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Diagnosing lithium-ion battery health and predicting future degradation is essential for driving design
improvements in the laboratory and ensuring safe and reliable operation over a product’s expected
lifetime. However, accurate battery health diagnostics and prognostics is challenging due to the
unavoidable influence of cell-to-cell manufacturing variability and time-varying operating
circumstances experienced in the field. Machine learning approaches informed by simulation,
experiment, and field data show enormous promise to predict the evolution of battery health with use;
however, until recently, the research community has focused on deterministic modeling methods,
largely ignoring the cell-to-cell performance and aging variability inherent to all batteries. To trulymake
informed decisions regarding battery design in the lab or control strategies for the field, it is critical to
characterize the uncertainty in amodel’s predictions. After providing an overviewof lithium-ion battery
degradation, this paper reviews the current state-of-the-art probabilistic machine learning models for
health diagnostics and prognostics. Details of the various methods, their advantages, and limitations
are discussed in detail with a primary focus on probabilistic machine learning and uncertainty
quantification. Last, future trends and opportunities for research and development are discussed.

Lithium-ion (Li-ion) batteries have witnessed growing adoption in con-
sumer electronics, electric vehicles (EVs), and grid energy storage systems,
largely owing to their excellent energy density and power output. However,
continued usage and adverse operating environment drive irreversible
chemical reactions and material morphology changes, leading to gradual
but inevitable degradation of battery capacity and power over time. Con-
sequently, accurately estimating the state of health (SOH) of Li-ion batteries
and predicting their future degradation is crucial to optimizing every part of
the battery life cycle—from research and development, to manufacturing
and validation, deployment in the field, and reuse and recycling1.

Some of the earliest research into Li-ion battery health diagnostics
and prognostics focusd on mathematical modeling of the capacity fade
during cycle aging tests2–4. Notably, Bloom et al.4 found that the cell
capacity could be aptly captured by a modified Arrhenius relationship,
which is generally used to describe the rate of a chemical reaction. This
capacity fade model excelled in extrapolating battery performance to

new, untested conditions, providing great utility for design and engi-
neering. Not long after, researchers began experimenting with empirical
and semi-empirical mathematical models for battery capacity fade
modeling to gain better accuracy. In the work of Spotnitz5, researchers
developed a semi-empirical model for Li-ion battery capacity fade con-
sidering reversible and irreversible capacity loss due to solid-electrolyte
interphase (SEI) growth on the graphite anode in the cells. Similar work
by Broussely et al.6 proposed an empirical quadratic equation to model
the capacity fade of NMC/Gr Li-ion cells during long-term storage. The
quadratic model was primarily developed to capture the effect of SEI
growth from electrode-electrolyte reactions during storage. Later, Liaw
et al.7 demonstrated that empirical models could be used to extrapolate
cell resistance increase with thermal aging to update the parameters of a
simple equivalent circuit model for capacity estimation. Since these
initial seminal works, many more advanced empirical and semi-
empirical models have been developed8–10.
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The great success of empirical and semi-empirical models soon led
researchers to investigate alternative methods of modeling battery aging
from experimental data. Saha et al.11 were some of the first to use amachine
learning (ML) algorithm as part of a framework to model battery capacity
fade and predict remaining useful life. The researchers used a relevance
vector machine (RVM) (see the section “Relevance vector machine”) to
model the exponential growth observed in the cell’s internal resistance with
aging. The RVM was used to predict future resistance parameters for an
equivalent circuit model that was then used to predict cell capacity. Alto-
gether, the RVM was shown to do an exceptional job at rejecting outliers
from the dataset and providing good uncertainty estimates with its pre-
dictions. This approach inspired others to further investigate ways of using
ML models for battery health diagnostics and prognostics12–14.

Over the past decade, the use of ML for battery health diagnostics and
prognostics has expanded substantially. The rapid growth can be attributed
in part to the recent advances in ML and deep learning technology, like
open-source ML software and datasets, that enable easier modeling of
complex data15. Well-studied applications of ML for battery health diag-
nostics and prognostics include battery performance simulation and state
estimation (primarily state-of-charge (SOC) and power estimation)16–19,
SOH estimation and capacity grading20–22, and capacity forecasting and
remaining useful life (RUL) prediction23–25. Newer, emerging battery
prognostic problems include early lifetime prediction26,27, knee point
prediction28, capacity trajectory prediction from early aging data29,30, and
initial works investigating the applicability of existing diagnostic and
prognostic models to battery aging data collected from the field31–33.

Despite these significant research efforts on battery health diagnostics
and prognostics, most ML-focused works have yet to incorporate uncer-
tainty quantification systematically. Here, “uncertainty” refers to the pre-
dictive uncertainty of anMLmodel, such as a neural network, for a training/
test sample point that is ideally associated with how confident the model is
when predicting at this point34. The idea is that an ML model does not
simply produce an output (e.g., an estimate of a cell’s SOH indicator); it also
estimates the uncertainty associated with this prediction to the most accu-
rate extent possible. For example, this predictive uncertainty can be in the
formof a standard deviation of aGaussian-distributed output that describes
the spread of the probability distribution around the mean prediction. A
spread that is too large indicates that the uncertainty level is high enough for
the output not to be trusted. In such cases, a human end user may discard
this prediction or provide the ML model with additional information to
reduce the predictive uncertainty. Predictive uncertainty can be confused
with prediction error. The former comes as an uncertainty estimate by an
ML model with uncertainty quantification capability and is thus known; in
contrast, the latter is unknown without access to the ground truth. That is
why access to predictive uncertainty is important for applications not tol-
erating large prediction errors well. Ideally, in these applications, we expect
predictive uncertainty (known) to be a reliable indicator of prediction error
(unknown) on a per-sample basis.

Quantifyingpredictive uncertainty inML-basedhealthdiagnostics and
prognostics becomes especially important given the dynamic and multi-
physical nature of Li-ion batteries, where even small variations in manu-
facturing and testing conditions can significantly change the electrical,
thermal, and mechanical performance, resulting in larger cell-to-cell
variability35. Furthermore, this inherent cell-to-cell variability becomes
even more pronounced as the cells age. Early work by Baumhofer et al.36

investigated the production-caused variation in capacity fade of a group of
48 cells cycledunder identical conditions,finding that the lifetimes variedby
as much as a few hundred cycles. These results, and many similar
studies26,32,35,37, highlight the great need for probabilistic diagnostic and
prognostic algorithms that often have to learn from small datasets and
extrapolate to the tail-end of the lifetime distribution for a population of
cells. Such extrapolations are often associated with large prediction errors,
which, although infeasible to quantify without access to the ground truth,
can be communicated to the user, to some degree, through high predictive
uncertainty and low model confidence. Probabilistic models with properly

calibrated uncertainty estimation are paramount for setting warranties on
battery-powered devices like consumer electronics and,more recently, EVs,
where failing to deliver a promised lifetime due to maintenance/control
decision making informed by largely incorrect ML-based diagnostic and
prognostic results can cost companies their reputation in addition to the
monetary burden associated with honoring warranty repairs.

In practice, quantifying diagnostic and prognostic uncertainty is
especially important for large battery packs with many modules, where the
capacity of a module consisting of serially connected cells will be limited to
the capacity of the worst-performing cell. Thus, probabilistic models (like
those discussed in the sections “Probabilistic ML techniques and their
applications to battery health diagnostics and prognostics”, “Advanced
topics in battery health diagnostics and prognostics”, and “Future trends
and opportunities”) that can accurately model worst-cell performance
through uncertainty estimates made by learning from a limited dataset are
crucial tomodule and pack development. This cell-to-cell variability poses a
direct challenge for battery management systems (BMSs) that need to bal-
ance cell voltages to maximize the capacity and power availability of a
battery pack. In essence, a BMS is an electronic system consisting of hard-
ware, software, andfirmware that is responsible formanaging thepower and
health of a rechargeable battery (e.g., a Li-ion battery cell or pack). Figure 1
outlines some key functions of a BMS in an illustrative flowchart. The BMS
in the figure is built for a battery pack consisting of SE serially connected
strings (ormodules), eachwithPL parallelly connected cells. The BMS takes
voltage (V), current (I), and temperature (T) measurements from each cell
in the pack at regular intervals (e.g., every 1–5 s) and estimates the SOC and
SOH of each cell, both of which cannot be directly measured. As will be
detailed in the section “Battery health diagnostic and prognostic problems”,
SOH estimation is an important battery diagnostic problem. For situations
that require knowing how long each cell/module can be used before
replacement, theBMSmonitoringmodule also predicts each cell’sRULand,
in some cases, the cell’s SOH trajectory in future cycles. RUL prediction and
SOHtrajectory prediction are twowell-studied battery prognostic problems
of significance, as will be discussed in the section “Battery health diagnostic
and prognostic problems”. Most importantly, neglecting uncertainty when
predicting cell SOC and SOHmay lead the BMS to incorrectly balance cell
voltages, ultimately reducing the available capacity and power of the pack. It
is worth mentioning that SOH estimation and RUL prediction can be
computed in the cloud instead of directly at the BMSdevice, as the SOHand
RUL usually need not be updated in real-time.

One major advantage of predictive uncertainty quantification for
battery maintenance and control is its value in informing BMS actions
during operation. For example, if estimates of cell SOCare highly uncertain,
the BMS may limit the overall charge power in order to prevent cells from
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Fig. 1 | An illustrative flowchart showing essential functions of a BMS that
manages the power and health of a battery pack. This battery pack comprises SE
serially connected strings, each of which is composed of PL cells connected in
parallel.
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entering over-voltage conditions during charging.However, parameterizing
models that can accurately quantify predictive uncertainty is challenging
because battery datasets are usually limited in size due to the large expenses
required to operate thermal chambers for extended periods. Further, it is
difficult to replicate real-world operating conditions in the laboratory, and
much care is needed to ensure newly parameterized models can accurately
quantify prediction uncertainty on field data (see the section “Diagnostics
and prognostics using field data”). The trend of small datasets is likely to
continue as cells grow larger in size for automotive and grid storage appli-
cations. Large-format and high-capacity (>100 Ah) Li-ion battery cells
require even more expensive testing equipment to achieve the high C-rates
(>3C for a 100 Ah cell requires >300A continuous current) necessary for
aging cells quickly and studying fast-charging protocols—research that is
imperative for lowering the “refueling time” of today’s EVs and accelerating
the transition to electrified transportation. With costs for cells and test
equipment on the rise, calibrating the predictive accuracy anduncertainty of
battery diagnostic and prognostic models prior to deployment becomes
critically important. Incorrect control decisions based on erroneous pre-
dictions and uncertainty may lead to suboptimal performance, damage to
battery cells, and in rare cases, thermal runaway that results in catastrophic
product loss and endangers the safety of people nearby.

To this end, developing and validating probabilistic battery diagnostic
and prognostic models is an essential area of research in the battery com-
munity.Ahandful of reviews onbattery health diagnostics/prognostics exist
today and can be found here38–45. However, all the reviews to date focus
primarily on deterministic ML modeling methods, and do not emphasize
existing research that studies probabilistic methods for battery health
diagnostics and prognostics. To address this gap, we seek to provide a
comprehensive overview of probabilistic modeling and ML for battery
health diagnostics and prognostics. After providing an overview of Li-ion
battery degradation, we review past and present studies on probabilistic
battery health diagnostics and prognostics and discuss their methods,
advantages, and limitations in detail. Our review offers unique insights into
each of the probabilistic modeling approaches with detailed discussions on
the implementation approach and recommendations for future research
and development. Figure 2 presents an outline of this review paper. Below
are a few key items covered in our review.
1. First, we provide an overview of Li-ion battery degradation, discussing

the types, main causes, and resulting effects on cell-level performance
and SOH in the sections “Battery degradation—modes and mechan-
isms” and “Battery state of health”. The classification of battery
degradation modes and analysis of their root causes provides relevant
background knowledge that motivates the need for battery diagnostic/

prognostic models that can estimate cell health and predict future cell
degradation. In the section “Battery health diagnostic and prognostic
problems”, we provide a high-level overview of six general problems
relevant to battery health estimation and life prediction. Additionally,
we highlight the pivotal role that publicly available battery aging
datasets have played in facilitating existing research in the area (the
section “Publicly available battery aging datasets”).

2. Second, we analyze and compare the advantages and limitations of
various probabilistic ML techniques and their application to battery
health diagnostics and prognostics (the section “RVM applications to
battery diagnostics and prognostics SOH estimation”). This section,
uniquely focusing on probabilistic techniques for health diagnostics
and prognostics, covers both themethodologies of each technique and
examples of its applications to SOH estimation, SOH forecasting, and
RUL prediction. This particular emphasis on probabilistic ML is a
noteworthy feature of this review that sets it apart fromexisting reviews
on battery health diagnostics and prognostics.

3. Third, we delve into three emerging and “newer” topics in battery
health diagnostics and prognostics in the section “Advanced topics in
battery health diagnostics and prognostics”. Specifically, this section
offers unique insights from three researchers actively working on
problems related to battery SOHestimation fromfield data (the section
“Diagnostics and prognostics using field data”), degradation diag-
nostics (the section “Degradation diagnostics”), and early life and
trajectory prediction (the section “Early life and trajectory prediction”).
This unique coverage of emerging topics further sets our review apart
from existing ones.

4. Fourth and finally, we discuss future trends and research opportunities
in physics-based prognostics (the section “Physics-based diagnostics
and prognostics”), second-life applications for used Li-ion cells (the
section “Second-life applications”), and aging-aware battery control
optimization (the section “Aging-awarebattery control optimization”).
This discussion constitutes the final distinctive element of this review,
not commonly found in most other reviews.
Our review paper is concluded in the section “Conclusion”, where we

also discuss prospects for future research essential to addressing long-
standing challenges in battery health diagnostics and prognostics.

It is worth noting that this review focuses primarily on the application
of various probabilisticML and deep learningmethods to unique problems
(the section “Batteryhealthdiagnostic andprognostic problems”)within the
field of battery health diagnostics and prognostics. A limitation of this work
is that it does not cover specific challenges related to emerging ML topics,
such as hybrid modeling, transfer learning, federated learning, and similar
ML-focused concepts.

Background
Battery degradation—modes and mechanisms
Battery degradation is a complex andmulti-scale process that varies with cell
design and is driven by theway a cell is used.Understanding the fundamental
mechanisms of Li-ionbattery degradation is essential for effectivelymodeling
and designing around it. Typically, researchers and engineers will conduct
lab-based aging experiments to study the effects of different operating con-
ditions on cell aging and SOH, which is most often quantified as a cell’s
remaining capacity or internal resistance. Periodic reference performance
tests (RPTs) are carried out during aging experiments to assess cell capacity
and resistance under standard conditions (usually 25 °C) to help isolate the
effect of aging on changes in cell capacity and resistance46. Comparing cell
SOHmeasured from RPTs is important because cell capacity and resistance
are influenced by temperature, C-rate, voltage limits, among other factors.

Battery aging tests are used to understand how stressors, like time,
temperature, and energy throughput, affect the rate of capacity fade and
the progression of internal degradationmodes47,48. An overview of battery
degradation mechanisms, their corresponding modes, and measurable
cell-level effects is shown in Fig. 3. Even without cycling, Li-ion batteries
lose capacity over time as internal side reactions occur between the
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Fig. 2 | Overview and organization of this review paper. Outline of sections and
subsections.
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electrolyte and electrode materials. The most prevalent of these side
reactions is the formation of the solid electrolyte interphase (SEI) on the
graphite anode common in nearly all Li-ion batteries used today49. SEI
growth ismainly drivenby time, but is also influenced by temperature, cell
voltage, and cell load50. Fortunately, the formation of SEI on graphite
anodes is entirely expected and well-studied as it plays a large role in
determining a battery’s maximum capacity and expected lifetime. It has
beenwidely accepted that capacity fade from the growth of SEI scales with
a square-root-of-time (Q(t) = a ⋅ t0.5) relationship9. Further, many
researchers have modeled Li-ion battery capacity fade due to SEI for-
mation at various temperatures by scaling the t0.5 term using Arrhenius-
like equations thatmodel the influence of temperature on reaction rate51,52.
Additionally, SEI formation has been shown to be directly related to the
SOC a battery is stored at, where higher voltages generally lead to faster
reactions and greater capacity fade. However, next-generation battery
designs are pursuing new anode materials and may reduce or even
eliminate the use of graphite in the anode altogether, thus introducing new
degradation mechanisms that will need to be studied and mitigated.

WhenaLi-ionbattery is cycled,moredegradationmechanisms arise in
addition to the always-present capacity fade fromSEI growth andother side
reactions. Often during cycling, the SEI growth rate accelerates because the
movement of Li-ions in/out of the electrodes causes repeated swelling and
subsequently cracking of the already formed SEI, revealing new sites for SEI
to form, and ultimately consuming more lithium in the process51,53,54. Like
SEI formation, electrode swelling is expected by battery designers, and is a
well-studied degradation mode. Li-ion battery degradation from electrode
cracking has been shown to be sensitive to the depth of discharge (DOD)
and the C-rate the cell is subjected to—where deeper discharge and faster
rates increase the rate of capacity fade26,51,55. Capacity fade driven by elec-
trode cracking during cycling has been diagnosed as a primary driver of
cycling-driven capacity fade inNickel-based battery chemistries like nickel-
cobalt-aluminum-oxide (NCA)55 and nickel-manganese-cobalt-oxide
(NMC)26,51. In these studies, researchers found that loss of cathode active
material (LAMPE) to be a primary contributor to a cell’s capacity fade and
was strongly correlated with a cell’s eventual lifetime.

Undermore extreme conditions such as cold temperatures (T≪ 10 °C),
high charging C-rates (I≫ 3C), or the combination of these conditions,
intercalation of Li-ions into the anode and cathode are slowed, causing Li-
metal to plate onto the surface of the anode instead of intercalate inside it56.
Lithium plating poses a great safety risk due to the possibility of a lithium
metal dendrite growing large enough to puncture the separator and cause an
electrical short circuit. Unlike SEI formation and electrode cracking, lithium
plating is not expected to take place inside Li-ion batteries during normal
operation. Therefore, much work has been done to detect and model the

lithium plating degradation mechanism so that it can be safely mitigated
through design and control strategies. However, lithium plating is a dynamic
process that is affected by the cell design (energy density), charge rate, tem-
perature, and SOC,making it challenging to detect and quantify. Research by
Huangetal.57 demonstratedhowdifferential pressuremeasurements couldbe
used to detect lithium plating inside cells in real-time during fast charging.
Their method holds promise for online monitoring and real-time control of
cells operating in the field, but the technology still needs to be demonstrated
on the pack level before it might be considered for mass production. Other
research by Konz et al.58 demonstrated a method for quickly quantifying the
lithiumplating limits of a cell using standard battery cyclers bymeasuring the
coulombic inefficiency of the cell after cycling at variousC-rates. Themethod
performs sweeps over a series of charge rates and SOC cutoffs tomap out the
lithium plating limits at the tested temperature. The method provides a
cheaper and faster approach to mapping the lithium plating limits and
designing an optimal fast-charging protocol using experiments instead of the
traditional approachof using an electrochemicalmodel of a cell. Regardless of
the strategy employed,modeling andmitigating lithiumplating is imperative
to ensuring the safe and reliable operation of batteries over their lifetimes.
Later we will revisit the topic of lithium plating when discussing emerging
strategies for prolonging battery lifetime in the section “Aging-aware battery
control optimization”.

With researchers pushing for higher energy densities by introducing
new materials into batteries, there will always be new degradation mechan-
isms that present challenges. Recent efforts to increase the capacity of existing
Li-ion battery chemistries, like lithium cobalt oxide (LCO), lithium NCA,
lithiumNMC, and lithium iron phosphate (LFP), by adding silicon (Si) to the
graphite anodes has lead to a field of research devoted to studying silicon-
anode technology.However, the high capacity of silicon as an anodematerial
presents its ownset of challenges aroundswelling andcracking. Silicon-anode
batteries are notoriously known for swelling as much as 20% their original
thickness, posing a unique set of degradation and packaging challenges59.
Similarly, high energy density Li-metal batteries pose their own set of unique
challenges, mainly related to the reversibility of the metal plating and strip-
ping process on the negative current collector. Likewise, solid-state batteries
face challenges related to degradation of the solid electrode/electrolyte
interfaces and the materials themselves. On the other hand, low energy
density lithium titanium oxide (LTO) anodes are much safer from an abuse
perspective, but suffer from extreme gassing which creates bubbles between
electrode layers and subsequently delaminationwhichdeactivates areas of the
electrodes, causing accelerated capacity loss and aging60,61. Less mature bat-
teries, like Li-S and Li-air chemistries face a host of issues with fast capacity
fade and poor coulombic efficiency that prevent scaling to production.
Readers interested in the challenges surrounding degradation of next-
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generation silicon anode, Li-metal batteries, solid-state, LTO, LiS, and Li-Air
batteries are referred to these reviews on the topics—silicon anode:59,62, Li-
metal:63,64, solid-state:65,66, LTO60,61, Li-S67,68, and Li-Air69.

Until these battery chemistries are refined further, applications of
battery health diagnostics and prognostics are mainly limited to the
laboratory. In light of this, our review primarily focuses on probabilisticML
modeling methods applied to standard Li-ion chemistries. However, it is
envisioned that nearly all of the ML-based modeling methods discussed in
this paper will be transferable to new battery chemistries to some degree.

Battery state of health
Battery degradation observed during controlled laboratory experiments or
normal operation in the field is the result of the interaction and accumulation
of various component-level degradation mechanisms like those discussed in
the section “Battery degradation—modes and mechanisms”. The most fre-
quently used measures of battery SOH are capacity and resistance because
they are directly measurable during aging experiments using periodic
RPTs46,70. Resistance and impedance measurements taken at various SOCs
are used to quantify the cell’s ability to deliver power and is a crucial battery
state for implementing safe management controls. Direct and alternating
current (DC andAC) resistance can usually bemeasuredwith fast diagnostic
pulses (<30 s). However, directly measuring the capacity of cells operating in
the field is largely infeasible without significantly interrupting the normal
operation of the product to run a long charge/discharge diagnostic test. In
practice, the SOH of cells operating in the field must be estimated from the
available cell-level electric, thermal, and mechanical data.

More recently, advances in battery modeling and the availability of
larger publicly available aging datasets has lead many researchers to further
extend the definition of cell SOH to include the three primary degradation
modes that drive capacity and power fade: LAMPE, LAMNE, and LLI (see

Fig. 3). Together, these three degradationmodes capture the combined effect
of the individual degradation mechanisms on cell health and provide better
insight into the health of the cell’s major components than do capacity and
resistance. For example, identifying that the anode is degradingmore quickly
than the cathode can help with identifying when a knee-point in the cell’s
capacity fade trajectorymay occur56. Similarly, capacity fade is often complex
and path-dependent. For example, the dominant degradation mechanism
driving capacity fade during the early life of a battery is typically SEI growth.
Later on, other degradation modes, like electrode particle cracking, begin to
appear as the cell accumulates more cycles and the electrodes experience
repeated swelling and relaxation51. Quantifying cell SOH through the three
degradationmodes provides more insight into when and to what degree cell
degradation is occurring than simply estimating cell capacity.

While quantifying battery SOH through the various component-level
degradationmodes is useful in the lab, the samemethods are not necessarily
useful nor viable for cells operating in the field. Relevant metrics of cell SOH
for field units like EVs and consumer electronics are primarily focused
around quantifying remaining capacity, resistance, impedance, and any risks
of thermal runaway, as these impact the user experience the most. Quanti-
fying battery SOH from field data presents a new set of challenges, since the
quality and quantity of diagnostic measurements are heavily influenced by
user behavior. For example, it is rare that cells will ever complete full DOD
cycles in the field due to BMS limits and cell voltage imbalance. Thus,
gathering usable data for SOH estimation becomes a real challenge. Later in
the section “Diagnostics and prognostics using field data”, we discuss current
research focusing on health diagnostics and prognostics from field data.

Battery health diagnostic and prognostic problems
Figure 4 provides an overview of battery diagnostic and prognostic pro-
blems where probabilistic ML techniques can be applied to build regressors
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with uncertainty quantification capability (i.e., the ability of these regressors
to quantify the predictive uncertainty in their outputs).We divide the fields
of battery health diagnostics and prognostics into six unique problems to
highlight the subtle differences in the various research articles published on
the topics. Broadly, problems 1 and 4 are classified as diagnostic problems
since battery health is estimated at the current cycle. Problems 2, 3, 5, and 6
are classified as prognostic problems since battery health (and/or lifetime) is
predicted for future cycles. The six general problems are briefly summarized
as follows:
• Problem 1: SOH estimation Approaches to this first problem aim to

estimate the current battery health, often based on voltage, current, and
temperature measurements readily available to a BMS. In practice, it
comes down to estimating the capacity and resistance, which together
determine a battery’s energy and power capabilities. This problem is
probably the most extensively studied in the battery diagnostics field,
with multiple review papers dedicated to this problem every year.

• Problem 2: Direct RUL/EOL prediction Approaches targeting this sec-
ond problem predict the RUL by training an ML model that directly
maps a sequence of most recent capacity observations to RUL. These
capacity observations can be either actual capacity measurements via
coulomb counting on full charge/discharge cycles or capacity estimates
by an algorithm. The idea is to feed this sequence of capacity obser-
vations to an ML model, which produces an RUL estimate. In other
words, this ML model takes a sequence of capacity observations,
consisting of the observation at the current cycle and a few recent past
cycles, and produces an RUL estimate, for instance, in the form of a
probability distribution when a probabilistic ML model is adopted.

• Problem3: SOH trajectory predictionUnlike SOHestimation (Problem
1),whichcenters on inferring currenthealth, this thirdproblemfocuses
on predicting future capacity and resistance, often by examining the
degradation trend over a fewmost recent cycles and extrapolating this
trend. Similar to SOH estimation studies, SOH forecasting studies
mostly look at capacity forecasting. A simple and popular approach is
to take a sequence of capacity observations at the current and recent
past cycle and feed these observations as input into an ML model,
which may produce a sequence of probabilistic capacity estimates, for
instance, the means and standard deviations of the forecasted capacity
observations at the next few cycles that all follow Gaussian distribu-
tions. These estimates form a capacity degradation trajectory, based on
which an end-of-life (EOL) estimate canbederived as the cyclenumber
when this trajectory down-crosses a predefined capacity threshold
(typically 80% of the initial capacity for automotive applications). An
RUL estimate can be obtained by subtracting the current cycle number
from the EOL estimate. Unlike RUL prediction through SOH
forecasting, direct RUL prediction, as discussed in Problem 2, skips
the stepof capacity forecastinganddirectlymaps a capacity sequence to
the RUL.

• Problem 4: Degradation diagnostics Degradation diagnostics is a sub-
problem of SOH estimation focused on diagnosing the degradation
modes that drive capacity fade and resistance increase71. This sub-
problem aims to estimate three degradation parameters that measure
the degrees of three degradation modes: the loss of active material on
the cathode, the loss of active material on the anode, and the loss of
lithium inventory. Estimating these three degradation parameters
almost always requires access to high-precision voltage and current
measurements during a full charge/discharge cycle, but workarounds
do exist (see the section “Degradation diagnostics”).

• Problem5: Early life predictionThis is an emerging prognostic problem
where ML models map data from an early life stage to the lifetime (or
the EOL cycle). A key step to solving this problem is defining early-life
features predictive of the lifetime. A concise review of recent studies
attempting to solve this problem will be provided in the section “Early
life and trajectory prediction”.

• Problem 6: Early trajectory prediction This sixth problem is similar to
yet more challenging than early life prediction. The added difficulty

comes from the need to predict the entire capacity trajectory rather
than a single EOL cycle, as done in early life prediction. In addition to
early-life features, capacity fade models are also required to produce a
sequence of capacity estimates for any range of cycle numbers.

Traditional ML vs. deep learning
Over the past decade, hundreds, if not thousands, of data-driven approaches
have been created for battery health diagnostics and prognostics. These
existing approaches can be broadly categorized as traditional ML and deep
learning. Figure 5 illustrates the key difference between these two categories.
Traditional ML requires manually defining and extracting hand-crafted
features. ML models are then built to approximate the often highly non-
linear relationship between these input features and the output (or target).
Examples of traditional ML algorithms for building these models include
regularized linear regressions (e.g., ridge regression, lasso, and elastic net),
support vector machines, RVMs, Gaussian process regression (GPR) or
kriging, random forests, Bayesian linear regression, gradient boosting
machines (e.g., XGBoost and light gradient-boosting machines), k-nearest
neighbors, and shallow neural networks.

An input to a traditional ML model can be formulated from voltage
and current measurements during a partial charge cycle. This input can be
(1) a vector of features extracted from voltage vs. time (V vs. t) and current
vs. time (I vs. t) curves13,14,72, (2) a vector of features extracted from an
incremental capacity vs. voltage (dQ/dV vs. V) curve73,74, (3) a vector of
features extracted from a differential voltage vs. capacity (dV/dQ vs. Q)
curve75, or (4) any combination of these three vectors76. The output can be
capacity or resistance for SOH estimation or EOL/RUL for health prog-
nostics. The performance of ML models highly depends on the collective
predictive power of these manually extracted features. Additionally, the
same set of features that works well on a specific battery chemistry and
application often does not transfer to a different chemistry or application.
Thus, when dealing with a new chemistry or application, one has to repeat
the tedious and time-consuming process of manual feature extraction.

Unlike traditionalML,deep learning can automatically learnhigh-level
abstract features of predictive power from large volumes of data. Anobvious
benefit is that manual feature extraction is no longer needed and is replaced
by “feature learning”. However, deep learning approaches have two well-
known limitations. First, deep neural network models are more prone to
overfitting data than shallower neural network models, especially when a
training dataset is small (e.g., a few tens to hundreds of training samples).
Given the time- and resource-demanding aging tests, most battery health
diagnostics and prognostics applications reside in the small data regime77.
Aging data available for model training are even more limited in an early
research and development stage where lifetime prognostics may be applied
to accelerate materials design78 or charging protocol optimization79. As a
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Fig. 5 | A high-level comparison between traditionalML and deep learning.Here,
a typical traditional ML pipeline requires engineers to manually identify D0 features
from a D-dimensional raw input, also known as feature extraction. In contrast, a
typical deep learning pipeline does not need manual feature extraction and can
automatically learn features with predictive power from data.
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result, a deep learning model built for battery diagnostics/prognostics may
produce high accuracy on the dataset this model was trained on but may
generalize poorly to “unseen” test samples that could fall outside of the
training data distribution. These out-of-training-distribution test samples
are often called out-of-distribution (OOD) samples. A solution to the conflict
between what is needed (i.e., big data) and what is available (i.e., small data)
is quantifying the predictive uncertainty through probabilistic deep
learning34. The uncertainty estimate could serve as a proxy for model con-
fidence, i.e., how confident this model is when making a prediction. The
ability to convey model confidence is crucial for safety-critical battery
applications, where SOH/lifetime predictions with large errors and no
warnings are simply unacceptable. Second, deep learning models are
inherently “black-box” models whose predictions do not come naturally
with an interpretation.Adirect consequence is that it is almost impossible to
understand why a deep learning model predicts a certain outcome and
whether this prediction is reasonable and complies with physics or domain
knowledge. Although efforts have been made to achieve varying degrees of
interpretability mostly through post-processing80, deep learning models are
still harder to interpret than simpler traditional MLmodels, some of which
are inherently interpretable77.

Traditional ML models are likely to perform better on small training
sets (N < 1000) than deep learningmodels. It is not surprising to see battery
aging datasets with less than 100 cells tested to their EOL48. In such cases, a
training set may consist of only N < 100 input-output pairs. Simple ML
methods such as the elastic net, a regularized linear regression method,
random forests (RFs), and Bayesian linear regression are probably the best
choices27,77,81. Deep learning approaches, such as deep neural networks, are
well-suited for applications where (1) it is reasonably feasible to run large-
scale aging test campaigns to generate large training sets (N≫ 1000) and (2)
model interpretability is not a primary concern.

Publicly available battery aging datasets
Publicly available battery aging datasets have enabled a majority of the
research in the battery diagnostics and prognostics field. The University of
Maryland’s Center for Advanced Life Cycle Engineering (CALCE)82–84 and
the National Aeronautics and Space Administration’s (NASA)85,86 were
among the first organizations to publish publicly available battery aging
datasets with greater than 20 cells. The initial work by the team at NASA
focused on using an unscented Kalman filter to estimate internal battery
states, namely max discharge capacity and internal resistance, and electro-
chemical model parameters over the course of the cells’ lifetime86. Notably,
the battery cells in the NASA dataset were subjected to randomized dis-
charge current loads, making the dataset more similar to real-world battery
operation and making it more challenging to estimate the cells’ SOH and
predict their RUL. The researchers at CALCE first demonstrated RUL
prediction on their dataset by using an empirical battery degradationmodel
where the parameters are initialized using Dempster-Shafer theory and
updated online using recursive Bayesianfiltering82. Themodelwas shown to
provide accurate non-parametric predictions of battery RUL by evaluating
the many Bayesian-filtered model parameters.

While the battery aging datasets from NASA and CALCE were
undoubtedly influential for their time, the trend as of late has been to test
more batteries under more operating conditions so that modern machine
and deep learning models can be applied48. A more recent battery aging
dataset from Stanford, MIT, and Toyota Research Institute was used to
study the problemof early lifetime prediction (see the section “Early life and
trajectory prediction”)27. The researchers then used the early lifetime pre-
diction model in a close-loop optimization algorithm to speed up the pro-
cess of experimentally searching for a fast charging protocol thatmaximized
a cell’s cycle life79. Similarworkby a teamof researchers atArgonneNational
Laboratory used a diverse dataset composed of 300 pouch cells with six
unique battery cathode chemistries to study the role of battery chemistry
and feature selection in early life prediction87. Other large datasets include
the one fromSandiaNational Laboratory thatwas used to study commercial
18650-size NMC-, NCA-, and LFP-Gr cells under different operating

conditions88 and the dataset from Oxford89 used to study the path-
dependency of battery degradation.

A relatively new dataset from the collaborators at Stanford, MIT, the
Toyota Research Institute, and the SLAC National Accelerator Laboratory
consists of more than 360 21,700-size automotive cells taken from a newly
purchased 2019 TeslaModel 3 to study aging under a wide range of cycling
conditions55. Another large dataset made available this year is the dataset
froma research collaborationbetween IowaStateUniversity (ISU) and Iowa
Lakes Community College that contains 251 Li-ion cells cycled under 63
unique cycling conditions26. Both large aging datasets were curated speci-
fically to study ML-based approaches to battery health prognostics and the
role of feature generation and engineering in battery lifetime prediction.

Recently, there has been a push to demonstrate battery diagnostic and
prognostic algorithms that work on modules and packs operating in the
field. One approach to do this is to replicate real-world operating conditions
in cell-level laboratory aging experiments. Pozzato et al.90 cycled NMC/Gr
+Si 21700 format cylindrical cells using a typical EV discharge profile while
periodically characterizing cell health with RPTs. Similarly, Moy et al.91

cycled 31 cells using synthetically generated autonomous EV discharge
profiles based on real-world driving telemetry data. While the datasets are
still useful for studying battery degradation undermore realistic conditions,
they are still synthetic in nature and conductedon cells,making it difficult to
understandhow the study results translate to real-world packs andmodules.

Research into module and pack based battery aging is becoming more
prevalent. She et al.92 examined telemetry data from electric city buses
operated in Beijing, China, finding that incremental capacity features
extracted from the voltage readings during constant current charging were
predictive of battery health, but changed drastically with the changing
seasons (summer, fall, winter, spring) in the city. Similarly, Pozzato et al.31

looked at real-world EVdata from anAudi E-tron. The team found thatDC
resistance measured during braking and acceleration along with charging
impedancewere good predictors of battery SOH. But unfortunately, neither
of the aforementioned datasetsweremade publicly available, and to the best
of our knowledge, no other publicly available battery module/pack aging
datasets exist.

Publicly available battery aging datasets will continue to play a large
role in furthering research in the area of battery diagnostics and prognostics
by enabling thosewithout access to battery testers to study battery aging and
diagnostic and prognostic modeling. Websites like Battery Archive are
important for sharing and disseminating battery aging data to a wider
audience. Additionally, industry-academia collaboration will be key for
gathering and disseminating real-world battery module/pack aging data.
Access to real-world battery pack aging data will be crucial for studying and
developing diagnostic and prognostic algorithms that can work beyond the
lab. The next big leap in the battery health diagnostics and prognostics
research community will be to understand howmodels built using lab data
perform in the field.

Probabilistic ML techniques and their applications to battery
health diagnostics and prognostics
This section introduces a handful of probabilistic ML/deep learning
methods for building reliable probabilistic ML pipelines for battery state
estimation (see an illustrative flowchart in Fig. 6 in the context of capacity
estimation). Following the introduction of each probabilistic ML method,
we review the state-of-the-art in applying thismethod to solve the first three
problems (Problems 1–3) on battery diagnostics/prognostics shown in
Fig. 4, i.e., SOH estimation, capacity forecasting, and RUL prediction. The
other three problems (Problems 4–6) are emerging and will be discussed in
“RVMapplications tobattery diagnostics andprognostics SOHestimation”.

As one proceeds through this section, one will notice that it goes
beyondmerely addressing the theoretical and battery application aspects of
each probabilistic ML technique covered. It also includes specific algorithm
examples (e.g., Figs. 7–12) and offers a tutorial-style description of the
algorithmic procedures. Our aim is to present easily digestible materials,
particularly for newcomers in thisfield, such as freshPh.D. students eager to
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grasp the fundamentals of probabilistic battery diagnostics and prognostics.
We also note that there exists a broader spectrum of probabilistic ML
methods beyond those discussed in this paper (e.g., see Nemani et al.34); we
aim in this paper to highlight a select few that have beenmost prominently
used in, and generally applicable, to the type of problems encountered in
battery diagnostics and prognostics.

Before we introduce the probabilistic ML methods, it is meaningful to
walk through somekey stepswhenapplyingprobabilisticML tobattery state
estimation.As a representative example, Fig. 6provides a graphical overview
of thesekey steps for capacity estimation. Similar steps canbe expectedwhen
solving other problems on battery diagnostics and prognostics.
• This pipeline starts with defining anMLmodel’s input and output. For

example, when dealing with capacity estimation by traditional ML
models, the input could consist of predictive features extracted from
the voltage (V), current (I), and temperature (T)measurements during
a partial charge cycle, and the output would be the full capacity (Q) of
the cell at that cycle.

• The next step is defining a training and test dataset. An important
consideration is that the test dataset should include a decent number
(e.g., ≥30%) of OOD samples to evaluate the generalization perfor-
mance of a trained ML model. Furthermore, one should avoid ran-
domly assigning samples from the same cell to both training and test
datasets. In most cases, all samples from one cell should be exclusively
assigned to a training or test dataset. Again, this treatment ensures that
the test dataset serves the purpose of evaluating howwell a trainedML
model generalizes to samples outside of the dataset themodel has been
trained on.

• The third step is selecting a probabilistic ML algorithm. This section
covers three non-neural-network-based algorithms, GPR (the section
“Gaussian process regression”), RVM (the section “Relevance vector
machine”), and sampling methods (the section “Sampling methods”),
and two neural-network-based algorithms, BNN (the section
“Bayesian neural network”) and neural network ensemble (the section
“Neural network ensemble”). Selecting a probabilistic ML algorithm
requires assessing several criteria to ensure the algorithm’s suitability
for a specific use case. Several key criteria are listed as follows (see
Nemani et al.34 for further details): (1) prediction accuracy (e.g.,
evaluated by comparing mean predictions with ground truth on a
validation dataset spit out of a training dataset), (2) quality of
uncertainty quantification (i.e., the algorithm’s ability to produce
accurate uncertainty estimates), (3) computational efficiency (an

important factor in applications where real-time or near-real-time
diagnostics/prognostics may be required), (4) scalability (i.e., the
algorithm’s ability to train models based on large volumes of datasets,
i.e., in the big data regime), and (5) robustness (i.e., the algorithm’s
ability to maintain performance in the presence of outliers, high noise,
and adversarial variations in the input data). These criteria may
become conflicting objectives that need to be weighed based on the
needs and wants of a specific diagnostic/prognostic use case. It is often
desirable to experiment with a suite of algorithms and choose one
(standalone) or multiple (hybrid) algorithms for a specific use case.

• After selecting the algorithm, one feeds the training data, some
observed input-output pairs, into the algorithm. This algorithm then
generates a mathematical model that infers something about the
underlying process that generated the training data. Using the trained
model, one canmakeprobabilistic capacity estimations for cells or their
cycle numbers the model has not seen before. Each capacity estimate
can be expressed as a probability distribution of a certain type (e.g.,
Gaussian, log-normal, or exponential) or an empirical probability
distribution.

• If one has access to the ground truth for the test data, one can compare
the capacity estimates with the observations to derive prediction
accuracy metrics, such as the root-mean-square error (RMSE) and
mean absolute percentage error, and uncertainty quantification quality
metrics, such as the expected calibration error, Area Under the
Sparsification Error curve (AUSE), and negative log-likelihood (NLL).

Gaussian process regression
Gaussian process regression methodology
Gaussian process regression (GPR), also known as kriging, is a principled,
probabilisticmethod for learning an unknown function f from a given set of
training data comprising N input vectors, xi

� �
i¼1;...;N , and N targets,

yi
� �

i¼1;...;N . Here, xi 2 RD is theD-dimensional input feature vector of the
i-th training sample, and yi 2 R is the corresponding one-dimensional
output, i.e., a noise-free or noisy observation of f at xi. The regressionmodel
learned by GPR is non-parametric because this model does not have a
predefined functional form. It is common to assume the so-called Gaussian
observation model where each observation yi is an addition of the true
function value f(xi) and a zero-mean Gaussian noise εn:

yi ¼ f ðxiÞ þ εi; ð1Þ

where εi ∼N ð0; σ2ε Þ. GPR starts by placing a Gaussian process prior on the
unknown function f, i.e., f ðxÞ∼GPðmðxÞ; kðx; x0ÞÞ, wherem(⋅) is the mean
function and k(⋅,⋅) is the kernel, also known as the covariance function
evaluated at x and x093. For example, if we assemble the N function values
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into a vector, f ¼ ½f ðx1Þ; . . . ; f ðxN Þ�T, this vector follows amultivariate (N-
dimensional) Gaussian distribution:

f ∼N mðXÞ;KX;X

� �
; ð2Þ

where X ¼ ½x1; . . . ; xN �T 2 RN ×D is a matrix assembly of the N training
input points,m(X) is a vector of the mean values at these input points, and
KX;X 2 RN ×N is a covariance matrix that takes the following form:

KX;X ¼
kðx1; x1Þ � � � kðx1; xN Þ

..

. . .
. ..

.

kðxN ; x1Þ � � � kðxN ; xN Þ

2
664

3
775: ð3Þ

Nonlinearity in the model arises from the kernel k(⋅,⋅), which models
the covariance between function values at two different input vectors. In
practice, we can choose a kernel from many candidates. For example, the
probablymost popular kernel is the squared exponential kernel, also known
as the radial basis function (RBF) and the Gaussian kernel. The squared
exponential kernel can be expressed as

kðx; x0Þ ¼ σ2f exp �k x � x0k2
2l2

� �
: ð4Þ

where σf is the signal amplitude, ∥⋅∥ is the L2 norm or the Euclidean norm,
the square of which ðσ2f Þ defines the signal variance, and l is the length scale.
The signal variance ðσ2f Þ sets the upper limit of the variance and covariance
for the Gaussian process prior (see the covariance matrix in Eq. (2); the
length scale l determines how smooth the approximate function appears
(the smaller the length scale, the more rapidly the function changes). These
two kernel parameters are two hyperparameters of the GPR model, which,
together with the noise standard deviation σε, need to be optimized during
GPRmodel training. The squared exponential kernel has been widely used
as it is simple and captures a function’s stationary and isotropic (dimension-
dependent) behavior. Another popular choice is the RBF kernel with
automatic relevance determination (ARD)94, which assigns N different
length-scale parameters to the N dimensions rather than using the same
parameter as is done by the standard RBF kernel. The resulting RBF-ARD
kernel can capture dimension-dependent patterns in the covariance
structure.

For notational convenience, we denote the collection of training input-
output pairs as a training set,D ¼ x1; y1

� �
; . . . ; xN ; yN

� �� �
, and write the

N noisy observations as a vector, y ¼ ½y1; . . . ; yN �T 2 RN . For a new,
unseen input point x*, the predictive distribution of the corresponding
observation y* can be derived based on the conditional distribution of a

multivariate Gaussian as the following:

μ� ¼ mðx�Þ þ kðX; x�ÞTðKX;X þ σ2ε IÞ
�1ðy �mðXÞÞ; ð5Þ

and

σ2� ¼ kðx�; x�Þ � kðX; x�ÞTðKX;X þ σ2ε IÞ
�1
kðX; x�Þ þ σ2ε ; ð6Þ

where kðX; x�Þ ¼ ½kðx1; x�Þ; . . . ; kðxN ; x�Þ�T, denoting a vector of N cross
covariances between X and x*.

GPR is a probabilistic ML method most well-known for its distance-
aware uncertainty quantification capability. This capability is illustrated in
Fig. 7, where a simple sine function is adopted to generate synthetic data
after adding zero-mean Gaussian noise. Two observations can be made
from this figure. First, high epistemic uncertainty due to a lack of data is
associated with test points far from the eight training points. The GPR
model seems to produce predictive uncertainty estimates that properly
capture thehighepistemicuncertainty at theseOODtest points. Second, as a
test point deviates from the training data distribution (e.g., when x starts to
become larger than 4), the predictive uncertainty first increases due to the
distance-aware property of GPR and then saturates to amaximum constant
(i.e., σ2� ≈ σ2f þ σ2ε ). The above briefly overviews the math behind GPR and
its uncertainty quantification capability. Our recent tutorial on uncertainty
quantification ofMLmodels34 provides amore detailed explanation ofGPR.

Figure 8 shows how GPR operates to forecast the capacity of future
cycles probabilistically at a specific charge/discharge cycle. We first train a
GPR model based on the available capacity data (blue points). This GPR
model uses an empirical capacity fade model as the prior mean function to
capture theknown fade trend.Themodel trainingoptimizes theGPRmodel’s
hyperparametersbymaximizing the likelihoodofobserving the capacitydata.
Intuitively, we fit a GPR regression model to available capacity data and use
this model to make predictions for future cycles without capacity data.
Because GPR is a probabilisticML technique, the predictions are in the form
of amean curve, the solid line, and a 95%prediction interval, the dashed lines.
So, in the next step, we forecast capacity beyond the current cycle using the
trained GPR model, making predictions outside our data distribution. We
then estimate themeanEOLwhen themeanprediction curvedown-crosses a
predefined capacity threshold or EOL limit. The black square is the mean
prediction. We can imagine having a prediction interval around this mean,
representing the uncertainty of our EOL prediction. We are often interested
in knowing the RUL, i.e., the number of remaining cycles till the EOL limit.
Our RUL estimate can be obtained by simply subtracting the current cycle
number from the predicted EOL. Since this device was cycled to its EOL, we
have the entire capacity trajectory and true EOL. We can compare the pre-
diction and truth to know how well our GPR model does.

Now imagine we repeat the prediction steps in Fig. 8 at every cycle, as
the battery is used in the field. Figure 9 shows how the prediction evolves
from an early-life cycle to a late-life cycle. This figure panel shows six
snapshots of probabilistic capacity forecasting byGPR at six different cycles.
As we move along the cycle axis, we have more and more capacity data to
train aGPRmodel and our prediction horizon till the EOL becomes shorter
and shorter. As a result, the EOL and RUL predictions become more and
more accurate. These predictions converge to the ground truth at around
halfway through the lifetime.Also,We can see the prediction interval for the
EOL, in general, gets narrower with time, indicating reduced predictive
uncertainty, which is also what we expect to see.

GPR applications to battery diagnostics and
prognostics
SOH estimation
Two notable efforts applying GPR to SOH estimation were made almost
simultaneously72,95. Both studies extracted features from the raw voltage vs.
time (V vs. t) curve acquired froma charge cycle. Richardson et al.72 used the
time differences between several equispaced voltage values and their
minimumas the input features to aGPRmodel. These time differenceswere

Optimize GPR model 
hyperparameters

Forecast capacity via 
model projection

Estimate EOL

Threshold

True Capacity
Data Available
Forecast
95% PI

Mean RUL 
estimate

Fig. 8 | Probabilistic capacity forecasting byGPR at a specific cycle.Here, the GPR
model is fit to available data and extrpolated to forecast capacity and EOL.
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computed based on a segment of a full charge curve (after smoothing)
within its constant-current (CC) portion. Yang et al.95 took a different fea-
ture engineering path by extracting time and slop features from a full charge
curve consisting of both the CC and constant-voltage portions. It is noted
that earlier studies on SOH estimation investigated similar features
extracted froma charge curve starting at apartially discharged state13,96. Both
studies72,95 evaluated their algorithms on a battery aging dataset from the
NASAAmes Prognostics Center of ExcellenceData Set Repository (e.g., the
Randomized Battery Usage dataset86 used in ref. 72.

These two early applications of GPR to SOH estimation reported two
unique properties ofGPR: nonparametric regression,making the regression
model self-adaptable todata complexity, anduncertainty estimationundera
Bayesian framework and with distance awareness, enabling principled
quantification of predictive uncertainty and reliable detection of OOD
samples. Additionally, GPR is known for its minimal overfitting risk due to
using a Bayesian probabilistic framework. These desirable properties may
have driven many later studies that investigated the applicability of GPR to
SOH estimation when only partial charge curves are available. Two exam-
ples of such investigations examined features extracted from the incre-
mental capacity vs. voltage curve during partial charge73 and features
extracted from the capacity vs. voltage curve during partial charge97. As
discussed next, GPR can extrapolate reasonably well when a prior mean
function is properly defined. However, GPR only operates well on small
datasets and has limited scalability to bigger datasets34.

SOH forecasting and RUL prediction
The first application of GPR in the battery diagnostics and prognostics
literature was SOH forecasting, not SOH estimation. It was reported in a
comparative study on resistance and capacity forecasting led by a group of
researchers at NASA’s Ames Research Center98. This study compared two
regression techniques, polynomial regression and GPR, and one state
estimation technique, particle filtering, in forecasting resistance and
capacity. This comparative study was an extended version of the probably
first-ever publication on battery diagnostics/prognostics, led by the same

group of researchers11, which used a combination of RVM and particle
filtering for capacity forecasting. SOH forecasting using GPR has an ~10-
year longer history than SOH estimation using GPR. After the first
application of GPR to SOH forecasting in the late 2000s, two notable
studies attempted to improve the extrapolation performance of GPR,
essential to long-term SOH forecasting, by using explicit prior mean
functions99,100. Note that the default option for the prior mean function is
either zero or a non-zero constant93. An empirical capacity fade model
could be used as an explicit mean function, allowing the GPR model to
capture the trend of degradation encoded in the capacity fade model100,101.

All the above studies on SOH forecasting assume that use conditions
(e.g., charge and discharge C-rates and temperature) are time-invariant.
This assumption may not hold in many real-world applications. A more
realistic scenario is that these use conditions vary randomly over time but
approximately follow a duty cycle pattern. As a follow-up to their earlier
study on SOH forecasting102, Richardson et al. defined a capacity transition
model to predict the capacity change during each usage period following a
load pattern. A GPR model was built to approximate the relationship
between features extracted from a load pattern (input) and the capacity
change within this usage period (output). The outcome was the ability to
forecast capacity probabilistically under time-varying use conditions. Two
more recent studies also examined capacity forecasting under time-varying
use conditions, specifically in cases where future charge and discharge
C-rates vary significantlywith cycle103,104. Similar to the study byRichardson
et al.102, these two more recent studies also consider future use conditions
whendesigning the input to anMLmodel. Specifically, theyusedcharge and
discharge currents in future cycles as part of the ML model input. The
difference is that these two studies additionally incorporated the current or
recent cell state into the model input. The cell state was characterized by
either (1) a combination of features from electrochemical impedance
spectroscopy (EIS) measurements in the current cycle and those from
voltage and current measurements in the current and some past cycles103 or
(2) only features from historical voltage and current measurements104. GPR
was not used as the ML algorithm in either study. Instead, an ensemble of
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Fig. 9 | Probabilistic capacity forecasting by GPR at multiple cycles over the life span.Here, the GPR model is fit to available date and extrapolated to EOL. The various
lengths of data available change the projected trajectory.
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XGBoost regressors was used by Jones et al.103 to quantify forecasting
uncertainty, while uncertainty quantification was not considered by Lu
et al.104. Overall, it is interesting to see both studies focused on features with
physically meaningful connections to future degradation when designing
theMLmodel input. In fact, formulating a meaningful forecasting problem
and designing highly predictive input features should be the centerpiece of
almost any data-driven SOH forecasting effort.

Finally, it is worth noting thatmultiple probabilisticMLmodels can be
combined to form a hybrid model for SOH forecasting or RUL prediction.
In what follows, we briefly discuss three examples of hybrid modeling
involving GPR.
• The first example is the delta learning approach employed by Thelen

et al. in their study on battery RUL prediction101. The basic idea of this
approach is correcting initial RUL predictions by a GPR capacity
forecasting model with a data-driven ML model. The prior mean
function of the GPR model was explicitly designed to be an empirical
capacity fade model. The approach was demonstrated on three open-
source datasets, a simulated dataset, and one proprietary dataset. Initial
RUL predictions by GPR capacity forecasting models were consider-
ably under-confident as compared to the GPR delta learning approach
with a GPR capacity forecasting model (predictor) and a GPR RUL
error correction model (corrector), which was well calibrated on the
original dataset. In contrast, the random forest delta learning approach
using a probabilistic random forest model as the corrector was over-
confident on the original dataset, but exhibited better calibration than
the GPR delta learning approach on the simulated OOD dataset.

• Another example is the use of a co-kriging model to forecast capacity
degradation by combining two data sources: (1) a high-fidelity source
consisting of the capacity measurements from the test cell (whose
capacity trajectory beyond the current cycle needs to be predicted) up
to the current cycle and (2) a low-fidelity source comprising capacity
measurements from other cells of the same or a similar design105.
Similar to the delta learning approach studied by Thelen et al.101, this
second study attempted to build a corrective GPR model to
compensate for the deviation of an initial GPR model built based on
low-fidelity data to depict an “average” degradation trajectory.

• The third example is an effort to modify vanilla GPR models by
incorporating electrochemical and empirical knowledge of capacity
degradation (i.e., the dependencies of capacity degradation on two
cycling condition variables, named temperature and depth of
discharge)106. These two dependencies were captured through the
Arrhenius law (temperature) and a polynomial equation (depth of
discharge), respectively, and encoded as a compositional covariance
function (or kernel) within GPR. Unlike the first two examples, which
are purely data-driven, this third example attempted to integrate some
physics of degradation into the GPR formulation, which can be treated
as a physics-informed probabilistic ML approach.

Relevance vector machine
Relevance vector machine methodology
Suppose we have access to a set of training samples, each sample consisting
of an input–output pair, (xi, yi), i = 1,⋯ ,N, where xi 2 RD is the D-
dimensional input features of the i-th training sample, yi 2 R is the cor-
respondingoutput (also knownas the target or theobservationof the state of
interest), and N is the number of samples. We are interested in learning a
one-to-one mapping from the input (feature) space to the output (state)
space. Similar to GPR, RVMalso assumes that the observations are samples
from a Gaussian observation model. Unlike GPR, which does not assume
any functional form of thismapping, RVM approximates this mapping as a
parametric, linear kernel regression function107. This regression function
takes the following form:

yðxÞ ¼
XN
i¼1

ωiKðx; xiÞ þ ω0 þ ε; ð7Þ

where x is an input feature vector whose target may be unknown and needs
to be inferred, K(x, xi) is a kernel function comparing the test input x with
each training input xi, ωi is the kernel weight measuring the importance (or
relevance) of the ith training sample, ω0 is a bias term, and ε is a zero-mean
Gaussiannoise, i.e., ε∼N ð0; σ2ε Þ. Thebias termandNkernelweights forma
(N+ 1)-element weight vector, written as ω ¼ ½ω0;ω1; . . . ;ωN �T. If we
define a design vector consisting of a constant of one and the N kernel
functions, i.e., ϕ ¼ ½Kðx; x1Þ; . . . ;Kðx; xN Þ�T, we can rewrite Eq. (7) in a
convenient vector form, y(x) =ωTϕ+ ε. The original RVM formulation
follows a hierarchical Bayesian procedure by assuming the (N+ 1) weights
follow a zero-mean Gaussian prior, whose inverted variances, denoted as
αi

� �
i¼ 0;���;N , and the inverted noise variance, σ�2

ε , all follow Gamma
distributions (hyperpriors).

Training themodel in Eq. (7) using sparse Bayesian learning estimates
the posterior of the weight vector ω and noise variance σ2ε via iterative
optimization107. In practice, the posterior for most weights becomes highly
peaked at zero, effectively “pruning” the corresponding kernel functions
from the trained model. The remaining training samples with non-zero
weights are known as relevance vectors, typically accounting for a very small
portion of the training set (e.g., 5−20%). This unique attribute of sparsity
makes the RVMattractive both in terms of generalization performance and
test-time efficiency.

Figure 10 illustrates battery capacity estimation by a trained RVM
model based on features extracted from voltage and current measurements
during partial charge13. This SOH estimator possesses two desirable attri-
butes: (1) statistical estimation, i.e., instead of providing a mere point esti-
mate for the SOH parameter, this estimator generates a probability
distribution as the parameter estimate; (2) sparsity, i.e., the estimator
selectively utilizes only a small subset of feature vectors from the training
dataset, known as relevance vectors, for real-time health inference (see, for
example, the extreme posterior peakness at zero for ω2 and ωN). These two
attributes offer several advantages for online health inference: (1) statistical
estimation enables concurrent estimation of the parameter while quanti-
fying the associated uncertainty, and (2) sparsity enhances the computa-
tional efficiency of online inference.

RVM applications to battery diagnostics and
prognostics
SOH estimation
As shown in Fig. 10, RVM can be applied to estimate battery capacity
from features extracted from readily available voltage and current
measurements. Such applications were first attempted in two studies,
one focusing on implantable-grade LCO cells13 and the other focusing
onNMCcells108. In the former study13, five characteristic features, some
correlated strongly with capacity, were extracted from a test cell’s
voltage vs. time and current vs. time curves at a specific charge cycle
that started at a partially discharged state. These features were then fed
as input (e.g., x in Fig. 10) into a trained RVM regression model that
produced as output a Gaussian-distributed capacity estimate (e.g.,Q in
Fig. 10). The sparsity property of RVM made this regression model
much smaller than a full-scale model. For example, each cross-
validation trial used only <4% of training samples as the relevance
vectors to build the final regression model, improving the computa-
tional efficiency and generalization of online capacity estimation.

In the later study108, a feature of predictive power was found to be the
sample entropy of a short voltage sequence (time series) measured during a
hybridpulsepower characterization test. This featurewas concatenatedwith
temperature to form the input vector to an RVM regression model, which
outputs a Gaussian-distributed capacity estimate. It is interesting to see the
inclusion of use condition parameters (e.g., temperature as reported in
Hu et al.108) in the input of a data-drivenMLmodel. Such a treatment builds
condition awareness into theMLmodel, making it applicable under varying
use conditions. Similar approaches have been taken in studies on capacity
forecasting, as discussed in the section “GPR applications to battery diag-
nostics and prognostics”.
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It is also widely accepted that a “one-ML-method-fits-all” approach
does not work in battery diagnostics and prognostics. In some applications,
one ML method may perform better than another regarding prediction
accuracy. But, in other applications, accuracy comparisons between these
twomethods may look very different. Some limited efforts have beenmade
to benchmark different ML methods for SOH estimation. An example is a
comparative study on four data-driven ML methods, namely linear
regression, support vector machine, RVM, and GPR, using features
extracted from capacity vs. voltage curves during discharge109. These fea-
tures included the standard deviations of the discharge capacity (Q) and
cycle-to-cycle discharge capacity difference (ΔQ), calculated, respectively,
from a measured sample of the discharge capacity vs. voltage curve at the
current cycle (Q(V)) and a measured sample of the discharge capacity
difference (between the current cycle and a fixed early cycle) vs. voltage
curve (ΔQ(V)).

Like most other studies on battery diagnostics and prognostics, the
above comparison exclusively focused on prediction accuracy by looking at
error metrics such as RMSE and maximum absolute error. Few research or
benchmarking efforts were made to study the quality of uncertainty
quantification, i.e., how well an estimate of a model’s predictive uncertainty
(known) on a test sample reflects the model’s prediction error (unknown)
on this sample34. Additionally, we see that most studies worked with small
datasets from limited numbers (mostly <100) of cells. In the small data
regime, examining predictive uncertainty is even more important than in
the big data regime, simply because (1) small training datasets possess
limited representativeness of real-world scenarios, and (2) MLmodels may
generalize poorly to OOD data. Although these existing studies reported
high accuracy on small, carefully crafted test datasets mostly acquired from
laboratory testing, these accuracy numbers are unlikely to generalize to real-
world applications where we would expect wider ranges of and more
complex use conditions, higher cell-to-cell variability, and larger
measurement noise.

SOH forecasting and RUL prediction
The first application of RVM to battery prognostics was pioneered by a
groupof researchers atNASA’sAmesResearchCenter11. The same groupof
researchers also led the first application of GPR to battery prognostics98, as
discussed in the section “RVM applications to battery diagnostics and

prognostics SOH estimation”. The role RVM served was identifying mean
regression curves on a charge transfer resistance vs. time dataset and elec-
trolyte resistance vs. time dataset, both acquired from EIS. Each mean
regression curve was then fitted to a simple two-parameter exponential
model to obtain an estimate of the twomodel parameters. This estimatewas
treated as an initial (t = 0) estimate of the exponentialmodel parameters in a
discrete-time state-space model, solved using particle filters for capacity
forecasting and RUL prediction. RUL prediction results were shown as an
empirical probability distribution that became narrower andmore centered
at the true RUL as the cycle number where the prediction was made
increased. Such plots later became a standard way to visualize results by
probabilistic RUL prediction methods82,110–112.

Two later, more direct applications of RVM to battery prog-
nostics were explored with the formulation of two vastly different
approaches12,113. Wang et al. performed RVM regression on the
capacity vs. cycle number data available to a test cell whose future
capacity and RUL were unknown and then fitted a three-parameter
variant of the well-known double exponential capacity fade model82

to only the capacity (Q) and cycle number (t) data of the relevance
vectors12. Capacity forecasting and RUL prediction were achieved by
extrapolating the fitted capacity fademodel to a predefined EOL limit.
It is important to note that, similar to the first application98, the RVM
regression model, fitted to an SOH vs. cycle number dataset, was not
directly used for capacity forecasting. More specifically, the fore-
casting was not done by extrapolating the RVM regression model,
unlike the capacity forecasting studies using GPR models with
empirical fade models as the “built-in” prior mean functions, as
discussed in “RVM applications to battery diagnostics and prog-
nostics SOH estimation”. Li et al. took a different approach by for-
mulating capacity forecasting as a time series prediction problem113.
RVM was employed to map the current and several past cycles’
capacity observations to the next cycle’s capacity observation,
enabling one-step-ahead prediction. Capacity observations at cycles
beyond the next cycle were predicted via iterative one-step-ahead
prediction (i.e., marching over time). Again, capacity forecasting was
not achieved by extrapolating an RVM regression model fitted to
capacity vs. cycle number data. It suggests that simply extrapolating a
data-driven regression model without consideration of the capacity
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fade trend may not yield reliable capacity forecasting, especially for
long-term forecasting.

Bayesian neural network
Bayesian neural network methodology
A neural network fNNmakes a prediction for an output variable at an input
feature: ŷ ¼ f NNðx; θÞ, where θ denotes all tunable parameters of the neural
network (e.g., the neural network weight and bias terms). Given training
samples (xi, yi), i = 1,⋯ ,N, the neural network training process seeks to set
θ = θ* that minimizes a loss function, commonly the mean squared error:

θ� ¼ argmin
θ

1
N

XN
i¼1

f NNðxi; θÞ � yi
� 	2( )

: ð8Þ

This optimization problem is typically solved via gradient-based algorithms
such as stochastic gradient descent114,115 or Adam116. The resulting θ* is
single-valued, and subsequent new prediction using this trained neural
network would also be single-valued as well: ŷnew ¼ f NNðxnew; θ�Þ.

In order to capture theuncertainty indeterminingθ, one can solve forθ
in a probabilistic manner following the Bayesian framework117–119, and seek
the entire distribution of plausible θ values instead of a single-valued “best
fit”. Such an approach entails constructing a Bayesian neural network
(BNN). In a BNN, θ is treated as a random variable with an associated
probability density function (PDF) representing its uncertainty. When
training data become available, the PDF of θ is updated following Bayes’
rule:

pðθjx; yÞ ¼ pðx; yjθÞpðθÞ
pðx; yÞ ¼ pðyjx; θÞpðθÞ

pðyjxÞ ; ð9Þ

where p(θ∣x, y) is the posterior PDF (updated uncertainty given training
data), p(θ) is the prior PDF (initial uncertainty before seeing training data),
p(y∣x, θ) is the likelihoodPDF, andp(y∣x) is themarginal likelihoodormodel
evidence that is constant with respect to θ. Solving the Bayesian inference
problem constitutes computing or characterizing the posterior p(θ∣x, y).
Once the posterior becomes available, its uncertainty can be propagated to
predictions by first drawing posterior samples θ(i) ~ p(θ∣x, y) and then
evaluating the neural network ŷðiÞnew ¼ f NNðxnew; θðiÞÞ for each sample. The
set of neural network predictions represent the posterior-pushforward dis-
tribution that is solely due to the epistemicuncertainty in theneural network
parameters. In contrast, the posterior predictive distribution would addi-
tionally include the aleatory uncertainty from the output observation noise,
often portrayed by samples in the form yðiÞnew ¼ f NNðxnew; θðiÞÞ þ ϵðiÞ.
Hence, a distribution of predicted values will be generated to reflect the
residual uncertainty in the neural network model parameters.

Solving for the posterior is highly challenging for BNNs due to the high
dimensionality of θ (often thousands to millions in neural networks).
Markov chain Monte Carlo120–123, which are classical Bayesian inference
algorithms designed to generate samples from the exact posterior, do not
scale well to such high dimensions in practice. The exploration-efficient
Hamiltonian Monte Carlo (HMC)124,125 has been used on some BNNs but
usually for smaller cases with hundreds of parameters. Alternatively, var-
iational inference (VI)126,127 forms an optimization problem to find the best
approximate posterior from a class of parameterized distributions. Let
q(θ; λ) denote the approximate posterior density parameterized by λ, VI
minimizes the Kullback-Leibler divergence from the true posterior to the
approximate posterior:

λ� ¼ argmin
λ

DKL qðθ; λÞjjpðθjx; yÞ� 	
ð10Þ

¼ argmax
λ

Eqðθ;λÞ ln pðyjx; θÞ þ ln pðθÞ � ln qðθ; λÞ� 	|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
evidence lower bound ðELBOÞ

;
ð11Þ

where the second equation is simplified to the well-known evidence lower
bound that no longer involves the marginal likelihood and can be
approximated via Monte Carlo (MC) sampling. By sidestepping posterior
sampling with an optimization problem, VI effectively trades off some
posterior accuracy for scalability, making it more suitable for BNNs.

The simplest form of VI is the mean-field VI using Gaussians, where
qðθ; λÞ ¼ QK

k¼1 qkðθk; λkÞ ¼
QK

k¼1 N ðθk; μk; σ2kÞ are set to independent
(mean-field) Gaussians128, involving the optimization of a 2K-dimensional
λ. Gradient information for the VI optimization can also be obtained
through back-propagation128. However, such amean-field approach cannot
capture parameter correlations and tends to under-predict the
uncertainty126. While a natural extension is to incorporate a full-covariance
instead of the independence assumption, however, tracking all entries of a
dense covariance matrix would requireOðK2Þ-dimensional λ, rendering it
often too expensive and thus rarely used for BNNs. Other advanced
representations of q(θ; λ) are possible, for example, via normalizing flows129

and transport maps130 that parameterize the mapping from the posterior
random variable θ to a standard normal reference random variable.

Stein variational gradient descent (SVGD)131 also approximates the
posterior through an optimization problem but uses particles. SVGD
leverages the relationship between the (functional) gradient of objective in
Eq. (10) to the Steindiscrepancy, the latterwhich canbe approximatedusing
a set of particles. The particles’ positions are then iteratively updated fol-
lowing the gradient-descent direction, transporting them towards the target
posterior distribution p(θ∣x, y). Further enhancements such as Stein varia-
tional Newton132,133 that makes use of second-order (Hessian) information,
and projected SVGD134 that finds low dimensional data-informed sub-
spaces, have also been developed.

Lastly, MC dropout is a regularization technique for training deep
neural networks135 but has been shown to approximate the posterior pre-
dictive distribution under a specific Bayesian setup136. AddingMC dropout
to an existing deterministic deep neural network training infrastructure is
very easy and essentially involves generating a set of sparse neural networks
by randomly setting someweightparameters to zero.However,MCdropout
is not formulated to tackle the Bayesian formulation in Eq. (9), and thus is
limited in handling general choices of prior p(θ) and likelihood p(x, y∣θ).

Bayesian neural network applications to battery diag-
nostics and prognostics
SOH estimation
The use of BNN for battery diagnostics/prognostics has been few in number
and largely lacked rigorous analysis of its Bayesian uncertainty quantifica-
tion. For example, Kim et al.137 proposed a knowledge-infused BNN for on-
board SOHestimation and RUL prediction of Li-ion batteries in EVs. Their
approach incorporated novel domain knowledge by (a) designing
impedance-related features basedondischarge voltage slopes that have been
observed to be correlated with degradation, and (b) introducing into an
RNN a knowledge-infused block that uses an empirical double-exponential
model for degradation estimation. The RNN was then turned into a BNN
via a combinationwithMCdropout.However, theworkhadnomentioning
of the prior and likelihood, both central for establishing the Bayesian pro-
blem formulation in Eq. (9). Elsewhere, Xu et al.138 built BNNs to predict the
SOH of retired batteries by leveraging unique data from EIS experiments.
The paper provided detailed experimental setup, data acquisition, and
feature extraction highlighting the use of an equivalent circuit model and
ARD. However, similar to the previous work, information regarding the
BNN prior and likelihood were missing. While the paper did mention the
use of VI for BNN training, it failed to clarify the VI method and what
variational families were employed (e.g., if using mean-field Gaussian VI).

SOH forecasting and RUL prediction
In the work of Zhu et al.139, the authors usedMCdropout to create a general
RUL prediction framework, with a demonstration example of battery
degradation from a laboratory setting, that also featured an active learning
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procedure for choosing the next sampling point using the posterior pre-
dictive variance as the acquisition function. Hong et al.140 introduced a “first
full end-to-end deep learning framework” for predicting Li-ion battery RUL
through a dilated CNN architecture that incorporated temporal measure-
ments of battery terminal voltage, current, and cell temperature. The paper
then used an explicit ensembling procedure (see next section) as an
approximation to BNN.

In contrast to the aforementioned literature, the papers141,142 clearly
specified the prior and likelihood of their Bayesian setups along with the
algorithm for solving the posterior. The former employed mean-field
Gaussian VI to build a Bayesian mixture neural network in the form of a
hybrid of a Bayesian CNN and LSTM, for predicting the RUL in multiple
battery datasets. The latter adopted HMC and VI by backpropagation128 to
construct BNNs for general RUL prediction without focusing on batteries,
and demonstrated instead on an open dataset of turbofan engines.

Overall, research for SOHandRULprediction is seeing increasinguse of
BNNs, recognizing the importance of uncertainty quantification in deep
learning models that generally tend to be opaque and not interpretable.
However, themajority of these BNNworks simply cite the connection toMC
dropout without mentioning the assumptions and conditions that accom-
pany these off-the-shelf tools. This can be a dangerous practice and lead to
incorrectly quantified uncertainties not justified by the data or not intended
by the modeler. More careful analysis of the Bayesian results would be war-
ranted, for example, by diagnosing how close the dropout posterior is to the
true posterior p(θ∣x, y). This would require the probing (at least recognition)
of posterior results (not just posterior-predictive results andnot just looking at
RMSE of the predictions), which currently are often from BNN literature.

Neural network ensemble
Neural network ensemble methodology
Approaches that combine predictions by multiple ML models to derive a
final prediction can be categorized as ensemble learning approaches. The
key idea is to introduce diversity among models in the ensemble,
encouraging member models to agree more when a test sample falls inside
the training data distribution and disagree more when the test sample is
OOD. Diversity can be created in many different ways. The sampling
methods described in the section “Sampling methodologies” can generally
be treated as ensemble learning approaches. For example, bagging (a.k.a.
bootstrap aggregating) builds a diverse set of member models in an
ensemble by creating random subsets of the original training set and using
each subset to train amembermodel (seeFig. 12 for an illustrative example).
These methods allow making probabilistic predictions using deterministic

ML techniques (e.g., the elastic net [end-to-end early prediction paper] and
random forest14).

A recent effort attempted to achieve diversity among neural networks
by training multiple neural networks of the same architecture, each with a
random (thus different) parameter initialization and a unique sequence of
randomly sampled mini-batches, i.e., simply following the standard sto-
chastic gradient descent procedure143. The resulting ensemble captures the
predictive uncertainty due to observational noise in the target (y) of an
aleatory nature and insufficient training data of an epistemic nature. This
recent effort specifically targeted uncertainty quantification of deep neural
networks, as they produced state-of-the-art prediction accuracy on many
benchmarking problems but had been found to give often over-confident
predictions. Thesepredictions, if incorrect, canquickly diminish the valueof
predictive modeling in safety-critical applications and substantially damage
users’ trust in the ML model.

Constructing a neural network ensemble involves (1) training indivi-
dual neural networks, of which each predicts a Gaussian-distributed output
capturing aleatoryuncertainty, and (2) aggregating theGaussianpredictions
by these individual models as a Gaussian mixture to capture epistemic
uncertainty. These two steps are illustrated in Fig. 11 and detailed below in
the context of battery capacity estimation.
• Step 1: Training multiple neural networks with Gaussian output layers

Suppose we have a measured input (x) from a battery cell during a
charge cycle.We are interested in estimating the unknown cell capacity
(Q).We independently trainmultiple (M) neural networks of the same
architecture; each training run startswith a random initialization of the
network parameters (θ) and operates on randomly sampled mini-
batches. Each neural network predicts a Gaussian distribution of Q̂,
Q̂∼N μ̂

� ðx; θÞ; σ̂2ðx; θÞ characterized by two network outputs: the
mean μ̂ðx; θÞ and variance σ̂2ðx; θÞ. The predicted variance represents
the network-learnedobservational noise in capacity (Q)measurements
(aleatory uncertainty). Network training identifies a local optimum of
the neural network parameters θ (e.g., weights andbiases), which yields
a minimal negative log-likelihood loss derived from the training
dataset.

• Step 2: Aggregating individual predictions as a Gaussian mixture This
second step aggregates the M individual predictions through simple
averaging. This model aggregation allows quantifying the parameter
(θ) uncertainty arising from insufficient training data. The final
ensemble prediction comes from aGaussianmixturemodel consisting
of theM Gaussian distributions predicted by the member neural net-
works in the ensemble. The ensemble-predicted Gaussian distribution
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Fig. 11 | A flowchart illustrating the process of constructing a neural network ensemble. In this flowchart, simple averaging is used to combine the Gaussian-distributed
predictions by four independently trained neural networks into an ensemble prediction.
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takes the following form:

pðQ̂ðxÞÞ ¼ 1
M

XM
j¼1

pGaussðQ̂; μ̂ðx; θjÞ; σ̂2ðx; θjÞÞ: ð12Þ

The M independently trained networks tend to produce more dif-
ferent mean predictions on OOD data than in-distribution data,
resulting in larger variance estimates on OOD data144.

The probabilistic prediction shown in Eq. (12) becomes critical
when only a small training dataset is available due to a limited experimental
budget, technical constraints, and time. The data-size limitation applies to
battery aging tests, given that they are typically costly and labor-expensive
to run andmay last formanymonths to years, making it practically difficult
to test many cells under a wide range of use conditions. A more detailed
description of the neural network ensemble method can be found in the
original research paper143 and a recent tutorial paper on uncertainty
quantification of ML models34.

As a final note, neural network ensemble has been traditionally treated
as a non-Bayesian method. A more recent study attempted to connect
neural networkensemble andBayesianmethods, suchasBNN,byproviding
evidence that combining predictions from independently trained copies of
the same neural network architecture approximates the Bayesian model
averaging145. This approximation may be why neural network ensembles
produce improved (less overconfident) estimates of the predictive uncer-
tainty on OOD data146.

Neural network ensemble applications to battery
diagnostics and prognostics
SOH estimation
Very few studies attempted to apply neural network ensemble to battery
SOHestimation. Themost relevant studymaybe the onedone by Shen et al.
to estimate cell capacity from a measured sample of the (instantaneous)
charge capacity (Q), voltage (V), and current (I) time series during a partial
charge cycle147. These time series measurements were fed as input into
multiple deep convolutional neural networks, each of which outputs a
capacity estimate. The purpose of ensemble learning was not to quantify
predictive uncertainty. Rather, the idea was to combine deterministic
capacity estimates from multiple neural networks to derive a final deter-
ministic estimate. The weights assigned to the individual neural networks
were optimized and often unequal (i.e., unlike the averaging formulation in
Eq. (12). The goal was to ensure prediction accuracy across a wider range of
operating conditions than predicting with a single neural network.
Ensemble learning, in combination with transfer learning, was validated
using a 10-year aging dataset from implantable-grade cells13,110,111 and the
Randomized Battery Usage dataset from the NASA Ames Prognostics
Center of Excellence86. The work by Shen et al.147 is a typical example of a
general observation: in most SOH estimation studies that use data-driven
ML models, prediction accuracy is often the predominant evaluation cri-
terion and, inmany cases, the only criterion.We call for coordinated efforts
to promote adding the quality of predictive uncertainty as a standard eva-
luation criterion to the scope of any future study on SOH estimation and
health diagnostics and prognostics in general. This quality can be assessed
viameanswell-established in theMLcommunity, suchas calibration curves,
sparsification curves, and negative log-likelihood, as summarized in34, and
those established in the PHM community, such as the α-accuracy zone148

and β probability14.

SOH forecasting and RUL prediction
We generally observe that studies on SOH forecasting and RUL prediction
recognize the importance of uncertainty quantification much better than
studies on SOH estimation. This observation could be attributed to the
consensus that predicting a future state is more challenging than estimating
the current state and involves an additional uncertainty source of future
operating conditions that are often unknown. Outside the battery

prognostics field, ensembles of probabilistic neural networks have been
applied to solve time series prediction problems for general-purpose
prognostics. For example, the bearing prognostics work by Nemani et al.149

built an ensemble of time series predictors, each being a long short-term
memory recurrent neural network with a custom Gaussian output layer. A
similar group of authors150 later applied such an ensemble model for the
RUL prediction of Li-ion cells in an open-source aging dataset consisting of
169 LFP cells27,79. Like the capacity estimation study by Shen et al.147, the
neural network ensemble byNemani et al.150 did not adopt simple averaging
as the weighting scheme. Instead, the model weights were optimized to
minimize the RULprediction RMSE on a training dataset. It was found that
ensemble learning produced uncertainty estimates more representative of
prediction errors over single-model learning. This improvement mostly
resulted from increased predictive uncertainty and reduced overconfidence
in OOD data, attributable to ensemble diversity, i.e., aggregating Gaussian-
distributed outputs of the individual models with different means.

It is interesting to see efforts that combine predictions from determi-
nistic ML models to derive a predictive uncertainty estimate. One such
example is the capacity forecasting study considering charge and discharge
C-rates that vary randomly from one cycle to the next103, as also discussed
under “RVM applications to battery diagnostics and prognostics SOH
estimation”. The authors trained 10 XGBoost models and used the sample
standard deviation of the (deterministic) capacity estimates by thesemodels
to quantify the predictive uncertainty. The quality of predictive uncertainty
was assessed qualitatively by including a sparsification plot that visualized
how the prediction accuracy measured by RMSE decreased by incremen-
tally adding test samples with increasing predictive uncertainty. However,
without assessment using quantitative metrics such as the expected cali-
bration error and negative log-likelihood, it is unclear how well the pre-
dictive uncertainty (known) can approximate the model prediction error
(unknown). Nevertheless, an interesting area of exploration could be
uncertainty quantification by an emerging family of deterministicmethods
that only require a single, often deterministic neural network instead of
multiple probabilistic neural networks151–153. Benchmarking efforts com-
paring the more mature probabilistic and emerging deterministic methods
will help fill an important knowledge gap in the battery prognostics field.

Counterintuitively, a hybrid method formed by combining a model-
based and data-driven method produces lower uncertainty in RUL pre-
diction over the model-based method154. This uncertainty reduction was
achieved by predicting futuremeasurements using anMLmodel trained on
historical data andaugmenting thedataset for themodel-basedmethodwith
these predicted future measurements. Given the addition of new data (i.e.,
the predicted futuremeasurements), uncertainty reduction isnot surprising.
The lower predictive uncertainty came hand-in-hand with a higher pre-
diction accuracy154, indicating that the predictive uncertainty was likely a
good indicator of the prediction error. This example suggests combining
methods or models may increase prediction accuracy (e.g., through data
augmentation), together with reduced predictive uncertainty, while com-
bining individual models in a neural network ensemble is not expected to
increase prediction accuracy much but yields the benefit of capturing
epistemic uncertainty, thereby producing a higher total predictive uncer-
tainty that better represents the prediction error155.

Sampling methods
Sampling methodologies
Unlike Bayesian learning methods, sampling approaches to predictive
uncertainty estimation work by evaluating models’ fit to different data
subsets via repeated sampling and model training. Bootstrap sampling is a
common method of creating many data subsets by repeatedly sampling a
dataset. How the sampling is performed (w/wo replacement, stratified, etc.)
greatly affects the characteristics of the data subsets and, subsequently, the
models’fit to them156. Predictive uncertainty is estimatedbyfittingmodels of
identical architecture to each of the bootstrapped data subsets and aggre-
gating their predictions—plurality vote for classification and averaging for
regression. This method, known as bagging and short-hand for “bootstrap
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aggregating”, is designed to estimate predictive uncertainty by capturing the
changes in model predictions due to dataset perturbations induced by the
random sampling157. Bootstrap sampling and bagging (a.k.a. bootstrap
aggregating) are explained graphically in Fig. 12. Standard bagging uses
models of identical architecture and random sampling with replacement.
The subset-to-subset variations in the sample selectionproducemodelswith
varying optimal parameters, leading to diverse sets of predictions.When the
properties of the sampled data subsets closely align with the full dataset, the
variation in the fittedmodels isminimal, and themodel prediction intervals
tend to be small.

Sampling applications to battery diagnostics and prognostics
A common theme among research published on bagging for battery health
diagnostics and prognostics is the use of random forest regressors. A ran-
dom forest regression model is a meta regressor consisting of many binary
decision trees that are fit to bootstrap samples of the original dataset158. The
outputs from the many decision trees are averaged to make a mean pre-
diction, and uncertainty can be quantified by examining the spread of the
predicted outputs from the individual trees. Random forest models are
commonly used in battery health diagnostic and prognostic applications
because of their ability to model the nonlinear behavior often observed in
battery capacity fade and their probabilistic predictions. Further, random
forestmodels have become simple to implement as many publicly available
ML model libraries include a random forestimplementation.

SOH estimation
Research on battery capacity estimation using random forestsgenerally
focuses on extracting various features from battery capacity-voltage data
that correlate strongly with the cell’s capacity. Li et al.159 conducted aging
experiments on two different types of NCM/Gr cells to demonstrate an RF-
based capacity estimation algorithm. The researchers extracted IC curves
from three different voltage ranges, each spanning roughly 30% of the total
SOC range. The researchers found that the voltage range containing a Li+
phase transformation (3.6−3.8 V inNCM/Gr) performedmuchbetter than
the other two voltage ranges. This was determined to be the case because the
phase transformations appear as prominent peaks in the IC curves and the

magnitude and location of the peaks are sensitive to the SOHof the cell. The
model leveraged the strong correlation between the IC peaks and cell
capacity to achieve an average of 1.3% RMSE across the 23 cells. Similar
research by Roman et al.14 used a random forestmodel for capacity esti-
mation as part of anMLpipeline that first extracted 30 features frombattery
capacity, voltage, and temperature data before down-selecting using a
recursive feature elimination scheme. The selected features were then fed to
a random forestmodel to estimate the capacity of various cells tested under
both standard and fast-charge conditions. The researchers found that while
the random forestmodel had the lowest accuracy of those tested, it was
overconfident in its predictions of capacity, as indicated by the predictive
uncertainty at some samples being overly small relative to the large pre-
diction errors at these samples. Model predictive uncertainty is closely tied
to the sample size of the dataset the model is fit to. In the realm of batteries,
most datasets are very small in size due to the high costs associated with
testing hundreds or thousands of cells. Specific to batteries, assessing the
quality of predictive uncertainty quantification (e.g., through uncertainty
calibration) is of great importance and should be investigated further34.
Other researchonbattery capacity estimation for second-life applicationsby
Takahashi et al. investigated using a GPR-based bagging approach160. The
researchersfirst extracted summary statistics, likemean, variance, and inter-
quartile-range, from theCC-constant-voltagepart of the charging curve and
down-selected them to be used as feature inputs to the GPRmodels. Then,
multiple GPR models were fit to bootstrap data subsets to predict battery
capacity.

SOH forecasting and RUL prediction
Researchers have also applied bagging to battery capacity forecasting and
RULprediction.Work by Liu et al.161 developed a bagging approach to RUL
prediction using monotonic echo state networks to directly predict RUL
from an engineered health index. The health index, calculated as the nor-
malized time spent discharging between two fixed voltage limits, was found
toworkwell for directRULprediction.However, it isworthnoting that such
a featuremay be unextractable if the operation of the battery cell is such that
it rarely discharges completely, as is the case with EVs and other consumer
electronics. Researchby Jiao et al.162 investigated a bagging approach toRUL
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prediction for cells cycledunder drive-cycle agingprotocols. Their approach
leveraged random forestdecision trees that directly mapped to RUL using
resistances extracted from EIS spectra along with standard IC and DV
curves measured during discharge. They observed that their bagging
approach produced a more accurate model than any single model tested,
further highlighting the power of bagging.

Notably, sampling methods can also be used with more traditional
modeling methods, like standard curve fitting and algebraic reduced-order
models, to estimate the uncertainty in model parameters and enable
probabilistic trajectory predictions for simplemodels that are not inherently
probabilistic. Algebraic reduced-order models are among the first methods
used to model and predict battery capacity fade3,7. After aging cells in long-
term storage and cycling tests, trajectory equations are fit to the normalized
cell capacity measurements to model the capacity fade as a function of time
and cycles/energy throughput. Trajectory equations of the form
Q = 1− a ⋅ tb, where Q is cell capacity, t is time, and a and b are fittable
parameters, are commonly used because of their flexibility in fitting many
different trajectory shapes and their loose ties to describing physical modes
of capacity fade. For example, the exponent b = 0.5 is commonly used to
model the diffusion-limited process in which capacity is lost with SEI for-
mation on graphite9,52. In many of the models reported in the literature, the
capacity fade rate parameter, a, is typically a function that is time- and cycle-
independent and captures the effect of the cell operating conditions, like
temperature, DOD, SOC, C-rate, pressure, or any other measurable prop-
erty, on the observed capacity fade rate. Common function forms used to
model cell capacity fade rate are Arrhenius- and Tafel-like in nature163–168.
Arrhenius relationships are most often used to model the rate of chemical
reactions mainly due to the effect of temperature. Similarly, Tafel rela-
tionships are used tomodel the rate of electrochemical reactions considering
temperature and the electrochemical potential of materials.

Reduced-order models fit to battery aging datasets are excellent can-
didates to leverage sampling methods for uncertainty estimation. The var-
ious operating conditions and intrinsic cell-to-cell variability (e.g., due to
manufacturing tolerances and uncertainty in material properties arising
from within-batch and batch-to-batch property variations) produce capa-
city fade trajectories with varying lifetimes. Researchers Smith, Gasper, and
colleagues from theNational Renewable Energy Laboratory have published
numerous articles on the topic of algebraic lifemodels for forecasting battery
SOH and predicting RUL with uncertainty via bagging52,169,170. In the work
by Gasper et al.169, the researchers compared an ML-identified reduced-
order agingmodel to one identified by a human expert. The human expert-
identified model included Arrhenius- and Tafel-like expressions to capture
the influence of the operating conditions on cell capacity fade. The ML-
identifiedmodel was discovered through a symbolic regressionmethod that
iteratively tests linear combinations of physical descriptors, like 1/T, 1/T2, 1/
T3, etc., against the dataset to determine the algebraic form of the capacity
fade rate submodel as a functionof the aging stressors,a = f(T, SOC,…, etc.).
Both the human expert- andML-identifiedmodelswere compared in terms
of absolute accuracy and predictive uncertainty, where predictive uncer-
tainty was estimated using bagging. By repeatedly sampling the aging
dataset and fitting reduced-order models, the authors identified distribu-
tions for eachmodel parameter andused thenumerous sets of parameters to
simulate many capacity trajectories. Predictive uncertainty was then
quantified through the spread of the many simulated capacity trajectories,
finding that the ML-identified model had roughly half the mean absolute
error of the human expert-identified model and showed three times lower
predictive uncertainty,withmuchmore accuratepredictionsof cell capacity.
In another paper by Gasper et al.52, they explained how uncertainty quan-
tification via bootstrapping is an important tool during the model-form
selection phase. The authors went on to demonstrate howmodel parameter
uncertainty can be very large when certain test conditions are left out of the
dataset, or when too many fittable parameters are included in the chosen
model, making it difficult to identify good values for all model parameters.
Altogether, many researchers have demonstrated the value of dataset
sampling methods like bagging as excellent tools for enabling uncertainty

estimates on traditionally non-probabilisticmodels and as ameans to assess
modelfitness through estimatingmodel parameter distributions. In the next
section, we provide insight into the effects of different bagging approaches
for predictive uncertainty estimation for battery health diagnostics and
prognostics.

Thoughts on sampling methods for battery data
While bagging is typically performed using standard bootstrap sam-
pling with replacement, varying the sampling strategy can effectively
capture different sources of uncertainty in a dataset. Specific to battery
health diagnostics and prognostics, stratified sampling can be used to
avoid quantifying model predictive uncertainty due to the different
operating conditions (or lack thereof) in a battery aging dataset.
Standard stratified sampling is performed by first dividing a dataset
into various “strata” based on different attributes they share156. For
example, common battery strata are the aging experiment test condi-
tions like temperature, C-rate, and DoD. Then, data subsets are ran-
domly sampled ensuring an equal number of samples come from each
stratum. Stratified and random sampling are compared in Fig. 12. The
stratified sampling method works well for creating balanced datasets,
but is infeasible when a few strata have far fewer samples than the
others, as it limits the overall size of the data subsets that can be formed.
An alternative approach is to perform unbalanced stratified sampling
that ensures at least a single sample from each strata is included.
However, depending on the application, this can create models that are
biased towards stratum with more samples, and should be done
carefully.

Modelsfit to stratifieddata subsetswill neverbe expected to extrapolate
to unseen operating conditions or other test attributes because at least one
battery from each stratum will be included in the data subsets. This effec-
tively eliminates any uncertainties associated with model extrapolation, as
all operating conditions are known to the model. Stratified sampling is best
used for quantifying the impact of cell-to-cellmanufacturing variability, as it
is well known that even identically manufactured cells will perform differ-
ently when tested under the same conditions26,27,35,87.

Anopposite of stratified sampling is leave-out sampling. This approach
to sampling specifically excludes one or many strata from each data subset
for the purpose of assessing predictive uncertainty as a function of the
strata171. Leave-out sampling is similar to standard cross-validation (CV) in
that specific data are left out each iteration, but generally, CV leaves out a
much greater number of data each iteration and has fewer total iterations.
For example, a typical fivefold CV requires that 20% of the entire dataset be
left out each iteration and only five total iterations are performed. In con-
trast, leave-out sampling typically includes >80% of the entire dataset each
iteration and sampling is performed with replacement. Leave-out sampling
is useful for determining battery test conditions that are essential to accurate
model parameterization. By repeatedly leaving out different strata and
assessingmodel accuracy on a balanced validation dataset, one canmap out
each stratum’s importance to themodel fitting process and identify a subset
of strata that are essential for accurate model parameterization. Take, for
example, a battery capacity estimation model that gets fit to a dataset con-
taining data ranging from 25 to 50 °C. If asked to predict cell capacity for a
sample tested at −20 °C, the model would significantly overpredict the
capacity because it had no training data from low-temperature strata to
inform it that battery capacity significantly declines at low temperatures due
to decreased reaction kinetics and increased charge transfer resistance. In
this case, leave-out samplingwould be able to identify that low-temperature
data is crucial to accurately parameterizing the model, and should be
prioritized in future testing.

Understanding and using predictive uncertainty estimates from
MLmodels
Understanding the different types of uncertainty that exist and what they
quantify is crucial to properly using probabilistic diagnostic and prognostic
models for decision making. Discussed previously in the section

https://doi.org/10.1038/s44296-024-00011-1 Review article

npj Materials Sustainability |            (2024) 2:14 17



“Introduction”, applications like designing serially connected modules or
setting warranties are typically concerned with worst-cell behavior. Under
these conditions, it is ideal to use a probabilisticMLmodel that can estimate
the full population-wise uncertainty when making predictions, so that the
tail-end of the distribution can be accurately quantified.

However, there exist many different probabilistic ML models (see the
section “ProbabilisticML techniques and their applications to battery health
diagnostics and prognostics”) that each differ in the type of uncertainty they
estimate (aleatory, epistemic) and how the uncertainty is quantified
(Gaussian, non-parametric, bagging, simple average, etc.). Further, the
documentation accompanying the various ML modeling libraries for
MATLAB, python, etc., are inconsistent in their documentation making it
unclear exactly what uncertainty is being predicted. To this end, this section
aims to explain the various types of predictive uncertainty and generally
discuss how they can be quantified.

Most publicly available ML models output the total predictive uncer-
tainty—usually a probability mass function for classification or a variance
for regression. The total predictive uncertainty can be qualitatively
decomposed into aleatory and epistemic uncertainty, each owing to unique
uncertainty sources172.
• Aleatory uncertainty quantifies the inherent stochastic nature of an

input, output, or the dependency between the two. It is irreducible by
nature and stems from sources like manufacturing process variability,
inconsistency of material properties, and variations in experimental
test conditions173. Aleatory uncertainty, sometimes referred to as data
uncertainty, persists in a dataset even if more samples are collected,
making it irreducible. Types of aleatory uncertainty most frequently
studied in Li-ion batteries are generally electric in nature and include
variations in cell capacity, resistance, impedance, and aging.
Uncertainty associatedwithbattery performance is considered aleatory
uncertainty because testing more cells will not reduce the measured
variability since it stems fromdifferences inmaterials andmanufactur-
ing processes. However, testing more samples enables one to more
accurately quantify the magnitude of aleatory uncertainty in electrical
performance35.

• Epistemic uncertainty arises from an incomplete understanding or
model representation of the data and is thus reducible. Common
sources of epistemic uncertainty aremodel simplification,model-form
selection, computational assumptions like numerical discretization,
and model parameter uncertainties174. Epistemic uncertainty can
generally be further classified into model-form and parameter
uncertainty34. Model-form uncertainty arises due to the various
simplifications and assumptions made to simplify the model training
and inference process. This type of uncertainty is prevalent in battery
health diagnostics and prognostics since directly modeling the physics
of degradation is largely infeasible, and thusmostmodels assume some
simpler form that approximates the observed physics by empirically
modeling data, e.g., reduced-order models51,169. Model-form uncer-
tainty can generally be reduced by increasing model complexity or by
directly modeling the underlying physics. Model parameter uncer-
tainty can be reduced by collecting more training data with better
accuracy andundermore conditions, or by increasing thefidelity of the
data measurements.

While it is beneficial to understand the origins of aleatory and epis-
temic uncertainties, it is difficult to individually quantify them in practice.
Instead, the predictive uncertainty output of probabilistic ML models cap-
tures the combined effects of aleatory and epistemic uncertainties, quanti-
fied as the total predictive uncertainty.

Bayesian models, like RVM (the section “Relevance vector
machine”) and GPR (the section “Gaussian process regression”),
quantify predictive uncertainty through a posterior mean and cov-
ariance matrix. Together, the mean and the diagonal of the covariance
matrix can be used to construct a predictive Gaussian distribution for
each input sample175. The predictive uncertainty of GPR typically

captures the aleatory uncertainty of the data fairly well, but does not
capture model-form and parameter uncertainty since the model is
non-parametric in nature. If, for example, a GPR was used with an
underlying trend function, it may do a better job at capturing the
model-form uncertainty as the final fit considers the fit of the trend
function to the data in the presence of noise. Another limitation of
Bayesian models is that they inherently assume the spread in the
predicted distribution is symmetric about the mean (Gaussian
distribution), which may not always be valid depending on
the application.

On the other hand, sampling approaches to uncertainty estimation
quantify uncertainty through aggregating predictions from the many
bootstrapped models and constructing a non-parametric predictive dis-
tribution for each input sample. Bagging approaches to uncertainty esti-
mation produce a non-parametric distribution that may or may not be
Gaussian. Final predictions are generallymade using themean ormedian of
the predictive distributions. Sampling approaches to uncertainty estimation
areflexiblemakingdifferent combinationsof samplingmethodsandmodels
to capture different uncertainties. For example, a neural network ensemble
(the section “Neural network ensemble”) will capture aleatory uncertainty
and parameter uncertainty well, but will not capture model-form uncer-
tainty since the model structure is not empirically-based and the feature
learning process is generally unregulated. On the other hand, an algebraic
reduced-order capacity trajectory model that inherently assumes the bat-
tery’s capacity fade follows an algebraic trajectory will do a much better job
capturingmodel-formandparameter uncertainty.However, as discussed in
the section “SOH forecasting and RUL prediction”, the type of sampling
method used (stratified, random, leave-out, etc.) plays a large role in the
uncertainty that is captured.

Regardless of the probabilistic ML method used, understanding
and quantifying a model’s predictive uncertainty is a crucial step in
conveying prediction results. Quantifying model predictive uncer-
tainty is generally done using statistical intervals derived from the
predictive distributions. Selecting a statistical interval is application-
dependent and depends on the main interest at hand, typically one of
quantifying the location of a distribution, the spread of a distribution,
or calculating an enclosure interval that captures a portion of the total
population. Three main types of statistical intervals exist: confidence
interval, prediction interval, and tolerance interval. Explanations of
each of these statistical intervals, and their applications to battery
health diagnostics and prognostics are outlined below.
• Confidence intervals are used for quantifying the precision of a dis-

tribution parameter – typically the mean of a distribution. Confidence
intervals are frequently used to calculate an upper and lower bound on
a distributionmeanwhere the true value of themeanwill fall within the
calculated range with specified probability p (usually p = 0.95). Shown
in Fig. 13, the confidence interval is the smallest of the three intervals
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Fig. 13 | Regression illustrating various forms of model uncertainty. Example
illustrating confidence, prediction, and tolerance intervals calculated for an ordinary
least squares regressor with a single input feature (x) and target value (y).
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because it captures only the uncertainty in the predicted mean value.
The range of the confidence interval is closely related to the model-
form uncertainty, and because of this, confidence intervals are useful
for assessing model parameter uncertainty. As the sample size
approaches infinity, the confidence interval collapses to the true value
of the mean.

• Prediction intervals are used for quantifying the range that a single
future sample from the population will fall within. For example, after
training a GPR model on a small dataset to predict a battery cell’s
capacity, onemight like to construct an interval that, with a highdegree
of confidence, will contain the true capacity values for a future cell.
Shown in Fig. 13, the prediction interval is wider than the confidence
interval because it captures both the uncertainty in the model para-
meters (epistemic uncertainty) and the data uncertainty (aleatory
uncertainty).

• Tolerance intervals are used for quantifying the range that present and
all future samples from the population will fall within. In battery cell
health diagnostics and prognostics, tolerance intervals are useful for
establishing an range that will contain a specified portion of the cell
population, providing insight for engineers and manufacturers on the
predicted performance of all future cells given the results of limited
testing froma small batch. Shown inFig. 13, the tolerance interval is the
widest of the three because it captures the additional uncertainty due to
having an incomplete dataset.
Calculating a statistical interval differs based on the type of predictive

distribution, either parametric (like a Gaussian distribution from RVM or
GPR) or non-parametric (like the distribution from a bagging approach or
an ensemble model). For parametric distributions like the Gaussian, para-
metric statistical intervals are straightforward to calculate. The primary
interval of interest for Gaussian models is generally a prediction interval.
Givenwehave trained amodel on adataset, prediction intervals tell uswith a
certain probability where newly tested battery samples will fall. A two-sided
95% prediction interval is calculated as follows:

½PIl; PIu� ¼ μ̂±Zσ̂; ð13Þ

where μ̂ and σ̂ are the mean and standard deviation from the predictive
distribution,Z is the standardZ-statistic and is equal to 1.96 in this instance,
and [PIl, PIu] are the lower and upper interval bounds, respectively.

For non-parametric distributions, like those generated from sampling-
based methods for uncertainty estimation, the user generally has two
options for calculating statistical intervals: (1) approximate the distribution
using a known parametric distribution, like Gaussian or log-normal, and
calculate the corresponding statistical interval accordingly, or (2) calculate a
non-parametric statistical interval. Calculating non-parametric statistical
intervals is typically preferred, as assuming a distribution has major
implications when trying to understand the tail-ends of the population, e.g.,
for estimating the worst battery cell performance in a pack. Two-sided non-
parametric statistical intervals are not necessarily symmetric, owing to the
skewed predictive distribution. Non-parametric statistical intervals are
calculated using order statistics, where the upper and lower interval bounds
are determined by excluding a calculated number of samples from each tail-
end of the predictive distribution and setting the bounds at the lower/upper
edges of the remaining samples. The correct number of samples to remove
from each end of the predictive distribution is influenced by the desired
confidence level p, the number of samples in the predictive distribution N,
and, in the case of tolerance intervals, the desired population coverage. The
size of the interval is highly dependent on the number of samples in the
predictive distribution. However, practically speaking, one can simply
increase the number of bootstrap samples to a large number (>1000) to
reduce the size of the intervals and achieve higher confidence levels with a
narrower interval. Readers interested in calculating one- and two-sided
distribution-free statistical intervals are referred to Chapter 5 of the book by
Meeker et al.156.

Advanced topics in battery health diagnostics and
prognostics
Diagnostics and prognostics using field data
Thegeneral practice inbatterydiagnostic andprognostic algorithmdesign is
to use cell data collected in the laboratory under predefined load conditions
at controlled temperatures (bottom-up approach) and regard battery
capacity as the variable of choice to measure battery health, measured
periodically via capacity tests176. Yet, battery capacity is an elusive health
metric to estimate when monitoring a battery system used in the field31.
Battery health diagnostic and prognostic algorithms are deployed to operate
onBMSs in real-time and expected toprovide accurate health estimates over
the entire lifespan of the battery system. One of the main limitations of this
approach is that laboratory data can only serve as a small representation of
real-world field battery operation and does not reflect application-specific
behavior. For instance, in EV applications, battery data will have geo-
graphical climate and time-of-day usage dependency, as well as driver-
specific behavior31. Most importantly, laboratory data do not (and cannot)
provide the richness of history-dependent usage trajectories. When SOH
algorithms are built from lab data, their predictive ability is challenged upon
on-board BMS deployment. This is even more true if the SOH algorithm
itself, or any of its components, is based on data-driven ML approaches.
Indeed, MLmodels are limited by the quality of the data used to train them
and in terms of how representative the data is of the application at hand.
Given the high variability of battery usage in the field, ML-based SOH
algorithms developed exclusively from lab data are likely to fail. Moreover,
features extracted from lab-generated data and used in data-driven diag-
nostic and prognostic models will be substantially different, in quality and
quantity, from features defined and extracted from real-world driving field
data32. Lastly, cell-to-cell heterogeneities are responsible for exacerbated
battery system degradation over the battery lifespan but are typically not
assessed via lab experiments nor accounted for in current BMSs. In parti-
cular, real-time operating conditions contribute to the variability between
cells in the form of thermal and aging gradients propagating across the
battery pack system, which makes the task of assessing battery health and
predicting remaining useful life in real-time more challenging. Such a task
cannot solely rely on lab-based offline designed health algorithms.

In light of these challenges, researchers have begun investigating real-
world battery usage data for health diagnostics and prognostics. In a recent
publication31, authors analyzedone-yearworthof batterypackdata todefine
health and performance indicators directly learned and extracted from
actual driving and charging signal segments. The proposed features were
found to be quite different from features previously proposed in the lit-
erature to estimate health and predict the remaining lifespan22,27. The newly
extracted features were found to leverage quantities such as resistance cal-
culated during braking or acceleration events and impedance during
charging. However, these domain knowledge-based features are also
strongly dependent on driving styles, meaning that they would need to be
learned on a per-user basis using domain adaptation or similar transfer
learning methods. Lu et al.177 investigated a domain adaptation method to
enable seamless transfer of an SOH estimation model from one battery
chemistry to another. The researchers were able to train a model that
worked well when transferred to a new battery chemistry by extracting
domain-invariant features. An algorithm like this one, or similar algorithms
proposed in the literature178–181 could conceivably be adapted to enable a
model built using lab data to provide good diagnostic and prognostic
accuracy in the field.

Other examples of SOH estimation from field data include work by
Song et al.182, where they used a deep neural network to learn relevant
features from the historical data of 700 EVs.While not openly available, the
dataset was collected by the Shanghai Electric Vehicle Public Data Col-
lecting, Monitoring and Research Center for the purpose of optimizing EV
usage in the city and has been used by several other research teams to
date183–185. Similar work by She et al.186 investigated incremental capacity
features as input to a radial basis function deep neural network for SOH
estimation of electrified city bus battery packs.
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Examples of battery health prognostics using field data are more rare
since collecting sufficient data for lifetime prediction generally requires
many years, since after all, most EVs are warrantied for 8 years and
100,000mi187. In our search, we found only a few papers investigating
prognostics from field data. Deng et al.188 built a sequence-to-sequence
model with adaptive error correction from a GPR model to predict future
capacity fade of 20 EVs operating for over two years using only the first
3months of data. Themodelwas very accuratewith 1.6%averageprediction
error, but the small size of the dataset (only 20 packs) and similar operating
conditions make it difficult to determine the model’s accuracy in various
conditions and longer duration. Other work by Zhang et al.189 used much
more data for building a battery prognostic model: two datasets comprising
lab aging tests (a few hundred cells) and one dataset comprising data from
7296 PHEVs. The researchers tracked battery aging stressors like SOC,
temperature, and throughput using a histogram-based approach and
quantified the stressors using summary statistics like mean, variance,
skewness, kurtosis, and higher order moments. The extracted feature pool
was then reduced using cross-correlation analysis between the features and
the target variable of cell capacity. After training a global model on the
datasets, the authors implemented an online adjust factor that tunes the
global model to an individual battery pack. The adjustment factor is cal-
culated on a rolling basis using the difference between the global model
prediction and the observed capacitydata, improving accuracy considerably
compared to just using the global model for prediction on all vehicles.

Going forward, it will be crucial for academia to collaborate with
industry to share data from field units for the purpose of improving diag-
nostic and prognostic algorithms. Furthermore, developing intelligent data-
driven performance forecasting/prediction models for real-time deploy-
ment requires re-examining the BMS design paradigm to account for the
integration of field operating conditions to allow domain-knowledge
learning33.

Degradation diagnostics
Mentioned earlier in the section “Battery health diagnostic and prognostic
problems”, degradation diagnostics is a subproblem of SOHestimation that
focuses on methods to non-destructively diagnose internal degradation
modes that drive capacity fade and resistance increase71. Figure 3 gives an
overview of the three degradation modes commonly used to quantify cell-
level capacity and power fade: loss of active material on the cathode
(LAMPE), the loss of active material on the anode (LAMNE), and the loss of
lithium inventory (LLI). These three degradation modes are commonly
used to quantitatively describe the combined effects of certain groups of
degradation mechanisms present in the cell, i.e., the degradation modes
come from grouping degradation mechanisms based on their resulting
effects on cell-level performance. Research by Birkl et al.71 experimentally
verified the effects of each degradation mode on the full-cell OCV curve,
providing a quantitative link between the two for the first time. This was
achieved by constructing coin cells with electrodes of different sizes to
simulate loss of active materials and lithium inventory. The degradation
modes were then quantified by using half-cell OCV data to reconstruct the
full-cell OCV curve, where the relative position and size of the positive/
negative electrode half-cell curves quantify the degradation modes. This
work showed that the degradation modes could be accurately quantified by
examining full-cell OCV data, albeit through a lengthy and cumbersome
curve fitting process that requires access to high-precisionmeasurements of
full- and half-cell voltage, current, and capacity during slow and complete
cycles.

In light of this, researchers began investigatingmethods of automating
the diagnosis process using various ML-based techniques. In the work by
Tian et al.190, researchers trained a convolution neural network to estimate a
cell’s offline OCV curve using data collected from partial charging cycles
throughout the day. The trainedmodel could then be used online in place of
low-rate full-DODcycling tests to estimate full-cell OCV, thus enabling and
significantly speeding up the process of online degradation diagnostics.
Along the same lines, papers191,192 demonstratedmethods of estimating full-

cell OCV curves by fitting pristine half-cell OCV data to partial charging
curves. While accurate, the methods still required a significant duration of
chargingdata (Schmitt et al.192 required 20−70%SOC) inorder to guarantee
accuracy in the range of 2% error on capacity estimation.

While the researchers in refs. 190–192 focused on using cell data to
reconstruct OCV curves as an intermediate step in diagnosing degradation
modes, the following works aimed to directly correlate cell data with the
degradationmodes193,194.Hanet al.193 proposedusingmembership functions
to quantify the areas under the peak locations of the full-cell differential
capacity curve (dQ/dV) and correlating these capacities to loss of lithium
inventory and loss of negative electrode materials. Costa et al.194 focused on
transforming the full-cell incremental capacity and differential voltage
measurements into a 2D image of the cell’s state that were then fed into a
convolution neural network that directly diagnosed the degradationmodes.
Themodelwasproven toworkwell onmultiple cell chemistries (LFP,NMC,
andNCA), achieving an average of 2%error.Theseworkshaveundoubtedly
shown that cell-level data can be directly correlated with internal degrada-
tion modes. Yet, few have studied the transferability of the model to new
operating conditions outside the datasets used.

The following few works focused on just that: methods of building
generalizable ML models for degradation diagnostics81,195,196. To make the
models more generalizable, the following works prioritized incorporating
synthetic data from physics-based simulations of cell degradation into their
models. Dubarry et al.195 developed amethod relying on an offline database
that contained cell full-cell OCV curves and their corresponding degrada-
tion modes, simulated using half-cell data from full-cells. The degradation
modes of an online cell were quantified by measuring its incremental
capacity curve and matching it to the database, interpolating if the curve
does not match any of the database entries exactly. While accurate, the
database is generally too large to be implemented onboard BMS or other
devices. Thelen et al.81 took a different approach, and instead trained a
machine learning model to act as a generalizable aging “database” by
training it using a combination of experimental and simulated aging data.
Once trained, the model could be used online to directly estimate a cell’s
degradation modes using the full-cell incremental capacity curve as input.
Other work by Ruan et al.196 took a similar approach, and trained a deep
learning model from a large body of simulated aging data, demonstrating
that the degradationmodes are inherently correlated, and these correlations
can be exploited to improve diagnostic accuracy. Altogether, thesemethods
present a significant leap forward in the ability tonon-destructivelydiagnose
unobservable degradation modes in Li-ion batteries.

While all the methods discussed so far have focused on degradation
diagnostics using electrical measurements (voltage, current, capacity, etc.),
there do exist other methods using alternative data streams. Prosser et al.197

demonstrated a zero-dimensional cell heat generation model that could
accurately diagnose the cell’s degradation modes in-operando. What’s
impressive about this work is that the pouch cells were subject to active
cooling through the cell tabs, demonstrating the method can be adapted to
cells inside modules and packs.

Altogether, the field of degradation diagnostics has come a long way,
and we envision these methods and techniques will carry over into battery
prognostics, enabling forecasting and life prediction with respect to cell
degradation modes in addition to the typical capacity/resistance.

Early life and trajectory prediction
Recognizing thepractical value of probabilistic forecastingof SOHevolution
and probabilistic predictions of RUL, researchers have recently begun to
develop early prediction models with quantified uncertainty. The majority
of these papers employ current and voltage information collected early in
the battery life to predict RUL or other quantities of interest, as illustrated in
Fig. 14. In one of the earliest examples, Fermín-Cueto et al. demonstrated
the classification of battery life into categories and the prediction of the
number of cycles until the battery capacity exhibited accelerating degra-
dation, termed roll-over or knee-point, both with uncertainty198. For the
classification task, they employed support vector machines to predict
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whether the cells corresponded to low, middle, or long life categories using
data from only the first 3–5 cycles. Class probabilities were estimated using
the approach of Platt, where the support vector machine outputs were re-
calibrated via logistic regression199. Knee-points were predicted using the
first 50 cycles via RVMs, with conformal prediction intervals for uncer-
tainty. Both tasks employed the 124 LFP cell fast-charging dataset released
by Severson et al. with their pioneering 2021 paper27. Several years later, the
same group demonstrated predictions of capacity and internal resistance
degradation curves with uncertainty via XGBoost (an ensemble decision
tree approach) predictions of the knee-onset and knee-point and the
capacities (or resistances) at which they occur, in addition to the EOL—
again using only the first 50 cycles200.

As mentioned in the section “SOH forecasting and RUL prediction”,
NREL has published several articles employing ML-selected arithmetic
relationships to predict changes in battery SOHunder a variety of calendar-
and cyclic-aging conditions with bootstrapped uncertainty estimates52,169,170.
Notably, this approachprovides reasonable extrapolations into later life for a
variety of chemistries, cell formats, C-rates, and temperatures due to the
semi-physical nature of the models selected by the symbolic regression
approach employed and enabling deconvolution of agingmechanisms. This
approachdoes not require preliminary cycling data for a given cell topredict
SOH evolution, but does require extensive accelerated testing information
spanning conditions for that specific cell type. Techno-economic analyses
demonstrated the outsize impact of prediction uncertainty on energy-
storage system lifetime.

Rieger et al. demonstrated prognostics of capacity degradation trends
for LFP, NMC, and NCA battery chemistries using between 20 and 100
preliminary cycles as context for the prediction201. In contrast to previously
mentioned approaches, this work employed a deep learning architecture

capable ofmaking non-parametric predictions of future degradation trends.
Specifically, ensembles of recurrent neural networks were used. Final pre-
dictions with uncertainty were obtained by combining ten trajectories
sampled from the mean and variance outputs from each of five neural
networks trained with randomly initialized weights. Analysis of the
uncertainty revealed that the model was slightly overconfident in its pre-
dictions, but correctly assigned high uncertainties to longer-lived cells that
were less represented in the training set.

Future trends and opportunities
Physics-based diagnostics and prognostics
Physics-based models of Li-ion batteries are powerful tools for simulating
cell electric, thermal, and mechanical performance. However, they are
typically parameterizedonly onnewlymanufacturedbattery cells, relegating
them to applications that do not consider cell aging. While in theory,
physics-based models can be re-parameterized using data collected from
aged cells, doing so would require a large and costly aging test campaign. In
light of this, researchers have found other ways to leverage the accuracy and
extrapolation capabilities of physics-based models in prognostic
frameworks.

One method of leveraging physics-based models for battery health
diagnostics and prognostics is to use them as an intermediate step toward
SOH estimation or RUL prediction. An example of this approach is illu-
strated in Fig. 15, where the physics of Li-ion battery degradation is used as
an intermediate step to estimate cell capacity and predict cell RUL. Ideally, it
is thought that using a physics-basedmodel as an intermediate step helps to
include additional information regarding the physics of battery operation
and degradation that may not be immediately learnable by a traditionalML
model from the available data. Lui et al.202 used this approach to predict the

Fig. 14 | A schematic illustrating battery life prediction from preliminary current and voltage information. “QOI” in Step 4 stands for quantity of interest. Figure
elements borrowed from Paulson et al.87
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RUL of implantable-grade Li-ion battery cells aged under various tem-
peratures and C-rates. Instead of directly extrapolating the observed
capacity-fade trajectories to predict RUL, the researcher first fit a physics-
based half-cell model to the measured full-cell OCV curves to obtain rough
estimates of the cell’s present active masses (LAMPE, LAMNE) and lithium
inventory (LLI) (see the section “Battery degradation—modes and
mechanisms”). This half-cell model, proposed by Honkura et al.203

and popularized in later works204,205, uses experimental data from anode and
cathode half-cells to simulate the full-cell voltage vs. capacity curve, typically
under a very slow charge/discharge rate (e.g., I < C/20) to approximate the
full-cell OCV curve. Then, Lui et al.202 used bounded empirical capacity fade
models to extrapolate the degradation parameter values. Estimating cell
capacity was then achieved by running the physics-based half-cell model in
reverse—inputting the degradation parameters and receiving an estimate of
the full-cell OCV curve and the capacity. This method worked well since it
was found that many of the degradation parameter trajectories were nearly
linear, making their future trajectories easily extrapolated. Formany cells in
the dataset, the degradation parameter trajectories were nearly linear but
combined to produce nonlinear degradation in the full-cell capacity fade
curve. Discussed in detail by Attia et al.56, degradation modes have various
rates of progression, that when combined together in the full-cell environ-
ment, interact to produce nonlinear capacity fade and often times knee
points in the capacity trajectory. Attia et al.56 delve into details regarding the
so called “internal state trajectories” of various degradation modes like
electrolyte additive depletion, lithium plating, and resistance growth due to
active material loss, that drive measurable capacity loss at the cell-level.

Kohtz et al.206 took a similar approach tobatteryprognostics,whichwas
categorized as a physics-informed ML approach. The researchers used a
physics-basedmodel to estimate the thickness of SEI on a Li-ion cell’s anode
as an intermediate step to capacity estimation. Instead of using the physics-
basedmodel in the prediction process, the authors trained a GPR surrogate
model (GPR model #1) to approximate the battery physics and learn the
mapping between a partial segment of the cell’s voltage curve and the
corresponding SEI thickness for various temperatures, C-rates, and SOH as
simulated by the physics-based model. Next, another GPR model (GPR
model #2) was trained to learn the mapping between a cell’s SEI thickness
and its discharge capacity. The twoGPRmodels are used in series tomake a
final prediction of cell capacity, first predicting SEI thickness from a partial
voltage segment using GPR model #1 and then predicting cell discharge
capacity usingGPRmodel #2. Compared to directly predicting cell capacity
from a partial voltage segment, the physics-informed approach to capacity
estimation showed significantly lower error, mostly attributed to the extra
knowledge of SEI thickness infused into the GPR models.

Other methods of using physics-based models for battery prognostics
include using the physics-based models to generate simulation data to use
for traditional ML model training81,193,195 and online updating the para-
meters of the physics-based models using measurements of the cell207. In
addition to purely physics-based approaches to prognostics, the field of

physics-informed ML has flourished recently with numerous articles
leveraging physics knowledge to inform traditional ML approaches for
battery health diagnostics206,208–210 and prognostics207,211.

RecentworkbyPannala et al.212 developedaphysics-based agingmodel
that linked SEI growth, Li plating, and electrode particle fracture degrada-
tion modes to irreversible cell thickness growth, resistance increase, and
capacity loss. The method parameterized a single particle model of an
NCM111 battery cell and a group of degradation-mode-specific aging
models using data collected from RPTs during laboratory aging tests. The
modelwas found to accurately capture andpredict changes in cell resistance,
capacity, and thickness for a variety of C-rates and DODs. Further, the
physics-based nature of the model provides insight into a cell’s remaining
lithium inventory (LLI) and remaining positive and negative active elec-
trode materials (LAMPE, LAMNE) with aging.

However, we believe there is still a great opportunity to further
leverage physics-based models for battery prognostics. In particular,
leveraging physics-based models to track and identify battery aging
stressors from field data (see the section “Diagnostics and prognostics
using field data”) is a novel idea we have yet to see investigated. Further, it
is becomingmore feasible to deploy lightweight physics-basedmodels on-
board EVs as their computing systems are upgraded to accommodate the
demand fromdriver-assistance systems. In online scenarios, fusing sensor
data, physics, andML poses a real solution to accurate battery prognostics
in the field.

Second-life applications
In recent years, the market share of EVs has witnessed remarkable expo-
nential growth. Starting from a modest 4% in 2020, EVs now account for
14% of all vehicles sold as of 202247. It is projected that EVs could constitute
18% of total vehicle sales in the near future47. The rise in EV adoption holds
promising potential for mitigating greenhouse gas emissions in the trans-
portation sector. However, along with these environmental benefits, there
arises a pressing concern regarding the exponentially increasing volume of
retired Li-ion batteries, imposing a significant challenge to environmental
protection and sustainability efforts. While recycling techniques allow for
the recovery of valuable battery materials from retired batteries, within the
framework of a circular economy, it is widely believed that it is not eco-
nomically optimal to directly recycle all the retired EV batteries. This is
mainly due to the following two primary considerations:
1. In the automotive industry, a commonly adopted practice for battery

retirement is to replace them when their capacity falls below 80% of
their nominal value213. This leaves most retired batteries with a sig-
nificant portion of their initial capacity that can be utilized by other
industries that require less capacity/power performance for energy
storage.

2. Empirical data show that battery pack degradation often stems from
the failure or reduced capacity of a small number of cells within the
pack214. This means that a majority of cells within a pack tend to have
capacities greater than the pack’s EOL condition, making them
excellent candidates for reuse in new applications.

The above stipulations have led to immense efforts to integrate
remanufacturing and repurposing into the broader circular economy of EV
batteries215. The ultimate goal is to prolong the service life of retired batteries,
affording them a valuable “second life” before they ultimately undergo
recycling for raw material collection and disposal.
• Remanufacturing is the process of identifying failed or significantly

aged cells within a battery pack and replacing them with new cells or
used cells that have been tested and found to meet specifications by
OEMs215,216.

• Repurposing is the practice of giving retiredEVbatteries a second life in
a diverse rangeof applications. Typical applications include grid energy
storage systems, off-grid stationary storage, and recreational vehicles,
all of which can function with cells of lesser capacity and power
capability.
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Fig. 15 | Example of a physics-based approach to battery capacity estimation.Cell
degradation parameters (see the section “Battery degradation -- modes and
mechanisms'') are estimated and used in a physics-based model to estimate full-cell
capacity fade. Based on work of Lui et al.202
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Roles of probabilistic ML for second-life batteries
Retired EV batteries maintain significant value and functionality when
retired at the typical 70-80% initial capacity. However, it remains practically
challenging to determine the suitability of a cell/module/pack for remanu-
facturing or repurposing. This section discusses the future role probabilistic
MLmethods will play in the evaluation step of a Li-ion battery’s life cycle—
with a primary focus on SoH estimation (the section “Background”) and
lifetime prediction (the section “Probabilistic ML techniques and their
applications to battery health diagnostics and prognostics”). Examples
are below.
1. Degradation modeling: As detailed in the section “Battery degradation

—modes and mechanisms”, Li-ion batteries exhibit numerous aging
mechanisms, and the relationship among them is inherently
complicated. Given that the safety performance of Li-ion batteries is
significantly affected by their aging path and underlying aging
mechanisms217, comprehending thedegradationof EVbatteries during
their first-life use is crucial in assessing the safety suitability of retired
batteries for their intended second-life applications. For instance,
capacity degradation may manifest as a loss of Lithium inventory, a
phenomenon stemming from various degradation mechanisms such
as lithium plating/dendrite, electrolyte decomposition, and SEI
decomposition, among others. In cases where dendrite growth is the
root cause, growing dendrite could potentially penetrate the separator,
causing an internal short circuit, triggering thermal runaway, and, in
more severe scenarios, resulting in a fire in the second-life
application218. Identifying the primary degradation mechanism in the
first life can significantly facilitate the safety assessment for subsequent
second-life applications. Furthermore, gaining insights into degrada-
tion mechanisms from the first-life application could also help predict
the potential degradation mechanisms in the second-life application,
thus allowing for proactively predicting the service life of the batteries
in their second-life applications. The very complicated degradation
mechanisms, alongwith their complex interactions, present substantial
hurdles when it comes to degradation modeling and identification.
Despite advancements in physics-based degradation modeling,
numerous physical phenomena remain unsolved. Leveraging hybrid
modeling techniques, which seamlessly integrate probabilistic ML
models with physics-based models, offers a promising avenue for
addressing these knowledge gaps. Such an approach enables the
modeling of un-modeled physics using experimental data, which
simultaneously allows for quantifying the predictive uncertainty in the
degradation modeling.

2. SOH estimation: SOH is a widely accepted indicator for battery
screening, guiding the selection of suitable second-life applications219.
When a battery cell/module’s SOH falls significantly below a certain
threshold (see Fig. 16), this cell/module can be directly recycled.
Conversely, when the SOH remains considerably high, surpassing the
EOL criteria for EV applications, the battery can undergo remanu-
facturing and be repackaged for continued EV use. As depicted in
Fig. 16, when the SOH falls within the intermediate range, the battery
can be repurposed for second-life applications, such as grid storage and
off-grid stationary storage, depending on the battery’s specific SOH
level. Therefore, SOH estimation is an indispensable step for second-
life applications. As discussed in the section “Probabilistic ML
techniques and their applications to battery health diagnostics and
prognostics, numerous SOH estimation techniques have been
developed in recent years. Among these, data-driven and hybrid
approaches have demonstrated their effectiveness in accurately
assessing SOH. Specifically, probabilistic ML-based methods, such as
the GPR-based approach (see the section “GPR applications to battery
diagnostics and prognostics”), provide a distinct advantage. These
methods not only produce a mean estimate of the SOH, but they also
provide a prediction interval representing the predictive uncertainty.
This probabilistic aspect enables decision makers to balance potential
benefits and associated risks when choosing the most suitable second-

life applications for retired EVbatteries. The above discussion does not
apply to cases where battery repurposing facilities can directlymeasure
the SOH of a retired EV cell/module, e.g., by running a full charge/
discharge cycle, and thus do not require SOH estimation using
probabilistic or non-probabilistic ML techniques. These cases are
expected to become less common, attributable to the rapidly growing
volumeof batteries fromEVs reaching the endof their life over the next
decade. Simultaneously, there is an escalating demand for rapidly
assessing battery SOH in mass production settings, where ML
techniques with uncertainty quantification capability are likely to play
a major role.

3. RUL prediction and economic benefits analysis: Let us recall that
the primary objective of employing second-life batteries lies in
realizing the full economic potential of retired EV batteries.
However, the economic viability of selecting retired batteries for
specific second-life applications hinges on several factors. These
factors include but are not limited to the efficacy of the battery
management system, the costs associated with dismantling, and
the costs involved in repackaging. Should the expenses of
repurposing or remanufacturing surpass the benefits generated
by the second-life batteries, it becomes economically unfeasible to
extend the service life of retired batteries into their second life.
Therefore, a comprehensive analysis of the economic benefits
associated with second-life batteries becomes pivotal in evaluating
the economic viability of a particular second-life application. A
cornerstone technique for conducting such an economic benefits
analysis is the RUL prediction of a battery for its second-life
application. By analyzing how long the battery can continue to
function effectively in the second life, we can assess the long-term
benefits or cost savings that second-life batteries can contribute.
However, it is worth noting that various uncertainty sources are
present in the RUL prediction of second-life batteries, such as
degradation mechanism uncertainty, lack of sufficient second-life
degradation data, and uncertainty in second-life operation
conditions, among others. Given the multifaceted nature of these
uncertainty sources, the adoption of probabilistic ML models
becomes imperative when predicting RUL for second-life
applications. Such models are suitable for handling and quantify-
ing these uncertainty sources, enhancing the accuracy and
reliability of RUL prediction for the second-life application.
Furthermore, integrating probabilistic RUL prediction into the
decision-making process allows decision makers to consider and
factor in various uncertainty sources within the economic analysis
model when deciding on the second-life application.
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Fig. 16 | High-level assessment of Li-ion batteries for second-life applications.
Cell SOH assessment for second-life applications.
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Challenges in second-life battery applications
Realizing the economic and environmental potential of second-life batteries
faces various challenges. These primary challenges can be summarized as
follows (Fig. 17).
1. Degradation modeling in the second life: Empirical models, such as

stochastic processes and regression models, can be established to
predict the first-life degradation of EV batteries based on sensor data
acquired from EVs. These empirical models, however, cannot be
directly extrapolated for the degradation prediction in the second life,
simply because the systemmay have been reconfigured for the second-
life application, and the use conditions in the second life may
significantly deviate from those in the first life. Solving this challenge
requires establishing strong connections from the first-life field data to
the second-life degradation models. Such connections may leverage
physics-informed simulationmodels and the second-life (lab) test data
from degradation experiments.

2. RUL prediction for second-life applications: The RUL prediction for
second-life applications is challenging for several reasons.
• First, existing prognostic approaches designed for general engi-

neered systemshave been successful, in part, in predicting theRULs
of these systems. However, these approaches are mostly
application-specific andarenot robust across different applications,
and are thus difficult to be directly applied for lifetime prognostics
of retired EV batteries in their second lives.

• Second, the knee point is where the battery aging transitions from a
predominately linear degradation pattern into a nonlinear degra-
dation region with a rapid capacity drop220. This critical knee point
mayoccurduring thefirst life, as illustrated inFig. 17, and could also
be experienced in second-life application. The exact occurrence
time of the knee point is dependent on the cell chemistry, cell
design, and usage patterns of the first- and second-life applications.
Predicting the knee point is of great importance yet very
challenging. Oftentimes, cell manufacturers make efforts in design
and manufacturing to ensure an extremely low chance of having a
knee point in first-life applications, essentially pushing the knee
point into second-life applications. A higher likelihood of having a
kneepointmakes theRULprediction for the second-life application
much more difficult than for the first-life application.

• Third, as mentioned above, degradation data for second-life
applications isusuallynot sufficient.This poses significant challenges
for commonly employed data-driven RUL prediction algorithms.

Possible solutions to the challenges
We believe the following research directions could provide potential solu-
tions to the aforementioned challenges.
• Physics-informed probabilistic ML for RUL prediction. Physics-

informed ML is an emerging concept in the field of failure
prognostics221. Incorporating physical laws or domain knowledge into
ML models has the potential to substantially reduce the required
amount of degradation data for failure prognostics. Furthermore, the
synergy between physics-informed ML and the probabilistic ML
methods discussed above enables the quantification of the predictive
uncertaintydue to the lackof sufficient degradation training data in the
second-life application. The resulting physics-informed probabilistic
ML models may possess the strengths of both learning paradigms.
Specifically, physics-informed ML may enhance the extrapolation
capability of the degradation model for failure prognostics, while
probabilistic ML could quantify the inherent uncertainty in the
prediction arising from such extrapolation.

• Battery passport. As pointed out in Thelen et al.222, an alternative
solution lies in the concept of Battery passport, introduced through a
public-privatecollaborationplatformcalled theGlobalBatteryAlliance
in November 2020223. The passport encompasses all relevant
information about the battery from its initial production to its ultimate
repurposing or recycling stage. Such a wealth of information could
greatly facilitate the estimation of the SOH and prediction of RUL in
the second-life application. A similar effort to harmonize battery data
collection and reporting standards is the Battery Data Genome224. By
unifying battery data reporting standards and creating more open-
access databases, research breakthroughs will be more likely and
electrification progress will accelerate.

• Battery digital twins. Similar to the Battery Passport concept, another
possible and promising solution is the creation of digital twins tailored
to individual batteries222. The personalized digital replicas of batteries
offer the potential for both rapid degradation diagnostics and accurate
RUL prediction during their second-life applications.

Aging-aware battery control optimization
Aging-aware battery control optimization aims to regulate battery degra-
dation to either ensure a minimum product lifetime (for ensuring a war-
ranty ismet) or extend the product’s lifetime asmuch as possible, possibly at
the expense of the user’s experience225. Here, we review three main ways in
which battery aging can be controlled to extend battery lifetime: adaptive
discharging, adaptive charging, and thermal management.

Adaptive discharging
One method of controlling battery degradation and optimizing lifetime is
through active discharge control. Limiting the power draw on the battery
during discharge can extend the run time and slow the cycling-driven aging.
Limiting the discharge power effectively limits the maximum C-rate the
battery experiences, which is critical for reducing swelling and diffusion-
induced stresses on the electrodes and preventing electrode degradation26,51.
This approach to aging-aware control is shown in Fig. 18, where a power-
limited control strategy is compared to standard uncontrolled battery
operation. In Fig. 18, the power-limited discharge strategy achieves a much
longer run time because the maximum discharge rate is capped. Another
effective discharge-based method of reducing battery degradation is by
limiting the maximum DOD. Full DOD cycling has been shown to sig-
nificantly accelerate battery aging, especially on next-generation Si-anode
batteries59. Limiting the maximum DOD of the battery can prevent sig-
nificant degradation, thereby prolonging the battery life and, in some cases
(when the battery has a shorter expected lifetime than other components),
the product that uses the battery as the power source.
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Unfortunately, discharge-based methods of regulating battery aging
have quickly fallen out of favor with engineers because these methods sig-
nificantly impact the user experience. Probably themost infamous example
of a discharge-based strategy to extend a product’s lifetime was Apple’s
attempt to extend the life of users’ iPhones by reducing the microprocessor
clock speed via a software update. Reducing the processor clock speed
effectively reduced the average power required of the battery, which suc-
cessfully increased the phone’s run time between charges (or the recharge
interval), but at the expense of the phone’s responsiveness to user inputs226.
This practice was extremely unpopular with users and ultimately led to
class-action lawsuits against Apple, which were eventually settled in late
2020. This event showed that a majority of users would simply prefer their
devices continue to perform like new, even if it means the run time between
charges significantly shortens as the battery ages.

Given the challenge of implementing a discharge-based battery aging
control strategy without significantly affecting the user experience, engi-
neers and researchers have mostly ceased researching the topic. We see this
idea perpetuated in most battery diagnostic and prognostic modeling work
reviewed in this paper–most of theworks use voltage, capacity, current, and
temperaturedata extractedduringcharging sincebatterydischarge ismostly
uncontrolled and application-dependent. We expect this trend to hold for
the foreseeable future and expect future aging-aware control research to
focus on charging and thermal management strategies.

Adaptive charging
Depending on the charging speed of interest, charging-based strategies for
reducing battery aging can generally be grouped into two categories: slow
charging and fast charging.

Slow charging
Research on slow-charging control strategies for reducing battery degra-
dation focuses on a few key competing factors that affect the optimal
solution, namely 1) charging during low-cost electricity intervals, 2) char-
ging over long periods to reduce battery self-heating and avoid high tem-
peratures, 3) charging near the end of the available charge time to avoid
storage at high SOC, and 4) reducing high-power charging/discharging to

grid227. Hoke et al.228 used a reduced-order algebraic battery aging model to
quickly evaluate theprojected lifetime (years to80%SOH)of fourhybridEV
charging strategies: charge on plug in, charge at midnight, charge as late as
possible, and chargeminimizing electricity costs. Additionally, the charging
strategies were evaluated for different charging powers to account for the
effect of C-rate on battery aging. The authors showed that their co-
optimization method, which minimized both battery degradation and
electricity costs, produced projected battery lifetimes far exceeding the other
strategies.Notably, their results showed that the strategyof simplywaiting to
charge until as late as possible in the charging window and using a low
charging rate can significantly increase the projected lifetime of the battery.
However, the authors did point out that defining the charging window
requires knowledge of the user’s behavior, which in many cases needs to be
learned from monitoring behavior over a long period. Further, in the con-
text of this study, if the user behavior significantly deviates from the pre-
defined schedule, they may find that their HEV is not fully charged, as the
strategy waits until as early in the morning as possible to charge the vehicle.
However, withmodern phone applications that enable users to control their
vehicles (e.g., the Tesla mobile app), it is not inconceivable that a user could
manually override the charging strategy to prepare the vehicle for a planned
road trip.Asbatterydiagnostic andprognosticmodels are refined,we expect
the details of aging-aware slow-charging optimization will change, but the
general premise of balancing battery degradation against electricity costs,
user behavior, and other engineering constraints will persist.

Fast charging
In recent years, fast charging has received significant attention because of its
role in quickly enabling battery-powered devices to continue normal
operation after 15–25min charging sessions. The technology is significantly
important to the continued adoption of EVs by enabling them to “refuel”
near the same speeds as traditional internal combustion engines that pump
liquid fuel. However, significantly more degradation occurs during fast
charging than slow charging due to the extreme C-rates and temperatures
the battery cells experience.UnderhighC-rates, Li-ionbatteries are prone to
experience lithiumplating, which creates unsafe Li-metal dendrites that can
cause an internal short-circuit and risk of fire (see the section “Battery
degradation – modes and mechanisms”). As a result, research into aging-
aware fast charging generally focuses on developing optimal fast-charge
profiles to reduce battery degradation from lithiumplating using a variety of
experimental and simulation-based methods.

An optimal fast-charging profile will balance 1) the charge time (affects
theuser experience to an extent), 2) the available chargerpower (modernEV
fast chargers are typically limited to 350 kW), 3) battery temperatures (to
avoid thermal runawayormaintainEVcabin comfort), and4) battery aging,
among other engineering constraints. Attia et al.79 took an experimental
approach to fast-chargeprotocol optimization by cycle aging a large batchof
cells (>45 cells) with various 2-step fast charging profiles and then using a
Bayesian optimization algorithm to suggest new fast charging protocols for
testing, sequentiallyworking towards anoptimal fast charging profile for the
cell design. Instead of waiting for the cells to reach their EOL, which might
take many hundreds of cycles, the researchers used an early life prediction
model (see the section “Early life and trajectory prediction”) to predict the
lifetimes of the cells after only 100 cycles, increasing the rate atwhichprofiles
could be evaluated. The high-throughput experimental testing approach
used by Attia et al.79 was essentially probing the cell’s lithium-plating limits
while simultaneously considering cell self-heating from the high C-rates.
The method proved successful, and the authors were able to extend cell life
by an average of 180 cycles over previously published fast-charge protocols.

Different from the approach taken by Attia et al.79, which focused on
optimizing a fast-charging protocol using cell-level aging performance,
Konz et al.58 looked at fast charging on the component level. They
demonstrated a quick and efficientmethod of experimentally determining a
cell’s lithium-plating onset SOC for a given temperature and C-rate by
repeatedly cycling graphite half-cells made from the cell’s components. By
mapping out the specific C-rates, temperatures, and SOC conditions under
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which lithium plating occurs in a cell, one can create an optimal fast-
charging profile that applies the maximum C-rate without exceeding a
margin of safety around the identified lithium plating limit. This approach
to fast-charging profile design is veryflexible because the optimal profile can
be dynamically determined based on the cell’s operating temperature in its
intended application. The key advantage of the author’s method over
existing ones reported in the literature is that it does not require high
precision coulometry equipment and can be done quickly on standard
battery cyclers. Themethodworksbyperforming anSOC-sweep tomeasure
the cell’s coulombic efficiency at a given temperature andC-rate over varied
SOCs. If done correctly, one can identify the lithium-plating onset as the
point in the CE vs. SOC curve where the CE begins to significantly decline
from 100%. A low CE is an indication of irreversible capacity loss due to
lithium plating. While the method in Konz et al.58 shows promise for sig-
nificantly improving the speed at which a cell’s lithium-plating limits can be
mapped out, the number of tests quickly becomes overwhelming as soon as
one wants to adapt the profile as cells age. To capture the effect of cell aging
when calculating the optimal fast-charging profile, SOC-sweep cycling tests
would need to be performed on aged graphite half-cells, requiring an
extensive DOE of aging tests where cells are pulled off at various levels of
SOH to conduct SOC-sweeps.

An alternative approach to developing fast-charging profiles con-
sidering aging is to use physics-based simulation. In a follow-up paper by
Konz et al.229, the team of researchers conducted ameta-analysis of lithium-
plating onset conditions by simulating thousands of unique fast-charging
current profiles using a pseudo-2D electrochemical-thermal model of an
NMC532/Gr cell. The researchers were able to map out an upper voltage
limit over an SOC range that, if exceeded, the cell is likely to experience
lithium plating. An example of the lithium-plating voltage limit and a
corresponding optimal fast-charging profile is shown in Fig. 19. The main
advantage of finding a purely voltage-based lithium-plating limit is its
flexibility—voltage is a response to an applied current, making voltage-
based lithium-plating limits agnostic to the fast-charging current profile
used. To study the impact of aging on the lithium-plating onset, the
researchers modified parameters in the electrochemical model to simulate

the effects of aging. For example, they simulated loss of active electrode
materials (LAMPE, LAMNE, see the section “Battery degradation—modes
and mechanisms”) by decreasing the value of the active material fraction
parameter in the model. Other simulated aging mechanisms included
electrode expansion, decreased charge-transfer kinetics, and loss of lithium
inventory. The researchers extensively simulated various fast-charging
current profiles with P2D model parameters sampled from distributions
spanning the expected range corresponding to cells with between 85 and
100% SOH. As expected, the lithium-plating voltage limit was found to
decreasewith cell aging,meaning it ismore likely for aged cells to experience
lithium plating if the fast charging profile is not modified to account for cell
aging. While the results are certainly interesting, the study was largely
exploratory in nature and did not offer many actionable insights for engi-
neers andpractitioners since agingwas simulated by randomly sampling the
P2Dmodel parameters, which largely ignores the path-dependence of aging
typically observed in aging tests and from field data 6. While it is profound
that the authors were able to demonstrate the lithium-plating voltage limits
decrease with cell aging, more work needs to be done to quantify howmuch
the lithium-plating limits need to decrease for a given battery SOH.

Effectively designing aging-aware fast-charging profiles requires
accurately estimating the various degradationmechanisms inside the cell. A
combination of capacity, power, and degradation mode estimation81 is
required for characterizing cell SOHandprescribing theproperadjustments
to the fast-chargingprofile. Future research in this areawill focuson learning
from field battery data uploaded to the cloud how best to adjust fast-
charging profiles on a per-user basis—essentially personalizing the charging
experience to users individually, as no two batteries will age the same.
Research into federated learning methods for training/deploying client-
specific ML models will be essential to building optimized aging-aware
battery control mechanisms without compromising user’s privacy230.
Additionally, new methods for quickly detecting lithium-plating and
designing optimal fast-charging profiles that work for next-generation
battery chemistries are needed. Last, new physics-based simulation tech-
niques will need to be developed to more accurately simulate battery aging
under real-world conditions, possibly leveraging ML to account for cell
aging variability (see the section “Physics-based diagnostics and
prognostics”).

Thermal management
The last aging-aware battery control strategy we discuss is thermal man-
agement.Wehighlight thermalmanagement and general thermalmodeling
of batteries as important future researchareasbecauseof their significance in
industry-focusedproduct design. Factors like cell/packpackaging, cell form-
factor, and regional climate differences (temperature, humidity, pressure,
solar radiance) have a great effect on cell temperature within a product,
significantly affecting the overall product’s life. In general, most Li-ion
batteries are sensitive to temperature and have a small ideal operation
window where they perform their best and experience minimum
temperature-induced degradation effects, typically in the range 0−40 °C.
However, we note that different battery chemistries, particularly next-
generation batteries, can have various optimal temperature ranges, and so
here we discuss thermal management strategies in a general sense of trying
to maintain a lithium-ion battery’s temperature in its optimal range.
Figure 20 shows approximate Li-ion battery cycle life as a function of
temperature for various charging C-rates. In this example, there exists a
stablewindowbetween0 and35 °Cwhere cycle life remainsmostly constant
with temperature, indicating the optimal operation window. Below 0 ∘C, Li-
ion batteries are likely to experience lithiumplating (see the section “Battery
degradation—modes and mechanisms”), and above 40 ∘C, the rate of SEI
formation and other side reactions are significantly increased, decreasing
capacity and cycle life rapidly.

Generally speaking, active thermal management of Li-ion batteries is
only feasible on larger battery-powered systems like grid energy storage,
EVs, and HEVs since smaller battery-powered electronic devices like
phones and laptops lack the space for air/liquid heat exchangers and
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compressor systems. Instead, engineers and designers can usually reduce
battery temperatures in small electronic devices by simply increasing the
energy density of the cells. Given the same power load from the device but
with a larger battery, the effective C-rate the cell experiences is lower,
reducing self-heating and improving aging performance231.

On large battery systems, battery thermal management is carried out
using air, liquids, or refrigerants. Typically, at least one surface of each cell in
a pack is exposed, allowing air or liquid to flow over the cell surface, pulling
heat away from the cell and dumping it into the surrounding environment.
A simple coolant system loop for removing heat from a battery pack and
rejecting it to the environment is shown in Fig. 20. Optimizing a thermal
control system design and strategy requires understanding how battery
aging changeswith temperature. Reduced-order agingmodels, such as from
these papers51,169, are excellent for control strategy optimization since they
can simulate battery aging under various temperatures with minimal
computational overhead.While average cell temperatures dominate storage
aging, minimum and maximum temperatures play a large role in cycling-
driven aging. Coupling battery aging models with thermal models to
simulate cell internal heating and heat transfer to the coolant is imperative
for proper design optimization. Existing research using battery thermal
models to devise thermal control strategies suggests that thermal manage-
ment system and cell co-design will lead to more optimal battery perfor-
mance in EVs231,232 by reducing cell temperatures, improving heat transfer
away from cells, and shortening fast-charging times. Efficient co-design is
best achieved using battery digital twin models221,222 that couple diagnostic,
prognostic, thermal, electrical, and form-factor models to comprehensively
simulate multiple battery cells and packs of various designs.

While sufficient battery thermal system optimization and control can
be achieved with existing diagnostic and prognostic models, there remain
significant challenges that will require further research. Presently, standard
practice is to build battery diagnostic and prognostic models for a specific
cell design using data collected in the lab. Nearly all the research papers
discussed in this review build battery-specific aging models that cannot be
used to predict aging for batteries of different designs, packaging config-
urations, or form-factors. This approach to modeling is inflexible, time-
consuming, and not relevant to industry where product design constraints
like cell packaging, active cooling, and power requirements change

frequently as new features and subsystems are added to the product. For
example, Keyser et al.231 simulated pouch cells with different terminal
locations (terminals on the same side vs opposite side) and found con-
siderable differences in cell internal heating. Other work by Gasper et al.170

found that a large-format (>50 Ah) cell’s aspect ratio (area over thickness)
significantly affects its thermal resistance and self-heating, demonstrating
form factor has a significant effect on cooling system design. These two
studies highlight the challenge of building battery diagnostic and prognostic
models that can effectively extrapolate to new cell designs, form-factors, and
use conditions. Further, regional differences in outdoor air temperatures,
solar radiance, and humidity drive aging variability in cells, making
uncertainty quantification in simulations essential for drawing accurate
conclusions about battery design and control strategies. In light of this, we
urge researchers to focus on developing diagnostic andprognosticmodeling
methods that enable engineers andpractitioners to quickly assess the impact
of various product design changes on battery aging so that battery-product
co-design can be achieved and products can be further optimized. A pro-
mising path is physics-based battery diagnostic and prognostic models, like
those discussed in the section “Physics-based diagnostics and prognostics”.
New battery digital twin models that comprehensively model all aspects of
battery performance and aging using a combination of physics andmachine
learning will be paramount to the future development of battery-powered
systems like EVs, consumer electronics, and future aviation efforts222,233.

Conclusion
Modeling battery degradation is essential for optimizing every aspect of
the battery life cycle. From research and development in the lab, to
optimizing a fast-charging protocol for aged cells in the field, probabilistic
battery diagnostic and prognostic models are core to the continued
deployment and success of battery technology. In this work, we reviewed
existing and emerging research into probabilistic ML for battery diag-
nostics and prognostics, emphasizing and highlighting seminal research
focusing on the combination of accurate battery health modeling con-
sidering uncertainty. Altogether, our review has outlined the great need
for more research into uncertainty quantification for battery prognostic
models to solve problems related to a lack of data formodeling due to high
testing costs, inherent cell-to-cell performance and aging variability
stemming from manufacturing and testing limitations, and the sheer
severity of consequences arising from poor maintenance and control of
battery cells in consumer devices. As research in this area continues to
mature, it is envisioned that probabilistic ML models will play a crucial
role in creating safe, reliable, and long-lasting battery systems. To this end,
we see several long-standing challenges that need to be further investi-
gated by the research community:
1. Publicly available battery aging datasets are crucial for accelerating the

developmentofprobabilistic batterydiagnostic andprognosticmodels.
Existing datasets have been instrumental in furthering research in the
field (the section “Publicly available battery aging datasets”), however,
they primarily consist of cell-level aging data collected in a lab, largely
ignoring the important influence of packaging, cooling systems, and
time-varying operating conditions on aging. Collaboration between
industry and academia to gather and disseminate high-quality cell/
module/pack aging data will be crucial for continued research in the
coming years.

2. Hybrid ML and physics-based modeling will play a large role in
designing the battery-powered systems of tomorrow. There is a great
opportunity to develop new physics-based diagnostic and prognostic
models and physic-informed ML methods that provide greater
accuracy and insight into degradation modes than exist today. We
seeMLas an important tool for identifying physics-based relationships
in battery data collected from the field, and informing the design and
development of truly physics-based battery aging models that can
provide far greater accuracy than we have today.

3. Last, developing coupled thermal, electrical, mechanical, and aging
models will be key to optimizing all aspects of cell design. Suchmodels
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enable the possibility of battery/product co-design where the battery
form-factor, packaging, cooling, and control algorithms are all
optimized considering a set of unified engineering constraints like
cost, volume, weight, energy, operating conditions (regional climate,
driving habits), and more. Collaborations between engineering
disciplines will be crucial to successfully developing the coupled
battery digital twin models of the future.

With future infrastructure and transportation trending toward electric
power, batteries will continue to play a pivotal role in our society. The path
ahead for future battery research is certainly challenging, but ultimately will
be achievable through interdisciplinary collaboration between academic
researchers, industry engineers, and regulatory bodies.

Data availability
The training and test datasets analyzed to generate Fig. 7 are available from
the corresponding author, Chao Hu, upon reasonable request. The battery
aging dataset analyzed to generate Figs. 8 and 9 is not publicly available due
to confidentiality reasons. The battery aging dataset analyzed to generate
Fig. 14 was discussed in an earlier published article87 and is available from
the article’s corresponding author, Noah Paulson, upon reasonable request.
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