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Accelerating the transition to cobalt-free batteries: a hybrid
model for LiFePO4/graphite chemistry
Gabriele Pozzato1, Xueyan Li2, Donghoon Lee3, Johan Ko 4 and Simona Onori 1✉

The increased adoption of lithium-iron-phosphate batteries, in response to the need to reduce the battery manufacturing process’s
dependence on scarce minerals and create a resilient and ethical supply chain, comes with many challenges. The design of an
effective and high-performing battery management system (BMS) for such technology is one of those challenges. In this work, a
physics-based model describing the two-phase transition operation of an iron-phosphate positive electrode—in a graphite anode
battery—is integrated with a machine-learning model to capture the hysteresis and path-dependent behavior during transient
operation. The machine-learning component of the proposed “hybrid” model is built upon the knowledge of the electrochemical
internal states of the battery during charge and discharge operation over several driving profiles. The hybrid model is
experimentally validated over 15 h of driving, and it is shown that the machine-learning component is responsible for a small
percentage of the total battery behavior (i.e., it compensates for voltage hysteresis). The proposed modeling strategy can be used
for battery performance analysis, synthetic data generation, and the development of reduced-order models for BMS design.

npj Computational Materials           (2024) 10:14 ; https://doi.org/10.1038/s41524-024-01197-7

INTRODUCTION
The positive electrode of a lithium-ion battery (LIB) is the most
expensive component1 of the cell, accounting for more than 50%
of the total cell production cost2. Out of the various cathode
technologies available on the market today, iron phosphate
(LiFePO4, also referred to as LFP) cathodes3 offer superior thermal
and chemical stability, resulting in a safer cathode material that
does not decompose at high temperatures, as compared to nickel-
and cobalt-based cathodes4. The absence of cobalt and nickel
suggests a pathway for a resilient battery supply chain, and
contributes to the creation of an ethical energy market, owing to
the concerns about cobalt mining working conditions and child
labor in countries such as the Democratic Republic of Congo (the
top supplier)5,6.
LFP batteries are notoriously cheaper and offer better cycle life

compared to the NCA or NMC cathode LIBs (approximately 4–5x
longer) and withstand high rates of charge and discharge (up to
20C7). Major LIB manufacturers are investing in this technology. In
2020, the Chinese automaker and battery company BYD unveiled
a new generation of LFP batteries, called “Blade”8,9, followed by
Tesla who in 2020 first announced the use of iron phosphate in
LIBs manufactured for the Chinese electric vehicle market9, and
later in 2021 extended to LIBs manufactured globally10,11.
The known weakness of LFP batteries is their low energy density

and low electrical and ionic conductivity. It has been shown that
metal doping and the addition of conductive coatings are
effective solutions to enhance electronic conductivity12. The low
energy density—120Wh kg−1 (ref. 12)—is of particular concern for
the transportation sector, because of the reduced battery range it
can provide13. However, recent advancements in LFP technology
set the Chinese company SVolt to reach a specific energy of
230Wh kg−1 in 202314. In 2023, Gotion High Tech unveiled a new
lithium manganese iron phosphate (LMFP) battery to enter mass

production in 2024 that, thanks to the addition of manganese in
the positive electrode, is poised to reach 240 Wh kg−1 (ref. 15).
Lithium-ion batteries are electrochemical energy storage

devices in which lithium is exchanged between the positive and
the negative electrode. During discharging (positive current),
lithium leaves the negative electrode (deintercalation) and enters
the positive one (intercalation). During charging (negative
current), the positive electrode experiences deintercalation, and
lithium intercalates into the negative electrode.
The open circuit voltage (OCV) is the thermodynamic equili-

brium potential of the battery, a function of its chemistry, and is
defined as the difference between the open circuit potentials
(OCPs) of the positive and negative electrodes. LFP batteries use
LiFePO4 and graphite as positive and negative electrode active
materials, respectively. In this paper, the two-phase transition
behavior of the positive electrode, which results in a flat positive
electrode OCP characteristic and a voltage plateau around 3.45 V
vs. Li/Li+ (see Supplementary Fig. 1)16,17, is modeled. In particular,
in the positive electrode, there are three distinct stages: lithium-
rich (LiFePO4), two-phase transition, and lithium-poor (FePO4)18–20.
According to ref. 18, in the two-phase transition region coexist a
lithium-rich phase LiβFePO4 referred to as β (with β≃ 1), and a
lithium-poor phase LiαFePO4 referred to as α (with α≃ 0).
The presence of a two-phase transition in the positive electrode

results in a flat OCV curve, which makes the task of estimating the
state of charge (SOC) challenging as it causes a lack of
observability of the system’s states from the voltage output
measurements21. Moreover, a pronounced hysteresis22, and path
dependence behavior, i.e., for the same SOC the battery relaxes to
different OCV values depending on whether it was charging or
discharging, pose additional challenges in the design of battery
management system (BMS) strategies.
Hysteresis results from thermodynamic effects, mechanical stress,

and microscopic distortions within the active material particles
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caused by dopants23. Thermodynamic effects are related to the
electrodes being composed of multiple particles and to the
heterogeneity of the lithium insertion rate. Mechanical hysteresis
is associated with the different lattice constants of lithiated and
delithiated phases that cause mechanical stress at the phase barrier.
In LiFePO4/graphite batteries, the positive electrode is the main

contributor to OCV hysteresis and it is modeled in this paper. In
ref. 24, this is modeled in terms of the coexistence of lithium-rich
and lithium-poor phases in a core-shell paradigm. During charge,
the core and shell are characterized by a lithium-rich and a
lithium-poor phase, respectively, and vice versa for discharge. In
ref. 25, the thermodynamic origin of hysteresis is attributed to
different lithium insertion rates in the particles of the positive
active material. Such a non-uniform insertion rate leads to
heterogeneous lithium concentrations within the individual
particles and non-uniform potentials. The overall electrode
potential is a blend of the potentials of the active material
particles and, depending on the intercalation/deintercalation path
taken to reach a given SOC, hysteresis is shown.
According to ref. 17, there is no complete agreement among

researchers on how the lithium-poor and lithium-rich phases are
created during the positive electrode phase transition. From
scanning transmission X-ray microscopy (STXM), in ref. 20 it is
shown that spatial variations in the lithium-ion insertion rate lead
to the formation of nonuniformities inside the positive electrode
particles that do not experience a clear separation between poor
and rich phases. Conversely, STXM results recently published in
ref. 26 show the formation of two separated phases in a core-shell
type of structure.
This dispute has led to the development of different models

describing the lithium insertion dynamics in LiFePO4 cathodes. In
ref. 25, the authors propose a many-particle model where lithium is
exchanged between individual particles, and sequential lithiation
and delithiation are demonstrated. Kinetic and transport equa-
tions are ignored, making the model inappropriate at a high C-rate
or when an accurate description of electrochemical phenomena is
required. In ref. 19, a domino-cascade model is used to describe
lithium insertion in the positive electrode. In this model, the phase
transition is described via a front moving inside the lattice. The
authors of ref. 27 investigate a mosaic model where small
nucleation sites, each undergoing a phase change during charge
and discharge, are created inside a bigger active material particle.
In ref. 28, a core-shell model is used to describe phase transitions

in the positive electrode. While assuming isotropic diffusion,
lithium intercalation, and deintercalation are modeled with a
moving boundary controlling the core-shell phase transition.
Similar approaches are used in refs. 4 and 29, for the pseudo-two-
dimensional (P2D) and single particle model (SPM), respectively. In
ref. 4, the formation of multiple phase transition layers in an
“onion” structure is modeled. Through the addition of a mass
balance equation that describes the moving boundary between
the core and shell phases, the model, experimentally validated
over LFP/graphite coin cell data, allows to track the lithium-rich
and lithium-poor phases.
In ref. 30, the formulation of a core-shell enhanced single particle

model (ESPM), blending the predictive capabilities of ESPM with the
core-shell modeling paradigm in the positive electrode, is proposed
and experimentally validated. In ref. 31, this model is further
enhanced through an average core-shell ESPM formulation, where
the bulk-normalized concentration is used to prevent discontinuity
of the positive particle lithium surface concentration arising from
the transition between one-phase to two-phase regions32.
When used in applications such as electric vehicles (EVs) or

battery energy storage systems (BESSs), a BMS must be designed to
guarantee the functionality, safety, and reliability of the system
during operation. A critical task of the BMS is the estimation of SOC,
which is particularly challenging for the battery chemistry under
study due to the flatness and hysteresis of the OCV. In this paper,

we model hysteresis and path-dependent dynamics of LFP batteries
for BMS design. Empirical models, initially proposed by ref. 33, have
been widely used to model battery hysteresis13,21,34,35. The accuracy
of such models though depends on a careful calibration upon ad
hoc crafted experimental data consisting of major and minor loops.
Major loops aim at capturing the major OCV boundaries and require
the battery to be fully charged and discharged, whereas minor
loops are meant to capture partial charge and discharge events at
different loading conditions to assess the local hysteretic behavior
and the path-dependent dynamics, and they are a function of both
SOC and C-rate. For example, in ref. 34, the minor loop hysteresis
test is composed of a sequence of five charge pulses followed by
five discharge pulses; at each pulse, the battery is relaxed for 3 h to
its OCV. As minor loops must be repeated at different SOCs and
C-rates to capture the hysteretic behavior and path dependence
over the whole battery operating region, this could lead to
experimental campaigns of the order of weeks or months.
The flat OCV-SOC relationship and the prominent hysteresis

challenge the status quo in lithium-ion battery modeling. Similar
to what was done in ref. 36 to improve battery safety, in this paper,
we combine the strengths of physics-based and machine-learning
approaches by leveraging the aptness of the average core-shell
ESPM model31 (to track the cathode lithium concentration)
integrated with a machine-learning hysteresis model (Fig. 1).
The output voltage of the battery cell using the proposed

hybrid model is given as:

V ¼ Vcs þ Vh

¼ Uch
p þ Udis

p

� �
=2� Un þ ηp � ηn þ ΔΦe � I � RlðSOC; IÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Vcs

þVh

¼ Uavg
p � Un þ ηp � ηn þ ΔΦe � I � RlðSOC; IÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Vcs

þVh

¼ Vavg
OCV þ ηp � ηn þ ΔΦe � I � RlðSOC; IÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Vcs

þVh

(1)

where the term Vcs collects the information from a core-shell
physics-based model, and the term Vh models the hysteresis via a
machine-learning method described later. The term Vcs depends
on the OCP of the negative electrode Un, the OCP of the positive
electrode in charge (Uch

p ), and the OCP of the positive electrode in
discharge (Udis

p ). These latter terms are then combined to produce
the average positive electrode OCP defined as ðUch

p þ Udis
p Þ=2 and

shown in Fig. 2c. Moreover, Vcs depends on the positive and
negative electrode overpotentials, ηp and ηn, and the electrolyte
overpotential, ΔΦe, which are derived according to ref. 37 as
described in Supplementary Note 1. Lastly, the Ohmic loss term
(I ⋅ Rl(SOC, I)) accounts for the battery’s high-frequency resistance
(lumping both electro-migration in the electrolyte and contact
resistance), which is a function of input current and SOC. This
resistance is computed from galvanostatic intermittent titration
technique (GITT) experiments performed at C/6, C/3, C/2, and 1C,
as described in Supplementary Note 2. These experimental data
are made available at the link provided at the end of the paper.
The term Vh captures the deviation of the simulated battery cell

voltage from the average OCV, defined as Vavg
OCV ¼ ðUavg

p � UnÞ and
shown in Supplementary Fig. 2, due to hysteresis and model
uncertainties. The hysteresis assumes negative values over the
100% to 0% SOC discharge range (because the battery voltage
trajectory is below the Vavg

OCV) and positive over the 0% to 100%
SOC charge range (because the battery voltage trajectory is above
the Vavg

OCV). In this paper, we refer to the term Vh as pseudo-
hysteresis to account for both hysteresis and model uncertainties,
the latter due primarily to the limitations of the physics-based
model to capture all the underlying electrochemical dynamics38.
This model copes with both static and dynamic hysteresis. The

static hysteresis is associated with the battery equilibrium potentials
being different whether coming from charge or discharge. Instead,
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dynamic hysteresis arises from the switching between charge and
discharge conditions and is a function of the battery history, and
local and instantaneous operating conditions (SOC and C-rate).
The hybrid model proposed in this paper can increase the

predictive capabilities of traditional battery models39. The physical
understanding of lithium intercalation and deintercalation is
preserved in all the stages of the model development, which
reaffirms the key role of physics. Moreover, the pseudo-hysteresis
machine-learning model pursued in this work is not constrained
within a fixed model structure, like semi-empirical approaches.
The machine-learning component learns the hysteretic beha-

vior from both simulated features (from the core-shell ESPM) and
experiments and it is trained and validated over 19 and 15 h of EV
real-driving profiles, respectively. Data are obtained from a 49Ah
LiFePO4/graphite pouch cell—currently in the design phase—
under real-world EV operation. The approach proposed allows us
to step away from the need to have major and minor loops-based
testing, providing a simplified approach to learning the dynamic
hysteresis behavior—along with any unmodeled dynamics—
when switching between charge and discharge conditions. Along
with GITT experiments, EV real-driving profiles are also made
available at the link provided at the end of the paper.

RESULTS
Physics-based model: average core-shell ESPM
As shown in Fig. 2a, b, the average core-shell ESPM approximates
the battery positive and negative electrodes as two, spherical, single
particles where transport of lithium ions in the solid (the single
particle) and electrolyte phase is expressed by mass conservation
equations, charge conservation is used in the electrolyte phase, and
phase transitions in the positive particle are modeled with a mass
balance equation and a moving boundary31.

Figure 2c shows phase transitions experienced by the positive
particle and the corresponding regions on the charge and
discharge OCPs. In line with the arguments of ref. 22, at a given
stoichiometry, the battery OCP in discharge Udis

p (lithiation) is
lower than the one in charge Uch

p (delithiation). The red dashed
line between charge and discharge OCPs is the average positive
electrode potential (Uavg

p ), as defined in Equation (1).
The bulk-normalized lithium concentration θbulki is used to describe

the solid phase concentration in both electrodes31. For the positive
electrode, when θbulkp < θαp and θbulkp > θβp the particle is in the one-
phase region. The stoichiometric values θαp and θβp define the
transition points from one-phase to two-phase (and, vice versa) and
are identified using optimization algorithms such as particle swarm
optimization30. In the two-phase region, α-phase and β-phase coexist
inside the particle, which experiences a phase transition from α to β
(during discharge). This phase transition is described by the moving
boundary rp (in the Supplementary Equation (34)), modeling the
shrinking phenomenon replacing the core phase with the shell phase.
The use of the bulk-normalized concentration in the average

core-shell ESPM was introduced to remove the positive particle
surface concentration discontinuity arising in the traditional core-
shell modeling paradigm during the transition from one-phase to
two-phase region31. Model equations for the core-shell ESPM are
summarized in Supplementary Tables 1, 2, and 3.
In this paper, we also extend the applicability of the physics-

based model to real-world current profiles, characterized by a
combination of charge and discharge events which translates
into continuous switching between scenarios A and B in
Fig. 2c. This switching is implemented by means of the
transition conditions described in Supplementary Note 3
(Supplementary Equations (5) and (7)), which ensure the
conservation of mass. The characteristic of the proposed
approach is that it always enforces a positive particle structure

Fig. 1 Workflow. a Starting from field data (electric vehicles, grid, or home stationary storage), the proposed hybrid model merges the
strengths of physics-based and machine-learning approaches for improved prediction performance. In this paper, we use EV driving data to
train the machine-learning hysteresis model. b The hybrid model can be employed in battery performance analysis, synthetic data generation,
and as the basis for reduced-order models.
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with “one shell” and “one core”. For example, when transition-
ing from charge to discharge, the positive particle β-core and α-
shell are remapped into α-core and β-shell while ensuring mass
conservation and the opposite happens during discharge-to-
charge transitions. This allows to track the evolution of the two
phases while avoiding the creation of an “onion” structure with
multiple α and β layers4, and reduces the complexity of the
model and the computational burden required for its numerical
solution.

Machine-learning model: pseudo-hysteresis
The machine-learning model capturing static and dynamic voltage
hysteresis and model uncertainties is formulated as follows:

Vh ¼ f ð½IΨ�Þ (2)

where Vh is the pseudo-hysteresis, expressed as a function f of the
input current profile I and the vector Ψ which collects simulated
electrochemical features extracted from the solution of the
average core-shell ESPM. In this work, different machine-learning

Fig. 2 Battery modeling and phase transitions. Lithium-ion battery schematic (a). Electrodes are composed of multiple particles which differ
in shape and size. The physics-based model is formulated by approximating the battery’s positive and negative electrodes as two spherical
particles (b). x and r indicate the Cartesian and radial coordinates, respectively. The thicknesses of negative particle, separator, and positive
particle domains are Ln, Ls, and Lp, respectively. Phase transitions experienced by the positive particle during a discharge from 100% to 0%
SOC are shown in c. The positive particle is first initialized at a concentration θbulkp < θαp (one-phase), then, it transitions to a two-phase region

where the lithium solid phase concentration is described by the core-shell paradigm, and finally, the particle returns to one-phase for θbulkp > θβp
and stays in this phase until 0% SOC is reached.
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models are trained and Ψ formulation depends on whether
manual or automatic feature selection is used, as described in the
next paragraphs.
A distinct challenge of machine learning is the selection of the

model class to describe the input/output behavior. Batteries are
nonlinear systems, hence, nonlinear machine-learning approaches
might provide the most benefits. In this work, we explore three
techniques for the solution of nonlinear regression problems:
feedforward neural networks (FNNs), regression trees (RTs), and
random forests (RFs)40,41. Contrary to FNNs and RTs, which are
based on the training of a single model, RFs are based on an
ensemble of regression trees that provide an effective framework
for feature selection while reducing data overfitting.
The accuracy of machine-learning models is highly sensitive to

the input feature selection and hyperparameters configuration.
Two feature selection approaches are used in this work: manual
and automatic. In the manual approach, a total of three features
are chosen to get information on electrochemical states, namely,
bulk-normalized positive particle solid phase concentration, θbulkp ,
average electrolyte concentration, cavg, and input current (experi-
mental data). The manually selected feature vector is used to train
FNNs and RTs. In the automatic method, used for the RT design,
features are selected by combining the strength of correlation
analysis with RF. Given a current profile and the simulated
quantities from the average core-shell ESPM (i.e., positive and
negative electrode solid phase concentration, electrolyte concen-
trations, moving boundary, SOC, bulk-normalized concentrations—
see Supplementary Note 4 for details), correlation analysis is used
to select a subset of informative features and reduce the feature
space. This subset is then used to train an RF model, which creates
and merges predictions of several regression trees trained with
different combinations of features.
For the training of FNN, RT, and RF, both input features and

output are needed. In this work, the output is a vector containing
the information on static/dynamic hysteresis and model uncertain-
ties, and it is computed as the difference between the simulated
output voltage from the purely physics-based model (which
accounts for overpotentials and Ohmic losses) and experimental
data. While training FNN, RT, and RF, the model hyperparameters
are optimized. In FNNs, the number of hidden layers and neurons
within each hidden layer plays a key role in modeling the
nonlinearities in the system. As mentioned in41, the selection of
features and hyperparameters is generally done through back-
ground knowledge of the problem or, as done in this work, with
grid search. The performance of RTs, in terms of the description of
nonlinearities, is a function of the maximum depth. Being an
ensemble of regression trees, RFs performances are a function of
the maximum depth and number of trees used for prediction.
Table 1 summarizes the feature selection and hyperparameters

optimization process for FNN, RT, and RF. For further information
on feature selection, hyperparameters optimization, and training
of the data-driven models, readers are referred to Supplementary
Note 6.

Hybrid modeling strategy
Figure 3 shows the hybrid model schematic combining the first-
principle understanding with the learning capability of the machine-
learning component to create an accurate battery model able to
capture and dynamically reproduce the system pseudo-hysteresis.
On top, the physics-based model equations are summarized, where
current is the input to the model. At the bottom, the machine-
learning model is shown. Input to the machine-learning model is the
experimental current profile I and the simulated feature vector Ψ. As
shown in Equation (1), the output of the hybrid model is the battery
voltage as given by the summation of physics-based (Vcs) and
machine-learning (Vh) voltages.
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Table 2 summarizes the current profiles used for the training of the
machine-learning model, #1, #2, and #3, and the ones used for testing
the hybrid model, i.e., #4, #5, #6, and #7. These profiles were
specifically designed to emulate EV applications, with discharge and
charge events corresponding to the vehicle’s acceleration/cruising
and regenerative braking, respectively. For each current profile shown

in Fig. 6 (in the “Experimental procedures” section), Table 2 collects
the SOC range, minimum and maximum currents, mean values, and
standard deviations. The last two columns show the root mean
square errors (RMSEs) in terms of voltage response and SOC, before
the introduction of the machine-learning pseudo-hysteresis model.
According to Equation (5), RMSEs are computed between the purely

Fig. 3 Hybrid model architecture. The physics-based model (average core-shell ESPM), describing the battery behavior from mass and
charge conservation, feeds the machine-learning model through the feature vector Ψ. Both the physics-based and machine-learning models
use current as input. The overall battery output voltage V is given by the summation of Vcs and Vh, outputs of the physics-based and machine-
learning models, respectively. In this figure, the machine-learning model is shown in the form of a FNN.

Table 2. Current profiles for training and testing of the hybrid model.

Current profile SOC range [%] Min./Max. [A] Mean value [A] Standard deviation [A] RMSEV [mV] RMSESOC[%]

#1 80%–20% −25.29/47.22 5.64 10.95 32.80 0.41

#2 60%–10% −29.98/44.93 3.25 10.45 31.70 0.37

#3 100%–0% −34.58/71.84 7.77 14.97 30.37 0.74

#4 50%–10% −34.06/65.49 7.92 15.08 33.10 0.14

#5 50%–10% −30.00/44.79 3.25 10.46 25.33 0.40

#6 100%–50% −25.16/45.99 5.72 11.02 29.68 0.67

#7 100%–0% −23.23/55.48 18.48 17.01 55.04 0.35

Profile #1, #2, and #3 are used for the optimization of the machine-learning model hyperparameters and training. Profile #4, #5, #6, and #7 are used for testing.
The table shows characteristics of the current profiles in terms of SOC window, minimum and maximum currents, mean values, and standard deviations. The
last two columns show the voltage RMSE and SOC RMSE of the average core-shell ESPM.
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physics-based average core-shell ESPM output and experimental data
(the experimental SOC is obtained from Coulomb counting (CC)).
With respect to SOC, the physics-based model ensures satisfactory

performances, with RMSEs always below 1%. The machine-learning
compensation is limited to the voltage output profile and does not
affect the SOC output of the physics-based model. In Table 3, instead,
the voltage RMSEs of the hybrid model (either using FNN, RT, or RF),
quantifying the performance before and after the introduction of the
machine-learning model are tabulated and compared. It can be seen
that compared to the benchmark solution from the purely physics-
based model, the hybrid models (irrespective of the FNN, RT, or RF
compensation) lead to a substantial improvement of the voltage
RMSEs: of ~95% for training datasets, consistently across the three
machine-learning methods, and between 83% and 47% in testing.
Compared to FNN, the RT shows a tendency to overfit the training
data, with RMSEs improving for current profiles #1, #2, and #3 and
worsening for #4, #5, and #7. At the cost of increasing the complexity
of the model, the RF provides the best trade-off. This is expected
since the output of the RF is based on the average of predictions
performed by its ensemble of regression trees. Compared to FNN,
performances are improved in training and, except for profiles #5
and #7, also during testing (the difference between RMSEFNNV and
RMSERFV for profiles #5 and #7 is lower than or equal to 0.15mV). As
shown in the Supplementary Note 5, we argue that differences
between training and testing datasets are responsible for the higher
RMSEs during testing.
The performances of the hybrid model—using the RF machine

leaning compensation—for profiles #4 and #7 are shown in Fig. 4
(in Supplementary Fig. 14, simulation results for the training
current profile #3 are shown). In Fig. 4a, b, simulation results with
(signal V) and without (signal Vcs) of the machine-learning pseudo-
hysteresis model are compared to experimental data. In Supple-
mentary Fig. 3, for profile #4, the machine-learning compensation
Vh is compared to the maximum polarization computed from
charge and discharge OCPs (�ðUch

p � Udis
p Þ=2)13, describing the

theoretical deviation from the average OCP caused by hysteresis
only. As shown in the figure, the compensation (on average
of−32mV) is of the same order of magnitude as the maximum
polarization, indicating that voltage hysteresis is the major
contributor to the deviation between the physics-based model
and experimental data. Other fluctuations are related to Vh
compensating for physics-based model uncertainties.
In Fig. 4b, one can notice that the discrepancy between model

and experimental data increases for SOC values lower than 12%,
leading to an RMSERFV of 27.03 mV (see Table 3 also for detailed
RMSE modeling errors across all the profiles). As described in
Supplementary Note 5, current-voltage operating conditions for
driving cycle #7 differ from the training dataset by 4.2%. We argue
that the difference between training and testing datasets
(together with the evidence that ~75% of the training points fall
inside the current and voltage ranges [−7,17.8]A and [3.2,3.3]V,
respectively) is responsible for the overpredicting behavior in
Fig. 4b. This behavior could be improved by increasing the

population of the training dataset and performing ad hoc
experiments in the low SOC region.
As shown in Fig. 4, driving cycles #4 and #7 deplete the battery

from 50% to 10% and 100% to 0% SOC, respectively. Since the
battery is overall discharging, the positive electrode is characterized
by a lower OCP compared to the average OCP, and consequently,
negative values of Vh are expected. For driving cycle #7, inside the
SOC range [10, 90]%, and driving cycle #4, the pseudo-hysteresis
holds an average value of−32mV. For driving cycle #7 and SOC
higher than 90%, the pseudo-hysteresis increases to 43mV,
indicating that the cell is starting from a full charge condition and
then polarized towards the positive electrode charge OCP.
To further assess the performance of the hybrid model,

modeling errors before (e1) and after (e2) the introduction of the
machine-learning pseudo-hysteresis component are computed:

e1 ¼ Vexp � Vcs

e2 ¼ Vexp � ðVcs þ VhÞ ¼ Vexp � V
(3)

Figure 5 (top plots) shows the statistical distributions of e1 and e2
for the three machine-learning models proposed, namely FNN, RT,
and RF (using current profile #7). The advantage of the hybrid
model is two-fold: first, it shifts the error distribution to zero-mean
(the purely physics-based model is overpredicting) and, second, it
reduces the error variance by shrinking the distribution. Finally,
the bottom plots in Fig. 5 show the energy contribution of
physics-based (EVcs ) and machine-learning (EVh ) models computed
integrating over time the electrical power:

E ¼ EVcs þ EVh ¼
Z tf

0
jVcsIj dt þ

Z tf

0
jVhIj dt (4)

with tf the time duration of the current profile. The energy analysis
shows that the contribution of the machine-learning component
is small, around 1.1%, and acts as a low energy compensation of
voltage hysteresis and model uncertainties. The modeling error
distribution and energy characterization for all current profiles is
shown in Supplementary Figs. 15 and 16.

DISCUSSION
The hybrid model developed in this paper merges the strengths of
physics-based modeling with the machine-learning model’s ability
to describe unknown physics. While preserving the physical
understanding of lithium-ion transport and intercalation provided
by the average core-shell ESPM, machine learning is leveraged to
learn hysteresis from 19 h of driving cycle data and compensate
for model uncertainties. To show the potential of the proposed
architecture, the hybrid model is tested over 15 h of driving cycle
data. The hybrid model copes with voltage hysteresis reducing the
voltage RMSE by ~95% in training datasets, and between 83% and
47% in testing (last row of Table 3). The worst case, with an
average percentage improvement of 47%, is obtained for driving
cycle #7, where, at low SOC, the hybrid model starts over-
predicting due to the limitations of the training dataset described

Table 3. Performance of feedforward neural network, regression tree, and random forest over training and testing datasets.

Current profile #1 #2 #3 #4 #5 #6 #7 Unit

Benchmark (Table 2) RMSEV 32.80 31.70 30.37 33.10 25.33 29.68 55.04 [mV]

Feedforward neural network RMSEFNNV 2.41 2.41 2.87 5.48 8.36 6.20 26.88 [mV]

Regression tree RMSERTV 0.64 0.82 0.86 6.34 8.68 6.05 32.95 [mV]

Random forest RMSERFV 0.35 0.40 0.53 4.69 8.47 5.14 27.03 [mV]

Average percentage improvement (with respect to benchmark) 96.54 96.18 95.32 83.37 66.43 80.47 47.40 [%]

Vh compensates for the physics-based output voltage and the last row shows the percentage improvement of the hybrid model compared to the benchmark
from Table 2 (computed from the output of the average core-shell ESPM).
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Fig. 4 Hybrid model performance. Comparison between experimental data and simulation results for current profiles #4 (a) and #7 (b), where
the hybrid model adopts the RF machine-learning compensation. As shown in both the zoomed portions, the hybrid model reduces the
discrepancy between simulated and experimental voltage profiles. In a, the contribution of the machine-learning model (Vh) to the overall
voltage profile (V) is on average−32mV. In (b), a−32mV average contribution is seen only inside the SOC range [10, 90]% and, for SOC higher
than 90%, the pseudo-hysteresis increases to 43 mV. For both a, b, the bottom left plots show the good agreement of the physics-based
model SOC (Sim.) with the SOC from Coulomb counting.
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in Supplementary Note 5. Nevertheless, the hybrid model
outperforms the purely physics-based one. The proposed
approach could be extended to simulate the whole electric
vehicle operation characterized by both driving and constant
current charge. During charge, instead of the machine-learning
pseudo-hysteresis model, the charge OCP would be used as the
true positive particle OCP (as done in ref. 30).
In this work, we followed a data-centric approach to develop the

machine-learning-based pseudo-hysteresis model—as opposed to a
big-data approach—where data are systematically engineered42. This
approach reduces the experimental time, creating highly informative
and low-dimensional datasets. Specifically, the training and testing of
the pseudo-hysteresis machine-learning model was achieved with
34 h of EV real-driving data, whereas an empirical hysteresis model
would have required weeks or months for the collection of the major
and minor loops data13. In the field of modeling and life span
prediction of batteries, where experimental testing still remains the
biggest bottleneck to push timely innovations, a data-centric solution
could be used to enable optimized and more flexible procedures. For
an effective pseudo-hysteresis machine-learning model:

● the training data should carry information on the switching
between charge and discharge positive particle OCPs, i.e., the
current profile should be composed of both charge and
discharge events. This is a key requirement to learn voltage
hysteresis;

● the training data should cover the whole SOC window, ideally
from 100% to 0% SOC, to assess the hysteretic behavior over
the whole battery operating region;

● the C-rate of the training data should be reflective of the
target application (e.g., transportation or stationary storage).

The hybrid model developed in this paper has also the potential
to improve the analysis of battery performance, generate

meaningful synthetic data, and enable model order reduction
for BMS applications (Fig. 1).
Battery performance. The hybrid model captures both the

positive electrode phase transition and voltage hysteresis. This
allows us to perform realistic sensitivity analysis, and potentially
assess the effect of modifications of transport parameters and
geometrical properties on the output voltage, performance, and
solid and electrolyte phase concentration dynamics.
Synthetic data generation. The description of pseudo-hysteresis

and phase transitions could make this model suitable for the
generation of synthetic data covering the whole current input range
(function of the target application) and, in particular, corner cases
(e.g., high/low SOC and high C-rate scenarios). This would contribute
to reducing experimental campaign time and optimize costs.
Model order reduction. The hybrid model can be used as a basis

for the derivation of reduced-order models to be used for BMS
design for SOC estimation using, for example, an electrode-based
observer framework43. A poorly predictive model can lead to large
SOC estimation errors, which could lead the battery to be
improperly managed and be subject to premature aging. The
proposed hybrid model is deemed to be a valuable tool for the
control community for the development of phase transition/
hysteresis-dependent observers for LFP batteries.

METHODS
Experimental data
Data used in this paper are acquired from a 49Ah LiFePO4/graphite
opposed tab pouch cell tested at a temperature of 25 °C.
Properties of the cell are summarized in Table 4.
The negative electrode OCP is obtained by performing GITT

experiments, on the other hand, the positive electrode charge and

Fig. 5 Hybrid model energetic analysis. Modeling error distributions and energetic analysis for profile #7, considering FNN, RT, and RF. On
top, of error distributions before (e1) and after (e2) the introduction of the machine-learning model. The hybrid model leads to a shift of the
distributions to the right (zero-mean) and to a reduction of the error variance. The energy analysis shows that the machine-learning model
contributes a small percentage to the overall output prediction.
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discharge OCPs are collected by constant charging and discharging
the cell at a low C-rate (C/50). Experiments for both positive and
negative electrode OCPs are performed on the half-cell, with a
lithium metal electrode as a reference. Supplementary Fig. 1 shows
experimental OCPs for both positive and negative electrodes.
Average core-shell ESPM parameters identification, described in

Supplementary Note 7, is performed for constant current charge
and discharge profiles at C/12 and C/6. Profiles at C/12 are used to
identify geometrical parameters and stoichiometric coefficients,
and C/6 data are used to identify solid phase diffusion coefficients
and reaction rate constants. The battery high-frequency resistance
as a function of both SOC and C-rate is computed from the C/6, C/3,
C/2, and 1C current pulses in different GITT experiments, as shown
in Supplementary Fig. 5. Between two pulses, a resting time of at
least 2 h is implemented to ensure the battery is at equilibrium
when computing the high-frequency resistance (details on the
procedure are shown in Supplementary Note 2).
The hybrid model is trained and tested over seven different

current profiles. These profiles were specifically designed to
reproduce the operation of EV batteries in a laboratory setting and
are used to learn the voltage hysteresis and model uncertainties.
The profiles, characterized by properties listed in Table 2, are

based on a sequence of discharging and charging events
corresponding to the vehicle’s acceleration/cruising and regen-
erative braking, respectively, and are all shown in Fig. 6. An in-
depth analysis of the operating conditions spanned by training
and testing datasets is in the Supplementary Note 5.

Assessing physics-based and hybrid model performance
As proposed in44, for the identification of unknown model
parameters of the average core-shell ESPM (described in Supple-
mentary Note 7) the voltage response and two SOCs, one for the
positive and one for the negative electrode, are used to increase the
parameters’ sensitivity and improve identification accuracy. Instead,
to assess the performance of the physics-based model, only voltage
response and positive electrode SOC are used. In lithium-ion
batteries, the positive electrode generally limits the performance of
the battery, because with a lower aerial capacity compared to the
negative one. Hence, we decide to use the positive electrode state
of charge (SOCp) for performance evaluation.
The RMSEs for the physics-based model voltage response and

positive electrode SOC are defined as follows:

RMSEV ½mV� ¼ 1000 ´

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

PN
j¼1

VexpðjÞ � VcsðjÞ
� �2s

RMSESOC ½%� ¼ 100 ´

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

PN
j¼1

SOCccðjÞ � SOCpðjÞ
� �2s (5)

where j is the time index, N is the number of samples, SOCp is the
simulated positive electrode state of charge (Supplementary
Equation (48)), Vcs is the simulated voltage profile (output of the
physics-based model), Vexp and SOCcc are the experimental cell
voltage and state of charge from Coulomb counting, respectively.
In the hybrid model, the machine-learning compensation is

limited to the voltage output profile and does not affect the SOC.
Hence, the performance of the hybrid model is assessed using the

Table 4. Technical specifications of the LiFePO4/graphite pouch cell
used in this study.

Manufacturer LG Chem

Positive electrode LiFePO4

Negative electrode graphite

Size (W × L × H) 99.7 mm× 301.5mm× 14.8mm

Weight 850 g

Nominal capacity (at C/3 and 25 °C) 49 Ah

Nominal voltage 3.2 V

Charge cutoff voltage 3.6 V

Discharge cutoff voltage 2.5 V

Fig. 6 Training and testing datasets. a Training current and Coulomb counting SOC profiles for driving cycles #1, #2, and #3 (from top to
bottom). b Testing current and Coulomb counting SOC profiles for driving cycles #4, #5, #6, and #7 (from top to bottom).
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following reformulation of Equation (5) (on top):

RMSE?V ½mV� ¼ 1000 ´

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
j¼1

VexpðjÞ � VðjÞ� �2vuut (6)

where V is the output of the hybrid model (as in Fig. 3) and the ⋆
distinguishes between the use of FNN, RT, and RF as a machine-
learning model.

DATA AVAILABILITY
Constant current charge and discharge profiles (at C/12 and C/6), GITT experiments
(at C/6, C/3, C/2, and 1C), and seven EV driving profiles (used for training and testing
as in Fig. 6) are made available to the public in the following Mendeley Data
repository: 10.17632/68rs3d99zc.2.

CODE AVAILABILITY
Results shown in this paper are obtained with a hybrid model entirely developed in
MATLAB 2021b. Partial differential equations are discretized and converted into a
system of ODEs and solved with the numerical solver ode15s. MATLAB functions
fitnet-train, fitrtree, and fitrensemble are used to train FNN, RT, and RF,
respectively, and compensate for hysteresis and model uncertainties. The MATLAB
code developed in this work contains the following confidential information:
negative electrode, separator, and positive electrode thicknesses; maximum lithium
concentration in the electrodes; average electrolyte concentration; transference
number; solid phase volume fractions; porosity; thermodynamic factor; OCPs. For this
reason, the code cannot be disclosed to the public.
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