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A B S T R A C T

Parallel string performance imbalances are unavoidable due to manufacturing-related cell-to-cell inhomo-
geneities (e.g. capacity, internal resistance), suboptimal pack and cooling system design. Understanding the
most important features at a single cell and module level influencing the heterogeneity propagation inside the
modules/packs is therefore crucial to limiting the phenomenon. In this article, a methodology combining well-
established non-invasive single-cell characterisation tests with data-driven modelling tools is proposed. Two
batches of twenty new, commercial NMC and NCA cells are first characterised to identify out-of-manufacture
internal resistance and capacity distributions. Then, a 54 test condition full-factorial Design of Experiment
campaign on four cells ladder-parallel connected modules is performed. The experiments inform about how
the cells’ current, State of Charge, temperature distributions and time to self-balance under 0.75C constant
current discharge loads are affected by interconnection resistance, operating temperature, different chemistry
combination and ageing. The multivariate linear model analysis confirms that combining NMC and NCA cells
in parallel is possible both for first and second life applications. Nevertheless, mixing different chemistries and
including an aged cell show a detrimental effect on the balanced performance of the module. The application of
Explainable Machine Learning techniques such as SHAP, Partial Dependence Plots and Individual Conditional
Expectation closes the gap between data-driven models’ interpretability against traditional black box models
while maintaining the advantage of capturing highly non-linear control-response relationships. According to
the results, the interconnection resistance is the most relevant contributor to heterogeneous performance within
the string. In the first and middle phases of the discharge, the distributions of internal resistance and capacity
impact the load imbalance across the cells, respectively. Increasing the operating temperature contributes to
exacerbate the thermal gradient in the string.
1. Introduction

Lithium-ion batteries are an essential technology for meeting the
decarbonisation objectives in the transportation and energy sectors [1].
Depending on the application, individual cells are combined using vari-
ous series and parallel architectures to form modules and packs to meet
the target power and energy requirements [2]. The serial connection
assures greater voltages to contain losses [3]. The parallel connection
allows the package to store an appropriate quantity of energy [4].
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Prior research has effectively identified and synthesised the key
factors that exert the most significant impact on the efficacy of par-
allel cell modules [5]. The lithium-ion cells manufacturing method
is constantly evolving and refining, currently providing high qual-
ity uniformity among fresh cells ensuring the adaptability to mass
scale demand [6]. Despite this, variations in the characteristics of
single cells are possible [7]. Manufacturing-related cell-to-cell varia-
tions could be in the form of internal resistance [8–10], capacity [11,
12], their combination [13–15] and open circuit voltage Open Circuit
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Nomenclature

AI Artificial Intelligence
AICc Akaike Information Criterion
ALE Accumulated Local Effects
ANOVA Analysis of Variance
CAN Controller Area Network
CC-CV Constant Current Constant Voltage
CV Cross Validation
DoE Design of Experiments
DT Decision Tree
GS Grid Search
HPPC Hybrid Pulse Power Characterisation
ICE Individual Conditional Expectation
KPI Key Performance Indicator
MDI Mean Decrease in Impurity
ML Machine Learning
MLP Multi-Layer Perceptron
NCA Nichel Cobalt Aluminium
NMC Nichel Manganese Cobalt
OCV Open Circuit Voltage
PDP Partial Dependence Plot
RF Random Forest
RMSE Root Mean Squared Error
RS Random Search
SHAP SHapley Additive exPlanations
SiC Silicon-doped graphite
SoC State of Charge
SoH State of Health
TTSB Time To Self Balance
VIF Variance Inflation Factor
XML Explainable Machine Learning
XAI Explainable Artificial Intelligence

Voltage (OCV) [16,17]. They all contribute to different forms of im-
balance in parallel strings. Not only single-cell level features but also
module-level characteristics including interconnection resistance [18–
20], the number of cells in parallel [21,22], topology selection [23,24]
and chemistry combination [25,26] have a non-negligible impact on
pack performance. Operating temperature [27–29] and poor-cooling
design induced thermal gradients [30,31] can also affect the unifor-
mity of packs performance. Furthermore, improper dimensioning of
electrical connections between cells might result in increased local
resistance [32]. These local attributes cause load peaks that are detri-
mental to the system’s operation as they change the operating loads on
each cell [33–35]. To fully investigate the behaviour of battery packs
and understand their health evolution, the view must be elevated from
single component to system level.

The principal challenges that require additional exploration are
parallel connection generated load current [11,36,37] and tempera-
ture [19,20] imbalance, over-time internal resistance, capacity [30,38,
39] and ageing rate [5,40,41] cell-to-cell fluctuation. In particular, the
phenomenon of performance imbalance leading to non-uniform ageing
of individual cells has been reported in literature. Specifically, it has
been noted that the prolongation of imbalances is a contributing factor
to this phenomenon. The existing literature presents divergent views
on this matter. While some researchers [13,14,42,43] affirmed that
there exists a convergence and self-balancing attitude among parallel
connected cells over time, others’ [15,44–47] findings oppose this
theory. So far, most of the research focus has been on individual cells’
2

behaviour, with some experimental assessment of module connections
resumed in [5,18]. Coherently, the issue of parallel cell connection
leaves gaps in the knowledge and necessitates further investigation.
Table 1 offers a comprehensive summary of the experimental inves-
tigations carried out on cells that are connected in parallel, extending
the information available in [5,18]. The literature review enables the
inclusion of pertinent details regarding the cells and test characteristics,
control variables and responses. The integration of experiments and
modelling has emerged as a potentially viable substitute for exclusive
experimental endeavours over the last years [48]. Nevertheless, precise
empirical data serves as the foundation for all modelling initiatives.
The investigations are of an experimental nature, with Rumpf [49] and
Hosseinzadeh [50] studies representing exceptions. Both these studies
suggest analysing module behaviour differently, validating equivalent
or electrochemical models at the cell level and expanding them to
represent modules. The method can incorporate most control variables,
including cell attributes and string properties. Thus, architecture, inter-
connection resistance, thermal gradients, and a number of parallel cells
can be combined. Despite their cell-level precision, this methodology’s
main limitation is validating the models at the module level, due to
the large number of factors involved. After cells reach their End-of-Life
(EoL), typically taken as 80% of the original nominal capacity or 200%
of the internal resistance, cells are commonly retired or recycled [51].
The environmental sustainability of battery applications strongly relies
on the usable life extension, generally indicated as second life. Despite
recent studies developed increasingly innovative algorithms for the
selection and redirection of individual cells and entire modules for their
second life [52,53], few have considered the incorporation and com-
bination of different chemistries. As indicated in Table 1, Chang [25]
conducted an experimental study that included NMC, NCA, and LMO
cells to investigate their impact on heterogeneities when connected in
parallel and, consequently, their suitability for second life purposes.
The authors conclude that NMC and NCA cells are compatible, whereas
LMO and NCA cells are not. The literature-available experimental ap-
proaches largely rely on testing small batches (up to 8) of new ‘‘18650’’
and pouch format cells. Few exceptions included ‘‘21700’’ [25] and
‘‘26650’’ [22,49,54] formats. Some studies aimed at increasing the
generalisability of the experiments by enlarging the available statistical
pool [26,39,55] or varying the connection topology [56–58]. Increasing
the number of tested cells can help to estimate the distribution of the
characteristics of out-of-manufacture batches and hence generalising
their statistical influence on modules’ performance. However, little has
been done in parallel cell studies to include representative cells from
new batches of cells.

Uncontrolled test bench connections and laboratory testing con-
ditions can influence the results [18]. Interconnection resistance has
been found to be a significant factor to the imbalanced performance of
parallel strings and should not be conflated with contact resistance. The
contact resistance is modelled as a series component with the cells and
its presence can mitigate current imbalance due to cell-to-cell discrep-
ancies in the string [58]. The interconnection resistance can instead be
modelled between parallel branches and has been observed to have a
detrimental effect on the overall energy balance of a string [62]. Nev-
ertheless, few studies reported measurements of the setup contact and
interconnection resistances [18,19,54,58,59]. Jocher [18] reported an
analysis of the consistency of literature-employed experimental settings
and types of branch current sensors and proposed a novel approach
able to isolate the influence of interconnection resistance via virtual
connections. Virtual connections mimic physical connections without
affecting string performance, acknowledging the importance the setup
can have on the load distribution. Experiments show that this method
can accurately assess string performance and the extent of intercon-
nection resistance contribution. Previous studies have predominantly
utilised shunts or Hall-Effect sensors. The former affects current distri-
bution by changing branch resistance [59], whereas the latter is less
precise [13]. Fill’s study [19] examined branch current measurement

using a contact cable with varying resistance and acknowledged the
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Table 1
Summary of the recent literature on experimental studies on parallel-connected modules.

Reference Study characteristics Control variables Response variables
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Al-Amin [59] 2021 18 650 NMC x x 4p 4 Hall 0.06–0.083 x x x x x x x x
Baumann [5] 2018 18 650 2p
Chang [25] 2022 18 650,

21 700
NMC, NCA, LMO x x 2p 7 Hall N.A. x x x x x x

Chang [17] 2020 18 650 NMC, NCA, LMO x x 2p, 3p 8 Hall N.A. x x x x x x
Cui [55] 2022 18 650 NMC x x 2p, 3p, 4p 54 Hall N.A. x x x x x x x
Diao [22] 2019 18 650,

26 650
LFP, NCA x x 3p 6 N.A. N.A. x x x x x

Fill [19] 2019 Pouch LCO (LNCO) x x 2p 2 Cable 0.3, 1.6, 4.35 [mΩ] 0.08 x x x x
Fill [21] 2019 N.A. N.A. x x 2p 2 Cable N.A. x x x x x
Fill [32] 2019 Pouch N.A. 3s2p 6 Not meas. N.A.
Fill [60] 2020 Pouch LCO (LNCO) x x 2p, 3p 9 Cable 0.3 [mΩ] 0.08 x x x x x x
Fill [16] 2021 Pouch LCO (LNCO) x x 2p 2 Cable 0.3 [mΩ] 0.08 x x x x
Fill [57] 2022 Pouch LCO (LNCO) x x 2p, 3p, 4p 15 Cable 0.3 [mΩ] 0.08 x x x x x x x x
He [52] 2023 N.A. N.A. x 2p 6 N.A. N.A. x x x x
Hosseinzadeh [50] 2021 x N.A. N.A. xa xa xa xa xa xa xa xa xa
Jocher [18] 2021 18 650 NMC x x 2p 4 Shunt 1 [mΩ] 1.2 x x
Li C. [20] 2022 18 650 NMC x x 2p, 4p 4 Hall 0.2, 7 x x xa xa x x x x xa
Li Z. [54] 2022 26 650 LFP x x 2p 2 Shunt 1 [mΩ] 1.3 xa x xa xa xa x x
Liu [34] 2019 Pouch

(High-
Power)

NMC-LCO x 6p 6 Shunt 10 [mΩ] 1 x xa x x xa xa

Luan [23] 2021 18 650 NMC x x 2p 2 Hall N.A. xa xa xa x xa
Luca [58] 2021 18 650 NMC x 8p, 9p 9 Hall 1.42 x x x x x x
Marlow [30] 2023 Pouch

(High-
Power)

NMC-LCO x x 2p 12 Shunt 1 [mΩ] 1 x x x x x x

Reiter A. [56] 2023 Pouch NCM x 14s2p 28 Not meas. N.A.
Reiter C. [9] 2019 18 650 NCA x x 2p 2 Hall N.A. x x
Rumpf [49] 2018 26 650 LFP x Not meas. N.A. xa xa xa xa xa xa xa
Schindler [39] 2021 18 650 NMC x x 2p 28 Shunt 1 [mΩ] 1.2 x x x x x x
Tian [26] 2022 N.A. LFP, NMC x x 2p, 3p, 4p 27 Hall N.A. x x x x
Wang [33] 2022 Pouch NMC x x 2p 2 Hall N.A. x x x xa
Wang [40] 2019 18 650 LCO x x 2p, 2s2p, 2p2s 12 N.A. N.A. x x x x x x x
Ye [61] 2019 18 650 NCA x x 2p4s, 4s2p 8 Not meas. N.A. x x x
Zhang Y. [35] 2018 Pouch LFP N.A. x 5p 5 Hall N.A. x x

Experimental campaign not performed.
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ecessity of cable sizing trade-offs. Signal detectability increases with
igher resistance, while the reduction of cable resistance mitigates the
mpact of measurement techniques on the signal. Hall-effect sensors
ave undergone significant improvements over time and are commonly
avoured in research that places a high value on the impact of the test
ench on the results, given their inclusion in an external circuit [58].

In scenarios where the system exhibits complexity and involves mul-
iple variables, it is imperative to establish a structured and controlled
xperimental design to guarantee the precision and dependability of
utcomes. The recent interest in implementation of Design of Exper-
ments (DoE) in the battery community is attributed to its capability
o identify the most significant factors in a system, resulting in cost
avings through reduced experimentation time and resources [63].
revious applications encompass various areas such as the ageing of
ndividual cells, energy capacity, electrode formulation and material
ynthesis, thermal design, and charging [64]. Some studies are also
vailable on pack-level thermal design, with optimisation of the cooling
ass properties [65] and cooling design structure [66]. In addition,

he empirical data acquired through DoE can be employed to define
arameters for theoretical models. Nevertheless, the empirical models
re usually confined to linear or quadratic relationships, which may
ot be sufficient to describe the effects of individual cell properties
nd module features on system imbalances. The results obtained from
oEs are commonly subjected to statistical techniques such as Analysis
f Variance (ANOVA) and graphical investigation for analysis [67].
ecently, researchers have focussed on leveraging the accuracy of
achine Learning (ML) modelling techniques for the identification of

he feature-response relationships [68,69]. Despite exhibiting robust
redictive capabilities, ML models are commonly acknowledged to
ave limitations in terms of ‘‘transparency’’ [70]. This can pose a
hallenge in ‘‘screening’’ type studies [71]. To this end, Explainable
achine Learning (XML) algorithms have been established as effective
rtificial Intelligence (AI) techniques [72]. These algorithms provide
arious metrics for questioning the ML models decisions and enhanc-
ng their interpretability. Faraji et al. [73,74] proposed a systematic
ethodology for the analysis of the impact of manufacturing process on
3

he electrochemical properties and performance of cells. These studies
tilise XML techniques such as Mean Decrease in Impurity (MDI),
hapley values and Accumulated Local Effects (ALE) to derive insights
n the importance of high-volume manufacturing features and their
ontributions to cells’ Key Performance Indicator (KPI).

The examination of the literature exposes certain gaps. The pre-
onderance of testing at the module level was executed on a pair
f cells that were connected in parallel. While crucial for compre-
ending the sources of imbalances in the module, these factors often
ncompass magnitudes that exceed those encountered in practical sce-
arios involving a greater quantity of cells. The limited size of the
arallel-connection studies batches hinders the statistical validity of
ariations in cell characteristics, thereby posing a challenge to the
eneralisation of findings due to the absence of a link with the typical
istributions of freshly produced cells. Few precise studies emphasise
he importance of controlling the impact of the experimental envi-
onment on phenomena occurring at the module level. Despite being
idely recognised as a critical factor in the non-uniform performance
f the cells within modules, the mapping and assessment of electrical
onnection resistances are infrequently conducted, which is a topic of
ontroversy [75]. The employment of Hall effect sensors for current
onitoring in experimental research was deferred until recent years

wing to their inadequate precision, and instead, shunt-type sensors
ere favoured. The capacity of Hall-type sensors to integrate with
n external circuit without disrupting the current distribution in the
tring, coupled with their progressively improving precision, are crucial
actors in detecting the origins of heterogeneity that will not depend
n the experimental setup. Notwithstanding the growing interest in
oE, previous research has solely concentrated on its application at

he level of individual cells. The utilisation of the DoE methodology in
nvestigating modules and packs is a crucial aspect as it pertains more
losely to practical battery applications. Despite its potential to enhance
nalytical capabilities, the utilisation of emerging ML modelling and
ransparency-enhancing approaches to investigate modules and packs
eature importance has been limited. To enable such investigations, this
ection aimed to address the dearth of comprehensive data that is often
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Fig. 1. Analysis flowchart: principal stages and methods involved.

encountered in the literature, which may be attributed to the limited
scope of experimental studies that focus on cell pairs or the absence of
information pertaining to the involved cells and experimental setups.

The ability to anticipate anomalous behaviours of parallel cells is
crucial to ensuring the longevity and safety of battery packs. It is
necessary to understand the predominant factors contributing to the
inconsistent performance of the module and leverage this information
to create predictive models for system optimisation. To the best of
the authors’ knowledge, there have been no previous attempts to
apply a DoE at a module level for purposes other than thermal design
optimisation [65,66]. Furthermore, there has been a lack of thorough
utilisation of XML techniques to identify and prioritise the influence
of features on battery systems imbalanced performance. Following the
aforementioned literature review and gap analysis, the novelty and
contributions of this study can be summarised as follows:

• Experimentally investigate the impact of individual cell and
module properties on the performance of parallel connected
cells: A parallel module-level experimental campaign is for the
first time conducted using the concepts of a full-factorial DoE, al-
lowing to consider all features independently and thereby discern
their individual impact and interactions among control variables.

• Identify the most influential elements in modules’ imbal-
anced performance: The DoE campaign ensures results’ statis-
tical relevance and allows to methodically isolate and rank the
impact of key factors such as interconnection resistance, operat-
ing temperature, cells chemistry combination and ageing impact
on parallel strings current, temperature and time-to-self balance
deviations.

• Combine novel interpretable machine learning techniques
with established linear regression strategy: Novel XML tech-
niques together with established statistical analysis are applied
to increase models predictability by capturing non-linear rela-
tionships and elevate their interpretability. Neural Networks and
Random Forest models are trained and optimised to get alter-
native information to multivariate linear regression, outlining
their benefits and drawbacks in unveiling parallel connected cells
heterogeneous performance contributors.

The article is organised as follows. Section 2 presents the method-
ology and developed framework for testing analysis and feature im-
portance derivation. The experimental strategy and practical details
are outlined in Section 3 which extends from the individual cell char-
acterisation campaign through to the test bench verification and the
execution of the DoE. Section 4 derives a multivariate linear regres-
sion model for experimental data analysis and identifies the major
factors influencing the modules’ imbalanced performance. Following
that, in Section 4, significant ML models are compared and submitted
to interpretability-expanding techniques to validate their benefits and
limitations over traditional statistical approaches. Finally, in Section 5,
the most important findings, conclusions and future research directions
are pointed out.
4

Fig. 2. Graphical representation resulting from the four factors and respective levels
of the full-factorial DoE.

2. Methodology

The process of determining and prioritising the factors that con-
tribute to the uneven performance of modules involves a series of steps,
which are reported in Fig. 1. The initial step entails the preparation
and execution of a DoE campaign. Step 2 is about data curation,
filtering and management while the subsequent procedures facilitate
the attainment of two distinct methodologies for conducting feature
analysis. In Step 3, the DoE results are post-processed and the statistical
and ML models are trained. Step 4 focuses on enhancing the models’ in-
terpretability. The first feature analysis approach relies on conventional
multivariate linear regression, which involves minimising the Akaike
Information Criterion (AICc) to reduce the number of variables [76].
The second approach aims to enhance the interpretability of machine
learning models by leveraging XML techniques while capitalising on
their accuracy.

2.1. Design of experiments

Various areas of study in DoEs have been documented in the lit-
erature [64], with this paper falling under the ‘‘screening’’ definition.
A screening or characterisation study aims to identify and rank the
relevant features to the interested variables and responses. Technically,
a rich and representative dataset is first needed for a comprehensive
study of the influence of the multiple elements on the uneven per-
formance of modules. There are several distinct stages involved in a
DoE [77]. First, the control parameters, as well as their ranges and
levels, are chosen based on the literature, resulting in a cube such as the
one reported in Fig. 2 for visualisation purposes. According to the ex-
pert’s view and literature review, the interconnection resistance could
extend up to a 2.5% ratio to the energy cell’s internal resistance [78].
In this study, it ranges from 0, 1 to 3 mΩ to include poor busbar
design scenarios, as detailed in Table 2. The testing temperatures (10
◦C, 25 ◦C, 40 ◦C) are selected to match the typical laboratory temper-
atures and hence most comparable to prior and future investigations
as well as real-world operating conditions [79]. The choice of NMC
and NCA chemistries is based on their comparable characteristics and
potential suitability for re-purposing in second-life applications [25].
A ‘‘Mix’’ chemistry configuration refers to a combination of two NMC
and two NCA cells in the parallel string being tested. Although mixing
chemistries is an unconventional approach, recent publications are
exploring hybrid configurations of power and energy cells [80]. The
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Table 2
List of the control and response variables included in the study. 𝑁𝑝 refers to the number of cells connected in parallel (in this study, 𝑁𝑝 = 4). 𝐼𝐶𝑒𝑙𝑙𝑘 denotes the current delivered
by the 𝑘th cell, 𝐼𝑀𝑜𝑑 is the module input current. 𝑇𝐴𝑚𝑏 is the ambient temperature, 𝑆𝑜𝐶𝐶𝑒𝑙𝑙𝑘 and 𝑇 𝑆𝑢𝑟𝑓

𝐶𝑒𝑙𝑙𝑘 are the SoC and surface temperature of the 𝑘th cell, respectively. 𝑡1, 𝑡2, and
𝑡𝑒𝑛𝑑 are the time instants used to split the cell current distribution, as depicted in Fig. 3.

Control variables Levels Response variables Unit

Interconnection resistance [mΩ] [0, 1, 3] 𝜎𝐼𝑆𝑡𝑎𝑟𝑡 =
1
𝑡1
∫ 𝑡1
0

(

√

1
𝑁𝑝−1

∑𝑁𝑝

𝑘=1(𝐼𝐶𝑒𝑙𝑙𝑘 − 𝐼𝑀𝑜𝑑∕𝑁𝑝)2
)

𝑑𝑡 (1) [A]

Temperature [◦C] [10, 25, 40] 𝜎𝐼𝑀𝑖𝑑 = 1
𝑡2−𝑡1

∫ 𝑡2
𝑡1

(

√

1
𝑁𝑝−1

∑𝑁𝑝

𝑘=1(𝐼𝐶𝑒𝑙𝑙𝑘 − 𝐼𝑀𝑜𝑑∕𝑁𝑝)2
)

𝑑𝑡 (2) [A]

Chemistry [−] [NMC, NCA, Mix] 𝜎𝐼𝐸𝑛𝑑 = 1
𝑡𝐸𝑛𝑑−𝑡2

∫ 𝑡𝐸𝑛𝑑
𝑡2

(

√

1
𝑁𝑝−1

∑𝑁𝑝

𝑘=1(𝐼𝐶𝑒𝑙𝑙𝑘 − 𝐼𝑀𝑜𝑑∕𝑁𝑝)2
)

𝑑𝑡 (3) [A]

Ageing [−] [Aged, Unaged] 𝛥𝑆𝑜𝐶𝑀𝑎𝑥 = max(𝑆𝑜𝐶𝐶𝑒𝑙𝑙𝑘) − min(𝑆𝑜𝐶𝐶𝑒𝑙𝑙𝑘) (4) [%]
𝛥𝑆𝑜𝐶𝐸𝑛𝑑 = max(𝑆𝑜𝐶𝐶𝑒𝑙𝑙𝑘|𝑡=𝑡𝐸𝑛𝑑

) − min(𝑆𝑜𝐶𝐶𝑒𝑙𝑙𝑘|𝑡=𝑡𝐸𝑛𝑑
) (5) [%]

𝛥𝑇𝑀𝑎𝑥
𝑁𝑒𝑡 = max(𝑇 𝑆𝑢𝑟𝑓

𝐶𝑒𝑙𝑙𝑘 − 𝑇𝐴𝑚𝑏) − min(𝑇 𝑆𝑢𝑟𝑓
𝐶𝑒𝑙𝑙𝑘 − 𝑇𝐴𝑚𝑏) (6) [◦C]

𝜎𝑇𝑀𝑒𝑎𝑛 =
1

𝑡𝐸𝑛𝑑−𝑡1
∫ 𝑡𝐸𝑛𝑑
𝑡1

(

√

1
𝑁𝑝−1

∑𝑁𝑝

𝑘=1(𝑇
𝑆𝑢𝑟𝑓
𝐶𝑒𝑙𝑙𝑘 − 𝑇𝐴𝑚𝑏)2

)

𝑑𝑡 (7) [◦C]

TTSB [s]
Fig. 3. Visualisation of the eight response variables (in red) extracted in this study from the experimental results (in grey) for one of the 54 performed experiments. (a) Current,
(b) temperature, (c) SoC related responses, (d) TTSB. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
rationale behind this approach is to combine the advantages of both
chemistries, i.e., high power and high energy density, respectively.
In this context, the proposed methodology is a first step towards the
development of a framework that can be used to assess the performance
of hybrid configurations. Finally, the addition of a cell with low State
of Health (SoH) is done in order to gain a better knowledge of the
behaviour of cells when there is either a failed contact or a high
resistance and capacity gradient present.

A set of eight response variables grouped in four distinct cate-
gories is chosen based on the specific phenomena under analysis in
this study and are reported in Table 2. Current distribution entails
the first category. As shown in Fig. 3, there are three stages to the
current propagation among the four cells during discharge. The first is
convergent, the second is stable, and the third is divergent. Depending
on the stage, the current average standard deviation at the beginning,
middle and end of cycle (𝜎𝐼𝑆𝑡𝑎𝑟𝑡, 𝜎𝐼𝑀𝑖𝑑 , 𝜎𝐼𝐸𝑛𝑑) are calculated as in (1),
(2) and (3), respectively. The second group is closely related to the
first one and gives information about the maximum absolute and the
end difference in State of Charge (SoC) of cells (𝛥𝑆𝑜𝐶 , 𝛥𝑆𝑜𝐶
5

𝑀𝑎𝑥 𝐸𝑛𝑑
computed as shown in (4) and (5), respectively). The SoC of each
individual cell is determined utilising Coulomb counting [81]. The
third variable category pertains to surface temperatures. The symbols
𝛥𝑇𝑀𝑎𝑥 and 𝜎𝑇𝑀𝑒𝑎𝑛, calculated according to (6) and (7), denote the
maximum temperature increase and the mean standard deviation of
the temperature gradient across cells throughout the discharge process,
respectively. The Time To Self Balance (TTSB) characterises the time
taken (measured in seconds) by the cumulative balancing currents
to settle down to 200 mA during the post-discharge period. Fig. 3
provides a visual representation of the significance of the eight response
variables.

Subsequently, the module experimental design is chosen. The se-
lection of a ‘‘Full-Factorial’’ DoE is based on the fact that it is a
comprehensive methodology that entails the examination of all con-
ceivable combinations of the four factors and their respective levels,
leading to a total of 54 tests. To mitigate the impact of developing
changes in individual cells characteristics over multiple cycles, a ran-
domised sampling methodology is employed. The methodology entails
the random selection of groups comprising four cells from the newly
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available batches. This means that at every test run four cell numbers
(1–20) and module locations (1–4) are randomly allocated. In this
way, it is not the same set of cells being tested throughout the entire
campaign. By decreasing the number of cycles that each cell undergoes,
it is feasible to mitigate the impact of untraceable ageing on the
tests. The initial 30 experiments are incorporated within an I-optimal
design [82], which is formulated using precise objective optimality
criteria through the utilisation of Design Expert software [83]. The
primary benefit of this methodology lies in the potential to construct
an initial model. The inclusion of an intermediary stage can prove
advantageous in validating the efficacy of the process and managing
any potential errors. In addition, optimal designs have the potential
to yield effective models with reduced experimentation, provided that
their outcomes align favourably with those of the full-factorial DoE.
Owing to the significance and magnitude of this particular area of
investigation, it has been excluded from the objectives of the present
study and reserved for subsequent research.

The DoE procedure encompassing the execution of experiments is
delineated in Section 3. The data collected is analysed using both tra-
ditional statistical models such as multivariate linear regression based
on DoE and modern machine learning models like Neural Networks and
Random Forests. The ultimate objective of the screening investigation
is to ascertain and prioritise the effect of included features. The control
variables are subject to screening through either AICc or ranking and vi-
sualisation using XML techniques, depending on the selected empirical
model.

2.2. Modelling

The aim of conducting a systematic DoE is to acquire a compre-
hensive empirical model that establishes and unveils a relationship
between the control and response variables, denoted as 𝑥 and y, re-
spectively. Prior to the application of any modelling methodology, it is
preferred to first perform feature scaling. This particular stage holds
significant importance for both conventional empirical and machine
learning models. When employing polynomial models, the process of
scaling the input features enables a direct comparison of the coefficients
(𝛽). Through the modelling process, the coefficients can be ranked
based on their magnitude. To reduce input sensitivity in ML models,
feature scaling is fundamental. The normalisation of features in this
study involves the removal of the mean and scaling to unit variance.
This is achieved through the use of the formula:

𝑧 =
(𝑥 − 𝜇)

𝜎
(8)

here 𝜇 represents the feature mean and 𝜎 represents its standard
eviation.

Multivariate linear models are conventionally derived from full
actorial DoE. The MLR model is selected for its transparency and
bility to facilitate interpretability of input–output relationships in a
oherent manner. This is achieved by enabling a fair comparison of the
onsidered features through model weights. The present investigation
ncorporates main effects, two-way interaction terms, and second-order
olynomials to account for potential curvature when modelling the
esponses. The exclusion of higher orders polynomials has different
easons, including the sensitiveness to the order of the polynomial, the
endency to overfit and the worsening of interpretability. The model is
resented in the form:

�̂� = 𝛽0 +
𝑘
∑

𝑖=1
𝛽𝑖𝑧𝑖 +

𝑘−1
∑

𝑖=1

𝑘
∑

𝑗=𝑖+1
𝛽𝑖𝑗𝑧𝑖𝑧𝑗 +

𝑘
∑

𝑖=1
𝛽𝑖𝑖𝑧

2
𝑖 + 𝜖 (9)

here 𝑘 is the number of control variables, 𝑧𝑖 refers to the 𝑖th nor-
alised control variable (with 𝑖 = 1,… , 𝑘), and 𝜖 represents the random

rror. In total, there are 14 coefficients, in addition to the intercept or
ias (𝛽0). The estimation of 𝛽 parameters is achieved through the least-
quares method. MLR models perform well in linear spaces and can
6

o

andle a large number of features. Nevertheless, they show decreasing
erformance when the signal to noise ratio is high or the underlying
unction is not truly linear or non-monotonic. To unveil non-linear
elationships, ML models such as RF and NN allow to approximate
ore complex shapes, to the detriment of features importance un-
erstanding. As it is shown in Section 4, NN responses can be more
nterpretable than RF models and closer to the MLR ones. Besides, NN
odels present a larger set of tuneable hyperparameters, which can

mprove the predictability of the models and capture strongly non-
inear relationships. Consequently, NN are included in this paper as
hey can play a junction role between the interpretability of MLR
nd the predictability of RF models. Despite that, they are still prone
o overfitting and commonly addressed as black-box models. Hence,
he nature of variable interactions and the high level features learned
y the network require XML methodologies to be discernible. Further
etails on the selected ML models are offered in Appendix A.

To establish whether linear regression is sufficient in the evalu-
ted case or more complex models are required to unveil the input–
utput relationships, the three different approaches are benchmarked.
o evaluate the performance of the models and the accuracy of the
epresentations, here the metrics of coefficient of determination (𝑅2)

and Root Mean Squared Error (RMSE) are computed according to
Eqs. (10) and (11), respectively.

𝑅2 = 1 −
∑𝑁

𝑖=1(𝑦𝑖 − �̂�𝑖)2
∑𝑁

𝑖=1(𝑦𝑖 −
1
𝑁

∑𝑁
𝑗=1 𝑦𝑗 )2

(10)

𝑅𝑀𝑆𝐸 = 1
𝑁

𝑁
∑

𝑖=1
(𝑦𝑖 − �̂�𝑖)2 (11)

2 and 𝑅𝑀𝑆𝐸 are statistical metrics commonly used in regression
nalysis, where 𝑁 is the number of observations. 𝑅2 quantifies the
roportion of variance in the dependent variable that can be accounted
or by the independent variable(s) in the model. 𝑅𝑀𝑆𝐸 measures
he standard deviation of the residuals. Given that the dataset under
nvestigation for this study exhibits a restricted number of samples, a
eliable validation strategy is critical. For this purpose, the K-fold Cross
alidation (CV) approach is utilised to mitigate estimation bias and
ield a more generalisable assessment of model accuracy. While the
in K-fold algorithm could be any values between 2 and the number

f samples minus 1, here without the loss of generality, the value of
is chosen to be 5 to ensure that the populations are of sufficient

ize for both the training and testing (validation) phases. This means,
he dataset is partitioned into a ratio of 80% for training and 20% for
alidation-testing, and the procedure is applied to all five groups upon
andom selection of samples.

.3. Feature importance

The present study employs a statistical technique to restrict the
nclusion of linear, interaction and quadratic terms in the MLR model,
hereby the corrected AICc is minimised [76].

𝐼𝐶(𝑀𝑘) = −2 log𝐿(𝑀𝑘) + 2𝑘 (12)

𝐼𝐶𝑐(𝑀𝑘) = 𝐴𝐼𝐶(𝑀𝑘) +
(2𝑘2 + 2𝑘)
(𝑛 − 𝑘 − 1)

(13)

The logarithm of the likelihood function, denoted as log𝐿(𝑀𝑘), pertains
o the model 𝑀𝑘. The variable 𝑘 represents the number of features
ncorporated in the model, while 𝑛 denotes the size of the sample. This
ethodology involves the reduction of the control variables to only

tatistically significant ones. Then, the process of feature scaling serves
o ensure comparability of coefficients and enhance interpretability. In
act, in this case the MLR model feature importance analysis can be
erformed via its resulting weights.

Opaque machine learning models necessitate alternative method-

logies for determining feature ranking, as traditional methods are not
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applicable [71]. Prior studies have delineated the present Explainable
Artificial Intelligence (XAI) methodologies that are appropriate for
providing post-hoc interpretability for opaque models [84]. The Model-
agnostic XML techniques are not reliant on any specific model and
are intended to have broad applicability, in contrast to Model-specific
techniques. Their operations are solely based on the relationship be-
tween the control and response variables. The present investigation
employs SHapley Additive exPlanations (SHAP) [85] as the method of
choice for identifying feature relevance. Additionally, the study utilises
the capabilities of Partial Dependence Plot (PDP) [86] and Individual
Conditional Expectation (ICE) [87] plots for visualising feature impact.

Lundberg and Lee [85] proposed the SHAP technique, which utilises
game theory-derived Shapley values to provide an explanation for indi-
vidual predictions. The Shapley value can be defined as the mean level
of contribution that a given member provides to the overall value of
the coalition, taking into account all feasible permutations [88]. Given
the requirement of theoretically sampling the coalition values for every
possible feature permutation, the model must undergo an equivalent
number of evaluations. As the number of features increases, there is
a corresponding rise in computational effort. Lundberg and Lee [85]
propose the utilisation of the Shapley Kernel as a means to address the
aforementioned constraint, thereby enabling the estimation of Shapley
values with a significantly reduced number of samples. However, in
our scenario with four input features it is possible to quickly sample
the resulting 64 coalitions. The explanation can be defined as:

𝑔(𝑧′) = 𝜙0 +
𝑀
∑

𝑗=1
𝜙𝑗𝑧

′
𝑗 (14)

where 𝑔 is the explanatory model, 𝑧′ is the simplified features, 𝑀 is the
aximum coalition size and 𝜙𝑗 are the Shapley values for a feature 𝑗,

ncluded in the following equation.

𝑗 =
∑

𝑆⊆𝐹⧵{𝑗}

|𝑆|!(|𝐹 | − |𝑆| − 1)!
|𝐹 |!

[𝑓𝑆∪{𝑗}(𝑥𝑆∪{𝑗}) − 𝑓𝑆 (𝑥𝑆 )] (15)

Following from game theory, in Eq. (15) 𝐹 is the number of features
used in the model, 𝑆 is a subset of the features, 𝑥𝑆,𝑆∪{𝑗} are the
vector of feature values of the instance to be explained and 𝑓 (⋅) is the
value function. The present study is concerned with the use of Shapley
values as a means of quantifying variable importance, which has been
previously demonstrated in research as an alternative to the conven-
tional functional ANOVA approach [89,90]. However, SHAP does not
quantify the significance of a particular feature in the actual world;
rather, it measures the importance of a feature to the model. Therefore,
the process of extrapolating beyond the confines of the given space
is intricate. The SHAP method facilitates the identification of feature
importance, however, it exhibits limitations in terms of visualising the
distribution of feature impacts across the evaluated space. This study
incorporates ICE plots and PDPs to facilitate the visualisation of feature
importance. ICE plots depict a single line per instance, illustrating the
alteration in the instance’s forecast as a feature is modified while the
remaining features remain constant at their observed values [87]. The
use of PDPs enables the assessment of the impact of one or two specific
features on the anticipated outcome of a ML model, while controlling
for the average effect of the remaining features [86]. Mathematically,
they can be expressed as:

𝑃𝐷𝑋𝑆
(𝑥𝑆 )

def
= E𝑋𝐶

[𝑓 (𝑥𝑆 , 𝑋𝐶 )] = ∫ 𝑓 (𝑥𝑆 , 𝑥𝐶 )𝑝(𝑥𝐶 )𝑑𝑥𝐶 (16)

The function 𝑓 (𝑥𝑆 , 𝑥𝐶 ) represents the response of a given set of samples,
𝑥𝑆 and 𝑥𝐶 , for the features in 𝑋𝑆 and 𝑋𝐶 , respectively. The PDPs
and ICE plots are connected through the evaluation of the response
function 𝑓 (𝑥𝑆 , 𝑥𝐶 (𝑖)) at 𝑥𝑆 , which defines each individual line. Ac-
cording to [72], the use of PDPs enables the visualisation of the
feature of interest and response variable are related, thereby facilitating
the identification of whether the relationship is linear, monotonic, or
more intricate in nature. However, the principle of PDPs based on
7

Table 3
Technical specifications of the tested cells [94,95].

Manufacturer LG Chem Samsung
Model INR21700-M50T INR21700-50E
Positive electrode Li(NiCoMn)O2 Li(NiCoAl)O2
Negative electrode Graphite and silicon
Size (diameter × length) 21.44 × 70.80 mm 21.25 × 70.80 mm
Weight 69.25 g 69.00 g
Nominal capacity (𝐶𝑛) 4.85 Ah 4.90 Ah
Nominal voltage 3.63 V
Charge cutoff voltage 4.2 V
Discharge cutoff voltage 2.5 V
Cutoff current 50 mA

averages does not necessarily eliminate the possibility of interference
from interacting variables. This limitation is circumvented by the com-
plementary character of PDPs and ICE plots, which perform optimally
when combined as in the presented research.

3. Experimental study

The experimental configuration employed in this study comprises
a battery cycler (Arbin Instruments LBT22013), Hall effect sensors
(Honeywell SS495A), an external circuit for the 5 V power supply and a
self-constructed cell holder. The experimental setup thermal chamber
(Amerex IC500R) is used to test at varying temperatures, specifically
10 ◦C, 25 ◦C, and 40 ◦C. All measurements are transmitted to a
designated host computer equipped with the MITS Pro software. The
data obtained from an auxiliary measurement system that records sig-
nals from thermocouples and voltage sensors are transmitted through
a Controller Area Network (CAN) communication protocol. Further
details on the Stanford Energy Control Laboratory testing equipment
can be found in [91,92]. The research endeavour is divided into two
distinct segments. The initial focus of the experiment pertains to the
assessment of the distributions of individual cell parameters to iso-
late their contribution to the parallel connection performance and to
identify eventual outliers. The second part is focused on capturing the
performance of the module by developing the experimental setup and
limiting its influence on the results of the DoE campaign.

3.1. Single cells’ characterisation

A total of 40 cells are characterised independently by connecting
them individually to the channels of the battery cycler at its lowest and
most precise range. Two sets of 20 newly manufactured LGM50T and
Samsung50E cells are characterised. The technical specifications of the
tested cells are reported in Table 3. Both LG and Samsung cells utilise
Silicon-doped graphite (SiC) based negative electrodes. The positive
electrode of LG cells consists of Nichel Manganese Cobalt (NMC) 811
oxide, whereas Samsung cells utilise Nichel Cobalt Aluminium (NCA)
oxide as their cathode material. The derivation of cell-to-cell variabil-
ity is carried out to enhance the interpretability of any module-level
imbalance that may arise due to cells’ heterogeneity. The protocol for
measuring capacity involves a charge of Constant Current Constant
Voltage (CC-CV) at a rate of C/3 until a cut-off current of 50 mA is
attained at 4.2 V. This is followed by a Pseudo-OCV discharge at a rate
of C/20 until cut-off at 2.5 V. The procedure for characterising ohmic
resistance involves a subsequent charge with identical properties to the
initial charge, succeeded by discharges at 10% state of charge at a rate
of C/3, and a resting period of one hour to reach a state of equilibrium.
What follows is a Hybrid Pulse Power Characterisation (HPPC) profile,
characterised by a charge/discharge ratio of 0.75 and pulse durations
of 10 s, as per automotive standard [93]. The experiments at the single-
cell level are conducted at a temperature of 23 ◦C, with results reported

in Table 4.
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Table 4
Single cell campaign capacity and internal resistance measurement results.

Variable Unit NMC NCA

𝜇𝑥 𝜎𝑥
𝜎𝑥
𝜇𝑥

[%] 𝜇𝑥 𝜎𝑥
𝜎𝑥
𝜇𝑥

[%]

Temperature [◦C] 23.20 0.47 2.03 23.22 0.41 1.77
Capacity [Ah] 4.86 0.03 0.68 4.96 0.01 0.28
Ohmic Res. [mΩ] 26.95 0.65 2.41 19.32 0.49 2.53

90% SoC [mΩ] 26.74 0.59 2.20 18.96 0.38 2.00
80% SoC [mΩ] 26.38 0.58 2.19 18.77 0.45 2.42
70% SoC [mΩ] 26.30 0.58 2.19 18.71 0.42 2.23
60% SoC [mΩ] 26.36 0.58 2.22 18.84 0.44 2.32
50% SoC [mΩ] 26.43 0.61 2.29 18.89 0.45 2.39
40% SoC [mΩ] 26.56 0.63 2.35 18.86 0.47 2.47
30% SoC [mΩ] 26.82 0.65 2.43 19.14 0.50 2.61
20% SoC [mΩ] 27.13 0.68 2.49 19.71 0.55 2.79
10% SoC [mΩ] 29.84 0.98 3.27 21.97 0.73 3.34

Fig. 4. Circuit diagram of the module test bench with implemented sensors locations.

Table 5
Experimental setup contact and interconnection resistances measurement results.

Item 𝜇 [mΩ] 𝜎 [mΩ]

𝑅𝐼𝑛𝑡→(𝐹𝑢𝑙𝑙−𝑏𝑢𝑠𝑏𝑎𝑟) 5.4𝑒−3 8.18𝑒−4
𝑅𝐼𝑛𝑡→(𝑆ℎ𝑢𝑛𝑡=1 mΩ) 1.05 0.08
𝑅𝐼𝑛𝑡→(𝑆ℎ𝑢𝑛𝑡=3 mΩ) 3.02 0.05
𝑅𝐶𝑜𝑛𝑡𝑎𝑐𝑡 1.21 0.04

3.2. Module-level measurement setup

The experimental campaign required to minimise the impact of
the setup on the current distribution. Initially, the extent of the in-
terconnection resistances of the three busbar types manufactured is
established by measuring via shunt-type resistors the voltage drop
across each segment. Subsequently, the contact resistance amid the cell
poles and the experimental arrangement is evaluated at progressively
elevated levels of pressure. This is achieved by tracking the torque
applied to the bolt-type connections via a dynamometric wrench and
measuring the resulting change in voltage drop and hence resistance
values. The critical aspect that is mapped pertained to the variability
between each of the four contact points, as they are in series with
the cells. The applied torque is chosen to achieve both minimum
contact resistance within the branch and minimum oscillation among
the branches. Table 5 presents a summary of the outcomes obtained
from the mapping of interconnection and contact resistances.

The literature indicates that the performance of the module is
influenced by the positioning of the cells within the string. Conse-
quently, the decisions pertaining to the placement of the aged cell
and the combination of NMC and NCA are approached from a worst-
8

case scenario standpoint. This means ensuring the largest possible
contribution to the string performance imbalance. In the DOE at the
‘‘Aged’’ levels, one old cell is positioned at the farthest distance from
the terminals. The ‘‘Mix’’ level comprises a pair of NCA cells situated in
proximity to the terminals, with the remaining two positions occupied
by NMC cells. Likewise, the decision to utilise the ladder connec-
tion is also undertaken to pinpoint the most unfavourable operational
circumstances for a 4P configuration. The obtained results can be
directly transferred to other architectures, such as the ‘‘Z’’ one, which
are commonly showing lower imbalance levels. The measurement of
current is conducted through the utilisation of Hall effect sensors
that are strategically positioned within the negative pole of every
cell. Fig. 4 presents the electrical circuit diagram of the experimental
setup, including the tracked resistances and the Hall sensors locations.
The Hall sensors are embedded within ferrite rings to facilitate the
transmission of their magnetic field and enhance their signal. The
stability of the signal is achieved by means of connectors’ upward
and downward filters. Before starting the campaign, every Hall sensor
underwent calibration procedures utilising established current values
in order to reconstruct the mapping of voltage and current curves.
The low sensitivity drift of 0.05[%∕K] guarantees that there is minimal
interference of temperature in the measurements. The internal circuit
of the cycler is utilised to measure the terminal voltage. Thermocouples
are utilised to measure the temperature of each cell’s middle surface,
in conjunction with an extra sensor to log ambient conditions. The
module-level testing procedure entails a CCCV charging method at a
rate of C/3 until the cut-off current of 50 mA is reached at 4.2 V,
followed by a discharge at a rate of 0.75C.

4. Results and discussion

This section describes the outcomes of the experimental campaigns
conducted and presents the statistical analysis of the variables under
assessment. Initially, the data from the experimental campaign at the
single-cell level is introduced to describe the parameters’ distribution
of the 40 cells. The results of the experimental campaign at the module
level are utilised to train and test three models. Subsequently, the
models are statistically analysed using specific methodologies to obtain
the most influential features affecting the imbalanced performance of
parallel-connected cells. All experimental findings are found in the
associated article in Data in Brief [96].

The experimental campaign on individual cells aims to define the
distribution of internal characteristics of cells once they have exited
the manufacturing process. The 40 observations of nominal capacity
and internal resistance are obtained at an operating temperature of
23 ◦C and are presented in Fig. 5. As depicted in Fig. 5(a), the pseudo

CV discharge demonstrates a nominal capacity consistent with the
ominal value declared by the cell manufacturers. NMC cells exhibit
distribution that is not in line with a normal bell curve. A detailed

nalysis of the 20 NMC cells led to the identification of 3 outliers orig-
nating from different batches and thus excluded from the subsequent
ampaign. The reasoning regarding NCA cells is diverse, as they are
ormally split around the mean. As stated in Table 4, the ratio between
he standard deviation and the mean of NMC cells is approximately
wice that of NCA cells. The distributions of cell parameters in terms of
nternal resistance are more uniform. The average internal resistance of
CA cells is approximately two-thirds that of NMC cells. The increase

n standard deviation is significant as the SoC decreases. The impact
f this phenomenon on the performance of parallel strings at low SoC
ay serve as a basis for future investigations.

By characterising the available cells population it is possible to
arry more information on the causes of imbalances when scaling up
o module level for the second experimental campaign. DoE approach
esults enable the derivation of multivariate linear equations describing
he tested space. These equations can then be displayed via contour
lots, as in the case of Fig. 6 including three out of the eight response
ariables of the MLR model, namely 𝜎𝐼 , 𝜎𝑇 , and 𝑇𝑇𝑆𝐵. The 𝑥
𝑆𝑡𝑎𝑟𝑡 𝑀𝑒𝑎𝑛
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Fig. 5. (a) Pseudo OCV curves of the fresh 40 cells under C/20 discharge test procedure. (b) Boxplot of cells internal resistances at 10% SoC intervals.
Fig. 6. Contour plots derived from the multivariate linear models simulated space for (a) 𝜎𝐼𝑆𝑡𝑎𝑟𝑡, (b) 𝜎𝑇𝑀𝑒𝑎𝑛, (c) 𝑇𝑇𝑆𝐵. The horizontal and vertical axes of individual contour
lots are the interconnection resistance and the test temperature, respectively. The columns of each group of six contour plots have new and aged cells configurations, respectively,
hile the rows differ upon chemistry (NMC, NCA, Mix). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
rticle.)
i
t
𝜎
s
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A
u

nd 𝑦 axes of the subgraphs stand for the interconnection resistance and
est temperature, respectively. The columns indicate instances where
ll four cells are new or one of them is aged. The rows comprise
CA, NMC, and NCA-NMC mixed chemistry tests, from top to bottom.
ontour plots are found to be effective in providing information on
he variation of response variables depending on control variables and
n classifying features according to their importance. A common trend
bserved in all three graphs is that as the interconnection resistance
ncreases, the performance of the cells connected in parallel deterio-
ates. These performances can be classified into four main categories.
he main categories considered in the response variables are current

mbalances, SoC, temperature, and lengthening of the TTSB. In the case
f Fig. 6(a), an imbalanced performance implies that the four cells
o not exhibit an equal level of current flow. As the interconnection
esistance increases, the 𝜎𝐼𝑆𝑡𝑎𝑟𝑡 rises as well, up to over 300 mA in the
orst case scenario. It is evident that while temperature has a minimal

mpact on individual NCA and NMC cells, it plays a dominant role in the
ase of combinations of cells with different chemistries. In the bottom
ow of Fig. 6(a), diagonal lines are observed, indicating an almost equal
elevance between interconnection resistance and operating tempera-
ure. As the temperature increases, it is observed that the initial current
istribution deteriorates, suggesting a decreasing equilibrium between
he current of each cell. If the operating temperature is raised from
0 ◦C to 40 ◦C, there is a resulting difference of 70 mA at a constant
9

nterconnection resistance. If an aged cell is inserted, the current on
he other cells is negatively affected. The discussion regarding the
𝑇𝑀𝑒𝑎𝑛 in Fig. 6(b) differs. The operating temperature assumes a more
ignificant role. The relationship between the operating temperature
nd interconnection resistance is non-linear and exhibits curvature.
s the operating temperature increases, the cells operate under more
niform conditions. The reduction of the gradient can reach 0.1 ◦C

in cases of interconnection resistance of 1 mΩ, up to 0.2 ◦C in the
case of 3 mΩ at the tested operating temperature extremes. The NMC
and NCA cells exhibit similar and comparable characteristics under the
tested conditions. The oscillation range of the gradient is in the order
of 0.1–0.6 ◦C for both, as the inputs vary. If the two chemistries are
mixed, the temperature difference between the cells increases to over
0.7 ◦C. Although the introduction of an aged cell does not significantly
impact the temperature distribution in the case of single chemistry,
this changes when multiple chemistries are mixed. In such cases, the
average temperature gradient increases significantly, and the gradient
range reaches 0.35–0.75 ◦C. Fig. 6(c) illustrates a significant curvature
of the TTSB between interconnection resistance and operating temper-
ature. It can be observed that the latter two control variables have
the greatest influence on TTSB, with ageing and cell mixture playing
a less significant role. The TTSB exhibits oscillations ranging from a
minimum of 10 s at high operating temperatures and in the absence of
interconnection resistance to a maximum of over 1200 s upon insertion
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Table 6
Multivariate linear regression model equations with 3 most influencing 𝛽 coefficients underlined (1st, 2nd, . . . .3rd) and resulting 𝑅2 values.

Multivariate linear regression models

�̂� = 𝛽0 + 𝛽1Chem𝑁𝐶𝐴 + 𝛽2Chem𝑀𝐼𝑋 + 𝛽3Ageing + 𝛽4𝑅𝐼𝑛𝑡 + 𝛽5𝑇𝑎𝑚𝑏 + 𝛽6𝑅2
𝐼𝑛𝑡 + 𝛽7𝑇 2

𝑎𝑚𝑏 + 𝛽8Chem𝑁𝐶𝐴 ⋅ Ageing + 𝛽9Chem𝑀𝐼𝑋 ⋅ Ageing (17)
+𝛽10Chem𝑁𝐶𝐴 ⋅ 𝑇𝑎𝑚𝑏 + 𝛽11Chem𝑀𝐼𝑋 ⋅ 𝑇𝑎𝑚𝑏 + 𝛽12Ageing ⋅ 𝑅𝐼𝑛𝑡 + 𝛽13Ageing ⋅ 𝑇𝑎𝑚𝑏 + 𝛽14𝑅𝐼𝑛𝑡 ⋅ 𝑇𝑎𝑚𝑏

Response variable 𝛽0 𝛽1 𝛽2 𝛽3 𝛽4 𝛽5 𝛽6 𝛽7
%𝜎𝐼Start [−] 0.153 −0.002 0.044 0.014 0.098 .. . . . . .0.020 – –
%𝜎𝐼Mid [−] 0.041 .. . . . . . .−0.014 0.021 0.005 0.020 0.003 0.005 –
%𝜎𝐼End [−] 0.151 −0.003 0.032 0.009 0.098 .. . . . . .0.025 – –
𝛥𝑆𝑜𝐶Max [%] 9.430 −0.795 2.600 0.659 6.764 0.807 .. . . . . .1.093 –
𝛥𝑆𝑜𝐶End [%] 2.648 −0.939 .. . . . . .0.981 0.287 1.402 −0.683 1.384 –
𝛥𝑇𝑀𝑎𝑥

Net [◦C] 0.147 – – 0.313 .. . . . . .0.477 −0.941 – 0.552
𝜎𝑇Mean [−] 0.384 −0.052 0.089 0.030 0.171 −0.051 – –
TTSB [−] 318.575 58.834 −42.268 82.158 359.093 −210.082 .. . . . . . . . . .−135.242 86.642

Response variable 𝛽8 𝛽9 𝛽10 𝛽11 𝛽12 𝛽13 𝛽14 𝑅2

%𝜎𝐼Start [−] 0.018 −0.010 −0.005 0.020 – 0.005 – 0.93
%𝜎𝐼Mid [−] – – – – – – 0.003 0.91
%𝜎𝐼End [−] 0.016 −0.008 −0.005 0.018 – – 0.015 0.90
𝛥𝑆𝑜𝐶Max [%] 0.729 −0.439 – – – 0.498 – 0.97
𝛥𝑆𝑜𝐶End [%] – – 0.328 −0.651 – 0.551 −0.478 0.78
𝛥𝑇𝑀𝑎𝑥

Net [◦C] – – – – – – 0.247 – 0.61
𝜎𝑇Mean [−] – – – – – – .. . . . . . .−0.055 0.67
TTSB [−] – – −55.121 82.870 43.473 −46.775 −107.180 0.94
of an aged cell. The combination of NMC and NCA cells in parallel is
confirmed to be possible. Nevertheless, a detrimental effect on current
and temperature distribution is noted. This is mainly attributable to
the different internal characteristics of the two cell typologies. Despite
the discharge capacity difference being in the order of 2%, the internal
resistance of the NCA cells is 30% lower than the NMC ones. This
results in added heterogeneity when cells are connected in parallel.
Similarly, the inclusion of an aged cell negatively impacts the balance
between the cells. The lower discharge capacity and higher internal
resistance of the inserted cell increase load and temperature differences.
The influence on the TTSB is instead minimal. The linearity or non-
linearity of the input–output relationship is maintained even when
different chemistries and an aged cell are inserted in the string.

Although the type of graph presented in Fig. 6 assists in qual-
itatively interpreting the obtained results and provides information
on the potential impacts of control variables, a quantitative method
is necessary. For this purpose, the fundamental equations underlying
these graphs are analysed through coefficient normalisation. It is then
possible to directly compare the impact that the variation of each
individual control variable has on the response variables. By applying
the Akaike method, the number of control variables can be restricted
to only those that are statistically significant. Although not within the
scope of this article, equations can be utilised for future optimisation
studies. The underlining system included in Table 6 help visualising, for
each response variable, the three most relevant control variables. The
control variables under consideration are multiplied by 14 coefficients,
to which the intercept is added. These 14 coefficients are composed
of linear, quadratic, and interaction factors. The chemistry features are
divided into two distinct categories, namely 𝐶ℎ𝑒𝑚𝑁𝐶𝐴 and 𝐶ℎ𝑒𝑚𝑀𝑖𝑥.
This is necessary because, given the three levels in the DoE (NCA, NMC,
NCA-NMC mix), the MLR model treats this scenario as two binary pairs.
It is immediately evident that interconnection resistance is the most im-
pactful factor for the examined response variables. Both the initial and
final current distribution are significantly dependent on the chemistry
and its combinations. In the case of 𝜎𝐼𝑚𝑒𝑎𝑛, chemistry once again plays a
significant role. Subsequently, it is further explored as to how chemistry
and ageing can be attributed to the internal characteristics of cells.
This makes the trends of the models more comprehensible by replacing
categorical variables with numerical ones. Regarding the maximum
and final difference in cells’ SoC, the interconnection resistance and
its square, as well as the inclusion of different chemistries, play a
primary role. The performance of the obtained models is generally
10
good, with five out of the eight response variables presenting a 𝑅2 of
0.9 in an 80/20 train/test split. The predictive models for temperature
have yielded less satisfactory results. This is mainly attributable to the
measurement uncertainty of the temperature itself, with the thermocou-
ples implemented being limited in tracking the minimal temperature
variations under the considered 0.75C discharge conditions. However,
it is possible to infer from the equations that the interconnection
resistance, operating temperature and its square affect both the net
surface temperature increase and its gradient between the cells. Finally,
the TTSB can be primarily attributed to interconnection resistance, its
square and operating temperature.

As briefly mentioned in the preceding paragraph, it is challenging to
linearise categorical variables. An analysis is conducted to investigate
the potential association between categorical variables of chemistry
and ageing with numerical variables of internal resistance and nominal
capacity. This is physically justified by the evolution of cells over
time. As SoH deteriorates, internal resistance inevitably increases and
the amount of exchangeable energy decreases. A linear model with
internal resistance and capacitance has been proposed as an alternative
to ageing and chemistry variables for control purposes. The correlations
observed between 𝛥𝑅0, 𝛥𝐶𝑛, chemistry, and ageing are consistent with
the cells physics. To prevent potential correlations between 𝛥𝑅0 and
𝛥𝐶𝑛 that may affect the models, it is ensured that the statistical value of
Variance Inflation Factor (VIF) is always less than 5 [97]. To determine
the VIF value, a regression analysis is conducted on the remaining
variables included in the model to predict the variable of interest. A
high VIF indicates a high coefficient of determination (𝑅2) for the given
correlation. In essence, if a change in the independent variable has
an impact, the effect can already be captured by the other variables
included in the model, as their linear combination can approximately
account for it. It is important to limit correlations among the control
variables concerning the PDP plots that are presented at the end of this
section. By replacing categorical variables with numerical variables, it
is possible to obtain a greater level of detail regarding the variation in
the space of control variables, as they are no longer limited to two or
three levels.

Figs. 7, 8, 9 present contour plots resulting from the linear model
for TTSB. The 𝑥 and 𝑦 axes are replaced by the new control variables
𝛥𝑅0 and 𝛥𝐶𝑛. The columns indicate the three levels of interconnection
resistance, while the rows represent the test temperatures. Contour
plots are constrained by the observations obtained in the tests. Thus,
extrapolations beyond the tested conditions are not accounted for to
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Fig. 7. Contour plots derived from the multivariate linear regression model simulated
pace for TTSB.

Fig. 8. Contour plots derived from the Neural Network model simulated space for
TTSB.

enhance the level of reliability of the presented information. The same
control variables are employed for training and validation of the two
machine learning models. These are MLP neural networks for Fig. 8
and Random Forest for Fig. 9. The distinction between the conventional
linear models previously discussed and ML models lies in their inter-
pretability. It is evident from Figs. 8 and 9 that the two ML models are
more influenced by the dataset used. This is evident by the islands that
form in the NN and by the square contours resulting from the Random
Forest. If the purpose of this article had solely been to predict the
performance of parallel cells, it would not have made a difference. The
11

r

Fig. 9. Contour plots derived from the Random Forest model simulated space for TTSB.

Table 7
Evaluated 5-fold cross-validation models performance mean values and standard
deviations.

Response variable Model mean (Std) 𝑅2

MLR NN RF

𝜎𝐼𝑆𝑡𝑎𝑟𝑡 0.91(0.03) 0.90(0.13) 0.90(0.04)
𝜎𝐼𝑀𝑖𝑑 0.73(0.19) 0.74(0.13) 0.89(0.05)
𝜎𝐼𝐸𝑛𝑑 0.86(0.08) 0.90(0.04) 0.85(0.16)
𝛥𝑆𝑜𝐶𝑀𝑎𝑥 0.91(0.04) 0.87(0.14) 0.93(0.02)
𝛥𝑆𝑜𝐶𝐸𝑛𝑑 0.47(0.24) 0.59(0.73) 0.53(0.11)
𝛥𝑇𝑀𝑎𝑥

𝑁𝑒𝑡 0.43(0.25) 0.70(0.60) 0.46(0.27)
𝜎𝑇𝑀𝑒𝑎𝑛 0.49(0.23) 0.56(0.28) 0.55(0.43)
𝑇𝑇𝑆𝐵 0.73(0.19) 0.65(0.20) 0.66(0.13)

predictive performances of the three models are reported in Table 7,
which do not significantly differ from each other. An algorithm of
K-fold validation is applied. This presents a more stringent scenario
than a classic train/test 80–20 split. Table 7 presents the 𝑅2 results as
he average of 50 simulations for more reliable conclusions, with the
orresponding standard deviation reported in brackets. The standard
eviation is significant as it indicates the stability of the outcome when
arying the underlying data sets. It emerges that for those variable
esponses such as temperature and final SoC variation, not only is
he absolute predictive performance limited, but also its repeatability.
n line with the objective of shedding light on the most significant
actors leading to the imbalanced performance of parallel cells, it is
ecessary to conduct a more in-depth investigation of the features
nder consideration.

As machine learning models lack equations that are directly in-
erpretable, methods of explainable machine learning are increasingly
aining interest within the scientific community. Even in the case of
his study, where only four control variables are considered, the effec-
iveness of these methods can be observed. The first applied method is
he SHAP technique. The SHAP analyses of the eight response variables
onducted for the random forest model are presented in Fig. 10. Similar
esults are obtained using the NN model, which are not reported for
he sake of brevity. The SHAP approach enables the creation of a

anking of the most important features and estimation of the impact
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Fig. 10. Random Forest model simulated Shap values for the eight considered response variables (a–h). On the left side of individual graphs the resulting feature importance
ranking is reported, while the circles’ colour shades indicate their absolute value. (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)
of control variables relative to the mean. The SHAP value is expressed
in the same unit of measurement as the response variable. Similarly to
linear models, in this case, the interconnection resistance is found to
be the primary factor influencing parallel strings performance, except
for 𝛥𝑇𝑀𝐴𝑥

𝑁𝑒𝑡 . Fig. 10(g) illustrates how the increase in cell tempera-
ture is inversely affected by the operating temperature. This can be
attributed to the fact that the lower the operating temperature, the
higher the increase during discharge due to increased ohmic losses.
The internal resistance of the cell is known to be a function of the
operating temperature. The remaining three positions in the feature
ranking vary depending on the considered response. It is noteworthy
that in Fig. 10(b), the 𝜎𝐼𝑀𝑖𝑑 is strongly influenced by the 𝛥𝐶𝑛. It
can be inferred that the difference in nominal capacity between cells
affects the current distribution during the central phase of discharge.
The variation of internal resistance at the beginning and end of the
discharge has a greater effect, as depicted in Fig. 10(a) and (c). The
operating temperature also plays a significant role in the TTSB depicted
in Fig. 10(h). The lower the operating temperature, the longer the
self-balance currents persist after discharge. The interpretation of the
difference in SoC in Fig. 10(e) and (f) is more complicated. Given the
model’s greater stability in terms of 𝛥𝑆𝑜𝐶𝑀𝑎𝑥 performance predictions
compared to 𝛥𝑆𝑜𝐶𝐸𝑛𝑑 , it can be assumed with greater confidence that
𝛥𝑅0 has an impact on the peak difference in SoC. In contrast, Fig. 10(f)
does not provide a clearly defined ordering of the attributes. Both the
control parameter variations that uniformly contribute to the response
as well as the model’s inability to predict the response with certainty
might have an influence. For 𝜎𝑇𝑀𝑒𝑎𝑛 in Fig. 10(h) it can be inferred that
interconnection resistance plays a primary role, but it is more difficult
to isolate the impact that results from the other control variables.
12
Despite being effective in providing a ranking of controllable vari-
ables, SHAP analysis does not provide information on how their impact
is distributed spatially. The PDP and ICE graphics are proposed to
fill this gap and further raise the level of interpretability of the mod-
els. These two approaches are complementary. The PDP graphics are
created by executing the ICE graphic’s average. One drawback of
PDP plots is that they only display the median of marginal effects.
A straight line results if half of the data have a positive relationship
to the response variable and half do not. The ICE plots inform on
the potential heterogeneous effects and are included to overcome this
restriction. The ICE and PDP plots are shown in Fig. 11 for both the
NN model and the Random Forest. Five of the eight response variables
are reported. The distribution of initial and final current, maximum
and final SoC variation, 𝛥𝑇𝑀𝑎𝑥

𝑁𝑒𝑡 and 𝜎𝑇𝑀𝑒𝑎𝑛 are two-by-two correlated.
Only the trends of the remaining five responses are being reported
for simplicity. The angular coefficient of curves provides information
similar to that provided by the linear model’s normalised coefficients.
As a result, it emerges that the interconnection resistance, following
earlier analyses, is the most significant since it results in a greater
angular coefficient. Every response variable increases as a result of
its rise. The transformation of the previously shown variables is what
causes the larger granularity of the 𝛥𝑅0 and 𝛥𝐶𝑛. The discussion is
different concerning temperature and interconnection resistance, both
of which have three levels per the DoE configuration. The increase in
the number of observations for the 𝛥𝑅0 and the 𝛥𝐶𝑛 has an impact on
the ICE graphics, which change depending on the value of the features.
The PDP graphics are naturally less susceptible to these variations and
may provide better trend information. The two ML models draw conclu-
sions dealing similarly with the control variables. As predicted in the
SHAP analysis, while addressing 𝜎𝐼 , the 𝛥𝐶 plays a primary role
𝑀𝑖𝑑 𝑛
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Fig. 11. Random Forest (red) and Neural Network (blue) models PDP and ICE plots for five out of the eight response variables (a–e). Each column reports the PDP and ICE plots
resulting from one individual feature. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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together with the interconnection resistance, as shown in Fig. 11(b).
When it comes to the 𝜎𝐼𝑆𝑡𝑎𝑟𝑡 in Fig. 11(a), however, the 𝛥𝐶𝑛 and the
operating temperature have secondary roles, with the interconnection
resistance and the 𝛥𝑅0 playing the most significant ones. In the case
of NN, there is a strong linear relationship between 𝛥𝑅0 and 𝜎𝐼𝑆𝑡𝑎𝑟𝑡. In
the case of Random Forest, there is a tendency to see increases only
in values of 𝛥𝑅0 close to the median. This pattern is repeated for the
𝛥𝑆𝑜𝐶𝑀𝑎𝑥 in Fig. 11(c). The 𝑥-axis displays normalised values when
feature scaling is used before applying the models. This makes a direct
comparison between the controllable variables possible. This kind of
analysis is useful when trying to determine not only which variables
are most significant but also if their effects change as a function of
their values. It is difficult to fully understand the partial dependency
of 𝜎𝑇𝑀𝑒𝑎𝑛 on 𝛥𝑅0 and 𝛥𝐶𝑛 in Fig. 11(d) in the case of Random Forest.
Oscillations over the whole space might indicate a clear susceptibility
to the underlying dataset. Finally, the TTSB is directly correlated with
interconnection resistance in Fig. 11(e) and inversely correlated with
exercise temperature.

It is possible to obtain a graphic for each controllable variable.
PDP and ICE plots provide information on the impact of each feature
included in the analysis. However, there is no information on how these
entities interact. A limitation of 1D PDPs is the requirement for control
variables to be independent to be effective. To incorporate the interac-
tion between control variables, it is possible to utilise two-dimensional
PDP graphs. As depicted in Fig. 12, these graphs bear resemblance
to the contour plots presented in Fig. 6. Nevertheless, they differ in
that they do not directly present the response variables, but rather the
marginal effect that the two features have on the predicted response.
The 𝑥 and 𝑦 axes represent the control variables under investigation,
while the colours represent the marginal variation of the response.
Not only the colour but also the curvatures provide insight into the
relationships among the features. Similarly to one-dimensional PDPs,
five response variables are reported for two-dimensional PDPs. The five
responses include eight plots each. The first row of the eight images is
derived from Random Forest models, while the second one is generated
from NN models. The first three columns show the relationship between
the most significant control variable derived from the SHAP analysis
and the second, third and fourth one, respectively. The last column
depicts the interaction between the second and third-ranked control
variables. The 𝑥 and 𝑦 axes are constrained to values between −1 and

as the features are normalised. Both models are capable of creating
onlinear relationships between the control variables. This adds value
n particularly complicated situations, like the one being discussed. The
andom Forest model tends to have a squared structure, which suggests

hat they may be more prone to overfitting. The NNs provide a more un-
erstandable topology. Their curves indicate first-order and quadratic
nteractions between the control variables. For instance, in the case of
𝐼𝑀𝑖𝑑 in Fig. 12(b), the relationship between interconnection resistance
nd 𝛥𝐶𝑛 exhibits a strong curvature. This implies that the higher the
ariation in nominal capacity, the lower the impact of interconnection
esistance. At low levels of nominal capacity variation, the impact of
nterconnection resistance is predominant in vice versa. Similarly, the
ame reasoning can be applied to 𝛥𝑅0 when compared to interconnec-
ion resistance. The behaviour of the Random Forest model in this case
s more challenging to interpret. The surfaces and demarcation lines
xhibit rapid and non-uniform variations. These results appear to be
quared again, thereby limiting the interpretability of the relationships
mong the control variables. The combined behaviour of the control
ariables concerning 𝜎𝐼𝑆𝑡𝑎𝑟𝑡 in Fig. 12(a) is more linear. An exception
rises in the relationship between interconnection resistance and 𝛥𝑅0
n the case of Random Forest, which exhibits singularity towards the
ean value. Fig. 12(c) displays a curvature in the relationship between

nterconnection resistance, 𝛥𝑅0, and 𝛥𝐶𝑛 in 𝛥𝑆𝑜𝐶𝑀𝑎𝑥, highlighting a
on-linear contribution from the combination of control variables. The
urvature between temperature and interconnection resistance is not
14

mmediately evident, with the latter being predominant, especially at
igh levels. A minimum is observed towards the average values for both
𝑅0 and 𝛥𝐶𝑛 in relation to interconnection resistance. This peculiarity
s also present in random forests, which however lose the curvature
f NNs and exhibit a strong non-linearity in the shape of an ‘‘S’’. This
mplies that for values above the average of 𝛥𝑅0, the 𝛥𝑆𝑜𝐶𝑀𝑎𝑥 is higher
han for values below the average, given the same interconnection
esistance. The 2D PDP in Fig. 12(d) shows strong oscillations for
he Random Forest model employed in predicting 𝜎𝑇𝑀𝑒𝑎𝑛, thereby

constraining its interpretability. In such cases, it is recommended to
refer to the NN, whose curvatures are more easily identifiable. The
relationships between the control variables for the TTSB in Fig. 12(e)
are more linear. The interaction between interconnection resistance
and temperature appears to be balanced, confirming previous analyses.
The impact of 𝛥𝑅0 and 𝛥𝐶𝑛 on the response is limited. The worst condi-
tion occurs under low temperatures and high levels of interconnection
resistance. Conversely, the minimum duration for which self-balance
currents persists after discharge is at high temperatures with minimum
levels of interconnection resistance.

Via these graphs, it is possible to understand whether the ML
model utilises linear, monotonic, or non-linear relationships between
the control and response variables. In the investigated scenario, the
relationships appear to be minimally non-linear. In such cases, a linear
model may already be sufficient in predicting both the responses and
the importance of the considered features. However, the value of the
proposed methodology lies in its independence from the considered
data. This assumes additionally greater value in applications where
a strong non-linearity is present. Besides, PDP and ICE plots inform
about whether the number of observations is adequate or not. In the
case of linear relationships, a reduction of the levels of the DoE is
possible, with advantages in terms of time and resources. When non-
linear relationships emerge, a higher number of observations might
instead be required. The management of the experimental space ex-
tension is critical in scenarios where the investigated system is costly
or the resources available are limited, as in the case of single cells
to modules/pack scalability studies. The main advantage of adding
ML models to the tools available in feature importance analysis re-
sides in their capability to capture highly non-linear relationships. The
application of XML techniques reduces the distance between ML and
traditional methods’ interpretability, adding a valuable tool towards
battery research advancements.

4.1. Limitations and further work

Some limitations emerge from this study. The PDP plots rely on
the independence of features. In reality, it is not always possible to
ensure this behaviour. Alternative solutions are the Principal Compo-
nent Analysis (PCA). Nevertheless, the feature transformation would
not allow a straight identification of the variables included in the
DoE. Despite the effort of limiting and tracking any experimental
setup influence, parallel-connected cells are particularly sensitive to the
connections. Industry-level busbars do not present bolted connections,
with soldering being the selected solution. The results of this study are
still relevant in these applications, but the impact of the interconnection
resistance is expected to be lower due to its lower absolute value. The
methodology is data agnostic in nature but ML models hyperparameters
tuning is not. Adequate tuning needs to be considered when applying
the methodology to other scenarios.

This article shed light on single cells and module-level features
influencing the imbalanced performance of strings. Future work is
still required to extend the investigated space to further input and
output variables. These could include different architectures (Z, mixed),
chemistries (LFP, LMO), form factors (18650, 4650, pouch) and loads
(real-world cycles). While the presented study focused on a fixed C-
rate during the experimental design, it is acknowledged that variations
in C-rate can significantly influence cells’ behaviour. Future investi-

gations could benefit from incorporating the C-rate as an additional
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Fig. 12. Random Forest (top) and Neural Network (bottom) models 2-dimensional interaction PDP plots for five out of the eight response variables (a–e). Each column includes
he resulting plot from the interaction of 2 features in decreasing importance order derived from the SHAP analysis (1st-2nd, 1st-3rd, 1st-4th, 2nd-3rd). (For interpretation of the
eferences to colour in this figure legend, the reader is referred to the web version of this article.)
ndependent variable to enhance the generalisability of the findings
cross various operating conditions. The heterogeneities included in
his paper are of a performance nature. The implications that the
rotraction of imbalances can have on the cells’ ageing evolution is
n important perspective still missing a unified understanding in the
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literature. Coherently, their influence on SoH distribution evolution and
ageing rate is subject to future investigation. The prediction ability
emerging from the evaluated models can be leveraged to reduce the
number of experiments in future studies. The performed full-factorial
DoE includes an I-optimal design in its first 30 runs. The comparison
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of the prediction ability with a subset of the data can allow test number
reduction in costly and resource-intensive conditions. When scaling
from single cells to packs, it is not possible to maintain the same testing
approach and extent due to the capital costs involved. The proposed so-
lution can reduce the investigation space and future work is required to
demonstrate the potential, especially in resource-intensive campaigns
such as ageing ones. Last, the set of equations generated by the MLR
model can be leveraged for optimisation purposes. Busbar and cooling
design, manufacturing quality control and cells’ second-life suitability
selection are fields with high applicability potential for future studies.
Besides, the collected experimental data will be play a twofold role
in future activities. Namely, enabling the development of data-driven
methodologies for parallel string performance prediction and providing
validation datasets for module-level modelling formulations.

5. Conclusions

In this paper the impact of cell and module-level properties on
the performance of parallel connected strings is experimentally inves-
tigated. Increasing the level of understanding of the most important
features influencing the heterogeneity propagation inside the mod-
ules/packs is crucial to limiting the phenomenon. A methodology com-
bining well-established non-invasive single-cell characterisation tests
with data-driven modelling tools is proposed.

Two batches of twenty new NMC and NCA cells are first charac-
terised to identify out-of-manufacture internal resistance and capacity
distributions. The NCA cells’ discharge capacity is normally distributed
around the mean. Some NMC cells are categorised as outliers, oth-
erwise causing a deviation in the distribution of the fresh batch and
subsequently to the module-level tests. The standard deviation across
cells is found to be a function of the SoC. Not only the absolute value
of the internal resistance but also its standard deviation increases at
low SoC. A larger dispersion of properties worsens the performance
homogeneity of parallel strings. Coherently, investigating the parallel
strings’ heterogeneity as a function of SoC could be of relevant interest
and left for future investigation.

A 54-test condition full-factorial DoE campaign is conducted on
four ladder-parallel connected modules to consider all components
independently and thereby discern their influence. The experiments
inform about how the cells’ current, State of Charge and temperature
distributions and time to self-balance under 0.75C constant current
discharge loads are affected by interconnection resistance, operating
temperature, different chemistry combination and ageing. The most
influential elements in modules’ unbalanced performance are identi-
fied. The experimental results are used to create a multivariate linear
regression model that links the most important control factors to the
chosen response variables. Explainable machine learning techniques are
compared with conventional linear regression analysis. Multi-layer per-
ceptron neural networks and random forest machine learning models
are trained and tested to get alternative information to multiple linear
regression, outlining their benefits and drawbacks. The key findings can
be summarised as follows:

I. The DoE statistical analysis results underline that combin-
ing NMC and NCA cells in parallel is possible. Nevertheless,
an added level of attention needs to be put into the manage-
ment of the system due to generally increasing performance
inhomogeneities. The current deviation across the cells doubles
when compared to the single chemistry condition. Temperature
gradients increase, while the TTSB is not particularly influenced
by their combination.

II. Introducing an aged cell in the string worsens the homo-
geneity of the cells’ heterogeneous performance. The operat-
ing temperature impact on the imbalances increases, suggesting
more focus on the thermal management might be required in
16

this case. Although heterogeneities get worse, the trends are not
strongly impacted. Linear and non-linear relationships between
control and response variables are maintained with and without
an aged cell insertion in the string.

III. The combination of novel XML techniques and established
statistical analysis allows unravelling features contribution
to parallel cells performance. According to the results, the
interconnection resistance is the most relevant contributor to
strings’ heterogeneous performance. In the first and middle
phases of the discharge, the distributions of internal resistance
and capacity impact the load imbalance across the cells, re-
spectively. Increasing the operating temperature negatively in-
fluences the temperature gradient in the string. To mitigate
self-balancing currents after the discharge, adequate busbar
design and thermal management are fundamental.

IV. In all but temperature-sensed responses and TTSB, linear
models are a sufficient solution for their simplicity and
optimisation potential. The relationship between control and
response variables appears generally linear, with the exceptions
being the aforementioned responses. Nevertheless, the applica-
tion of XML techniques reduces the interpretation complexity of
ML models and underlines their potential, especially for cases
when non-linearities are dominant. PDP and ICE plots show that
in linear regions, few levels are sufficient. Conversely, a finer
resolution is necessary to represent non-linear dependencies as
TTSB.

It has been shown that in the evaluated cases traditional linear
regression and machine learning models show similar prediction per-
formance. All the models have a 𝑅2 value above 0.9, with the 𝛥𝑆𝑜𝐶𝐸𝑛𝑑
and the temperature-related signals being exceptions. The range of 𝑅2

is from 0.74 up to 0.98 for the remaining responses. Despite having
a good performance, machine learning models confirm their inter-
pretability limitations. Islands-type and squared surfaces emerge for
neural network and random forest responses, respectively. Apart from
being a symptom of dataset dependency, it is difficult to directly
interpret how the models are dealing with the control variables in these
areas. Therefore, XML techniques showcase their potential is over-
coming this limitation. The three techniques have their peculiarities,
with SHAP being strong in ranking the features, 1D PDP and ICE in
explaining the spatial distribution of control-response relationships and
2D PDP in unveiling eventual interactions.
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Appendix A. Notes on the selected ML models

In situations where comprehensibility is crucial Decision Tree (DT)
are commonly selected thanks to their adequate levels of model in-
terpretability. However, they have a tendency to overfit, resulting in
inadequate generalisation. The Random Forest (RF) algorithm was orig-
inally introduced as a means of enhancing the precision of individual
DT. This is achieved by aggregation of several trees to enhance the
generalisation of the model and thereby resulting in improved perfor-
mance [86]. To accomplish this, a distinct tree is trained on a specific
subset of the training dataset, capturing diverse features of the data
distribution, to acquire a combined forecast. This methodology yields
highly precise models [98]. In contrast to DT, which RF shares funda-
mental principles with, RF models lack transparency and are therefore
challenging to interpret. XML techniques are gaining increasing interest
as a solution to aid in the comprehension of models’ decisions.

The selection of the Multi-Layer Perceptron (MLP) as NN method
for regression is attributed to its high precision and ability to effectively
manage complex and non-linear datasets, despite being the most basic
and low computational intensive NN approach with fully connected lay-
ers. MLP NN, from a technical perspective, is constructed by arranging
layers of nodes that link the input features to the target variable se-
quentially. It can be observed that every individual node situated in an
intermediate layer undertakes the task of gathering and consolidating
the outputs generated by the preceding layer. Subsequently, the node
generates an output of its own by subjecting the consolidated value
to an activation function. These aforementioned values are transmitted
to the next layer(s) until the final output layer is attained. The back-
propagation technique is utilised in the MLP algorithm to optimise the
interneuron weights and enhance the precision of the model. In relation
to the scope of this study, it is noteworthy that the MLP algorithm
carries out feature selection during the training phase. This results in
the exclusion of non-contributing variables during model generation,
thereby simplifying feature ranking.

While the paper does not delve into determining the ideal model for
the dataset at hand, optimising hyperparameters is crucial in enhancing
the accuracy of the ML models and consequently, the efficacy of the fea-
tures associated with the responses. A Random Search (RS) technique is
employed to decrease the search space without exhaustively evaluating
all feasible hyperparameter combinations. After, a Grid Search (GS)
algorithm is employed to identify the most favourable parameters for
all the response variables that are incorporated. The optimisation of
hyperparameters does not apply to MLR models, whose equations are
not tuneable apart from the feature engineering steps explained above.
This reduced design freedom, combined with their simplicity and ease
of implementation, made MLR the main approach for DoE statistical
analysis.

Supplementary information

The experimental data of this study will be published in Data in
Brief [96]. Please contact the authors for further information. The de-
tails of the hyperparameter optimisation range for the machine learning
models are presented below to ensure transparency and replicability
of the contents of the study. The laboratory data management and
extraction of response variables are conducted in MATLAB 2022b.
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The Stat-Ease Design Expert 22.0.2 software is employed to develop
the multivariate linear model and analyse the importance of the DoE
features. The training, validation of ML models, and feature analysis
via XML are carried out using Python3.

• Multi-Layer Perceptron Neural Network : Hidden layer size
[(50,50,50), (50,100,50), (100,)], Activation = [tanh relu], Solver
= [sgd adam], Alpha = [0.0001, 0.1], Learning rate = [constant
adaptive]

• Random Forest: Number of estimators: [50 1000], Bootstrap =
[True False], Minimum samples split = [2 3], Minimum samples
leaf = [1 3], Criterion = [Squared error]
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