix of ECM is given as [48]:
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  FIGURE 14    SNR of SOC estimation only with SOC–OCV lookup table 
( )− −look up tableSOCSNR  after white Gaussian noise is added to 

the OCV (noise mean value = 1 mV) at different SOC ranges.
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where 𝐹d is the discrete-time Jacobian matrix of ECM; Ts 
is the discrete sample time; 𝐻d is the discrete-time deriva-
tive of the voltage output equation on state vector; 𝑓1(xk, 
ik), 𝑓2(xk, ik), and 𝑓3(xk, ik) are the first, second, and third 
row of 𝑓(xk, ik), respectively. The EKF algorithm calculation 
process comprises initialization, prediction, and correction, 
as shown in the pseudo-code (Table 3).

The UKF follows the steps described in Table 4.

4.2. � Observer Robustness  
against Input Noise

To assess the influence of SNR within various dOCV/dSOC 
intervals on the state estimator, the EKF and UKF, 
coupled with the second-order ECM, are applied to GITT 
data. Biased voltage measurements are generated by 
introducing random noise to the recorded voltage 
measurements. The referenced SOC is calculated using 
the Coulomb counting. The implementation processes 
of EKF and UKF are widely reported in the literature 
and are not repeated in this article. Interested readers 
could refer to the references for more introduction [42]. 
Consider that voltage measurements with an SNR of 
55 dB are added to the EKF based on second-order 
ECM. The voltage estimation and estimation errors are 
plotted in Figure 15(a) and (b). In Figure 15(a) and (b), the 

TABLE 4  Algorithm: UKF.
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TABLE 3  Algorithm: EKF.
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EKF with the ECM, without noise, accurately follows 
the measured voltage, with the corresponding estima-
tion error staying below 2 mV. Although the voltage 
estimation maintains robustness after adding noise to 
the voltage measurement, the estimation error 
increases. The observability analysis verifies that the 
ECM is locally observable across the SOC range. Thus, 
it is feasible to estimate the SOC with added noise. The 
SOC estimation and estimation errors are shown in 
Figure 16(a) and (b). The EKF is established with the 
Taylor expansion of the ECM. Thus, the linearization of 
the system will increase the possibility of losing the 
rank of the observability matrix. Even though the 
voltage estimation is converged without added noise, 

the SOC estimation error can be found, as shown in 
Figure 16(a) and (b). Furthermore, the introduction of 
noise results in a more pronounced SOC estimation 
error compared to the SOC estimation outcomes 
without added noise. Notably, the SOC estimation error 
experiences the most significant increase within the 
SOC range of 0.4–0.6 and 0.8–0.9, as depicted in 
Figure 16(b). It is noteworthy that the SNR of dOCV/dSOC 
is lowest in these SOC ranges, indicating that even 
slight noise in these SOC regions can lead to consider-
able fluctuations in the dOCV/dSOC values.

Given the crucial role of dOCV/dSOC in linearizing the 
OCV concerning SOC, these SOC regions with low SNR 
exhibit large sensitivity to noise, resulting in substantial 

  FIGURE 15    EKF voltage estimation with white Gaussian noise added to the voltage under GITT condition. (a) Experimental 
voltage vs. EKF estimated voltages with and without noise. (b) EKF voltage estimation errors with and without noise.
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  FIGURE 16    EKF SOC estimation with white Gaussian noise added to the voltage under GITT condition. (a) Referenced SOC with 
Coulomb counting vs. EKF estimated SOC with/without noise. (b) EKF SOC estimation errors with and without noise.
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deviations of the EKF-based SOC estimation from its 
reference values.

The voltage estimation results with UKF using the 
ECM are plotted in Figure 17(a) and (b). Without the added 
noise, the voltage estimation remains the error below 10 
mV. Similarly, the voltage noise with an SNR of 55 dB is 
added to the voltage measurements to investigate the 
UKF robustness against input noise. The added noise 
inevitably increases the voltage estimation errors. The 
SOC estimation results with UKF are summarized in 
Figure 18(a) and (b).

Compared with the EKF, UKF uses a sigma-point 
sampling technique to approximate the state variables’ 
distribution and input noise. By selecting a set of carefully 
chosen sigma points (sample points) from the current 

state estimate, the filter effectively captures the statistical 
properties of the state and input variables. This allows 
the filter to handle non-Gaussian and nonlinear noise 
distributions, making it robust to various types of 
input noise.

As shown in Figure 18(a) and (b), it can be found that 
the SOC estimation with UKF could remain robust against 
the input noise. The SOC estimation error is below 1% 
even if the noise is added to the observer. Note that, 
unlike the EKF, no system linearization is required. 
Removing the linearization process leads to a computa-
tional complexity comparable between the UKF and EKF. 
In addition, since the dOCV/dSOC is no longer needed in 
the UKF calculation process, the low SNR of the 
dOCV/dSOC at different SOC regions will not impact the 

  FIGURE 17    UKF voltage estimation with white Gaussian noise added to the voltage under GITT condition. (a) Experimental 
voltage vs. UKF estimated voltages with/without noise. (b) EKF voltage estimation errors with and without noise.
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  FIGURE 18    UKF SOC estimation with white Gaussian noise added to the voltage under GITT condition. (a) Referenced SOC with 
Coulomb counting vs. UKF estimated SOC with/without noise. (b) UKF SOC estimation errors with and without noise.
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performance of the SOC estimation. Hence, the robust-
ness of the UKF against the input noise is better than 
the EKF.

4.3. � Observer Sensitivity
The process noise covariance matrix Q and sensor noise 
covariance R significantly affect the filter’s performance. 
Therefore, they are frequently employed as tuning param-
eters to attain the desired filter performance. Different 
Q and R values are applied to the EKF and UKF with ECM. 
The initial Q and R for EKF and UKF are listed in Appendix C.

The voltage and SOC estimation results of EKF with 
different Q and R values are shown in Figure 19(a)–(h). 
Note that Q is a 3×3 diagonal matrix. The three param-
eters (Q(1,1), Q(2,2), and Q(3,3)) in Q are tuned separately 
to evaluate their effects on the filter. In Figure 19(a) and 
(b), it can be observed that increasing Q(1,1) from 100 to 
108 does not significantly impact the convergence rate of 
voltage estimation. Still, the convergence of the SOC esti-
mation is accelerated when a large Q(1,1) is applied. A high 
value of Q implies substantial uncertainty in predicting 
states solely based on the model. As a result, the accuracy 
of state corrections becomes heavily reliant on measure-
ments. In these situations, convergence from an initial 
condition error occurs rapidly, but if Q is set too high, the 

estimate may become noisy. Since Q(1,1) is directly relevant 
to the first state of the state vector x, the SOC estimation 
convergence could be improved with larger Q(1,1) values. 
In Figure 19(c) and (d), selecting a larger Q(2,2) can obtain 
a faster convergence of the voltage estimation, but a 
slower SOC convergence. The same result is found in 
Figure 19(e) and (f) for different Q(3,3) values. This is 
because Q(2,2) and Q(3,3) correspond to states V1 and V2. 
More considerable modifications would be imposed on 
V1 and V2 rather than on SOC. Thus, the effects of Q(2,2) 
and Q(3,3) on EKF are opposite compared with Q(1,1).

In terms of R, a larger R indicates that the measure-
ment is uncertain and should not be trusted to make 
significant state corrections based on the measurements. 
Therefore, the state convergence could be slow. The 
results of EKF performances with different R values are 
plotted in Figure 19(g) and (h). It is evident that increasing 
R from 10−7 to 109 will yield a smaller convergence rate 
both on voltage estimation and SOC estimation. Thus, to 
avoid significant state corrections, Q should be decreased, 
or R should be increased to decrease the Kalman gain 
for the EKF.

For UKF with different Q and R values, the results are 
plotted in Figure 20(a)–(h). Increasing Q(1,1) from 10−19 to 
10−3, the UKF becomes more sensitive to changes. It can 
help the filter better adapt to abrupt changes in the 
system behavior. However, if Q is set too high, it can lead 

  FIGURE 19    Effect of tuning the process noise covariance 𝑄3×3 and sensor noise covariance R on EKF estimation error for SOC 
and voltage under GITT condition. (a) Different Q(1,1) on voltage estimation error. (b) Different Q(1,1) on SOC estimation error. (c) 
Different Q(2,2) on voltage estimation error. (d) Different Q(2,2) on SOC estimation error. (e) Different Q(3,3) on voltage estimation 
error. (f) Different Q(3,3) on SOC estimation error. (g) Different R on voltage estimation error. (h) Different R on SOC 
estimation error.
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to overfitting and decreased tracking accuracy as shown 
in Figure 20(a) and (b). A lower process noise covariance 
will make the UKF more conservative and rely more on 
the state transition model. This can result in smoother 
state estimates, which might be desirable when dealing 
with noisy measurements or when the actual process is 
relatively stable. It can be seen from Figure 20(c)–(f). When 
Q(2,2) and Q(3,3) are increased to 4 × 10−5 and 104, respec-
tively, the SOC and voltage estimations could converge 
quickly. Still, they could not maintain stability in the final 
stages of the estimates. Choosing the appropriate Q is 
often a trade-off between tracking accuracy and robust-
ness. A trade-off must be considered to ensure that the 
filter can adapt to changes in the system while not being 
overly sensitive to noise or disturbances. For R in Figure 
20(g) and (h), it is seen that a larger R of 10−2 will lower 
the convergence of the state estimations.

4.4. � SOC Estimation with 
Experimental Data of  
Aircraft Usage Profiles

We investigate the performance of the proposed UKF 
estimator for different aircraft usage profiles. The design 
principle and parameters of these three scenarios (S1, S2, 
and S3) are elaborated in Section 2. The experimental 

current and voltage data of S1, S2, and S3 are shown in 
Figure 21(a)–(f). The UKF estimator is evaluated with 
experimental data of the three aircraft usage profiles at 
different temperatures (10°C, 25°C, and 45°C). The UKF 
with ECM at 10°C, 25°C, and 45°C are shown in Figure 
22. The UKF with ECM estimation errors at 10°C, 25°C, 
and 45°C are shown in Figure 23. An initial SOC error of 
0.5 is given in the UKF. In Figure 23(a) and (b), the voltage 
estimation error at S1 quickly decreases to 2 mV and the 
SOC estimation error drops to 1% within 5 s. The average 
error of the voltage estimation is 11.1 mV, and the RMSE 
of the SOC estimation is 1.66%. At S2, the average error 
of the voltage estimation is 9.9 mV, and the RMSE of the 
SOC estimation is 1.27%. Also, the average error of the 
voltage estimation at S3 is 1.6 mV, and the RMSE of the 
SOC estimation at S3 is 1.21%. Figure 22 also summarizes 
the results of UKF estimation at 10°C, 25°C, and 45°C. It 
can be found that the voltage estimation and SOC esti-
mation could remain robust with three scenarios. In Figure 
23(a) and (b), the voltage estimation at S1 has an average 
error of 5.2 mV and the SOC estimation achieves an RMSE 
of 0.85%. For estimation results at S2 in Figure 23(c) and  
(d), the average error of voltage estimation is 6.4 mV and 
the RMSE of the SOC estimation is 1.13%. At S3, the 
average error of voltage estimation is 2.9 mV and the 
RMSE of the SOC estimation is 0.55%. Finally, the voltage 
and SOC estimation results with UKF at 45°C are plotted 

  FIGURE 20    Effect of tuning the process noise covariance 𝑄3×3 and sensor noise covariance R on UKF estimation error for SOC 
and voltage under GITT condition. (a) Different Q(1,1) on voltage estimation error. (b) Different Q(1,1) on SOC estimation error. (c) 
Different Q(2,2) on voltage estimation error. (d) Different Q(2,2) on SOC estimation error. (e) Different Q(3,3) on voltage estimation 
error. (f) Different Q(3,3) on SOC estimation error. (g) Different R on voltage estimation error. (h) Different R on SOC 
estimation error.
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  FIGURE 21    (a) Experimental current profile of S1 and temperatures are 10°C, 25°C, and 45°C. (b) Experimental voltage response 
of S1 and temperatures are 10°C, 25°C, and 45°C. (c) Experimental current profile of S2 and temperatures are 10°C, 25°C, and 
45°C. (d) Experimental voltage response of S2 and temperatures are 10°C, 25°C, and 45°C. (e) Experimental current profile of S3 
and temperatures are 10°C, 25°C, and 45°C. (f) Experimental voltage response of S3 and temperatures are 10°C, 25°C, and 45°C.
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  FIGURE 22    Voltage and SOC estimations from UKF under S1, S2, and S3, and the temperatures are 10°C, 25°C, and 45°C. (a) 
Voltage estimation of S1. (b) SOC estimation of S1. (c) Voltage estimation of S2. (d) SOC estimation of S2. (e) Voltage estimation of 
S3. (f) SOC estimation of S3.
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in Figure 22. The UKF estimations at 45°C achieve agree-
able accuracy across three scenarios. As shown in Figure 
23(a) and (b), the average error of the voltage estimation 
is 5.8 mV, and the RMSE of the SOC estimation is 0.74%. 
At S2, as depicted in Figure 23(c) and (d), the average error 
of voltage estimation is 9.1 mV, and the RMSE of the SOC 
estimation becomes 0.56%. For S3 in Figure 23(e) and (f), 
the average error of the voltage estimation is 3.6 mV and 
the RMSE of the SOC estimation is 0.50%. From the above 
analysis, it can be concluded that the UKF estimation 
based on the ECM could remain highly accurate with 
aircraft applications.

5. � Conclusion
This study presents a SOC estimation scheme for a 28 V 
LFP aviation battery using a second-order ECM. RC 
parameters of ECM were accurately identified across 
various SOC values, temperatures, and C-rates. Nonlinear 
observability analysis with Lie derivatives confirmed the 
local observability of the model. The impact of OCV 
flatness on EKF robustness was assessed by analyzing 
the SNR changes of dOCV/dSOC, condition numbers, and 
SOC estimations using an OCV–SOC lookup table with 
added noise. Results indicated that SOC estimation is 

most sensitive to input noise in the 0.5–0.6 and 0.8–0.9 
SOC ranges. EKF and UKF were applied to the model for 
SOC estimation under aviation duty cycles, revealing that 
the accuracy of EKF was significantly influenced by 
dOCV/dSOC, while UKF demonstrated superior perfor-
mance. Sensitivity analysis of different Q and R values 
showed that increasing R values’ reduced convergence 
rates for both EKF and UKF. For EKF, higher Q(1,1) values 
accelerated SOC estimation convergence, while higher 
Q(2,2) and Q(3,3) values improved voltage convergence 
but slowed SOC convergence. For UKF, higher Q values 
enhanced both voltage and SOC estimation convergence. 
The second-order ECM with UKF is tested using experi-
mentally designed aircraft usage profiles, showing that 
the SOC estimation RMSEs at three different tempera-
tures are below 2%, illustrating the effectiveness of the 
UKF SOC estimation scheme for aviation batteries.
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  FIGURE 23    Voltage and SOC estimation errors from UKF under S1, S2, and S3, and the temperatures are 10°C, 25°C, and 45°C. 
(a) Voltage estimation error of S1. (b) SOC estimation error of S1. (c) Voltage estimation error of S2. (d) SOC estimation error of S2. 
(e) Voltage estimation error of S3. (f) SOC estimation error of S3.
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Appendices
Appendix A: 1C Capacity Test 
Results
Here, we summarize the 1C capacity test results of the 
five LFP cells used in this work. The 1C cell capacity test 
protocol is introduced in Section 2.

TABLE A .1  1C capacity test results for the five LFP cells [Ah].

T Cell #1 Cell #2 Cell #3 Cell #4 Cell #5
10°C 2.52 2.50 2.49 2.48 2.51
25°C 2.57 2.56 2.56 2.55 2.58
45°C 2.57 2.57 2.54 2.50 2.57
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Appendix B: RC Parameter 
Identification Process and Results
In this section, we detail how the RC parameters of the 
ECM are identified. The RC parameters are determined 
based on the experimental GITT data. The GITT test 
protocol is illustrated in Section 2.

During the relaxation period after each pulse of GITT 
data, the voltage is determined by the number of time 
constants, as shown in Figure B.1. As shown in Figure 
B.1(a), 1 RC pair is insufficient to capture the voltage relax-
ation, and 2 RC pairs could improve the model prediction 
significantly compared with 1 RC pair. Increasing the RC 
pairs will enhance the model prediction capability. To 
balance the computation time and model accuracy, 2 RC 
pairs are utilized in this work, resulting in a second-
order ECM.

•	For R0 identification process: When the current is 
applied immediately, the voltage drop is considered 
the consequence of R0. Therefore, R0 is calculated as 

−=0 ,before afterV VR
I

 where Vbefore is the voltage before 

applying the current and Vafter is the voltage after 
the current.

•	For time-constants identification process: When 
the current becomes 0, the voltage relaxation Vlax is 
controlled by the time constants (𝜏1, 𝜏2) with the 
following equation. 

τ τ= + + − − ⋅1 2
1 2 1, 2,

C C
lax ini C ini C ini ini

dV dVV V V V V
dt dt

 is the 

initial relaxation voltage; VC1 and VC2 are capacitor 
voltages; VC1,ini and VC2,ini are initial capacitor  
voltages. The Curve Fitting Toolbox in MATLAB was 
implemented to fit the time constants based on the 
voltage relaxation of GITT data as shown in Figure B.1.

  FIGURE B.1    Compare different time constants (RC) with a 7200-s relaxation. (a) Different RC responses against experiment data 
with a 7200-s relax. (b) Voltage prediction error during the 7200-s relax.
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  FIGURE B.2    (a) RC pair resistance identification process with one discharge pulse and relaxation. (b) Voltage prediction error.
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•	For R1 and R2 identification process: Including the 
discharge pulse and the following relaxation process, 
the voltage V could be viewed as a function of R1 
and R2 with the following equation. 

τ τ= +∗ +1 2
0 1 2 .R RdV dVV I R

dt dt
 VR1 and VR2 are 

resistance voltages. By fitting this equation to 
experimental voltage curves, the identified process 
of R1 and R2 at each SOC are shown in Figure B.2. 
The identified R0, R1, R2, C1, C2 are listed in Tables 
C.2–C.6, respectively.

Appendix C: Q & R values
Here, the process noise covariance matrix Q and sensor 
noise covariance R for EKF and UKF SOC estimator in 
this work are summarized.

TABLE C.2  R0 identification as a function of temperature, C-rate, and SOC [mΩ]. (The parameter values are rounded to integer.)

T C-rate
SOC
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

10°C −2C 16 18 17 17 17 17 18 19 18 16 15
−1C 17 17 17 17 17 17 17 18 20 17 14
−0.5C 16 17 16 16 16 16 16 17 17 15 13
−0.2C 16 18 16 16 16 16 16 16 17 16 14
0.2C 23 18 17 17 16 16 16 15 15 15 22
0.5C 22 20 19 18 18 17 17 16 16 15 23
1C 21 21 21 20 19 19 18 17 17 17 24
2C 21 21 21 20 20 19 18 18 17 17 24

25°C −2C 10 10 10 10 10 11 11 12 13 10 7
−1C 11 12 11 11 12 12 12 12 13 11 10
−0.5C 11 12 11 11 12 12 12 12 13 14 10
−0.2C 11 11 11 11 11 11 11 11 12 11 10
0.2C 16 12 11 11 11 11 11 10 11 10 12
0.5C 18 14 12 11 11 11 11 11 10 10 14
1C 19 15 13 12 12 12 12 11 11 11 16
2C 16 14 13 12 11 11 11 11 10 10 15

45°C −2C 9 9 9 9 9 9 9 9 9 11 9
−1C 8 8 8 8 8 8 8 8 8 8 7
−0.5C 8 8 8 8 8 8 8 8 8 9 7
−0.2C 9 9 8 8 8 8 8 9 9 8 7
0.2C 9 8 8 8 8 8 7 7 7 7 8
0.5C 10 8 8 8 8 8 8 8 8 8 8
1C 15 9 9 9 9 9 9 9 9 9 10
2C 11 9 9 9 9 8 8 8 8 8 11©
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TABLE C.1  The process noise covariance matrix Q and sensor 
noise covariance R for EKF and UKF SOC estimator.

Q R
EKF diag(4 × 104, 3 × 10−1, 5 × 10−2) 1 × 10−3

UKF diag(2 × 10−19, 1 × 10−19, 1 × 10−19) 1 × 10−3

© SAE International
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TABLE C.4  R2 identification as a function of temperature, C-rate, and SOC [mΩ]. (The parameter values are rounded to integer.)

T C-rate
SOC
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

10°C −2C 39 39 20 22 34 38 42 25 14 4 4
−1C 27 60 13 31 27 31 65 17 45 33 22
−0.5C 63 63 12 34 33 36 48 43 48 67 85
−0.2C 87 87 16 44 45 50 54 50 86 89 77
0.2C 201 69 49 77 62 50 31 90 54 37 87
0.5C 457 63 29 51 47 39 27 54 51 36 87
1C 503 55 41 49 41 34 31 51 27 32 87
2C 61 54 49 55 45 30 41 25 39 25 87

25°C −2C 16 27 12 21 16 28 30 17 17 31 46
−1C 16 43 8 25 17 23 28 30 17 31 46
−0.5C 16 49 4 23 30 26 28 20 50 60 52
−0.2C 16 74 8 37 36 36 40 27 64 58 52
0.2C 265 47 61 48 43 37 30 46 27 23 65
0.5C 363 109 37 38 35 31 25 24 32 23 42
1C 331 78 25 27 29 24 26 22 22 19 42
2C 285 92 30 31 22 28 19 28 17 21 42

45°C −2C 32 32 6 16 11 8 17 10 7 25 25
−1C 36 36 1 15 20 13 14 9 16 18 18
−0.5C 60 42 1 18 22 16 20 6 23 51 51
−0.2C 112 60 4 26 37 25 30 9 30 27 24
0.2C 112 45 21 39 21 20 16 41 13 14 43
0.5C 172 27 27 21 17 15 12 17 10 11 22
1C 388 27 34 16 13 13 13 3 14 10 4
2C 199 33 21 16 14 9 10 11 8 6 4 ©
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TABLE C.3  R1 identification as a function of temperature, C-rate, and SOC [mΩ]. (The parameter values are rounded to integer.)

T C-rate
SOC
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

10°C −2C 19 19 12 15 14 16 21 27 27 27 27
−1C 24 24 15 18 21 24 26 38 56 38 20
−0.5C 32 32 19 22 27 31 36 43 62 49 37
−0.2C 66 66 29 30 35 42 45 59 91 89 72
0.2C 124 85 54 48 43 37 32 48 39 33 300
0.5C 221 51 44 35 30 25 21 22 27 22 123
1C 194 75 42 32 26 22 17 16 21 18 62
2C 155 91 32 24 20 18 14 13 13 14 36

25°C −2C 13 13 8 10 10 11 14 19 24 18 12
−1C 18 18 10 12 14 16 18 23 31 24 18
−0.5C 25 25 12 15 17 20 24 27 47 66 23
−0.2C 38 38 17 21 26 29 31 42 63 62 61
0.2C 11 11 23 28 27 23 20 26 27 23 106
0.5C 47 22 20 23 21 19 16 18 20 16 73
1C 92 27 21 19 18 15 12 12 17 12 53
2C 97 35 16 16 15 12 10 9 11 10 28

45°C −2C 9 9 5 5 7 7 7 9 11 22 7
−1C 12 12 5 7 8 9 10 11 15 18 18
−0.5C 18 18 7 9 11 12 13 14 22 30 10
−0.2C 28 28 7 12 14 17 18 23 31 40 49
0.2C 10 10 17 14 19 17 15 23 22 17 77
0.5C 4 4 11 12 13 12 10 13 13 10 33
1C 5 5 10 9 12 10 8 8 11 7 18
2C 18 6 8 8 9 8 6 5 8 6 23 ©
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TABLE C.5  Time constant (𝜏1 = R1C1) identification as a function of temperature, C-rate, and SOC [s]. (The parameter values are 
rounded to integer.)

T C-rate
SOC
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

10°C −2C 26 27 36 27 27 36 24 20 17 14 12
−1C 27 30 40 31 29 34 50 26 27 24 16
−0.5C 27 31 37 35 32 37 43 50 40 42 38
−0.2C 23 41 32 34 36 41 47 48 51 50 48
0.2C 68 73 76 91 85 76 76 108 80 70 68
0.5C 50 35 37 40 46 37 32 30 50 37 39
1C 50 30 24 32 38 34 29 27 50 36 33
2C 15 28 18 25 29 30 26 27 29 37 30

25°C −2C 21 24 27 23 22 31 46 20 18 15 11
−1C 24 26 29 30 26 29 36 49 28 25 21
0.5C 26 28 27 29 30 34 40 46 44 51 33
0.2C 22 28 23 34 36 39 43 43 50 50 50
0.2C 22 532 38 39 49 41 41 48 50 45 49
0.5C 5 45 38 42 48 39 36 48 48 37 38
1C 18 40 31 39 43 35 30 39 45 30 28
2C 12 30 23 30 35 31 26 27 45 26 22

45°C −2C 16 18 19 21 20 22 28 49 20 20 17
−1C 17 20 19 23 26 29 32 35 29 30 27
−0.5C 19 22 19 26 32 35 37 36 39 52 43
−0.2C 16 19 16 24 39 41 37 41 50 50 44
0.2C 16 889 39 41 48 51 50 52 50 50 50
0.5C 16 446 36 35 48 42 44 50 43 40 38
1C 50 28 26 30 50 34 32 37 33 24 23
2C 38 27 24 28 34 27 22 27 26 17 16©
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TABLE C.6  Time constant (𝜏2 = R2C2) identification as a function of temperature, C-rate, and SOC [s]. (The parameter values are 
rounded to integer.)

T C-rate
SOC
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

10°C −2C 1002 1002 1006 1000 1006 1000 585 962 639 180 337
−1C 1007 1007 1004 1000 1000 1008 1026 902 835 569 337
−0.5C 1052 1052 1038 1000 1000 1008 1002 1000 1001 835 364
−0.2C 1000 1000 1301 1185 1000 1002 1001 1002 1095 834 636
0.2C 773 2094 1738 1821 1809 1831 1815 2036 1586 1634 1471
0.5C 802 994 1003 1001 1000 1000 1000 1001 1000 1000 1000
1C 585 705 792 1000 1000 1000 1001 1000 832 1000 1000
2C 714 633 587 875 890 1008 1015 1001 677 1007 954

25°C −2C 866 1020 1020 1011 1039 1002 977 718 1001 358 358
−1C 1000 1096 1079 1012 1007 1004 993 1025 1001 358 358
−0.5C 1000 1469 1349 1010 1006 1011 1103 1143 1178 358 358
−0.2C 1000 1047 1039 1000 1000 1000 1007 1034 990 745 533
0.2C 1000 2033 1148 1012 1000 1001 1003 1008 1008 1000 1000
0.5C 1000 3670 1163 1015 1000 1005 1005 1000 1007 1005 1000
1C 1000 1837 1025 1004 1000 1004 1001 1001 939 999 910
2C 1000 1649 963 926 1032 1030 1033 1023 763 880 844

45°C −2C 1000 1010 1007 1002 1001 984 936 903 999 2428 537
−1C 1000 1010 8070 1012 1033 1011 1094 1040 1093 2394 537
−0.5C 1000 5873 5520 1002 1007 1007 1220 1204 1135 2394 537
−0.2C 1000 1017 1005 1008 1000 1000 1000 1011 1017 754 537
0.2C 1000 1801 1063 1084 1690 1171 1047 1150 1279 1006 993
0.5C 1000 1801 1063 1042 1002 1001 1003 793 955 943 856
1C 900 2046 1002 1000 989 1000 977 680 711 793 705
2C 1000 2465 1044 1014 824 936 842 603 632 707 644 ©
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