
Note S1: Calculation of the equivalent grid service years1

We examine two representative duty cycles for battery packs employed in commercial and residential energy2

storage systems (ESS), as illustrated in Figures S1(a) and S1(b), respectively 1. The duty cycles show the ESS3

power dispatch in both charge and discharge for two years of commercial dispatch and one year of residential4

dispatch, respectively. For our analysis, these duty cycles represent the power demand that needs to be fulfilled by5

the SL batteries used in this work.

(a) (b)

Figure S1: ESS power dispatch profiles in charge and discharge. (a) Commercial ESS power dispatch profile from January 2018
to January 2020. (b) Residential ESS power dispatch profile from January 2015 to January 2016.

6

To calculate equivalent grid service years, we first calculate the current required by the ESS dispatch at the cell7

level as follows:8

Icell,ESS,app(t) =
Papp(t)

sapp · papp · Vcell,ESS
(1)

where app ∈ {comm, res} denotes the commercial or residential dispatch, Papp(t) is the total ESS power in kW9

at time t, sapp and papp are the number of cells in series and parallel, respectively, and Vcell,ESS = 3.63V is the10

nominal cell voltage. Total power Papp(t) is the cumulative sum of the total charge power and the total discharge11

power seen by the ESS. Then, the required Ah-throughput in the ESS is given by12

QAh,ESS,app =

∫ tf,app

t0,app

|Icell,ESS,app(t)|dt (2)

where t0,app and tf,app are the initial and final times of the ESS dispatch, and QAh,ESS,app represents the cumulative13

Ah-throughput demand. To further standardize this for our analysis, we calculate the equivalent full cycles for ESS14

EFCESS as follows:15

EFCESS =
QAh,ESS,app

2 ·Qcell,ESS
(3)

where Qcell,ESS = 4.85Ah is the rated cell capacity used for ESS dispatch 1. EFCESS is a dimensionless quantity16

and it represents the number of full cycles that a battery must go through to fulfill the ESS dispatch demand.17



From Eq.(3), we get 152.25 cycles for commercial dispatch and 150 cycles for residential dispatch. It can be noted1

that if, instead of Qcell,ESS , the capacity of a retired cell were to be used which would be lower than Qcell,ESS ,2

then EFCESS would increase indicating a higher demand from the ESS and more full cycles from the cell.3

Similarly, based on the experimental campaign in this work, the equivalent full cycles for SL batteries, EFCSL,4

is given by5

EFCSL =
QAh,aging

2 ·Qinitial,ch,C/20
(4)

where QAh,aging is the cumulative Ah-throughput, and Qinitial,ch,C/20 is the initial C/20 charge capacity for each6

cell in our dataset (see Table S2).7

Finally, equivalent grid service years (EGY ) represents the number of years that these SL batteries will last if8

they are used to provide the ESS dispatch shown in Figures S1(a) and S1(b). EGY is calculated by9

EGY =
EFCSL

EFCESS
(5)

For cells in our dataset, QAh,aging ranges from 84,840 to 108,500Ah which gives an equivalent EFCSL from 2,09510

to 2,728.8 cycles. Subsequently, by substituting these values into Eq.(5), we get EGY of approximately 14 to 1811

years for both commercial and residential ESS dispatch. This analysis highlights that retired batteries that are12

operated in a narrow voltage range of 3V to 4V can theoretically be used for grid-storage applications for over a13

decade (up to two decades).14

Note S2: Second-life battery aging campaign15

The aging campaign, schematically illustrated in Fig. 1, starts with a set of RPTs to characterize the initial16

charge and discharge capacity from C/20 and C/40 tests, and internal resistance from HPPC tests. Afterwards,17

cells go through grid-like discharge/charge aging cycles followed by another set of RPTs. The number of RPTs and18

aging cycles for all cells are shown in Table S1.

Table S1: Number of aging cycles for each cell at different Reference Performance Tests (RPTs)

RPT # Cell 1.1 Cell 1.2 Cell 1.3 Cell 1.4 Cell 2.1 Cell 2.2 Cell 2.3 Cell 2.4
1 0 0 0 0 0 0 0 0
2 223 318 212 318 207 208 202 318
3 694 820 698 824 636 677 651 835
4 1071 1221 1099 1225 1018 1058 1028 1236
5 1447 1594 1477 1602 1397 1438 1405 1637
6 1824 1969 1850 1979 1777 1819 1782 2014
7 2200 2344 2228 2358 2259 2432 2159 2389
8 2584 2720 2605 2733 2637 2808 2538 2763
9 2925 3094 2983 3252 2842 3186 2917 3462
10 - 3466 3359 3627 - - 3294 3837
11 - 3841 - 4000 - - - 4212
12 - 4220 - 4319 - - - 4588
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The C/20 test is performed with voltage derating between 3V-4V, and it consists of two CC-discharge/CCCV-1

charge cycles. The first cycle is used for pre-conditioning the cell while the second cycle is used to extract useful2

information e.g., charge/discharge capacity. Similarly, C/40 test is conducted at C/40 C-rate between a voltage3

range of 2.5V and 4.2V. HPPC test is also conducted with voltage derating between 3V-4V which means 100%4

SOC corresponds to 4V and 0% SOC corresponds to 3V for this test. A pair of pulses in discharge and charge5

are executed at every 10% SOC while discharging from 100% to 10% SOC and charging from 10% to 100% SOC.6

Before executing this protocol, a CC-discharge/CCCV-charge cycle is performed to ensure that the cell is at 4V.7

All three RPTs are illustrated in Figure 1(a)-(c).8

The temperature is measured during the experimental campaign via two thermocouples attached to the surface9

of each cell. The raw measured data is pre-processed to address three issues: outliers, noise, and missing data.10

For outliers, a min-max temperature limit of 15◦C to 40◦C is enforced to ensure real temperature data is not lost.11

Noise in the data is removed through a Savitzky-Golay filter which smoothens the temperature profile without loss12

of generality. Lastly, through sensor fusion (combining data from both sensors), temperature data is averaged when13

it is available from both sensors. If, for a certain time period, only one thermocouple measures the temperature,14

temperature data from a single thermocouple is used. Temperature data is not available for time periods where15

both thermocouples fail to record any data.16

Figure S2: Machine-learning model development pipeline. Experimentally collected data is structured through data aggregation
from different sources followed by data cleaning. Features are extracted and selected from structured data, and pre-processed to use in
model development. Various machine learning models are trained and optimized, and their performance evaluated for SOH estimation
to identify the best model.

Note S3: Machine learning pipeline17

Data-driven model development for SOH estimation comprises of five stages: data structuring, feature engineer-18

ing, data preprocessing, model development, and model evaluation, as depicted in Figure S2. Here, we elaborate19

on each part of the pipeline.20

Data structuring21

Data obtained from battery cyclers and thermocouples is stored in .xlsx and .csv format respectively. Since22

separate files exist for aging cycles, RPTs, and temperature measurements, raw temperature data is separated for23

each cell, and streamlined with the current and voltage data from aging cycles and RPTs. Through data structuring,24

the goal is to combine data from these different sources into a single, coherent framework that can effectively be25

used for downstream tasks e.g., SOH model development. As shown in Figure S3, custom MATLAB class HRAW26

is used to convert raw data into .mat format. Afterwards, HSUM class is used to pre-process the data, extract27



Figure S3: Schematic of data structuring process to combine raw data for aging, RPTs, and temperature. Raw data is
first processed using HRAW class to convert it into .mat format. Processed raw data from HRAW class is further processed by HSUM
class to create summary files consisting of all the features. Features are further processed to remove missing or irregular data through
the HSUM class. Processed temperature data is combined with aging and RPT data in the end.

features, and combine aging and RPT temperature data. The ‘summary’ files contain the features extracted from1

the raw data and ‘summary clean’ files also contain the temperature data. By doing so, we minimize the need to2

access the original raw data repeatedly, and use the processed data for analysis and model development. Further3

details about other MATLAB classes and useful scripts are given in the code guide provided with the code.4

Feature engineering5

In this paper, the offline SOH estimation model is built upon features extracted from raw data as reported in6

Table S2. In total, we have 66 features from aging cycles, RPTs, and temperature data. Temperature features are7

based on average temperature during aging cycles and RPTs. Taging is the average temperature per aging cycle,8

and the length of the vector is equal to the number of aging cycles from each cell. TC/20, TC/40, and THPPC are9

average temperatures during one respective RPT test, and their length is equal to the number of RPTs for each10

cell. Aging cycle features consist of Ah-throughput, QAh,aging, and Energy-throughput, EWh,aging, extracted for11

both charge and discharge along with aging cycle energy efficiency ηE,aging and aging cycle resistance R0aging.12

Ah-throughput and Energy-throughput features are also extracted from C/20 and C/40 tests. Features from13

C/20 tests also consist of the initial capacitiesQinitial,ch,C/20 in charge andQinitial,dis,C/20 in discharge. Incremental14

capacity curves are extracted from C/40 tests as shown in Figure S4. A 3rd-order Savitzky-Golay filter is used for15

curve smoothing, and IC peak features dQ/dVpeaks are extracted. For all the cells, two peaks are observed between16

3.7V and 4.2V; however, the number of IC curves per cell vary since some cells go through more rounds of RPTs17

than others. It is observed that Cell 2.4 and Cell 1.2 have the highest degradation since both have the smallest18

peak heights (peaks 1 and 2). Decrease in the height of peaks is associated with loss of active material (LAM) 2;19

however, consistent with the increase in capacity for these cells, peak height also increases for most of the cells e.g.,20

peak 2 of Cell 2.4. Maximum IC value of peak 2 max
3.9≤V≤4.1

dQn

dVn
, where n denotes the number of RPTs, is extracted21

as a feature from these curves.22

HPPC features consist of pulse resistances extracted both during charge and discharge. Resistance is extracted23



Table S2: List of initial 66 features extracted from aging cycles, RPTs, and temperature data

Temperature features Taging Avg. Aging Cycle Temperature per cycle [◦C] TC/20 Avg. C/20 Temperature per test [◦C]
THPPC Avg. HPPC Temperature per test [◦C] TC/40 Avg. C/40 Temperature per test [◦C]

Aging cycle features Qch,aging Aging Cycle Charge Throughput [Ah] Ech,aging Aging Cycle Charge Energy-throughput [Wh]
Qdis,aging Aging Cycle Discharge Throughput [Ah] Edis,aging Aging Cycle Discharge Energy-throughput [Wh]
ηE,aging Aging Cycle Energy Efficiency [−] R0aging Aging Cycle Resistance [Ω]
QAh,aging Aging Cycle Accumulated Ah-throughput [Ah] EWh,aging Aging Cycle Accumulated Energy-throughput [Wh]

C/20 test features Qch,C/20 C/20 Charge Throughput [Ah] Ech,C/20 C/20 Charge Energy Throughput [Wh]
Qinitial,ch,C/20 C/20 Initial Charge Capacity [Ah] Qinitial,dis,C/20 C/20 Initial Discharge Capacity [Ah]
Qdis,C/20 C/20 Discharge Throughput [Ah] Edis,C/20 C/20 Discharge Energy Throughput [Wh]
QAh,C/20 C/20 Accumulated Ah-throughput [Ah] EWh,C/20 C/20 Accumulated Energy-throughput [Wh]

C/40 test features Qch,C/40 C/40 Charge Throughput [Ah] Ech,C/40 C/40 Charge Energy Throughput [Wh]
Qdis,C/40 C/40 Discharge Throughput [Ah] Edis,C/40 C/40 Discharge Energy Throughput [Wh]
QAh,C/40 C/40 Accumulated Ah-throughput [Ah] EWh,C/40 C/40 Accumulated Energy-throughput [Wh]
dQ/dVpeaks C/40 Incremental Capacity (IC) Peaks [Ah/V] dV/dVpeaks C/40 Aging Derivative (AD) Peaks [−]

HPPC test features R0ch,ch,low,0s Ch. Pulse in Ch. HPPC Resistance 0s CT (low SOC) [Ω] R0ch,ch,low,2s Ch. Pulse in Ch. HPPC Resistance 2s CT (low SOC) [Ω]
R0ch,ch,low,3s Ch. Pulse in Ch. HPPC Resistance 3s CT (low SOC) [Ω] R0ch,ch,high,0s Ch. Pulse in Ch. HPPC Resistance 0s CT (high SOC) [Ω]
R0ch,ch,high,2s Ch. Pulse in Ch. HPPC Resistance 2s CT (high SOC) [Ω] R0ch,ch,high,3s Ch. Pulse in Ch. HPPC Resistance 3s CT (high SOC) [Ω]
R0ch,dis,low,0s Dis. Pulse in Ch. HPPC Resistance 0s CT (low SOC) [Ω] R0ch,dis,low,2s Dis. Pulse in Ch. HPPC Resistance 2s CT (low SOC) [Ω]
R0ch,dis,low,3s Dis. Pulse in Ch. HPPC Resistance 3s CT (low SOC) [Ω] R0ch,dis,high,0s Dis. Pulse in Ch. HPPC Resistance 0s CT (high SOC) [Ω]
R0ch,dis,high,2s Dis. Pulse in Ch. HPPC Resistance 2s CT (high SOC) [Ω] R0ch,dis,high,3s Dis. Pulse in Ch. HPPC Resistance 3s CT (high SOC) [Ω]
R0ch,SOC,low,0s SOC Pulse in Ch. HPPC Resistance 0s CT (low SOC) [Ω] R0ch,SOC,low,2s SOC Pulse in Ch. HPPC Resistance 2s CT (low SOC) [Ω]
R0ch,SOC,low,3s SOC Pulse in Ch. HPPC Resistance 3s CT (low SOC) [Ω] R0ch,SOC,high,0s SOC Pulse in Ch. HPPC Resistance 0s CT (high SOC) [Ω]
R0ch,SOC,high,2s SOC Pulse in Ch. HPPC Resistance 2s CT (high SOC) [Ω] R0ch,SOC,high,3s SOC Pulse in Ch. HPPC Resistance 3s CT (high SOC) [Ω]
R0dis,dis,low,0s Dis. Pulse in Dis. HPPC Resistance 0s CT (low SOC) [Ω] R0dis,dis,low,2s Dis. Pulse in Dis. HPPC Resistance 2s CT (low SOC) [Ω]
R0dis,dis,low,3s Dis. Pulse in Dis. HPPC Resistance 3s CT (low SOC) [Ω] R0dis,dis,high,0s Dis. Pulse in Dis. HPPC Resistance 0s CT (high SOC) [Ω]
R0dis,dis,high,2s Dis. Pulse in Dis. HPPC Resistance 2s CT (high SOC) [Ω] R0dis,dis,high,3s Dis. Pulse in Dis. HPPC Resistance 3s CT (high SOC) [Ω]
R0dis,ch,low,0s Ch. Pulse in Dis. HPPC Resistance 0s CT (low SOC) [Ω] R0dis,ch,low,2s Ch. Pulse in Dis. HPPC Resistance 2s CT (low SOC) [Ω]
R0dis,ch,low,3s Ch. Pulse in Dis. HPPC Resistance 3s CT (low SOC) [Ω] R0dis,ch,high,0s Ch. Pulse in Dis. HPPC Resistance 0s CT (high SOC) [Ω]
R0dis,ch,high,2s Ch. Pulse in Dis. HPPC Resistance 2s CT (high SOC) [Ω] R0dis,ch,high,3s Ch. Pulse in Dis. HPPC Resistance 3s CT (high SOC) [Ω]
R0dis,SOC,low,0s SOC Pulse in Dis. HPPC Resistance 0s CT (low SOC) [Ω] R0dis,SOC,low,2s SOC Pulse in Dis. HPPC Resistance 2s CT (low SOC) [Ω]
R0dis,SOC,low,3s SOC Pulse in Dis. HPPC Resistance 3s CT (low SOC) [Ω] R0dis,SOC,high,0s SOC Pulse in Dis. HPPC Resistance 0s CT (high SOC) [Ω]
R0dis,SOC,high,2s SOC Pulse in Dis. HPPC Resistance 2s CT (high SOC) [Ω] R0dis,SOC,high,3s SOC Pulse in Dis. HPPC Resistance 3s CT (high SOC) [Ω]
QAh,HPPC HPPC Accumulated Ah-throughput [Ah] EWh,HPPC HPPC Accumulated Energy-throughput [Wh]
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Figure S4: IC curves for eight cells at different stages of aging. These curves are extracted from the C/40 test, and they show
two peaks marked as 1 and 2. Some cells have gone through more RPTs/cycles, such as Cell 2.4, but the curves do not show significant
shift against voltage. For different cells, the change in the height of the peaks varies based on the degradation.



from charge pulse and discharge pulse (see Figure 1(b)), and from the change in current applied for a 10% SOC1

charge/discharge (referred to as SOC pulse in this work). Apart from calculating the resistance for the sudden2

voltage change when current is applied, we also calculate resistances by including 2 seconds and 3 seconds charge3

transfer (CT) period. We observe that, for most cases, 60% of the pulses are below 3.8V while 40% of the pulses4

are above 3.8V. We average the resistance values above (denoted as ‘high’) and below (denoted as ‘low’) 3.8V to5

obtain two resistance values for each type of pulse. The naming convention for resistance features is R0a,b,c,d where6

a ∈ {ch, dis} denotes the charge or discharge HPPC, b ∈ {ch, dis, SOC} denotes the type of pulse used to calculate7

the resistance value, c ∈ {low, high} denotes whether this resistance is obtained from pulses above or below 3.8V,8

and d ∈ {0s, 2s, 3s} denotes the CT time used to calculate the resistance value.9

Using Spearman correlation 3, we obtain the heatmap shown in Figure S5. The last row of the heatmap10

corresponds to the target output. It can be seen that some features are strongly correlated with the target output,11

such as Qch,aging with |ρ| > 0.9, while other features, such as QAh,C/40, are not strongly correlated to the target12

output showing a value of |ρ| < 0.2. The latter features are those that contain minimal useful information about13

the target output, and they are dropped for model training. Although manual feature selection is not used for14

offline SOH estimation, it is used for feature selection in adaptive online SOH estimation (see Note S5).

Figure S5: Heatmap showing combined Spearman correlation for all eight cells. The last row of the heatmap shows the
correlation of the target output QC/20 with all the other features. For ease of readability, a subset of the HPPC resistance features are
included in this heatmap. The selected features for offline SOH estimation are shown on the left side of the figure (both horizontal and
vertical axis have the same features).

15

Data preprocessing16

For SOH estimation model, selected input features are from aging cycles and the model output is Qch,C/20.17

For model training, the length of input features and model output should be the same. As shown in Figure S6,18



this is done by averaging the feature values of the last 20 aging cycles before an RPT. By doing so, the input1

feature vectors become the same length as Qch,C/20, which also reduces the amount of input data that needs to be2

processed for model training.

20 aging cycles 
averaging window

Figure S6: Example of data pre-processing to match the lengths of input features and model output. For every RPT,
Qch,aging is averaged for the last 20 cycles before the RPT to make the length of the input features and output the same.

3

Machine learning algorithms4

Dataset partition5

Offline SOH estimation models are trained on six cells and tested on two cells. In this paper, four combinations6

of test sets are used: (1.1,2.1),(1.2,2.2),(1.3,2.3),(1.4,2.4). For each test set combination, the remaining cells are7

used to train the model (see Note S4 for model performance). In the case of clustering-based adaptive estimation8

algorithm, seven cells are instead used for training, while one cell is used for testing.9

Elastic-Net Regression10

A regularized regression method that linearly combines L1 and L2 penalties of the Lasso and Ridge methods11

4. ENR assumes an affine relationship between the features and SOH indicators Y = Xβ + β0. The slope and12

intercept parameters, β and β0, respectively, can be obtained by solving the following optimization problem13

β̂ = argmin
β0,β,λ

∥Y −Xβ − β01n×1∥2

+ λ (1− α) ∥β∥22 + λα∥β∥1, (6)

where Y ∈ Rn is a vector of measured SOH values, X ∈ Rn×m is a matrix of m input features with n observations,14

β ∈ Rm, β0 ∈ Rn, 1n×1 ∈ Rn is a vector of 1’s, and λ, α ∈ R+ are hyperparameters. For our model, a value of15

α = 0.2 is chosen while λ is tuned on the training set using grid search and 5-fold cross-validation.16

Other models17

Three other regressions models used in this paper include Support Vector Regression (SVR) 5, Gaussian Process18

Regression (GPR) 6, and Random Forest Regression (RFR) 7. SVR aims to find a hyperplane that minimizes the19



prediction error by transforming the input features into higher-dimensional space. GPR is a non-parametric,1

kernel-based probabilistic model that assumes the model output follows the Gaussian distribution. It uses a kernel2

function K to model the structure of the data and gives confidence intervals on the model predictions. For this3

work, K is selected as the squared exponential function. Lastly, RFR uses an ensemble of multiple decision trees4

using Bagging (bootstrap aggregation), and averages the predictions of all the decision trees to make the final5

prediction. The depth of the tree and the number of leaves (branches) – both hyperparameters – determine the6

computational cost of the model training.7

Note S4: Robustness analysis for the data-driven model8

Statistical significance of data-driven models9

Due to the limited size of the dataset, a statistical significance test is performed to check the performance of

SVR, RFR, and GPR models against the ENR model. Models are trained on six cells and evaluated on two test

cells. To ensure generalizability in model performance, eight different combinations of test cells are chosen while

the remaining cells are used for training. The set of test cells (TS) is given by

TS = {(1.1, 2.1), (1.2, 2.2), (1.3, 2.3), (1.4, 2.4), (1.1, 2.4), (1.2, 2.3), (1.3, 2.2), (1.4, 2.1)}

All four models are evaluated on each combination of the test cells, and based on the results, an RMSE value is10

calculated. For the significance test, the null hypothesis H0 states that RMSE of ENR is similar to the RMSE of the11

other three models while the alternate hypothesis H1 states that RMSE of ENR is smaller than the other models.12

To test our hypotheses, we choose a significance level ρ of 5%, which is equivalent to a probability p = 0.05. When13

p < 0.05, H0 can be rejected in favor of H1; otherwise, H0 cannot be rejected and no claim can be made about H1.14

Since we consider eight combinations of test sets, we only have the sample mean instead of the population mean.15

In such cases, the t-test 8 is used. A t-value is calculated by16

t =
ȳMOD − µENR

sENR/
√
n

(7)

where ȳMOD is the sample mean of RMSE for model MOD ∈ {SV R,RFR,GPR} that we want to test, µENR is17

the mean of RMSE of ENR, sENR is the sample standard deviation of RMSE of ENR, and n = 8 is the number of18

test sets. Table S3 shows the RMSE for all the four models for all eight test sets.19

It can be seen that apart from RFR, all models have at least one or more test sets which provide the least20

RMSE value. For model selection, from the performance of the four models on all test sets, it can be seen that21

ENR consistently gives better performance than the other models. As shown in Figure S7, on test sets (1.3, 2.3) and22

(1.3, 2.2), the RMSE from SVR model is significantly larger than other models while RFR also has RMSE> 1Ah23

for four test sets.24

The calculated t-values for the four models are shown in Table S3. Since ENR is our reference model, its t-value25

is zero. The t-value is used with the t-distribution 8 which is similar to normal distribution, but with heavier tails.26

From the t-distribution table, a threshold t-value tthreshold = 2.145 is obtained that corresponds to p = 0.05 and27



Table S3: RMSE and t-value for all four data-driven models for eight test sets

RMSE [Ah]
Test sets ENR SVR RFR GPR
(1.1, 2.1) 0.6669 0.4851 1.1656 0.6035
(1.2, 2.2) 0.5295 0.4799 0.5649 0.7901
(1.3, 2.3) 0.7636 3.9538 0.7762 0.6521
(1.4, 2.4) 0.3237 0.4709 1.0936 0.6078
(1.1, 2.4) 0.5665 0.5871 1.1363 0.5792
(1.2, 2.3) 0.7972 0.6981 0.6910 0.7951
(1.3, 2.2) 0.6088 3.0228 0.5844 0.5728
(1.4, 2.1) 0.4020 0.5517 1.2789 0.7094

Sample mean µ 0.5823 1.2812 0.9114 0.6638
Sample std. s 0.1645 1.3868 0.2872 0.0907

t-value 0 12.0190 5.6596 1.4013

(1.1, 2.1) (1.2, 2.2) (1.3, 2.3) (1.4, 2.4) (1.1, 2.4) (1.2, 2.3) (1.3, 2.2) (1.4, 2.1)
Test sets
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Figure S7: RMSE of the four data-driven models for eight different tests sets. ENR and GPR consistently give RMSE < 1Ah while
SVR has significantly large errors for test sets (1.3, 2.3) and (1.3, 2.2).



degrees of freedom df = n + n − 2 = 8 + 8 − 2 = 14. By comparing our t-values obtained from the models to1

tthreshold, we can reject H0 if t > tthreshold. Both SVR and RFR have t-values higher than the threshold t-value,2

but for GPR, the t-value is lower than the threshold. Based on this, we can claim that the H0 can be rejected for3

SVR and RFR models, which means RMSE of ENR is smaller than SVR and RFR with statistical significance.4

For GPR, we cannot reject H0, which means RMSE of both models is comparable. With ENR performing better5

than 2 out of 3 models based on the significance test, it is selected as the preferred SOH estimation model in this6

work.7

Robustness of the ENR model8

To examine the robustness of the ENR model, we test the performance of the model on four different test9

sets. Parity plots of estimated and measured capacity reveal three distinct patterns of training-testing dataset10

splits, as illustrated in Figure S8. It can be seen that despite the presence of the training data at either ends of11

the measured capacity range, as seen in Figures S8(a) and S8(d), the model is still able to give good estimation12

results on the test sets. This shows that the model can perform well on the edge cases of the dataset. This is13

further supported by the mean absolute percentage error (MAPE) shown in Figure S9. Only in the case of Cells14

1.3 and 2.3, the test set error is significantly higher. We attribute this to the presence of anomalous data in the15

extracted features which originate from errors in the measured data for these cells. Furthermore, Figure S10 depicts16

the distribution histogram of pointwise capacity estimation percentage errors (PCEPE) between the measured and17

estimated capacities. All estimations remain within a ±6% error bound, and most fell within a ±3% error bound.18

These results indicate that ENR model is robust and maintains its performance over various combinations of the19

test cells.20

Robustness of the adaptive model21

To validate the robustness of the adaptive method, we perform leave-one-out validation on the entire dataset by22

training the model on seven cells and testing it on one cell. The root mean squared percentage error (RMSPE) of23

the offline ENR model is 3.40%, while the RMSPE of the adaptive model is 3.27%. The RMSPE for each training-24

testing set split is given in Table S4. The adaptive estimation improves the estimation accuracy for Cells 1.1, 1.2,

Table S4: Comparison of RMSPE from adaptive model and offline ENR model

RMSPE [%] Cell 1.1 Cell 1.2 Cell 1.3 Cell 1.4 Cell 2.1 Cell 2.2 Cell 2.3 Cell 2.4
Adaptive model 2.93 1.22 2.62 0.86 2.26 3.82 7.27 0.95

Offline ENR model 2.95 1.47 2.41 1.82 1.45 3.27 7.82 1.58

25

1.4, 2.3, and 2.4. However, for Cells 1.3, 2.1, and 2.2, adding the clustering-based estimation leads to a degradation26

in accuracy. This is attributed to the low correlation between the distances in the existing aging-cycle features and27

the distances in SOH for these cells. Overcoming this limitation could potentially involve fine-tuning the clustering28

method, revising the distance metric, extracting additional features, or training the clustering method with a larger29

dataset of SL-battery aging data.30



(a) (b)

(c) (d)

Figure S8: Estimated and measured Qch,C/20 for four different combinations of training and test sets. (a) Test set
(1.1, 2.1), (b) Test set (1.2, 2.2), (c) Test set (1.3, 2.3), and (d) Test set (1.4, 2.4).

Figure S9: Comparison of the mean absolute percentage error (MAPE) between four different combinations of training and test sets.



(a) (b)

(c) (d)

Figure S10: Histogram of pointwise capacity estimation percentage errors (CEPE) between measured and estimated
Qch,C/20. (a) Test set (1.1, 2.1), (b) Test set (1.2, 2.2), (c) Test set (1.3, 2.3), and (d) Test set (1.4, 2.4).

Note S5: Online adaptive SOH estimation1

In this algorithm, we leverage the idea of clustering to assess the proximity of one or more input features, in2

the feature space, based on a distance metric, and identify a cell from the training set that behaves similarly to3

the test cell 9. By doing so, knowledge of SOH from the known cell can be used to improve the SOH estimation4

on the test cell. The key assumption of this algorithm is that if two cells have close features in the feature vector5

space, then the corresponding SOH values should be close as long as the features have a high correlation to the6

SOH. As mentioned in Note S3, seven cells are used for training which means there are seven different clusters. For7

BMS2, as new data becomes available, the algorithm repeatedly checks the distance between the test cell and seven8

clusters, and uses SOH information from the cluster with the smallest distance. Naturally, this suggests that one9

test cell can belong to a different cluster at different points in time. The results are shown in Figure 6 for Cell 2.4.10

From Figure S5, we can see that Qch,aging has high correlation with Qch,C/20, which suggests that closeness of11

Qch,aging for two cells implies closeness of their SOH. Using the L2 distance metric, the distance between Qch,aging12

of Cell z and Cell k is defined as13

dist(Qz
ch,aging, Q

k
ch,aging) =

√√√√ N∑
i=1

(
Qz

ch,aging(Ah(i))−Qk
ch,aging(Ah(i))

)2

, (8)

where z is the test cell, k is a cell in the training set, i = 1, 2, 3, ..., N and Ah(i) is the Ah-throughput value at14

which the L2 distance is calculated. Qz
ch,aging(Ah(i)) and Qk

ch,aging(Ah(i)) are discrete-time trajectories which15

means as i increases, longer feature trajectories are used to calculate the distance. This also implies that knowledge16



of measurement history is incorporated into the online SOH estimation.1

Once distance between test cell z and all the training cells 1 to k is calculated, the cluster Sz with the minimum2

distance is given by3

Sz(Ah(n)) = argmin
1≤k≤K

(
dist

(
Qz

ch,aging(Ah(1), . . . , Ah(n)), Qk
ch,aging(Ah(1), . . . , Ah(n)))

))
(9)

where K = 7 is the total number of clusters and Sz = k∗ is the cluster with the minimum distance to Cell z at4

Ah(n). To obtain the estimated C/20 charge capacity of Cell z Q̂z
ch,C/20, we use a linear combination of estimated5

C/20 charge capacities Q̄k
ch,C/20 from each cluster with different weights λk

9 given by6

Q̂z,ct
ch,C/20(Ah) = Qz

initial,ch,C/20

K∑
k=1

λkQ̄
k
ch,C/20(Ah) (10)

The final online SOH estimation Q̂z
ch,C/20 is a weighted combination of the result from regression model (offline7

ENR) Q̂z,rg
ch,C/20 and the clustering-based model Q̂z,ct

ch,C/208

Q̂ch,C/20 = (1− w(Ah))Q̂rg
ch,C/20 + w(Ah)Q̂ct

ch,C/20 (11)

w(Ah) = αAh, (12)

where the weight 0 ≤ w(Ah) ≤ 0.5 9 is a linear function of Ah-throughput, and α 9 is a hyperparameter that9

controls the relative contribution of the two models to the online SOH estimation. Even though this algorithm10

works in an open-loop manner, the algorithm guarantees that the error on the estimates be bounded 9.11
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[2] D. Anseán, V. M. Garćıa, M. González, C. Blanco-Viejo, J. C. Viera, Y. F. Pulido, and L. Sánchez, “Lithium-ion15

battery degradation indicators via incremental capacity analysis,” IEEE Transactions on Industry Applications,16

vol. 55, no. 3, pp. 2992–3002, 2019. [Online]. Available: https://doi.org/10.1109/TIA.2019.289121317

[3] C. Wissler, “The spearman correlation formula,” Science, vol. 22, no. 558, pp. 309–311, 1905. [Online].18

Available: https://doi.org/10.1126/science.22.558.30919

[4] H. Zou and T. Hastie, “Regularization and variable selection via the elastic net,” Journal of the Royal20

Statistical Society: Series B (Statistical Methodology), vol. 67, no. 2, pp. 301–320, apr 2005. [Online]. Available:21

https://doi.org/10.1111/j.1467-9868.2005.00503.x22

[5] A. J. Smola and B. Scholkopf, “A tutorial on support vector regression,” Statistics and Computing, vol. 14,23

pp. 199–222, 2004. [Online]. Available: https://doi.org/10.1023/B:STCO.0000035301.49549.8824

[6] E. Schulz, M. Speekenbrink, and A. Krause, “A tutorial on Gaussian process regression: Modelling, exploring,25

and exploiting functions,” Journal of Mathematical Psychology, vol. 85, pp. 1–16, 2018. [Online]. Available:26

https://doi.org/10.1016/j.jmp.2018.03.00127

[7] M. R. Segal, “Machine Learning Benchmarks and Random Forest Regression,” apr 2004. [Online]. Available:28

https://escholarship.org/uc/item/35x3v9t429

https://doi.org/10.4271/2023-01-0516
https://doi.org/10.1109/TIA.2019.2891213
https://doi.org/10.1126/science.22.558.309
https://doi.org/10.1111/j.1467-9868.2005.00503.x
https://doi.org/10.1023/B:STCO.0000035301.49549.88
https://doi.org/10.1016/j.jmp.2018.03.001
https://escholarship.org/uc/item/35x3v9t4


[8] T. K. Kim, “T test as a parametric statistic,” Korean journal of anesthesiology, vol. 68, no. 6, pp. 540–546,1

2015. [Online]. Available: https://ekja.org/journal/view.php?doi=10.4097/kjae.2015.68.6.5402

[9] X. Cui, M. A. Khan, and S. Onori, “Online Adaptive Data-driven State-of-health Estimation for Second-life3

Batteries with BIBO Stability Guarantees,” arXiv preprint arXiv:2401.04734, 2024. [Online]. Available:4

https://doi.org/10.48550/arXiv.2401.047345

https://ekja.org/journal/view.php?doi=10.4097/kjae.2015.68.6.540
https://doi.org/10.48550/arXiv.2401.04734

