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a b s t r a c t

This paper presents the modeling and supervisory energy management design of a hybrid fuel cell/
battery-powered passenger bus. With growing concerns about petroleum usage and greenhouse gas
emissions in the transportation sector, finding alternative methods for vehicle propulsion is necessary.
Proton Exchange Membrane (PEM) fuel cell systems are viable possibilities for energy converters due to
their high efficiencies and zero emissions. It has been shown that the benefits of PEM fuel cell systems
can be greatly improved through hybridization. In this work, the challenge of developing an on-board
energy management strategy with near-optimal performance is addressed by a two-step process. First,
an optimal control based on Pontryagin’s Minimum Principle (PMP) is implemented to find the global
optimal solution which minimizes fuel consumption, for different drive cycles, with and without grade.
The optimal solutions are analyzed in order to aid in development of a practical controller suitable for
on-board implementation, in the form of an Auto-Regressive Moving Average (ARMA) regulator. Simu-
lation results show that the ARMA controller is capable of achieving fuel economy within 3% of the PMP
controller while being able to limit the transient demand on the fuel cell system.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

The transportation sector accounted for approximately 26% of
the world’s overall energy consumption in 2012, with 94% of that
energy being produced by burning petroleum [1]. Burning fossil
fuels releases numerous greenhouse gas emissions that can
adversely affect the environment. It is estimated that the trans-
portation sector contributes around 20% of the world’s total
greenhouse gas emissions [2]. Governments and private companies
alike are committed to find alternative methods for energy

generation in an effort to reduce fossil fuel usage and greenhouse
gas emissions, and to create safe, sustainable energy.

These factors have led to tremendous amounts of research being
conducted to increase fuel economy in today’s vehicles. Different
ways to improve the efficiency of conventional vehicle propulsion
systems as well as exploring advanced propulsion systems, such as
electric vehicles, hybrid electric vehicles (HEV), hydraulic hybrid
vehicles, and fuel cell vehicles have been proposed. This paper fo-
cuses on modeling, simulation and supervisory control design for a
hybrid fuel cell passenger bus.

Proton Exchange Membrane (PEM) fuel cells are an attractive
alternative energy conversion device for automotive propulsion.
As electrochemical devices, fuel cells convert chemical energy
into electrical energy directly without mechanical processes. PEM
fuel cells are favorable for their zero emissions, relatively high
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efficiency, and low noise generation [3]. Advances in the past 10e15
years have significantly increased their power density and ability to
follow dynamic loads, making them viable for automotive appli-
cations. However, their high cost and relatively shorter life than
internal combustion engines make commercialization difficult.
Further development of the fuel cell technology and their integra-
tion into vehicles is needed for significant market penetration to be
possible. To help increase the rate of commercialization, the Federal
Transit Authority (FTA) created the National Fuel Cell Bus Program
(NFCBP) in 2006. The overall goal of the program is to assist in
development and demonstration of fuel cell technology for transit
buses, and to improve commercial viability [4]. Through the pro-
gram, the FTA hopes to achieve the following:

� facilitate the development of fuel cell technology, primarily for
full-size, heavy duty transit bus applications;

� improve transit bus efficiency, reduce petroleum consumption,
and reduce emissions;

� improve fuel cell durability, reliability, and reduce overall fuel
cell bus cost;

� establish a globally competitive U.S. industry for fuel cell bus
technology;

� increase public awareness and acceptance of fuel cell vehicles.

The FTA has committed nearly $90 million to the NFCBP, with an
equal amount coming from private companies. This has funded the
development of 25 fuel cell bus demonstrations that are currently
in operation, with 7 more demonstrations under development.
These projects are all competitively selected by the FTA and are
located across the country.

The work presented in this paper has been funded under one of
these projects. The Center for Automotive Research (CAR) at The
Ohio State University (OSU)was invited to act as a sub-contractor to
the DesignLine Corporation [5] through an ongoing award from the
NFCBP through the Center for Transportation and the Environment
by aiding in the development of an energy-based model of a hybrid
fuel cell bus proposed and developed by DesignLine and to assist in
the design of the supervisory energy management of the bus.

The paper is structured as follows: in Section 2, a brief intro-
duction to the energy management control problem in hybrid ve-
hicles is given, with a focus on strategies proposed for hybrid fuel
cell vehicles. Section 3 presents the powertrain architecture of the
selected bus and the energy-based vehicle simulator. In Section 4,
the optimal control problem for the energy management of the
hybrid fuel cell bus is formulated which aims to minimize the mass
of hydrogen used on-board while guaranteeing a safe operation of
the battery. The optimal energy management problem is then
solved by means of PMP [6] which provides a proxy for a global
optimal solution. Achieved fuel economy, battery operation, and
fuel cell operation are examined over different driving scenarios
with and without grades in Section 5. The analysis conducted leads
to the development of a practical controller which is suitable for
on-board implementation. A comparison of the performance of
both strategies is presented. In Section 7 conclusions and final re-
marks are discussed.

2. Hybrid vehicle energy management

The extra degree of freedom offered by the hybrid topology
introduces the need for an energymanagement control strategy [7].
The fuel cell hybrid bus needs an Energy Management Strategy
(EMS) to distribute electrical power among the load and distinct
power sources. The strategy must satisfy powertrain component
constraints while trying to achieve some system-level performance
objective such as maximizing fuel economy, maintaining the

battery state-of-charge (SOC), or improving the life of the compo-
nents. Numerous are the contributions from the literature on
control techniques for HEVs, many of which have been extended to
a fuel cell hybrid vehicle [8e10]. In general, the design methods for
EMS reported in literature can be categorized into:

� Rule-based approaches
� Optimization approaches

Rule-based strategies can be easily implementable for real-
time application and are usually based on heuristics [11]. Perfor-
mance of these strategies can be improved through the use of
fuzzy logic or adaptively altering rules during a driving event [12e
17]. Among the optimization approaches there are global and
instantaneous strategies. One such instantaneous optimization
technique is the equivalent consumption minimization strategy
(ECMS) [18]. Paganelli [19] and Rodatz et al. [20] presented an
ECMS for fuel cell vehicles in which the cost function was evalu-
ated based on hydrogen consumption and the equivalent fuel
consumption for the energy storage system. An equivalent fuel
consumption for on-board energy sources that do not use a con-
ventional fuel (i.e. batteries, super capacitors) has been defined.
The cost function that is minimized can be fuel consumption [21]
or emissions [22].

Another instantaneous optimization strategy is based on Pon-
tryagin’s Minimum Principle [23]. PMP introduces a co-state vari-
ablewhichwhen properly tuned provides the optimal solution for a
given drive cycle. In Ref. [24], PMP is used to find the globally
optimal solution for a fuel cell vehicle, which can only be done off-
line. In order to implement the strategy in real time, the authors
adaptively change the value of the co-state during a drive cycle to
ensure charge sustainability of the battery.

Feroldi et al. [25] developed three energy management strate-
gies, based on the efficiency curve of the fuel cell system, for electric
vehicles powered by hybrid power systems. One of the strategies
was attained by utilizing a constrained non-linear programming
method. Other strategies were attained by analysis on empirical
observations. Delprat and Bernard [26,27] matured the EMS by
forward iteration of a state equation, a co-state equation, and a
stationary equation with an assumption that the initial co-state
vector was available. This approach is a non-casual solution
because knowledge of the driving cycle must be available for off-
line optimization.

Global optimization strategies, such as dynamic programming
(DP) [28], minimize a performance metric for a specified drive
cycle, which must be known a priori. DP has been used in Ref.
[29] to find the minimal cost of operating a fuel cell bus. It has
been shown in Ref. [30] that through proper tuning of instanta-
neous minimization strategies, the optimal solution can be found
for a given drive cycle. These optimal solutions are often used as
a benchmark for comparison when testing a real-time control
strategy. However, these solutions are also used as a basis for
designing implementable strategies. As was done in Ref. [31], a
rule-based strategy can be designed by first finding the global
optimal solution given by DP and then deriving rules from
observing the optimal behavior.

In this paper a similar approach is taken. The optimal solution
to the control problem is found for multiple drive cycles, with
and without grade, using PMP. A practical controller is then
developed and tuned based on the observations and analysis of
the optimal behavior. Design and tuning of the practical
controller was done to mimic the optimal results and obtain sub-
optimal fuel consumption results. To the best of knowledge of
the authors, this is a novel approach which has not yet been
presented in the literature.
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3. Parallel hybrid fuel cell bus simulator

The powertrain architecture of the hybrid fuel cell bus is a
parallel hybrid, battery dominated powertrain with a fuel cell sys-
tem functioning primarily as an auxiliary power unit. The battery
and fuel cell supply electrical power directly to the bus’s two rear-
wheel electric traction motors as well as to the auxiliary loads
(HVAC, lighting, integrated fuel cell compressor, etc.). A schematic
of the powertrain components specified by DesignLine is shown in
Fig. 1

The component specifications are shown in Table 1.

3.1. Hybrid Powertrain modeling

A forward-looking, energy-based simulator [32] was built to
simulate the bus behavior, analyze the on-board energy flow, and
develop energy management strategies. The forward simulator,
whose structure is shown in Fig. 2, consists of the following func-
tional blocks:

� Driving Profile;
� Driver;
� Supervisory Controller;
� Hybrid Powertrain;
� Vehicle Dynamics.

The Driving Profile module contains a desired velocity profile,
vcyc(t), that can be either a standard cycle or experimentally ob-
tained. When applicable, a corresponding road grade profile is also
issued together with the desired velocity profile. The Driver is
implemented as a PID controller [32] that based on the difference

between the desired velocity and the current velocity of the
simulated vehicle, vveh(t), provides an acceleration or deceleration
command at each time step. These commands are converted to a
mechanical power demand for the powertrain, PEM,m(t). Once
converted to an electrical power (through the EM efficiency) and
added to the bus’s auxiliary loads, Paux, the total power request, Preq,
is given by:

PreqðtÞ ¼ PEM;eðtÞ þ PauxðtÞ (1)

The total auxiliary, Paux, load consists of the two terms: Paux, elec
which accounts for all of the electrical accessories on the bus, and
Paux,FC which accounts for the integrated fuel cell system
compressor. Both of these will be discussed later. Paux is found by:

PauxðtÞ ¼ Paux;elecðtÞ þ Paux;FCðtÞ (2)

The total power request can be satisfied using the fuel cell and
the battery to supply electrical power to the electric motors and
auxiliary loads:

Fig. 1. Proposed bus powertrain.

Table 1
Powertrain components sizing.

Fuel cell system Ballard FCvelocity-HD6, 75 kW max power
Battery GAIA Lithium Ion Iron Phosphate Cells (LFP),

38 Ah/3.2 V/122 Wh, 180S � 2P pack, 45 kWh
pack size

Electric Motors (EM) 2 ZF motors, 21,000 Nm max torque, 1150
rad s�1 max speed, constant 22.63 gear ratio

Power Electronics Acceptable Voltage range: [480,692] V

K. Simmons et al. / Journal of Power Sources 246 (2014) 736e746738
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PFCðtÞ þ PbattðtÞ ¼ PreqðtÞ (3)

where PFC is the power supplied by the fuel cell stack and Pbatt is the
power supplied by the battery. Fig. 3 shows the power flow through
the powertrain. The Supervisory Controller, which determines the
actuator set points, PFC and Pbatt,1 to be sent to the Hybrid Power-
train Module, is described in Section 4. Its design is the main topic
of this paper.

The fuel cell and battery power sent to the electric motors (by
means of Eqs. (1) and (3)) is converted into a tractive force at the
wheel. Through the longitudinal dynamics of the bus, the vehicle
velocity can be calculated using:

m
dvveh
dt

¼ Fwheel � Fr � Fa � Fg (4)

where m is the mass of the bus, dvveh/dt is the longitudinal accel-
eration of the bus, Fwheel is the force at the wheel supplied by the
powertrain, and Fr, Fa, and Fg are the rolling resistance, aerodynamic
drag, and grade forces respectively. These are calculated by:

Fr ¼ m$g$cos q$cr$vveh (5)

Fa ¼ 1
2
$air$cd$Af$v

2
veh (6)

Fg ¼ m$g$sin q (7)

where q [rad] is the road grade angle, cr is the rolling resistance
coefficient, rair is the density of air, cd is the aerodynamic drag co-
efficient, and Af is the frontal area of the bus.

Integration of Eq. (4) with respect to time provides the velocity
of the vehicle, vveh, which is fed back to the driver for comparison
with the desired drive cycle. Table 2 provides the values of the
vehicle parameters used in the simulator (Fig. 3).

3.2. Powertrain components

3.2.1. Fuel cell stack
The Ballard fuel cell stack used in this study is depicted in Fig. 4

[33]. The model for the fuel cell used in this simulator is a static
model which neglects dynamic behavior. This is adequate for the
purpose of vehicle energy analysis and fuel consumption estima-
tion. The power output of the fuel cell model, while dependent on
temperature, air pressure and humidification of the fuel cell, is set
by the manufacturer’s controller to adequately maintain these in
accordance with the fuel cell operating point. These effects are
incorporated with the data provided by Ballard, yielding a net
system characteristic curve.

The experimental data obtained from Ballard provided a power-
to-current relationship of the fuel cell. Fig. 5 shows the sparse
experimental data as well as the 2nd order polynomial curve-fit
used for the model. It is important to note that in reality Ballard

prevents the fuel cell from operating below an output power of
5 kW in order to maintain safe operation and functionality of the
system.

The curve-fit is defined by:

IFC ¼ 0:0041$P2FC þ 2:8411$PFC � 0:3913 (8)

where IFC [A] is the required current to produce a stack power
output of PFC [kW]. This equation is only valid for 5 � PFC � 75.
Knowing the electric current required to produce a given amount of
power also allows for hydrogen mass flow rate estimation. The
hydrogen mass flow rate of the fuel cell is given as an increasing
linear relationship to the electrical current level, IFC which was
experimentally obtained by the manufacturer to be equal to:

_mH ¼ 0:00435$IFC (9)

where _mH [kg s�1] is the mass flow rate of hydrogen.

3.2.2. Fuel cell compressor
A compressor is a sub-component of the fuel cell system. It is

needed to pressurize the air supply to the fuel cell stack for proper
functioning and optimal operation. While commanded by the fuel
cell system controller, it is externally powered, hence this affects
the overall efficiency of the fuel cell system. From experimental
data from the manufacture for the specific compressor selected for
the fuel cell system, a static model was developed. The relationship
between the operating current of the fuel cell and the electrical
power consumption of the motor driving the compressor is given
as:

Paux;FC ¼ 0:000082$I2FC þ 0:0092$IFC þ 0:4885 (10)

where Paux,FC [kW] is the power consumption of the compressor at
a fuel cell operating current, IFC. This power consumption by the
compressor is added to the total auxiliary power demand by the
bus by Eq. (2).

3.2.3. DC/DC converter
Because the output voltage of the fuel cell system is not within

the acceptable voltage range of other powertrain components on

Fig. 2. Schematic of the forward-looking vehicle simulator.

Table 2
Vehicle dynamics parameters.

Parameter Parameter description Value used in simulator

m Vehicle mass 15875.7 kg

g Gravitational acceleration 9.81 m s�2

cr Rolling resistance coefficient .006
rair Density of air 1.29 kg m
cd Aerodynamic drag coefficient 0.54
Af Frontal surface area of bus 7.5 m2

Fig. 3. Power flow through Powertrain.

1 By convention, positive power corresponds to discharging the battery, negative
power corresponds to charging.

K. Simmons et al. / Journal of Power Sources 246 (2014) 736e746 739
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the bus, a DC/DC converter is needed. This ensures voltage supplied
to other electrical systems on the bus is within the acceptable
range. The DC/DC converter is modeled in a very simplified fashion
as an affine function having a constant efficiency with a constant
power loss term:

PFC ¼ PFC$hDC � Ploss (11)

where PFC is the output power, PFC is the input power, hDC is the
efficiency, and Ploss is a constant power loss of the DC/DC converter.
Table 3 shows the parameter values used in the simulator.

3.2.4. Battery
An accurate dynamic model of the battery system is essential for

determination of battery SOC. Through experimental observations, it
has been found that the current-to-voltage behavior of batteries used
in hybrid vehicle platforms display significant dynamical behavior
which are linked to electrochemistry, ion diffusion etc. [34,35]. These
factors are very complex and difficult to predict by first principle
models, however it has been shown that the net electrical dynamical
behavior can be well predicted through approximation by an
equivalent electrical circuit of reduced order [36].

A 2nd order equivalent electrical circuit model of a battery, used
in this work, is shown in Fig. 6. As the order of the circuit, hence the
number of RC pairs increases, so does the accuracy of the model.
The number of unknown parameters also increases.

The circuit consists of an ideal voltage source or open circuit
voltage, VOC, an internal resistance, R0, two RC pairs, and a hyster-
esis voltage, Vh. VCi is the voltage across the ith capacitor (i¼ 1,2), Ri
and Ci are the resistance and capacitance of the ith RC branch, VL is
the load voltage across the cell terminals, and Icell is the current
through the cell (considered positive in discharge and negative in
charge). Previous literature has concluded that all these parameters
are dependent on SOC, current direction, and temperature of the
battery. The circuit output equation of the second order model is
given by:

VL ¼
 
VOC �

X2
i¼1

VCi � Vh

!
� Icell$R0 (12)

Each RC circuit is described by an ordinary differential equation
obtained using Kirchoff’s current law:

dVCi
dt

¼ � Vi

VCiRi
þ 1
Ci
$Icell (13)

The SOC of the battery cell is the ratio of the amount of charge
left in a cell and the total charge cell capacity, Qcell. Through current
integration, the SOC at each time can be calculated as:

SOCðtÞ ¼ SOCð0Þ �

Zt
0

IcellðtÞdt

Qcell
(14)

The dynamics of the SOC can then be expressed as:

_SOC ¼ � Icell
Qcell

(15)

Because the parameters of the battery circuit are a function of
the SOC, current direction, and temperature, Eq. (15) is a non-linear
equation. The parameters of a specific battery can be experimen-
tally determined as shown by Hu et al. [37]. The process involves a
multi-layer least square minimization to obtain all of the parame-
ters of the equivalent circuit model. A specifically designed set of

Fig. 4. Ballard HD6 75 kW Fuel Cell.
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Fig. 5. Fuel cell stack currentepower relationship.

Table 3
DC/DC converter parameters.

Parameter Value used in simulator

hDC 0.98
Ploss 1 kW

Fig. 6. Battery 2nd order equivalent electrical circuit model.
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experiments spanning the entire range of desired validity of the
model in SOC and current dynamics were conducted to validate the
battery model in Fig. 6. Typically, the model is validated at several
fixed temperatures as well and spliced together using linear
splines. However, for this study, proper heat removal from the pack
was assumed, limiting temperature variation in the cells, therefore
eliminating the parameters’ dependence on temperature.

For the battery selected in this study (GAIA LFP), shown in Fig. 7,
the parameters of the second order model were identified experi-
mentally at the CAR at OSU. To obtain the most accurate model
representation of the battery for its intended operation on the bus,
the identification process was completed for an SOC range of [30e
80]%, representing the allowable SOC range of the battery for
normal operation in the vehicle. A temperature of 25 �C was used
for identification. Fig. 8 shows validation of the model by
comparing the predicted battery behavior by the model to the
experimental data, with a root-mean-square error of 13 [mV].

Over the selected SOC range, it was found that C1, R1, C2, R2, Vh,
and R0 are only dependent on current direction. The VOC on the
other hand is only dependent on SOC. The identified parameters are
shown in Table 4. Fig. 9 shows the battery VOC over the entire SOC
range.

The battery pack implemented on the bus consists of 180 cells in
series, S, and 2 strings of cells in parallel, P, to achieve an nominal
45 kWh energy capacity. The current (Ibatt) and voltage (Vbatt) at the
pack level can be calculated by:

Ibatt ¼ Icell$P (16)

Vbatt ¼ VL$S (17)

3.2.5. Electric motor
The two EMs on the bus convert the electrical power supplied by

the fuel cell and battery into a rotational mechanical power. This
conversion involves an efficiency loss, hEM. The motors are modeled
as static models which use an experimentally obtained efficiency
map for calculations, shown in Fig. 10.

3.2.6. Auxiliary loads
The auxiliary loads for a passenger bus can be much greater than

those of a light duty passenger vehicle. The power required for
heating and cooling, the numerous electronics, automatic doors, etc.
can be a significant portion of the overall power demand for the bus.
For this reason, taking these auxiliary loads into account for the
purpose of energy analysis is important. While these auxiliary loads
vary with time, a constant auxiliary power demand of Paux,
elec ¼ 10 kW is used in the simulator to represent the average power
demand from all auxiliary loads (excluding the fuel cell compressor).

4. Optimal supervisory energy management: PMP

The objective of an energy management system in a hybrid
vehicle is to satisfy the driver’s power demand at the wheel while
minimizing a certain cost. This cost can be fuel consumed, emis-
sions of greenhouse gases, aging of components, or any combina-
tion of these. For this work, only the fuel consumption was
considered. In the hybrid fuel cell bus, the optimal controller finds
the optimal trajectories for the fuel cell system and battery which
will:

� lead to the minimum fuel consumption over a drive cycle.
� maintain physical limitation of the fuel cell, battery, and elec-
tric motors.

� maintain SOC within desired region at all times.
� ensure charge sustaining behavior of the battery (beginning
and ending SOC are equal).

Fig. 7. GAIA LFP battery cell.

Table 4
LFP battery model parameters over SOC ¼ 30e80%.

Parameter Charge Discharge

R0 [U] 1.0e�4 8.0e�5

C1 [F] 2.0e4 2.0e4

R1 [U] 7.8e�4 8.0e�4

C2 [F] 2.0e5 2.2e5

R2 [U] 3.0e�3 3.0e�4

Vh [V] �2.0e�3 1.0e�3
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Formally, the energy management of the bus can be formulated
as a constrained optimization problemwhere themass of hydrogen
consumed, mH, is minimized over a given drive cycle. Since we are
interested in monitoring SOC fluctuations over the duration of the
drive cycle, the SOC dynamics are modeled and taken as the dy-
namic state to be optimally controlled. The optimization problem
consists of minimizing J:

J ¼
Ztf
0

_mHðt; PbattðtÞÞdt (18)

subject to the following dynamic and static constraints:

_SOCðtÞ ¼ �IbattðtÞ
Qbatt

(19)

SOCmin � SOCðtÞ � SOCmax (20)

SOCð0Þ ¼ SOC
�
tf
�

¼ SOCref (21)

Pbatt;minðtÞ � PbattðtÞ � Pbatt;maxðtÞ (22)

0 � PFCðtÞ � PFC;max (23)

PEM;minðuðtÞÞ � PEMðtÞ � PEM;maxðuðtÞÞ (24)

where SOCref is the reference SOC, which is known and taken to
be 60% in this work. SOCmin and SOCmax are the minimum and
maximum allowable SOC of the battery which are 30% and 80%
respectively, for this work, and tf is the total duration of the drive
cycle. The physical limitations of the fuel cell system and electric

motors are incorporated through Eqs. (23) and (24). PFC,max is the
maximum possible power output of the fuel cell stack, and
PEM,min and PEM,max are the minimum and maximum possible EM
output power values at a given EM speed (proportional to vehicle
speed), u.

PMP has been applied to the energy management control
problem of both a charge sustaining hybrid electric vehicle and to a
fuel cell vehicle [24,38] as a proxy for global optimality. In this
work, PMP is being used as a means to extract information from the
optimal solutions in order to design a practical controller. More-
over, the PMP solutions will serve as a benchmark for comparison,
which will aid in calibration of the practical controller. To express
the system dynamics, Eq. (19), as a function of the control param-
eter, Pbatt, the battery current, Ibatt, is calculated to be a function of
Pbatt. From the equivalent electric circuit of the battery, described in
Section 3.2, the battery power is given by:

Pbatt ¼ Vbatt$Ibatt ¼
 
VOC �

X2
i¼1

VCi � Vh

!
$Ibatt � I2batt$R0

(25)

Because VCi, is dependent on the history of Ibatt(t), and Vh and R0
are dependent on the directionality of Ibatt(t), an explicit solution
for Ibatt cannot be found from Eq. (25). However Ibatt(t) is calculated
in simulation using its discrete time approximation, Ibatt,k, using the
previous time-step values of VCi,k�1, Vh,k�1, and R0,k�1:

where k is the discrete sampling time. With Ibatt given in Eq. (4), the
SOC dynamics in Eq. (19) can be expressed as a function of Pbatt.
PMP introduces the Hamiltonian function [23], given by:

H ¼ lðtÞ$ _SOCðSOCðtÞ; PbattðtÞ; tÞ þ _mHðPbattðtÞ; tÞ (27)
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
VOC;k �

P2
i¼1VCi;k�1 � Vh;k�1

�2 � 4$R0;k�1$Pbatt;k

r
2$R0;k�1

(26)
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where l(t) is the co-state variable which varies with time and is
unknown. PMP provides a set of necessary conditions that must be
satisfied by the optimal control trajectory, P*BattðtÞ. Applied to the
fuel cell hybrid bus energy management control problem, they are:

_l
*ðtÞ ¼ �

vH
�
SOC*ðtÞ; P*BattðtÞ; l*ðtÞ; t

�
vSOC

(28)

_SOC
*ðtÞ ¼

vH
�
SOC*ðtÞ; P*BattðtÞ; l*ðtÞ; t

�
vl

(29)

SOC*ð0Þ ¼ SOCref (30)

SOC*
�
tf
�

¼ SOCref (31)

SOCmin � SOC*ðtÞ � SOCmax (32)

where * denotes the optimal value of the variable. PMP states that
the optimal trajectories minimize the Hamiltonian such that:

H
�
SOC*ðtÞ; P*BattðtÞ; l*ðtÞ; t

�
� H

�
SOC*ðtÞ; PBattðtÞ; l*ðtÞ; t

�
(33)

The Hamiltonian can be minimized at each instant in time
which will lead to the optimal control trajectory. The dynamic

equations in Eqs. (28) and (29) are dependent on their initial con-
ditions. The initial SOC of the battery is known a priori as well as the
final SOC (charge sustainability). However, the initial condition of
the co-state, l0 is unknown. It turns out that l0 is the principal
parameter of the PMP optimal controller. The value of l0 can be
tuned through the shootingmethod [30] which consists of guessing
values of l0, running simulations, and selecting the one which
satisfies Eq. (31). Finding the optimal solution reduces to finding
the l*0, which is unique for each drive cycle.

Once l*0 is found, the PMP controller provides the SOC and
control trajectories for a given drive cycle which minimize the
hydrogen fuel consumption of the fuel cell.

5. PMP simulation results

The optimal PMP controller was implemented in the fuel cell
bus simulator under the following scenarios:

� Manhattan driving cycle (MAN)
� Heavy Duty Urban Dynamometer Driving Schedule (HDUDDS)
� OSU Campus Area Bus Service real world drive cycles,
� Campus Loop North (CLN)
� Central Connector (CC)

The MAN and HDUDDS drive cycles are standard cycles which
do not contain a corresponding road grade profile. To test the ef-
fects that the road grade would have on the controller results, these
cycles were simulated with and without an artificial, sinusoidal
road grade with a maximum amplitude of �3% as shown in
Fig. 11(a). The CLN and CC drive cycles were experimentally ob-
tained from actual bus routes on the OSU campus, and have cor-
responding road grade profiles, shown in Fig. 11(b) and (c). Table 5
provides metrics for each drive cycle examined such as the RMS
velocity,2 Vrms, mean velocity, Vmean, max velocity, Vmax, and the
RMS acceleration,2 arms.

The simulation results are summarized in Table 6. The equiva-
lent fuel economy is calculated by:

gallon diesel equiv ¼ MH$LHVH
rd$LHVd

$0:2642

mpg diesel equiv ¼ miles traveled
gallon diesel equiv

(34)

whereMH [kg] is the equivalent mass of hydrogen consumed, LHVH
and LHVd [kJ kg�1] are the lower heating values of hydrogen and
Diesel fuel respectively, rd [kg l�1] is the density of Diesel fuel, and
0.2642 is the conversion from l to gallons.

A comparison of the results and trajectories for the MAN,
HDUDDS, drive cycles without grade, and CLN drive cycle with
grade are shown in Fig. 12.
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Fig. 11. Drive cycle grade profiles.

Table 5
Statistics of drive cycles.

Name Vrms [m s�1] Vmean [m s�1] Vmax [m s�1] arms [m s�2]

MAN 3.0 4.5 11.2 0.6
HDUDDS 8.4 12.2 25.9 0.4
CLN 4.0 5.7 17.7 0.6
CC 4.3 6.2 17.9 0.6

Table 6
PMP results.

Cycle l0 [kg] Average fuel cell
power output [kW]

Fuel economy
[mpg diesel equivalent]

MAN 1,992,220 29.6 5.64
MAN w/grade 1,999,720 31.4 5.30
HDUDDS 2,070,610 46.5 9.77
HDUDDS w/grade 2,081,025 49.6 9.13
CLN w/grade 2,014,460 34.2 6.40
CC w/grade 2,015,215 35.0 6.69

2 For a given vector X, the RMS value is defined as: Xrms ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1X
2
i =n

q
where n

is the length of the vector.
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By observing Fig. 12(d) it can be seen that for different drive
cycles, the value of l is different. However, in spite of Eq. (28), l is
essentially constant for the duration of the trip. The severity of the
HDUDDS cycle, which consists of large accelerations with relatively
high speeds, is much larger than the other two cycles depicted. This
leads to a much large value of l.

From Fig. 12(c) we can see that a higher l value leads to an
overall higher power demand from the fuel cell. While there are
fluctuations in fuel cell operation in every case, the fuel cell oper-
ates mainly around a centralized (average) value for each cycle.

For the MAN cycle, which consists of multiple stops and has the
lowest average and maximum velocities among the cycles exam-
ined, the range of SOC explored is very small, seen in Fig. 12(b).
However, for the HDUDDS cycle a larger range of SOC is explored,
with a large drop in SOC occurring during an acceleration to high
speed (around t ¼ 600 s), seen in Fig. 12(a). Similarly, for the CLN
cycle the SOC gradually increases until multiple high speed accel-
erations occur (around t ¼ 1600 s). At this point, the battery is used
to meet the large power demands, decreasing the SOC. By design,
charge sustainability is achieved for each drive cycle.

6. Practical controller implementation

The optimal PMP controller is difficult to implement in real time.
As shown previously, the optimal solution can only be achieved
when the proper value of l0 is selected. However, because this value
depends on the drive cycle, optimality and charge sustainability can
not be guaranteed for real time implementation, when the drive
cycle is not known a priori. Because of this, design of a rule-based or
simple algorithmic controller for implementation on the hybrid
fuel cell bus is needed. The controller should mimic the tendencies
of the PMP controller in order to be as close to optimal as possible.
The optimal PMP results show the following:

� l is nearly constant during a given drive cycle;
� the optimal l0 is dependent on the severity of the drive cycle;
� fuel cell shows a relatively narrow range of operation around
the average power demand for a given drive cycle;

� average fuel cell power demand is related to the severity of the
drive cycle.

Basedon these results, the followingARMAcontroller isproposed:

PFCðjþ1Þ ¼
XN
i¼1

ai$PFCðjþ1� iÞþ
XM
j¼1

bj$
�
SOCðjþ1� jÞ�SOCref ðjÞ

�

(35)

where the first term is the auto-regressive weighted average of N
past values of PFC and the second term is the weighted average ofM
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Fig. 12. Simulation results using PMP optimal controller for different drive cycles of
different duration: Manhattan without grade, HDUDDS without grade, and CLN with
grade. (a) Shows the velocity profile for each cycle, (b) provides the SOC trajectory of
the battery, (c) shows the fuel cell power demand, and (d) shows the l trajectory for
each case.

Table 7
ARMA parameters.

Parameter Value

j 10 s
N 25
M 1
ai Description to follow
bi b1 ¼ 16
PFC(0) Description to follow
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Fig. 13. Values of a with respect to N used to calibrate the AR portion of the practical
controller.

Table 8
ARMA results.

Cycle Average fuel cell
power output [kW]

Fuel economy
[mpg diesel
equivalent]

% Difference from
PMP results [%]

MAN 29.8 5.63 �0.2
MAN w/grade 32.7 5.15 �2.8
HDUDDS 44.9 9.55 �2.3
HDUDDS w/grade 49.1 9.04 �1.0
CLN w/grade 31.7 6.35 �0.8
CC w/grade 35.9 6.56 �1.9
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past values of the SOC deviation from the target SOC. For stability,PN
i¼1ai ¼ 1, and bj can be interpreted as the gains of an extended PI

controller. j is an index of adaptation time, where the period of
adaptation can be tuned for a desired performance.

This control strategy is inherently low pass filtering, hence
limiting the fuel cell transients, which will prolong the life of the
fuel cell. Initial examination of the algorithm also indicates that it is
inherently smoothing, immune to noise, and capable of adapting to
changes in the severity of the driving conditions. It also operates
the fuel cell in a manner similar to what was seen by the PMP
controller, and results in an SOC trajectory similar to the PMP
controller. The calibration of the practical controller defined in Eq.
(35) should guarantee sub-optimal performance over a wide range
of operation of the bus. Therefore, the controller parameters have
been tuned to achieve performance to mimic behaviors seen from
the PMP controller. If was found that the performance of the
controller with respect to fuel consumption was relatively insen-
sitive to changes of these parameter values. The optimal parameter
values of the ARMA controller found from this analysis are pre-
sented below in Table 7.

The values of a were found using a decreasing exponential
function, shown in Eq. (36), to allow more recent fuel cell set
points to have the largest impact. The values of a can be seen in
Fig. 13.

ai ¼ exp
�
� N � iþ 1

4$N

�
¼ aiPN

i¼1ai
(36)

The initial fuel cell set point is needed in order to simulate the
ARMA controller. This value was set for each drive cycle as the
average fuel cell power demand obtained from the PMP controller.
These values can be found in Table 6. For application on the actual

bus, this value could be calculated from the previous day of oper-
ation, since the bus would be expected to see very similar duty
cycles from day to day.

The same drive cycles were simulated using the ARMA
controller for comparison with the PMP results. Because the ARMA
controller does not guarantee the ending SOC is equal to the initial
SOC, that change in energy must be taken into account when
calculating fuel economy:

Meq ¼
Ztf
0

_mH þ

Ztf
0

Pbatt

LHVH$h
signðDSOCÞ
path

(37)

where Meq is the equivalent mass of hydrogen consumed, and hpath
is the average powertrain efficiency whichwas estimated to be 40%.
DSOC is:

DSOC ¼ SOC
�
tf
�
� SOCð0Þ (38)

Eq. (34) still applies, where Meq can be used in place of MH.
The ARMA controller was capable of achieving fuel economy of 5.1e
9.5 mpg diesel equivalent, depending on drive cycle. The results are
summarized in Table 8

Results also show that the controller minimizes transients on
the fuel cell system. This will lead to prolonged life of the fuel cell.
While the fuel cell operation is somewhat different between the
PMP and ARMA controllers, the resulting SOC trajectory of the
battery are very similar, as shown in Figs. 14e16 for the MAN,
HDUDDS, and CLN drive cycles respectively.
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Fig. 14. SOC and PFC trajectories for the Manhattan drive cycle without grade.
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Fig. 15. SOC and PFC trajectories for the HDUDDS without grade.
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7. Conclusions

In this paper the modeling of an appropriate energy-based
vehicle simulator for a proposed Fuel Cell Hybrid Bus powertrain
was presented. The representative simulator was designed for the
purpose of energy analysis and control strategy development. The
formulation of the optimal energy management problem in the bus
was defined. The design approach taken by the authors to develop a
real-time controller for the bus was to first find the optimal solu-
tions for multiple drive cycles, with and without grade, using PMP,
and then develop an implementable controller based on observa-
tions and analysis of the optimal solutions.

An analysis of the optimal control obtained from the PMP
controller showed that the initial value of the co-state which leads
to the optimal trajectorywas dependent on the severity of the given
drive cycle. Also, the variation of lwith respect to time is negligible
for the duration of a driving event. The results also show that the
optimal fuel cell operation is dependent on the severity of the drive
cycle.

These observations led to the design of a practical controller in
the form of an ARMA regulator. Results from simulations using the
ARMA controller were presented and compared to the optimal case.
The ARMA controller performed well, achieving sub-optimal fuel
economy values that were less than a 3% decrease from the optimal
value for each drive cycle tested. It was found that overall fuel
consumption was insensitive to changes in the parameters of the
controller. Also, the controller allowed for limited transients on the
fuel cell system, so prolonging the life of the system. The ARMA
controller is well suited for on-board implementation as it requires
minimal computational effort with lowmemory requirements, and
in the future, it will be implemented on the actual bus.
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Fig. 16. SOC and PFC trajectories for the CLN drive cycle with grade profile seen in Fig. 11(b).
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