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An experimentally validated electro-thermal EV
battery pack model incorporating cycle-life aging

and cell-to-cell variations
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Abstract—Lithium-ion batteries are used in a wide variety of
applications. To meet the power and energy demands of these ap-
plications battery packs are composed of hundreds to thousands
of cells. The electrical and thermal interactions between cells
introduce additional complexity in the pack dynamics. To capture
these effects, a battery pack model composed of 192 cells based on
a first-generation (2012) Nissan Leaf battery pack is developed in
MATLAB/Simulink/Simscape. With this model, we simulate the
electrical dynamics (using a first-order equivalent-circuit model),
the thermal dynamics (using a first-order lumped-parameter
thermal model), and the aging dynamics (using a semi-empirical
severity factor-based model) of every cell in the pack and we also
create a pack thermal model that explicitly captures the heat
exchange between the modules, and the cells contained within,
during operation. The models are calibrated and validated, both
at the cell and pack level, with experimental data. Two different
case studies of this pack model are investigated. In the first
case study, an initial, normally-distributed, cell-to-cell capacity
variation is introduced and its effect on the pack voltage and
module temperatures is studied. In the second case study, we
deliberately insert cells with lower than nominal capacity into
the pack and we investigate how this type of initial cell-to-cell
capacity variation affects the pack’s ability to deliver energy
over time. Finally, we also study how parallel-connected cells
can reduce the effects of cell-to-cell variations at the expense of
increased aging of the pack overall.

NOMENCLATURE

i Integer index of the cells in the pack
SoC(i) State-of-charge of the ith cell [%]
Q(i) Capacity of the ith cell [Ah]
I
(i)
cell Current through the ith cell

(I(i)cell > 0: discharge, I(i)cell < 0: charge) [A]
Ipack Current through the pack [A]
V

(i)
RC Diffusion voltage of the ith cell [V]

τ
(i)
1 Voltage relaxation time of the ith cell [s]
C

(i)
1 Capacitance of the ith cell [F]

V
(i)
cell Terminal voltage of the ith cell [V]

Vpack Terminal voltage of the pack [V]
R

(i)
0 High-frequency resistance (HFR) of the ith

cell [Ω]
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Wh
(i)
dchg Discharge energy-throughput of the ith cell

[Wh]
Q

(i)
loss Normalized capacity fade of the ith cell [%]

R
(i)
incr Normalized high-frequency resistance in-

crease of the ith cell [%]
fs Sampling frequency at which measurements

are collected [Hz]
Ttot Total time that measurements are collected [s]
Nmeas Total number of measurements collected
Tamb Ambient air temperature [◦C]
Tpack Temperature of the pack enclosure [◦C]
Tmodule Temperature of the module enclosure [◦C]
Tcell Surface temperature of a single cell [◦C]
Cpack Effective heat capacity of the pack enclosure

[J/◦C]
Cmodule Effective heat capacity of module enclosure

[J/◦C]
Ccell Effective heat capacity of a single cell [J/◦C]
Rcc Thermal resistance of heat exchange between

cells [◦C/W]
Rmc Thermal resistance of heat exchange between

cell and the module housing [◦C/W]
Rmm Thermal resistance of heat exchange between

modules [◦C/W]
Rpm Thermal resistance of heat exchange between

module and the pack enclosure [◦C/W]
Rd Thermal resistance of heat exchange between

pack enclosure and the ambient air [◦C/W]
E(t) Energy delivered by a battery pack [Wh]
RMSE Root mean-square error between model out-

put and the experimental data
RMSPE Root mean-square percent error between

model output and the experimental data
N (x;µ,Σx) Normal distribution of a scalar random vari-

able x with mean µ and scalar variance Σx.

I. INTRODUCTION

Prompted by increasing concerns over pollution and green-
house gas emissions, automotive companies are transitioning
away from traditional internal-combustion engine vehicles and
towards electrified powertrains [1]. The lithium-ion battery
has come to be the predominant energy storage technology
used electric vehicles (EVs), due to its superior energy and
power densities, as well as longevity, compared to other battery
types [2].
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In the transportation sector, heavy-duty commercial vehicles
(HDCVs) have been identified by previous studies to be a
prime candidate for electrification [3], [4]. Specifically, battery
electric trucks have been projected to be suitable for drayage
applications where these trucks would operate within a roughly
250 mile radius of an intermodal hub such as a seaport. One
report [5] focusing around the port of New York and New
Jersey estimates that, if commercial vehicle fleets operating
around the port were to have 100% electrification adoption,
there would be a 75% reduction in carbon-dioxide emissions
relative to that of the currently in-use fossil-fuel based fleets.
Work is currently underway to better understand the energy
and infrastructure requirements for effective electrification of
HDCV fleets [6], [7].

Battery cells must be connected electrically in a battery
module, and modules are subsequently connected to form a
battery pack1. Voltage, current and temperature sensors are
placed at various levels of this hierarchy to enable moni-
toring of the battery states [9]. Due to volume constraints,
cells/modules are arranged to be in close spatial proximity to
one another leading them to exchange heat [10]. To maximize
efficiency, longevity, and reliability of the battery pack, mini-
mization of cell-to-cell variation is important [11]–[13]. In this
article, we use “cell-to-cell variation” to refer to the differences
in properties of battery cells, often arising from differences in
process manufacturing [14]. This translates into a difference in
parameters of the dynamic model used to represent the battery.
In particular, cell-to-cell variations within a module have been
shown to lead to a lack of thermal uniformity contributing to
heterogeneous aging of cells [15]. Severe cell-to-cell variation
can thus affect the durability and long-term performance of
battery packs.

To model and predict the electrical dynamics of battery
cells, equivalent-circuit models (ECM) are generally used [16].
ECMs provide a simple framework that captures the voltage
dynamics of a battery when calibrated to experimentally-
collected data [17]. Importantly, as this approach is entirely
empirical, it cannot be used to reliably predict the electrical
dynamics in operating regimes which are not covered by the
data used to calibrate the model. Alternatively, physics-based
models (PBMs) can be used to model the electrochemical
dynamics more reliably across a wide-range of operating
conditions while using less experimental data; however, this
type of model has a more complex mathematical structure
and generally requires higher computational effort [16]. ECMs
can be augmented with models that capture the thermal and
aging dynamics of the battery cell. To model the temperature
changes of the battery cell during operation, lumped-parameter
thermal models are often used [18]. To capture the aging
(capacity and power fade) of battery cells, it is common to
use either semi-empirical [19]–[22] or machine-learning based
approaches [23], [24].

To construct a battery pack model for use in system-level
applications, battery cell models are often upscaled to the pack
by assuming the ideal scenario: All the cells in the pack

1Cell-to-pack battery configurations where individual cells are directly
assembled into a pack, without modular subdivisions, also exist [8]

are created equal and that the temperature of each cell is
unaffected by the temperatures of other cells. This assumption
neglects any cell-to-cell variations and the details of the inter-
dependence of the cells’ temperature dynamics, but ultimately
gives simple relations that directly relate the pack current,
voltage, and temperature to that of the cell [25]:

Ipack = Nparallel · Icell (1a)
Vpack = Nseries · Vcell (1b)
Tpack = Tcell , (1c)

where the variables Nseries and Nparallel are the number of
cells that are connected in series and parallel, respectively.
We refer to the battery pack model described by (1) as the
“ideal” pack model. This approach has been used in many
previous vehicle/system level studies [26]–[28]; however, the
degree of fidelity-loss at the vehicle level when using battery
pack models developed using this assumption is currently
unclear. The development and calibration of realistic battery
pack models is hindered by lack of publicly available data.
Nevertheless, previous studies have sought to explore the
effects of cell-to-cell variations in various ways. For example,
the authors of [29] construct a 3S3P battery module where the
electrical, thermal, and aging dynamics are modeled for each
cell in the module. In this study, they find that varying the
initial capacity of the cells in the module by 5% results in an
8% SoC imbalance and a 3◦C variance in temperature across
the battery cells of the module after a discharge cycle. Another
study [30] uses an electro-thermal-aging pack model to study
how typical highway and city driving conditions affects battery
thermal management system usage. To validate the pack’s
thermal model, the authors use a scaled-down protocol using
only a single module from the battery pack and do not provide
validation for the electrical or aging models. The authors
of [31] study the effects of initial cell-to-cell capacity and
impedance variations on the energy utilization of a battery
pack showing that parallel-connected cells reduce the initial
relative cell parameter variance, reaching the same conclusion
as [32]. Their pack model however, does not model the thermal
retroactivity [15], [33].

A clear gap in the literature remains: while battery pack
models have previously been constructed using data from in-
dividual cells, they have not been validated with experimental
data from a full battery pack experiencing realistic drive-
cycle loads. Summarily, the contributions of this paper are
the following:

1) A model (in MATLAB/Simulink/Simscape) that captures
the integrated electrical, thermal, and aging dynamics of
individual Lithium Manganese Oxide (LMO) cells used
in the Nissan Leaf battery pack is created. The integrated
model of the cell is validated with experimental data over
a range of ambient temperature and aging conditions.

2) Implementation and calibration of a simulator for a first-
generation Nissan Leaf battery pack (Fig. 1) constructed
from individual cell models. A detailed lumped-parameter
thermal model is created to capture the heat exchange
between the cells and modules within the pack. The
pack’s voltage and temperature dynamics are validated
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with experimental data.
3) An investigation into the effects of introducing cell-to-

cell capacity variation into the cells of a fresh pack on
the dynamical response of the cells and the pack overall.

The remainder of the article is organized as follows: Sec-
tion II details the organization of cells and modules within
the Nissan Leaf battery pack. Subsequently, it discusses the
relevant details of the experiments done for cells and pack at
Idaho National Lab (INL) [10]. In Section III, the battery cell
model which integrates the electrical (III-A), thermal (III-B),
and aging (III-C) dynamics is described. In Section IV, how
the battery cells and modules within the pack are electrically
connected is introduced and a detailed model capturing the
heat exchange between the cells and modules is established.
The pack model voltage and temperature outputs are then
validated in Section IV-B. We then explore two case studies
using this pack model. Firstly, in Section V, the effects of cell-
to-cell capacity variation on both the fresh pack’s dynamics
(Section V-A), as well as how it affects cell-level (Sec-
tion V-B) properties are investigated. Secondly, in Section VI,
we explore the effect of deliberately adding cells with known
decreased capacity (Section VI-A) and comparing the energy
utilization of this pack with an ideal pack model (1) assuming
that all other common parameters of the two models are equal.
We then investigate how parallel-connected cells leads to the
observed pack energy utilization trends (Section VI-B).

II. BATTERY PACK CONFIGURATION

In this section, we detail the cell specifications, the module
configuration within the battery pack followed by the descrip-
tion of cell and pack experimental data collected at INL.

A. Pack configuration

The battery pack of the (2012) first-generation Nissan Leaf
consists of 192 battery cells with a graphite negative electrode
and a LMO positive electrode [10]. Four cells are pressed
together, one on top of another, electrically connected into a
2P2S electrical configuration, and enclosed in an aluminum
casing to form a battery module. 48 of these battery modules
are then connected electrically in series to form the full pack.
Cell and pack specifications are summarized in Table I [10].
Figure 1 illustrates how the modules are spatially organized
within the pack enclosure. Towards the rear of the pack, there
is a module stack (Stack 1) consisting of 24 battery modules
that are oriented vertically. The remaining 24 modules, are
organized into four distinct stacks. Two of the stacks (2 &
5) consists of two columns where each column consists of
two horizontally-oriented modules. Similarly, the remaining
2 stacks located at the very front of the pack (3 & 4),
consists of two columns where each column consists of four
horizontally-oriented modules [34]. The positive terminal of
the pack originates in Stack 1 while the pack negative terminal
originates in Stack 5 (Fig. 1b, encircled + and −). The
terminal voltage is measured as the difference in voltage
between the positive and negative terminals2.

2Note that the spatial arrangement of these modules need not be directly
related to how these modules are electrically connected.

TABLE I: Specifications of battery pack and cells [10].

Battery pack specs

Manufacturer Nissan
Positive electrode LiMn2O4

Negative electrode LiC6

Module electrical configuration 2P2S
Pack electrical configuration 48S1P

Total number of cells in pack 192
Nominal capacity (Ah) cell/pack 33.1/66.2
Nominal voltage (V) cell/pack 3.8/364.8

Charge cutoff voltage (V) cell/pack 4.11/395
Discharge cutoff voltage (V) cell/pack 2.5/285

Pack cooling mechanism Free convection
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Fig. 1: Pack configuration. a) Nissan Leaf battery pack with locations of
module stacks numbered. b) Detailed organization of the module stacks in
the battery pack. In Stack 1 all modules are stacked vertically. Partially
occluded squares in Stacks 2-5 indicate horizontally stacked modules. The
positive terminal of the pack, denoted by the circled +, is located at module
1 (numbered) in Stack 1. The negative terminal, denoted by the circled −, is
located at module 48 in Stack 5. The positive and negative terminal wires are
routed to the front of the pack where the pack is connected to the drivetrain.
The red dots with corresponding roman numerals (i.e., (I), (II), (III), (IV))
denote the placement of the four thermocouples used to measure module/pack
temperatures during the experiment.

We note that the described organization of these modules
implies that some modules have two nearest-neighbors while
others (eg. the modules at the top and bottom of a module
tower) will only have one nearest neighbor. This implies a
difference in the thermal interactions of these modules relative
to ones that have two nearest neighbors. The battery pack
thermal model that we develop in Section IV accounts for
this distinction.

B. Cell and pack data

An aging campaign [10] was carried out over a one-year
period, where the battery pack was subjected to drive-cycle
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based aging. Specifically, a power-based cycle (corresponding
current input shown in Fig. 4a) which simulates an on-road
Nissan Leaf drive cycle was used [35]. During the drive
cycle, the pack experiences a maximum C-rate, defined as
the maximum current applied to the pack normalized by the
pack’s nominal capacity, of 3.5C and an average C-rate of
0.2C3. After discharge, the pack is charged with a constant-
current step of 120A, and a subsequent voltage hold at 395
V until the current tapered off to less than 0.3A or lower for
up to an hour, which is then followed by a long rest period.
Characterization data was collected both at the pack and at the
cell level (using isolated cells) at a roughly monthly interval.
Specifically, for the cells, three fixed ambient temperatures,
20, 30, and 40◦C are used for the aging and characterization
experiments with three replicates per temperature. For the
pack, the aging and characterization occurs at a fixed ambient
temperature of 30◦C. The experiments show that cells in the
pack experience a higher range of temperatures compared to
that of isolated cells experiencing the same (scaled) input load.
This higher temperature leads to accelerated aging of the cell
in the pack relative to that of isolated cells.

III. BATTERY CELL MODEL

In this section, we outline the electrical, thermal and aging
submodels for the battery cell, which interact according to
Fig. 2.

First-order lumped-parameter
thermal model

First-order equivalent circuit
model

Semi-empirical
aging models

Fig. 2: Schematic showing the interdependencies of the electrical, thermal,
and aging submodels for a single battery cell.

A. Electrical submodel

The cell-level electrical dynamics are modeled using a first-
order ECM, whose equations for the ith cell are [36],

d

dt
V

(i)
RC(t) = − 1

τ1(SoC
(i))

V
(i)
RC(t) +

1

C1(SoC
(i))

I
(i)
cell(t)

(2a)

V
(i)
cell(t) = Voc(SoC

(i))− V
(i)
RC(t) (2b)

− I
(i)
cell(t)R0(SoC

(i), T
(i)
cell) .

3Assuming an ideal pack, the pack C-rate is equivalent to the cell C-rate.

Equation (2a) models the dynamics of the diffusion voltage
V

(i)
RC(t) given a timescale τ1 = R1C1 and an input current

I
(i)
cell(t). The resistance of the RC loop is denoted by R1 and the

capacitance is denoted as C1. Both these quantities depend on
the state-of-charge SoC(i) of the battery cell, which is tracked
by Coulomb counting

d

dt
SoC(i)(t) = − 1

3600 ·Q(i)
I
(i)
cell(t) . (3)

The capacity of the cell (measured in units of Ampere-hour)
is denoted by Q(i) in (3). The terminal voltage (2b) depends
on the diffusion voltage VRC(t), the relationship between
the open-circuit voltage and SoC, Voc(SoC

(i)), which in this
work is calculated from C/3 discharge capacity test data
(Fig. 11), as well as the high-frequency resistance (HFR),
R0(SoC

(i), T
(i)
cell). The HFR is calculated for every pusle (i.e.,

at different SoC levels)in the HPPC test as,

R0(SoC
(i), T

(i)
cell) =

V
(i)
cell(t+∆t)− V

(i)
cell(t)

I
(i)
cell(t+∆t)− I

(i)
cell(t)

, (4)

where the sampling time of the measurements is ∆t = 0.1 s

and the cell surface temperature T
(i)
cell. The dynamics of T

(i)
cell

are described in Section III-B. Throughout this article, we
use the convention that positive (negative) current I

(i)
cell > 0

(I(i)cell < 0) corresponds to battery discharge (charge). As
there are 192 total cells in the pack, i ∈ {1, 2, . . . , 192}.
The parameters R0, τ1 and C1 of the electrical submodel are
calibrated to experimental data as discussed in Appendix A4.

B. Thermal submodel

To model the cell’s surface temperature dynamics we as-
sume a one-state lumped parameter thermal model [37], [38]:

Ccell
d

dt
T

(i)
cell(t) = I

(i)
cell(t)

[
V (i)
oc (SoC(i))− V

(i)
cell(t)

]
(5)

+
1

Rmc

[
Tamb − T

(i)
cell(t)

]
.

Here, Ccell denotes the cell’s heat capacity, Rmc denotes the
convective resistance between the cell and its surroundings,
and Tamb denotes the ambient temperature. The first term on
the right-hand side (RHS) of (5) models the Joule heating of
the battery during operation while the second term models
the heat exchange between the cell and its surroundings. Both
parameters Ccell and Rmc of the cell model are calibrated to
experimental data as described in Appendix A.

C. Aging submodel

The degradation of a battery cell through usage is character-
ized by a decreasing capacity, often called capacity fade, and a
decreasing power output arising from an increase in HFR [39].

4The parameters of the ECM model R0, τ1 and C1, as well as the open
circuit voltage Voc are all functions of the cell’s SoC. We assume that the
relationship between these variables and SoC is the same for all cells; however,
when cells are connected in a pack (Section IV) we allow for the possibility
that different cells in the pack can have different SoCs, and thus experience
a different value of these parameters, at a particular point in time.

This article has been accepted for publication in IEEE Transactions on Transportation Electrification. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TTE.2024.3365028

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Stanford University. Downloaded on February 14,2024 at 20:03:07 UTC from IEEE Xplore.  Restrictions apply. 



5

The degree of usage of the battery cell is quantified here by
the discharge energy throughput (only for I(i)cell > 0)5,

Wh
(i)
dchg(t) =

1

3600

∫ t

0

I
(i)
cell(s)V

(i)
cell(s) ds . (6)

The cell’s beginning of life (BOL) is defined to be Wh
(i)
dchg =

0.
The capacity fade of the ith cell is defined as the capacity

of the ith cell normalized to its value at BOL,

Qloss = 100
Q(i)(Wh

(i)
dchg = 0, T

(i)
cell)−Q(i)(Wh

(i)
dchg, T

(i)
cell)

Q(i)(Wh
(i)
dchg = 0, T

(i)
cell)

, (7)

where Q(i)(Wh
(i)
dchg, T

(i)
cell) is the capacity of the battery after

being subjected to an amount of discharge energy throughput
Wh

(i)
dchg at a temperature T

(i)
cell and Q(i)(Wh

(i)
dchg = 0, T

(i)
cell)

is the cell’s BOL capacity. Similarly, the HFR increase of the
ith cell is defined as the HFR of the ith cell normalized to its
BOL value,

R
(i)
0,incr = 100

R0(SoC
(i), T

(i)
cell,Wh

(i)
dchg)−Rinit

0 (SoC(i), T
(i)
cell)

Rinit
0 (SoC(i), T

(i)
cell)

,

(8)

where R0(SoC
(i), T

(i)
cell,Wh

(i)
dchg) is the cell’s HFR value

after being subjected to an amount of discharge energy
throughput Wh

(i)
dchg at a temperature T

(i)
cell at SoC(i). The

cell’s BOL HFR value is denoted as Rinit
0 (SoC(i), T

(i)
cell) =

R0(SoC
(i), T

(i)
cell,Wh

(i)
dchg = 0).

The capacity fade (7) is modeled as a power law in the
discharge energy throughput with exponent ζQ [20],

Q
(i)
loss = σQ(T

(i)
cell)

[
Wh

(i)
dchg

]ζQ
, (9)

and with a cell surface temperature-dependent Arrhenius-like
severity factor function,

σQ(T
(i)
cell) = γQ exp

(
− αQ

T
(i)
cell

)
. (10)

The scalar term in the exponential αQ is equal to EA,Q/R,
where EA,Q is the effective activation energy characterizing
the capacity fade and R is the universal gas constant. Similarly,
γQ is a scalar. Both scalars are calibrated to experimental data
as shown in Appendix A. Intuitively, the discharge energy
throughput quantifies the accumulated damage to the battery
cell due to usage. The accumulated damage quantified by the
discharge-energy throughput is scaled based on the conditions
at which usage occurs and this is modeled through the severity
factor [40]. We model the HFR increase (8) of the battery cells
using a semi-empirical model in the form of a power law,

R
(i)
0,incr = σR0

(SoC(i), T
(i)
cell)

[
Wh

(i)
dchg

]ζR0

, (11)

5The choice of using accumulated discharge-energy throughput in the
aging models is motivated by the available experimental data although it
differs from previous works (e.g. [20], [29], [40]) where aging models are
based on ampere-hour throughput. Nevertheless, the battery’s discharge energy
throughput provides a metric for the accumulated usage of the battery. As
such, we use it here to characterize the capacity fade and HFR increase
observed.

with exponent ζR0
and where the HFR increase severity factor

function σR0
(SoC(i), T

(i)
cell) depends on both the cell SoC(i)

and temperature T
(i)
cell as follows:

σR0(SoC
(i), T

(i)
cell) =

∣∣∣∣∣∣
4∑

j=0

θ1j · (SoC(i))j

∣∣∣∣∣∣ (12)

× exp

(
4∑

k=0

θ2k · (SoC(i))k

)
exp

(
−αR0

T
(i)
cell

)
.

Here, θ1j , j ∈ [1, 4] and θ2k, k ∈ [1, 4] are scalars, and
the scalar term αR0 is equal to EA,R0/R. These scalars are
calibrated to experimental data in Appendix A. The absolute
value on the outer polynomial ensures that the severity factor
is always positive, encoding the assumption that usage should
not decrease the degree of aging. We calibrate the electric,
thermal, and aging sub-models for a single battery cell using
experimental data, as discussed in Appendix A. The integrated
electro-thermal-aging model for the battery cell is then vali-
dated across a wide range of temperatures and aging conditions
in Appendix B.

IV. BATTERY PACK MODEL AND VALIDATION

From the individual battery cell model, in this section,
the battery pack model is assembled to the specifications
of the Nissan Leaf battery pack. Specifically, the electrical
connections and thermal models that describe the heat ex-
change between the cells and modules in the pack are first
described (Section IV-A) and the resulting pack model is
subsequently validated (Section IV-B). Importantly, capturing
the heat exchange between the cells allows for greater fidelity
in tracking the propagation of cell-to-cell variations as the
battery pack is used. For details of the battery pack thermal
model calibration, the reader is referred to Appendix C.

A. Battery Pack Model Configuration

Electrically, the pack model is formed by first connect-
ing 192 cells in a 2P2S configuration to form 48 modules.
The 48 modules are then connected in series (Fig. 1). The
electrical connections and thermal interactions between the
components of the pack are modeled using custom-made
Simscape elements6. The heat exchange between the pack,
the modules, and the cells are described in the remainder of
this section. By assumption, we only consider heat exchange
mechanisms that are linear in the temperature difference, thus
neglecting any radiative effects. Given this assumption, a
lumped-capacitance/equivalent thermal circuit approach (see
Section 5.3 of [41]) is employed by which the battery pack

6Simscape is an extension of MATLAB’s Simulink graphical environment
that is geared towards the modeling of multi-domain physical systems.
In particular, connections between electrical elements in this environment
automatically impose Kirchoff’s current and voltage laws.
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enclosure is modeled as a thermal mass characterized by a
heat capacity Cpack and whose temperature evolves as

Cpack
d

dt
Tpack(t) =

1

Rd
[Tamb − Tpack(t)] (13)

+
1

Rpm

48∑
q=1

[
T

(q)
module(t)− Tpack(t)

]
.

The first term on the RHS of (13) represents the thermal
exchange between the pack enclosure and the ambient air
temperature mediated by the thermal resistance Rd

7. The
second term represents the thermal exchange between the
battery modules contained within the battery pack mediated
by the thermal resistance Rpm.

Each battery module m ∈ {1, · · · , 48} within the pack is
modeled as a thermal mass characterized by a heat capacity
Cmodule. The temperature dynamics of a module are described
according to the scenarios described below:

• Scenario 1: if the mth battery module in the pack has
two nearest neighbors, m−1 and m+1, then its lumped
thermal dynamics are as follows:

Cmodule
d

dt
T

(m)
module(t) =

1

Rpm

[
Tpack(t)− T

(m)
module(t)

]
+

1

Rmm

[
T

(m−1)
module(t)− T

(m)
module(t)

]
+

1

Rmm

[
T

(m+1)
module(t)− T

(m)
module(t)

]
+

1

Rmc

∑
c∈m

[
T

(c)
cell(t)− T

(m)
module(t)

]
(14)

• Scenario 2: if a module has only one nearest neighbor n
then its lumped thermal dynamics are:

Cmodule
d

dt
T

(m)
module(t) =

1

Rpm

[
Tpack(t)− T

(m)
module(t)

]
+

1

Rmm

[
T

(n)
module(t)− T

(m)
module(t)

]
+
∑
c∈m

1

Rmc

[
T

(c)
cell(t)− T

(m)
module(t)

]
(15)

The first term on the RHS of (14) and (15) represents the
exchange of heat between the module and the pack. The last
term represents the heat contribution of all the cells c enclosed
by the mth module. The second term, in (14) and (15), and
third term, in (14), model the exchange of heat between the
mth module and its nearest neighbors. We emphasize that the
topology of the electrical circuit of all the modules need not
be directly related to the topology of the thermal circuit of all
the modules and the pack enclosure.

The temperature T
(i)
cell of each cell i in the mth module

7The thermal resistances considered in this work encapsulates the net effect
of both convection and conduction heat exchange mechanisms.

-

+
- +

- +

-+

-+

Module 
Housing

Fig. 3: Battery module configuration. Cells are electrically connected in a
2P2S configuration. Spatially, the cells are stacked on top of one another.
Each cell exchanges heat (denoted by the red bi-directional arrows) with its
nearest neighbors and the module housing.

evolves according to,

Ccell
d

dt
T

(i)
cell = I

(i)
cell(t)

[
V (i)
oc

(
SoC(i)

)
− V

(i)
cell(t)

]
(16)

+
1

Rmm

[
T

(m)
module(t)− T

(i)
cell(t)

]
+

1

Rcc

[
T

(i−1)
cell (t)− T

(i)
cell(t)

]
+

1

Rcc

[
T

(i+1)
cell (t)− T

(i)
cell(t)

]
,

where the second-term on the RHS represents the thermal
exchange between the cell and the module enclosure while
the third and fourth terms represent the nearest-neighbor heat
exchange between cells. The battery cells, their electrical
connections, and their thermal (heat exchange) interaction
with each other and the module housing are schematically
shown in Fig. 3. We note that, similar to some modules,
there are also cells within a given module that only have one
nearest neighbor (e.g., the top- and bottom-most cells shown
in Fig. 3). For these cells, we remove either the third or fourth
term on the RHS of (16) as appropriate. In summary, the
pack model thermal parameters are Rd, Rpm, Rmm, Rmc,
Rmc, Cmodule, Cpack

8. These parameters are calibrated with
experimental data for a fresh pack as described in Appendix C.

B. Battery Pack Model Validation

Having constructed the battery pack as described in Sec-
tion IV-A, and calibrated the pack as in Appendix C, the fresh
pack model voltage and temperature outputs are validated in
this section. Assuming that the fresh pack contains no cell-to-
cell variations, the pack model is tested with the input dynamic
profile shown in Fig. 4a and the model outputs of pack voltage
and pack temperature are compared with the experimentally
collected data. The experimental data is obtained from the
second drive cycle in the second month of the experiment9

8In principle, each of the thermal resistances could be different for every
pair of cells/modules in the pack. For parsimony, here we assume that each
of the thermal resistances holds a specific value for all pairs of cells/modules
in the pack.

9Problems with the drive cycle converter current limiting the high power
steps occurred in the first month and the test was stopped temporarily as the
profiles were re-generated. For simplicity, the model is calibrated using the
second month of experimental data.
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in Fig. 4. We find that the voltage output of the battery
pack model agrees well with the experimental data with a
voltage RMSPE of 0.51%. The error metrics used for cells,
defined in (25) and (26), are also used for the pack. We
hypothesize that the discrepancy between the model’s output
voltage and the experimental data at the end of the charge
period, comes from not modeling the passive balancing circuits
present within the pack during charging10.

To obtain the pack temperature, the experimental readings
from four thermocouples attached to specific locations in the
pack (see Fig. 1, red points, roman numeral identifiers for
locations) are averaged and the resulting signal is smoothed
using a Savitzky-Golay filter. The average module temperature
of the model, obtained by averaging over all the module
temperatures, also finds good agreement with the experimental
data with a temperature RMSPE of 0.73%.
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Fig. 4: Battery pack model validation. a) Dynamic input current profile based
on Nissan Leaf data is used in the battery pack simulations. The constant-
current constant-voltage charge portion is (shaded pink region) followed
by a long rest period. b) Experimental voltage measurements (solid black
curve) under the dynamic current profile in a) is compared against the model
output voltage from the calibrated battery pack model (dashed red curve).
c) Experimental pack temperature readings obtained from averaging the data
of 4 thermocouples located within the pack (solid black curve) compared
against the model module temperature prediction from the calibrated battery
pack model (dashed red curve).

V. CASE STUDY 1: NORMALLY-DISTRIBUTED INITIAL
CELL-TO-CELL CAPACITY VARIATION

Having validated the cell and pack models, we now use the
fresh pack model to study the effects of cell-to-cell capacity

10During the experiment [10], the BMS and balancing circuits were active
and thus any additional heat contributions of these circuits is not captured by
our model.

variation on the voltage response of the pack, the temperature
response of the modules, and the properties of the cells.
Specifically, in this section, we consider a pack where all the
cells have initial capacities drawn from a normal distribution,

Q(i)(t = 0) ∼ N
(
Q(i);µ = Qnom,Σ

initial
Q

)
, (17)

with mean fixed to the nominal rated capacity Qnom =
33.1 Ah and with a variable standard deviation Σinitial

Q ∈
[10−4, 1] Ah, [42]. We compare the outputs of this pack model,
with the outputs of a pack model which does not have an initial
cell-to-cell capacity variation.

A. Comparison of pack and module dynamics

We first compare the pack voltage V var
pack(t) and module

temperature T var
module(t) output of a pack with Σinitial

Q > 0
(see (17)) against the pack voltage V nom

pack (t) and module
temperature T nom

module(t) outputs of a pack with Σinitial
Q = 011.

We stress that, even for the pack with no initial capacity
variation, there is still heat exchange between the cells and
modules of the pack. We compute the difference between the
voltage and module temperature time series,

∆Vpack(t) = V var
pack(t)− V nom

pack(t) (18a)

∆Tmodule(t) = T var
module(t)− T nom

module(t) , (18b)

and analyze the distribution of these differences as a function
of the initial capacity variation Σinitial

Q . We see, in Fig. 5,
that the introduction of an initial capacity variation does
introduce small differences in the pack’s voltage and tem-
perature. The voltage is, on average, higher for a fresh pack
with cell-to-cell capacity variation (Fig. 5a). Conversely, the
module temperatures are, on average, relatively similar with
µ∆Tmodule

≈ 0 until the variation becomes sufficiently large,
Σinitial

Q > 0.1 Ah. In addition, the introduction of capacity
variations results in a monotonic increase in the relative spread
of temperature values, Σfinal

∆Tmodule
, experienced by the cells of

the pack (Fig. 5b and right-axis inset). Such an inhomogeneity
of temperatures would likely be exacerbated upon repeated use
of the battery resulting in an acceleration of aging.

B. Propagation in cell-level quantities

In this section, we look to see how cell-to-cell capacity
variation (17) affects other electrical quantities, particularly
the distribution of capacity Q(i),final, the final SoC(i),final, and
the HFR R

(i),final
0 , after the application of a 7088s drive cycle

(Fig. 4a).
Interestingly, we observe (Fig. 6a) that, averaging over

different values of Σinitial
Q , the ratio of standard deviations

between the final and the initial capacity distributions is
Σfinal

Q /Σinitial
Q ≈ 0.92. This indicates that the degree of cell-

to-cell variation decreases after the application of a drive
cycle profile and is consistent with findings from previous
studies [43].

11The superscripts “var” and “nom” differentiate the quantities as being
associated with either a pack with cell-to-cell variation or a pack with all
nominal cells, respectively.
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Fig. 5: Introduction of capacity variation, in the form of (17), results
in small differences in the pack voltage and module temperatures within
the pack. Each plot shows a quantity after the application of the full input
current profile in Fig. 4a at Tamb = 30 ◦C, for different values of the initial
capacity standard deviation Σinitial

Q . a) Distribution of differences in pack
voltage between a pack (18a) with initial capacity variation and without. b)
Distribution of differences in module temperatures (18b) for all modules in the
pack. Insets: the mean (left axis) and the standard deviation (right axis) for
each of the distributions shown as a function of the initial capacity standard
deviation.

Introduction of capacity variation will invariably introduces
variation in the SoC of the cells in the pack (Fig. 6) since SoC
depends on the capacity (3). For simplicity, we assume that the
SoC of all the cells in the pack, prior to the application of the
dynamic current profile, are the same, i.e., SoC(i)(t = 0) =
95% ∀ i. After the application of the drive cycle profile, we
see (Fig. 6b) that the standard deviation of the distribution of
the SoCs Σfinal

SoC , follows a similar trend to that of the standard
deviation of the capacities, suggesting that the initial variation
in the cells’ capacities propagated directly to the cells’ SoCs.

It is shown the distribution of SoC values also affects the
electric parameters. Specifically, we focus our attention on its
effect on the HFR R0 where all cells have the same initial
HFR value. Figure 6c shows that, after applying the drive
cycle profile, the distribution of SoC values also results in
the cells of the pack having a distribution of HFR values
with a standard deviation Σfinal

R0
that grows monotonically with

the initial capacity standard deviation. However, the variation
introduced in the SoC and the HFR, as measured by the
standard deviation, is much less than the variation that is
introduced into the capacity initially, Σfinal

R0
≪ Σinitial

Q .

VI. CASE STUDY 2: INTRODUCING CELLS WITH
DELIBERATELY LOWERED CAPACITY INTO THE PACK

As a second application of the battery pack model, we
explore how the energy utilization of the pack changes when
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Fig. 6: Effect of initial capacity variation on the final cell capacity, SoC
and the high-frequency resistance. Each plot shows the distribution of cell
quantities after the application of the 7088s drive cycle input shown in Fig. 4
for different values of the initial capacity standard deviation Σinitial

Q . a)
Distribution of capacities Qfinal of all the cells in the pack. b) Distribution
of state-of-charge SoCfinal of all the cells in the pack. c) Distribution of
high-frequency resistance Rfinal

0 of all the cells in the pack. Insets: the mean
(left axis) and the standard deviation (right axis) for each of the distributions
shown as a function of the initial capacity standard deviation.

we insert cells with reduced capacity as a function of the
number of these cells.

A. Comparison of energy utilization between ideal and real-
istic pack models

We investigate the effects of cell-to-cell variations in the
battery pack upon introducing cells of lower capacity as a
function of the number of such cells. These lower capacity
cells are equivalent in all other parameters to their nominal
capacity counterparts but have their capacities reduced by a
percentage p ∈ {5, 10, 20, 40} %. For ease of discussion, we
refer to these lower capacity cells as “weak cells” while the
cells with nominal capacity are referred to as “normal cells”.
Correspondingly, a pack containing weak cells is referred to as
a “weak pack” while a pack with only normal cells is referred
to as a “normal pack”. From a pack model where all 192 cells
are normal cells, a number Nweak of these cells are uniformly
randomly picked to replace with weak cells.
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We examine how the pack energy utilization (Ipack ∈ R),

E(t) =

∫ τ

0

|Ipack(t)Vpack(t)|dt , (19)

during the application of the drive cycle (Fig. 4) changes
as a function of p and Nweak compared to the pack energy
utilization obtained from the ideal pack model (1). The total
duration of the drive cycle is denoted by τ which here is equal
to 7088 s. Figure 7 shows the relative difference in energy
delivered by the ideal pack relative to a realistic pack at a
particular time t,

Ereduced(t) = 100×
(
1− Eideal(t)

Erealistic(t)

)
, (20)

where the number of weak cells Nweak and capacity reduction
percentage p are varied and the energy utilization of an ideal
and realistic pack are denoted by Eideal(t) and Erealistic(t),
respectively. In particular, Fig. 7a compares the ideal pack to
a normal pack (i.e., a realistic pack containing only normal
cells). We find that the relative difference in the energy output
of both packs remains within 1% throughout the 7088 drive
cycle12, although the ideal pack consistently overestimates the
amount of energy delivered. As we increase the number of
weak cells in the pack, from Nweak = 0 to Nweak = 39
(Figs. 7b-d) we see that the relative difference of the pack
energy utilization between both packs remains within one per-
cent. The simulations suggest that the pack energy utilization is
relatively insensitive to the additional details that are included
in the realistic model but that are neglected in the ideal model.
Thus, the use of the ideal model to estimate the energy needs
of vehicles (among other applications) is justified.

While we have simulated a battery pack with cells that have
lost up to 40% of their rated capacity, we emphasize that such
cases would be rare for battery packs deployed in EVs that are
controlled by a battery management system (BMS) [44], as the
BMS will trigger a warning to alert the user that maintenance
is needed [45] when the maximum voltage difference between
the cells is greater than 10% of the difference between the
cell’s high and low voltage limits, which here is ∆Vmax =
160 mV (dotted line, Fig. 7 insets).

B. Self-balancing effects at the battery cell-level

To explore how the battery pack energy remains resilient to
cell-to-cell variations, as we see in Section VI-A, we examine
the cell-by-cell energy utilization difference between a weak
pack and a normal pack. A weak pack is chosen where
Nweak = 39 and with p = 20% percentage capacity reduction.
We focus on the first 20 cells (i.e. Modules 1-5, see Fig. 1) in
the pack for ease of presentation: The behaviors seen in these
modules are representative of the other modules in the pack.
In these first twenty cells, we see a total of four weak cells
with indexes 1, 11, 17, and 18; the rest of the cells are normal.

12The large values of ∆E > 1% observed in during the first 60 s of the
drive cycle in Fig. 7 is due to the energy values initially being small for both
ideal and realistic packs. Notably, the absolute difference between the energy
output of the ideal and realistic pack is small at the beginning of the drive
cycle (approx. 1 Wh) even if the relative difference is large (> 10%).
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Fig. 7: The relative difference in energy utilization between an ideal and
realistic pack model is over one driving cycle. Each plot shows the percent
decrease in energy delivered by a pack with weak cells compared to an
ideal pack (1) as a function of time for the 7088s drive cycle shown in
Fig. 4a. The number of weak cells introduced to the pack increases going
down the rows (a to d). The orange curve in d) stops just before 6400s as
the battery pack reaches 0% SoC. Different colors within a given plot denote
different percent of capacity reduction p. Dashed gray line: 0% change in
energy. Shaded region: ± 1% change in energy delivered. Insets: the voltage
difference between the maximum and minimum voltage cells. Inset dotted gray
line: 10% voltage difference BMS alert limit.

The weak cells 1 and 11 are in parallel pairs13 with normal
neighbors while cells 17 and 18 form a parallel pair where
both cells are weak. This is an extreme case of initial capacity
variation but clearly illustrates the effects of these weaker cells
on their neighbors. Here, we use a “modified drive cycle”
that is constructed by taking the pack current profile shown in
Fig. 4a, truncating this profile to the first 15,000 seconds, and
applying this truncated pack current profile sequentially three
times to the weak and normal pack.

We compute for each cell, the energy difference between the

13A “parallel pair” is defined here as two cells connected in parallel
together. Each battery module contains 2 parallel pairs. For example, in
module 1 of the pack, cells 1 and 2 form a parallel pair, and cells 3 and
4 form another parallel pair. There are a total of 96 such pairs in the entire
battery pack.
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total energy-throughput (19), where here τ is equal to 45,000
s, of cells in a weak pack, E(i)

weak, and the cells in a normal
pack E

(i)
norm:

∆E(i) = E
(i)
weak − E(i)

norm . (21)

We see in Fig. 8a that for parallel pair where one of the cells is
weak (e.g. cells 1 & 2), the stronger of the two cells takes on a
greater amount of energy-throughput than it otherwise would
if both of the cells in the branch were normal. In this particular
case, the stronger cell discharges ≈ 40 Wh more energy
compared to the normal case; symmetrically, the weaker
cell discharges ≈ 40 Wh less energy. This “self-balancing”
behavior is seen in other works that have investigated parallel-
connected cells [43]. Thus, we see that weak cells with a
normal partner on the same parallel branch, can be balanced
by its parallel-connected partner thereby mitigating the effect
of cell-to-cell variation.

While this self-balancing effect is beneficial, in that the
effect of the capacity variation on the short-term pack output
energy is small, long-term it can be overall detrimental to the
cells in the pack as bearing higher loads generally also implies
a greater amount of aging. To quantify this, the cell capacity
aging model, (9) and (10), is used to compute the difference,

∆Q
(i)
loss = Q

(i)
loss,weak −Q

(i)
loss,norm , (22)

between the fraction of capacity remaining in the cells of a
weak pack,

Q
(i)
loss,weak =

Q
(i)
initial,weak −Q

(i)
final,weak

Q
(i)
initial,weak

(23)

to the fraction of capacity remaining in the cells of a normal
pack,

Q
(i)
loss,norm =

Q
(i)
initial,norm −Q

(i)
final,norm

Q
(i)
initial,norm

, (24)

after application of the modified drive cycle. A positive value
of (22) implies a greater amount of aging for a cell i in a
weak pack, relative to the amount of aging the same cell
experiences in a normal pack. We see (Fig. 8c) that the cells
which bear a higher energy-throughput due to having a weak
partner experience a significant amount of aging relative to the
aging they would experience in a normal pack. Conversely,
the weaker cells do not age as much as they would have in a
normal pack. This increase in the aging of the normal cells and
simultaneous decrease in the aging of the weak cells, relative
to their aging if in a normal pack, explains the reduction in the
standard deviation in the final capacity distribution relative to
the initial capacity distribution seen in Section V-B (Fig. 6a).
Moreover, we also observe in Fig. 8 that the other normal cells
in the weak pack without weak partners have aged more than
they would have if they were in a normal pack. This suggests
that the initial variation in cell-to-cell capacity results in an
overall increased aging rate of the pack. We emphasize that
these findings are generated by our model and not a direct
experimental finding. Nevertheless, while this type of capacity
variation has not been considered previously, these results are
consistent with the findings of previous models [31], [32].

VII. CONCLUSIONS

In this article, we have constructed a battery pack model
based on data from cells and the pack of a first-generation
Nissan Leaf. We use experimental data to calibrate and validate
the models, both at cell and pack levels. The pack model is
used to investigate the effects of cell-to-cell variation at the
pack level, as well as how this variation changes the dynamics
of individual cells. Variations between the cells of a battery
pack generally arise due to small differences during cell
manufacturing process or it could arise due to inhomogeneous
aging of cells in the pack throughout its lifetime.

Capacity variations are found to affect the cells’ SoCs as
well as their high-frequency resistance. Despite the introduc-
tion of this cell-to-cell variation, we observe that, unless the
variation is particularly severe, within a single application
of a dynamic drive cycle, the effect of these variations on
the pack voltage and module temperatures is relatively small;
however, these small differences can be exacerbated upon
repeated application of drive cycles.

In addition, we find that the pack energy utilization is
relatively insensitive to cell-to-cell capacity variation, as we
see when we deliberately introduced lower-than-nominal ca-
pacity cells into a our realistic pack model and compare it to
the pack energy utilization of an ideal pack. This might be
due the ability of parallel-connected cells to “self-balance”.
Specifically, if a cell with lower-than-nominal capacity is
connected in parallel to a cell with nominal capacity, this
lower-than-nominal capacity cell be accommodated by having
the nominal capacity cell bear a larger energy load. On the
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other hand, this increase in load (energy) borne by the nominal
capacity cells increases the rate of aging for these cells in
a given drive cycle. As such, the “self-balancing” effect of
cells in parallel comes at the cost of increased aging for the
pack overall. Given the results from our simulations, the ideal
pack model is a reasonable approximation for battery packs
with parallel-connected cells, as the “self-balancing” effect
is able to reduce the effects of cell-to-cell variation. This is
particularly true if one cares most about estimating the energy
utilization of a vehicle/truck, as we see that energy utilization
is relatively insensitive to cell-to-cell variation for packs with
parallel-connected cells. Contrarily, if one cares to estimate the
aging of a battery pack, greater care must be taken to account
for cell-to-cell variation effects and the heat exchange between
the cells especially since, as we have seen, these can lead to
a greater degree of aging for the pack overall.

Since this work uses empirical models, the fidelity of these
are limited by the scope of the data that is used to calibrate
them. More data at both the cell and the pack level that cover a
wider range of conditions would allow for the construction of
more accurate pack models. Furthermore, we have constructed
the battery pack model based on the configuration of a Nissan
Leaf battery pack. While some general principles can be
gleaned from the battery pack construction framework we
present here, it is important to note that the specific model
we constructed will not directly generalize to other battery
packs.
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APPENDIX A
BATTERY CELL SUB MODEL CALIBRATION

In this section, we detail how the electric, thermal, and aging
submodels of the battery cell are calibrated.

To calibrate the battery cell electric model, we follow the
procedure detailed in [17], using experimental hybrid power
pulse characterization (HPPC) voltage data from [10], where
the objective is to minimize the percentage root-mean-square
error,

RMSPE(θ) = 100×

√√√√ 1

Nmeas

Nmeas∑
k=1

(
1− Omodel

r [k; θ]

Oexp
r [k; θ]

)2

,

(25)

between the experimentally measured signal Oexp
r and the

model prediction Omodel
r with respect to the model parameters

θ. Here, r distinguishes between the voltage and temperature
signals. To perform the optimization, the Particle Swarm Opti-
mization (PSO) algorithm is used (see Section 9.4 of [46]). A
given experimental signal is collected at a sampling frequency
of fs for a total time of Ttot leading to a total number of
samples, Nmeas = fs · Ttot. For the HPPC experiment, the
sampling frequency is set to fs = 10 Hz and the total time of
the experiment was Ttot ≈ 11.5 hrs. The maximum discharge
C-rate experienced by the cell during the HPPC test is 1C.
The identification error is quantified by the root-mean-square
error

RMSE(θ) =

√√√√ 1

Nmeas

Nmeas∑
k=1

(Oexp
r [k; θ]−Omodel

r [k; θ])
2
,

(26)

The results of this calibration, over three different tempera-
tures and three different replicate cells at each temperature, are
shown in Fig. 9. We pick “Cell 3” as our representative cell14
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Fig. 9: Calibrated parameters for fresh cells as a function of SoC and
temperature for the three cells within the dataset. The ECM parameters,
R0, τ1, and C1, are shown in the rows. Calibrated electrical parameters for
the three different cells are shown in the different columns. Different colors
denote different ambient temperature conditions.

and use the parameters obtained for this cell in the battery
pack analysis.

A representative calibration result (Tamb = 30◦C) of the
ECM and thermal model to HPPC data is shown in Fig. 10.
An RMSE of 3% and 0.24% for the voltage and temperature,

14We were informed through private correspondence with the authors
of [10], that the voltage sense leads of cells 1 and 2 had higher than expected
internal resistance values for the first 3 months of measurements. As such, we
base our analysis on cell 3 parameters to avoid any potential issues arising
from the problem with the leads.
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respectively, is obtained. The agreement, however, is notice-
ably poorer at low SoCs. This is likely caused by inaccuracy
of the Voc(SoC) relation, used in the output equation of ECM
model (2b), obtained from a C/3 discharge experiment. We
see in Fig. 11 that, comparing the pseudo-OCV vs. SoC
relationship obtained from a C/3 capacity test to the OCV
vs. SoC obtained by measuring the battery voltage at the
end of each rest period in an HPPC test (Fig. 10b), there
is a marked difference between the two OCV estimates at
lower (< 25%) SoCs. The calibration of the battery cell
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ge
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)

Measured from
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HPPC data

Fig. 11: Comparison between the voltage from C/3 discharge (used as OCV
in the cell model) and the OCV from HPPC, interpolating the OCV readings
at resting time, done on the same cell at ambient temperature Tamb = 30◦C.

thermal model follows exactly the same procedure, using
the associated HPPC temperature data. From this calibration,
the cell thermal parameters are optimized and the values of

Ccell = 2.9 kJ/K and Rmc = 0.3 kJ/K are obtained.
By assumption, the thermal parameters are independent of
aging15.

To calibrate the semi-empirical aging models, we follow
the procedure first proposed in [20]. For concreteness, we
outline here the calibration procedure for the capacity fade
model, composed of three steps: (1) assuming the capacity loss
model Qloss = σQ·Wh

ζQ
dchg, a nonlinear least-squares problem,

varying the exponent value ζQ, is formulated to minimize the
difference between the experimental capacity fade data and
the capacity loss model output. Fixing the exponent value ζQ
to its optimally found value from the previous step, (2) the
severity factor values σQ corresponding to the optimal ζQ are
obtained. Given the severity factor function values, (3) the
parameters of the severity factor function σQ are calculated
using nonlinear least-squares. This is done separately for the
capacity fade and HFR increase aging models.

To calibrate the capacity fade model (9), we use experimen-
tal capacity data obtained from C/3 capacity tests performed
at every month (11 capacity measurements total) of the ex-
periment. To quantify the error of the overall fit, we evaluate
the mean-square error (MSE) between the experimental data
and the model prediction averaged over the capacity fade
measurements obtained from each month of the experiment,

MSETcell
(ζQ) (27)

=
1

11

11∑
k=1

(
Qmodel

loss [k, ζQ, Tcell]−Qexp
loss[k; ζQ, Tcell]

)2
,

for a fixed value of the exponent ζQ. The square root of
the average (over the 3 temperatures) of the MSE values is
computed and an average RMSE,

RMSE =

√√√√1

3

3∑
m=1

MSEm(ζQ) , (28)

is obtained, which we use as our calibration metric in
Figs. 12, 13, and 15.

We show the results of the calibration in Fig. 12. From
these, we observe the exponent of ζQ = 0.5 yields the best
fit to data and this value is used for the remainder of the
calibration. Fixing the value of the exponent to ζQ = 0.5
and we obtain a set of severity factor values. We then fit
the severity factor function (10) to these values and obtain
the following parameters: αQ = 3.78782 × 103 K, and
γQ = 1.16872 × 104. The comparison of the calibrated
capacity fade aging model (9) output to experimental data is
shown in Fig. 13. Following a similar calibration procedure
to the capacity fade aging model, the HFR increase aging
model is identified using HFR values obtained by calibrating
a different ECM model (as a function of temperature and
SoC) to the HPPC data obtained during each month of the
experiment, under the assumption that the other parameters of
the ECM, τ1 and C1, do not change with aging. We find that
an exponent value of ζR0 = 1.05 in (11) yields the best fit

15The thermal parameters could also be different for each cell in the pack.
In this work, we only consider the case where these parameters are the same
for all cells in the pack.
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Fig. 13: Cell capacity fade aging model fit to data. a) Capacity fade severity
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from the experimental data best curve fittings (black points) as a function of
cell temperature. b) Capacity fade based on C/3 capacity test. Points denote
experimental data obtained from [10, Fig. 3]. Solid lines show the predictions
of the calibrated capacity fade model (9). The calibrated models for 20◦C,
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to the obtained HFR values. Fixing the value of the exponent,
we obtain the values of the severity factor function parameters
which are listed in Table II with the factor in the Arrhenius-
like exponential being αR0

= 7994 K. The functional form
of the severity factor function, and the corresponding number
of parameters, was incrementally modified until a satisfactory
fit to the data could be obtained. The calibrated severity
factor function model (12) is plotted in Fig. 14. The HFR
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Fig. 14: Cell resistance increase severity factor. Calibrated severity factor
function (blue surface) plotted as a function of SoC and cell temperature
against obtained severity factor function values (stars). The parameter values
used in (12) to generate the surface are listed in Table II.

increase model predictions (11) are shown in Fig. 15 against
the obtained HFR values. The models successfully captures the
inferred observed resistance increase for most SoCs > 25%.

TABLE II: Parameter values that define the HFR increase severity factor
function (12).

i 0 1 2 3 4

θ1i 1.56 -6.14 1.76 6.93 3.53
θ2i 25.51 3.67 -4.57 -32.72 28.85

APPENDIX B
CELL VALIDATION RESULTS

Here we validate the battery cell model by comparing its
outputs to experimental data at three different ambient temper-
ature conditions and reference performance tests (RPTs), i.e.
at different stages of aging. The experimental data consists
of a dynamic stress test profile input (Fig. 16) designed to
discharge 60% of the cell’s energy and the outputs are the
cell voltage and surface temperature. Figure 17 shows this
comparison for the cell voltage while Fig. 18 shows it for
the cell temperature. The battery cell model obtains good
agreement with the experimental data with sub-1% error in
both the voltage and the temperature.

APPENDIX C
BATTERY PACK THERMAL MODEL CALIBRATION

In this section, we detail how the thermal model, governing
the heat exchange between cells and modules as explained
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in Section IV-A is calibrated. We follow a similar procedure
used to calibrate the battery cell submodels in Appendix A
but use a different approach to optimization. Specifically,
we minimize the RMSPE (25) between the model output
for the average module temperature against the measured
pack temperature from the first drive cycle data collected
the beginning of the second month of the experiment. As
the pack model is too computationally expensive for use in
a population-based method like PSO, we instead perform a
3-stage parameter search. In the first stage, a grid search is
performed allowing each of the battery pack thermal resistance
parameters, Rd, Rpm, Rmm, Rmc, Rmc, to take the following
values {10−1, 100, 101} holding the values of Cmodule = 102

and Cpack = 106. In the second stage, another grid search
is performed allowing Cmodule ∈ {10, 100, 500, 1000} and
Cpack ∈ {105, 106, 107} while holding the thermal resistances
at the optimal values found from the first stage. Finally, in
the third stage, an ad-hoc manual search is used and the
parameters listed in Table III are found. The validation of the
model is performed in Section IV-B using drive cycle data
collected 10 days into the second month of the experiment.

TABLE III: Thermal model parameters.

Parameter Value

Cmodule (kJ/◦C) 0.4
Cpack (kJ/◦C) 10,000

Rcc (◦C/W) 0.25
Rmm (◦C/W) 0.125
Rpm (◦C/W) 1.0
Rd (◦C/W) 0.5
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