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Comparative Analysis of Numerical Methods for Lithium-Ion
Battery Electrochemical Modeling
Le Xu, Julian Cooper, Anirudh Allam, and Simona Onoriz

Energy Science and Engineering, Stanford University, Stanford, California, United States of America

Electrochemical models provide insights into the battery internal states and have become powerful tools for battery design and
management. These models consist of partial differential equations (PDEs) that are solved numerically. In this paper, we compare
two spatial discretization methods commonly used to numerically solve the governing PDEs in the context of Lithium ion batteries,
namely finite difference method (FDM) and finite volume method (FVM) in terms of model accuracy and mass conservation
guarantee. First, we provide the mathematical details to carry out the spatial discretization for both FDM and FVM to solve the
battery single particle model (SPM). SPM parameters are identified from experimental data, and sensitivity analysis is conducted to
study parameter identifiability under different current input profiles, followed by model accuracy and mass conservation analysis of
the two numerical schemes. Leveraging the third order Hermite extrapolation approach, an enhanced FVM scheme is proposed in
this paper to improve the model accuracy of standard FVM which relies on linear extrapolation. This paper shows that the FVM
scheme with Hermite extrapolation leads to accurate and robust control-oriented battery model while guaranteeing mass
conservation and high accuracy.
© 2023 The Electrochemical Society (“ECS”). Published on behalf of ECS by IOP Publishing Limited. [DOI: 10.1149/1945-7111/
ad1293]
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Nomenclature

Acell Cell cross-sectional area [m2]
Ds,j Solid-phase diffusion [m2/s]
F Faradayʼs constant [C/mol]
Lj Electrode thickness [m]
Iapp Applied current [A]
R Universal gas constant [ ( · )]J mol K
Rs,j Particle radius [m]
Rl Lumped resistance [Ω]
Uj Open-circuit potential [V]
as,j Specific interfacial surface area [m−1]
cs,j Concentration in solid phase [mol/m3]
cs j,

max Maximum solid-phase concentration [mol/m3]

cs j
surf
, Surface solid-phase concentration [mol/m3]

cs j
avg
, Electrode volume-average concentration [mol/m3]

i0,j Exchange current [A/m2]
kj Reaction rate constant [ ( )]m mol s2.5 0.5

ηj Overpotential [V]
εj Active volume fraction of solid phase
θj

100 Reference stoichiometry at 100% SOC
θj

0 Reference stoichiometry at 0% SOC
θj

bulk Bulk normalized lithium concentration
Subscript j Cathode (j=p) and anode (j=n)

Lithium-ion battery (LIB) is one energy storage technology with
high specific energy density and long cycle life.1 A battery management
system (BMS) is a combination of software and firmware that monitors
and optimizes battery utilization to guarantee safety and longevity of the
battery system. BMSs rely on models, either in the form of empirical
models2 or physics-based models,3 to predict internal battery states that
are not measurable via physical sensors. Empirical models, in the form
of equivalent circuit models, simulate the battery electrical behavior4

and they are in the form of ordinary differential equations (ODEs).
Although, their mathematical simplicity makes them good candidates
for BMS implementation, they require a high calibration effort. In
recent years, more attention has been given to physics-based models
expressed in the form of partial differential equations (PDEs) describing

the thermodynamic and electrochemical processes within the solid and
electrolyte phase inside the cell. Most notable physics-based models
include the Doyle-Fuller-Newman (DFN) model5 and its reduced
counterparts, such as the single particle model (SPM),3 and the
enhanced single particle model (ESPM)6. All these models require
some numerical scheme to solve the governing PDEs.

The finite difference method (FDM) is one of the most widely
used methods to solve LIB PDEs. For example, DUALFOIL7 uses
the FDM scheme to solve all the governing PDEs in the DFN model.
Padé approximation and spectral methods8 are also used to solve the
LIB PDEs. For example, fastDFN9 uses the Padé approximation to
solve the solid-phase diffusion equations and FDM to solve the
electrolyte concentration and potential equations, and solid potential
equation in DFN. One limitation of using Padé approximation to
solve physics-based battery models is in that this method does not
handle moving boundary conditions like the one for example, used
in the core-shell ESPM, where a moving boundary ODE is used to
model the phase transition in the positive electrode of LFP
batteries.10,11

The finite volume method (FVM) is an efficient numerical
scheme for solving PDEs.12,13 When simulating electrochemical
models, one concern is the mass concentration guarantee of the
numerical method used, in terms of the simulated amount of lithium
that intercalates and de-intercalates remains the same during cycling.
Among the above methods, FVM is the only one that guarantee mass
conservation by design. Yet, very few works in the literature use
FVM to entirely solve battery electrochemical models. In one
study,14 FDM is used to solve the solid-phase diffusion equation
while FVM is used to solve the electrolyte diffusion equation in a
ESPM. FVM is used in M-PET15 to solve the DFN model, and a
variant of FVM is used to discretize the solid-phase diffusion
equation. LIONSIMBA16 uses FVM to solve the electrolyte con-
centration, electrolyte potential, and solid potential equations in
DFN, whereas the solid-phase diffusion equation is solved using the
spectral scheme or FDM scheme. Python Battery Mathematical
Modeling (PyBaMM)13 provides the option to use FVM as
numerical method to solve the DFN and its reduced versions. In
another study,17 FVM is used to solve the DFN model, and three
different FVM-based spatial discretization schemes were adpoted to
discretize the solid-phase diffusion equation.

There is a gap in the literature regarding analysis of mass
conservation property of different spatial discretization schemes
used to solve LIB physics-based models. Current studies mainly
focus on comparison of different numerical methods in terms of theirzE-mail: sonori@stanford.edu

Journal of The Electrochemical Society, 2023 170 120525
1945-7111/2023/170(12)/120525/19/$40.00 © 2023 The Electrochemical Society (“ECS”). Published on behalf of ECS by IOP Publishing Limited

https://orcid.org/0000-0001-5114-1119
https://orcid.org/0000-0002-6556-2608
https://doi.org/10.1149/1945-7111/ad1293
https://doi.org/10.1149/1945-7111/ad1293
mailto:sonori@stanford.edu
https://crossmark.crossref.org/dialog/?doi=10.1149/1945-7111/ad1293&domain=pdf&date_stamp=2023-12-21


output accuracy.18 For instance, in one study,19 a lithium metal
battery model is used to show that lack of mass conservation in the
electrolyte cannot be ignored when using FDM, and proper revision
for the boundary conditions is needed. In another study,20 an
additional correction equation is added to SPM to guarantee
conservation of total lithium-ion in the solid phase. Ashlee et al.,21

proposed two revised FDM schemes to solve the solid diffusion
equation showing that with sufficient spatial grid resolution (i.e., 100
spatial discretization nodes), mass conservation is guaranteed. These
studies do not look at electrochemical models using FDM under low
spatial discretization nodes for control applications or the depen-
dence of current C-rate.

In this work, through simulation-based analysis, we aim to
investigate the mass conservation property of FDM when used to
solve battery electrochemical models as a function of spatial
discretization nodes and C-rate. This study focuses on SPM model,
because we keen on control-oriented applications. This work
provides four contributions: (1) the implementation details of
FVM applied to spherical coordinates governing equations. To the
best of our knowledge, this result has not been shown in any
publication before. (2) a new FVM scheme based on Hermite
extrapolation leading to higher accuracy when compared to the
normally used FVM scheme with linear extrapolation. (3) a
comprehensive parameter sensitivity analysis based on sensitivity
matrix under different current input profiles. (4) comparison of FDM
and two FVM schemes in terms of model accuracy and mass
conservation property, with the aim of generality of the control-
oriented model.

This paper is structured as follows. First, the electrochemical
SPM model and the numerical FDM and two FVM spatial
discretization methods are introduced. Second, the Hermite extra-
polation method is used in the FVM to calculate solid-phase surface
concentration of the SPM. Then, model parameter sensitivity is
studied, and parameter identification is performed using experi-
mental data from a graphite/silicon anode and Nickel-Manganese-
Cobalt (NMC) cathode cylindrical cell. This is followed by a series
of simulations to explore the model accuracy and mass conservation
behavior. Finally, the last Section provides a summary of the main
findings of this paper and concluding remarks.

Notation.

(1) ∇ is the Nabla operator defined as22,23:

∇ = + + ( )

∇ = + + ( )
ϕ θ ϕ

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

i j k

u v w

Cartesian coordinates

Spherical coordinates
r r r

x y z

1

sin

1

where i, j, and k are unit vectors in the x, y, and z direction in the
cartesian coordinate system, and u, v, and w are unit vectors in the r,
θ, and φ direction in the spherical coordinate system.

(2) ∇f is the Nabla operator applied to a scalar variable f, which
results in the gradient of f given by22:

∇ = + + ( )

∇ = + + ( )
ϕ θ ϕ

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

f

f

i j k

u v w

Cartesian coordinates

Spherical coordinates

f

x

f

y

f

z

f

r r

f

r

f1

sin

1

(3) ∇·(∇ )f is the divergence of the gradient of f, and is defined as:22

⎡
⎣

⎤
⎦( )( ) ϕ

∇·(∇ ) = ∇ = + + ( )

∇·(∇ ) = ∇ = + + ( )
ϕ ϕ ϕ ϕ θ

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
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∂
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∂
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sin Spherical coordinates
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f

y

f

z

r r

f

r

f f

2
2

2

2

2

2

2

2 1
2

2 1
sin

1

sin2

2
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(4) Given the vector = ( ⋯ ) ∈x x xx , , , n
n

1 2 ,∥ ∥x 2 is the Euclidean
norm calculated by:

∥ ∥ = +x xx ... .n2 1
2 2

(5) In this paper, the positive electrode, and negative electrode are
referred to as cathode and anode, respectively.

Battery Model and Numerical Spatial Discretization Schemes

In this study, we focus on the analysis and comparison of FDM
and FVM schemes for the SPM electrochemical model.

SPM model.—SPM approximates each electrode by a single
spherical particle, assuming constant electrolyte concentration and
potential24 as graphically depicted in Fig. 1. These simplifications
greatly reduce the complexity of the model, and they are usually
valid under low C-rate of operation. The equations and output of
SPM are listed in Table I, where the mass transport PDE governing
the solid-phase is described by the PDE in Eq. 1.

In this study, the FDM and FVM numerical schemes are used to
spatially discretize Eq. 1 into a set of ODEs that can be solved using
numerical solvers, such as ode15s in MATLAB, or SUNDIALS
developed by Lawrence Livermore National Laboratory25. Figure 2
shows a schematic representation of the FDM (top) and FVM
(bottom) schemes. In FDM, the calculation domain is discretized
using nodal points, and the unknown variable φ is solved at each
node points (i.e., φi). In FVM scheme, on the other hand, the
calculation domain is divided into control volumes (CVs), where
each volume has a representative point located at its center, and the
volume-averaged value of the unknown variable φ calculated in each
CV and referred to as ϕ̄i is given as:

∫ϕ ϕ¯ = [ ]
V

dV
1

7i
i CV

i
i

where Vi represents the volume of the ith CV.

Figure 1. SPM model schematic.
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In the remainder of this paper, we use the index i to refer to either
the ith nodal point in the FDM scheme, or the ith control volume in
the FVM scheme. φi used in the context of FDM indicates the
variable value at the nodal point, whereas ϕ̄i used in the context of
FVM indicates the volume-average value of the variable for each
control volume. Also, we use Nr to refer to either the total number of

spatial discretization nodes in FDM, or the total number of control
volumes in FVM.

Previous studies have provided details on FDM scheme imple-
mentation for SPM.14,26 However, mathematical details behind the
FVM scheme implementation for SPM nor DFN are not well
documented. In this paper, we provide two approaches for FVM

Table I. Governing equations and output of SPM.

Variable Equation

Mass transport in solid phase ( )= = [ ]∂
∂

∂
∂

∂
∂

r j n p, , 1
c

t

D

r r

c

r
2s j s j s j, ,

2
,

B.C.

⎧
⎨⎩

ε

= =

= ( ) =
− =

=

[ ]

∂
∂ =

∂
∂ =

− ( )
D

a g I
j p

j n

0,

,
1,

1

2

c

r r
s j

c

r r R

I g I

a A L F

s j R j app

0
,

,
3

s j s j

s j

app app

s j cell j

s j

, ,

, ,

,

Electrode overpotential ( )η = = [ ]− ( )
j n psinh , , 3j

RT

F

I g I

a AL i

2 1
2

app app

s j j j, 0,

= ( − ) [ ]i k F c c c c 4j j e j
avg

s j
surf

s j s j
surf

0, , , ,
max

,

Cell voltage
⎜ ⎟

⎛

⎝
⎜

⎞
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⎟

⎛
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⎞
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η η= − + − − · [ ]V U

c

c
U

c
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R I 5cell p
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s p
n

s n
surf

s n
p n l app

,

,
max

,

,
max

State-of-Charge ∫

∫

θ π

θ π
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= ( )
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[ ]

π

π

θ θ

θ θ
θ θ
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=

=

=

=

−

−
−
−

r c r t dr

r c r t dr

SOC SOC

4 ,

4 ,

,

6

bulk

R c r

r R
s p

n
bulk

R c r

r R
s n

p n

p
1

0
2

,

1

0
2

,

s p s p

s p

s n s n

s n

p p
bulk

p p

n
bulk

n

n n

4
3 ,

3
,
max

,

4
3 ,

3
,
max

,

0

0 100

0

100 0

Figure 2. One-dimensional spatial discretization scheme. (a) FDM. (b) FVM.
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implementation. The first approach relies on variable substitution to
transform Eq. 1 to cartesian coordinates and then solve it, and the
second method is based on the solution of Eq. 1 in spherical
coordinates. Such approaches developed for SPM in this paper can
be extended and applied to ESPM and DFN models.27

Finite difference method scheme.—The two governing PDEs of
SPM, describing the lithium concentration within the positive and
negative spherical electrode particles, respectively, are commonly
solved using the FDM scheme due mainly to its simplicity. Using the
central difference FDM scheme, the first and second partial derivates
can be approximated as:

= + (Δ )

= + (Δ ) = [ ]

∂
∂

−
Δ

∂
∂

− +
Δ

( + ) ( − )

( + ) ( − )

O r

O r j n p, , 8

c

r

c c

r

c

r

c c c

r

2
2

2 2

s j s i j s i j

s j s i j si j s i j

, 1 , 1 ,

2
,

2

1 , , 1 ,

2

where cs,j is the solid-phase concentration, r represents the radial
direction, and i= 1⋯ Nr is the index of each nodal point, and

(Δ )O r2 is the truncation error.
Applying the above second order FDM scheme to the solid

diffusion equation Eq. 1, the spatial discretization for each electrode
is obtained as:

⎡
⎣

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎤
⎦

[ ]

∂
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Δ

+ − + − =( + ) ( − )

9

c

t

D
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c c

i
c j n p1

1
2 1

1
, ,

si j s j
s i j si j s i j

, ,

2 1 , , 1 ,

where ∈ [ ]i N1, r is the ith nodal point in the radial direction. More
details can be found in these studies.14,28 The solid-phase diffusion
equation Eq. 9 is then transformed into a system of Nr ODEs whose
state space representation is as follows14:
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Finite volume method scheme.—The FVM scheme solves the
governing equation in the integral form, thus guaranteeing mass
conservation. FVM has been used to solve the transient transport
problem in cartesian coordinates in many research fields, such as
heat transfer equations29 and multiphase flow equations.23

Neglecting the convection term and source term, the transient
transport equation in cartesian coordinates can be written as30:

⎛
⎝

⎞
⎠

ϕ ϕ∂
∂

= ∂
∂

∂
∂

[ ]
t x

D
x

11s

where φ is the unknown variable, and Ds is the diffusion coefficient.

FVM scheme in cartesian coordinates.—Special attention must
be paid when applying the FVM scheme to SPM where the solid-
phase equation Eq. 1 is defined in the spherical coordinate system. In
order to solve Eq. 1, the following change of variable is used:

= [ ]u c r 12s j s j, ,

After above variable substitution, the diffusion equation Eq. 1 is
transformed into cartesian coordinates:

⎛
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which can be further written as:
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∂

∂
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u
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s j

s j,
,

,

with boundary conditions before and after variable substitution listed
in Table II.

As can be seen from Eq. 14, the solid diffusion equation written
in terms of the new variable us,j resembles the transport equation
defined in the cartesian coordinates (Eq. 11), which makes it easier
to solve using the FVM scheme.

The calculation domain is divided into different CVs in spherical
coordinates, as shown in Fig. 3(a) and the ith CV over which the
governing equation is solved in spherical coordinates is shown in
Fig. 3(b), and denoted as CVi

spherical. After the variable substitution
Eq. 12, Eq. 1 and its boundary conditions, now defined in cartesian
coordinates (i.e., Eq. 14), are solved on the CVi

cartesian control

volume, where CVi
cartesian is obtained by “unrolling” the CVi

spherical,
as shown in Fig. 3(c). Here, we approximated the area of the left and
the right surface of CVi

cartesian with the average surface. Specifically,
the surface areas of the left (i− 1/2) and right (i+ 1/2) boundaries
of CVi

spherical are given by:
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and the surface areas of the left (i− 1/2) and right (i+ 1/2)
boundaries of CVi

cartesian are given by:
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cartesian are calculated as:

π

π

= ( − )

≈ ( − ) [ ]

+ −

+ −

V r r

V r r 17

i i i

i i i

spherical 4

3
3 3

cartesian 4

3
3 3

1
2

1
2

1
2

1
2

Integrating Eq. 14 over the control volume CVi
cartesian gives:
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Applying the Gauss theorem (also known as divergence theorem) to
the right-hand side of Eq. 18, the volume integration is replaced by
surface integration30:
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where n is the outward pointing unit normal to the surface Ai
cartesian.
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Substituting Eq. 19 into Eq. 18, we obtain23:
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cartesian, Eq. 20 is further written as:
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where ūsi j, is the volume-average value of us,j in cartesian coordi-

nates. Index +i 1

2
represents the interface between the ith and

(i+ 1)th CV, and index −i 1

2
represents the interface between the

ith and (i− 1)th CV.

Then, the diffusion terms ( )∂
∂

Ds j
u

r,
s j, at the two interfaces are

numerically approximated with the finite difference scheme:
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Finally, when Nr control volumes are used for spatial discretiza-
tion, Eq. 21 is written as follows:

• i= 1, i.e., the first control volume near the particle center:
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• 1< i< Nr, i.e., the control volumes within the particle:
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• i= Nr, i.e., the last control volume near the particle surface:

=
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It should be noted that both ūs j0, and ¯ ( + )us N j1 ,r are outside the
calculation domain. In FVM, ūs j0, and ¯ ( + )us N j1 ,r are referred to as
”ghost cells”, and Appendix A describes how to solve their values by
using boundary conditions.31

Finally, given the discretized solid-phase concentration states
vector:

Figure 3. 2D illustration of control volumes in different coordinates. (a) spherical particle, (b) control volume in spherical coordinates, and (c) control volume in
cartesian coordinates.

Table II. Boundary conditions of Eq. 1 before and after the variable substitution Eq. 12.

Original boundary conditions Variable substitution New boundary conditions
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¯ = [ ¯ ¯ ⋯ ¯ ] ∈ = [ ]×u u u j n pu , , , 26s j s j s j sN j
T N

, 1, 2, ,
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r
r

Eq. 23-Eq. 25 can be written in the following state-space form:

¯ ̇ = ¯ + = [ ]I j n pu A u B , , 27s j s j s j s j app, ,
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, ,
cartesian

where matrices As j,
cartesian and Bs j,

cartesian take the following expressions:
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After solving Eq. 27, the lithium concentration in the solid phase
before variable substitution (i.e., c̄s j, ) can be obtained according to
¯ = ¯u c rs j s j, , .

In this study, a second method to implement the FVM scheme is
also discussed based on solving the solid-phase diffusion equation
Eq. 1 directly in spherical coordinates without passing through
variable substitution. This is presented in the next section.

FVM scheme in spherical coordinates.—Using the Nabla
operator ∇defined in spherical coordinates, the solid-phase diffusion
equation can be expressed as:

∂
∂

= ∇·( ∇ ) = [ ]
c

t
D c j n p, , 31

s j
s j s j

,
, ,

where ∇cs,j is the gradient of the solid-phase concentration, and
∇·(∇ )cs j, is the divergence of the gradient of cs,j, assuming Ds,j is
constant.

Integrating Eq. 31 over a control volume in spherical coordinates
(i.e., CVi

spherical) gives
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By applying the Gauss theorem in spherical coordinates, the right-
hand side of Eq. 32 becomes30:
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Substituting Eq. 33 into Eq. 32 gives23:
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For each CVi
spherical, the above equation can be further written as:
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where c̄si j, is the volume-average value of cs,j in spherical coordi-

nates. Index +i 1

2
and −i 1

2
are the interfaces between CVi/CVi + 1

and CVi-1/CVi, respectively.
The second order difference scheme is then used to approximate

the diffusion terms (i.e., ( )∂
∂

Ds j
c

r,
s j, ), and Eq. 35 for each CVi can be

further written as:
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Given the discretized solid-phase concentration state vector:
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Eq. 36 can be written in the following state-space form:
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where matrices As j,
spherical and Bs j,

spherical take the following expressions:
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Simulation results obtained when solving the solid-phase diffu-
sion equation in cartesian coordinates and in spherical coordinates
are compared in Appendix B.

When FVM is used to solve the SPM model, one disadvantage is
that the surface concentration cannot be directly calculated, as
opposed to the FDM case where the surface concentration is
obtained from the last nodal point. As it can be seen from Eq. 5,
the surface concentration is needed to calculate the equilibrium
potential at the electrodes. In order to obtain the electrode surface
concentration, the linear extrapolation is usually adopted in the
literature:32
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The basic assumption of Eq. 42 is that the concentration
distribution within the electrodes is linear. However, this is not
always the case as there would be steep concentration gradients near
the particle surface at the beginning of charge/discharge, which
would become more pronounced with the increase of the C-rate.
Simulation results obtained by using FVM with Nr=100 are used for
illustration, and used in Fig. 4. In order to calculate the surface
concentration more accurately in the FVM scheme, the third order
Hermite extrapolation is used in this study, where the average
concentration from the last three CVs are used. For example, using
c̄si j, in Eq. 35, the surface concentration is calculated as (details can
be found in Appendix C):
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where Rs,j is the electrode radius, rNr and −rN 1r are the locations of the
last two CVs, and c̄sN j,r and ¯ ( − )cs N j1 ,r are the volume-average

concentrations for the CVi in position Nr and Nr − 1, respectively.
In this study, the FVM scheme using the linear extrapolation

Eq. 42 to calculate surface concentration is denoted as FVM-S1,
whereas the FVM scheme using the third order Hermite extrapola-
tion Eq. 43 to calculate surface concentration is denoted as FVM-S2.

SPM Model Parameterization

The SPM governing equations reported in Table I are character-
ized by the following set of parameters:

λ
ε ε

θ θ θ θ
=

[

] [ ]

R R L L k k D

D A R c c 44

s n s p n p n p n p s n

s p cell l s n s p n n p p

, , ,

, ,
max

,
max 0 100 0 100

The definition of the above 18 parameters can be found in the
Nomenclature Table at the end of the paper. One way to obtain the
parameter values is using cell teardown analysis and measure these
electrochemical parameters directly, which would require special
equipment and skilled technicians.33,34 Alternatively, optimization
methods can be used to identify the model parameters by fitting the
model simulated voltage to experimental measured voltage.
However, as it has been shown from a previous work35, not all the
parameters in the SPM are identifiable from current-voltage mea-
surement due the complexity and nonlinearity of the model. Also,
identifying all the 18 parameters simultaneously may cause over-
fitting.

In this study, we use data from LG INR21700-M50T cylindrical
battery cell with graphite/silicon anode and NMC cathode. An old
version of this cell, the LG INR21700-M50 was used in a previous
study33 where a cell teardown analysis was performed and both the
electrode-based, transport, and kinetic parameters were measured
directly. In this paper, we borrow the following parameters from
literature:33

λ θ θ θ θ= [ ] [ ]L L A c c 45borrowed n p cell s n s p n n p p,
max

,
max 0 100 0 100

The remaining 8 electrode-based, transport, and kinetic para-
meters are identified using experimental data from a LG INR21700-
M50T cell at 23 °C36
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In the next section, a sensitivity analysis is performed on the
above 8 parameters.

Local sensitivity analysis.—Local sensitivity analysis investi-
gates how the model output yV (i.e., battery voltage) is affected when
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each of the model parameter in the vector [ ]λ λ λ= ⋯iden 1 8 is

perturbed around its nominal value while the remaining of the
parameters are kept equal to their nominal values. In this study, the
sensitivity matrix is used to calculate the sensitivity of SPM model
parameters. Given the general state-space form of the SPM:

λ
λ

̇ = ( )
= ( ) [ ]

x
x

x f u
y h u

, ,
, , 47

iden

V iden

where ∈x n is the vector of concentration states, λ ∈iden
m is the

vector of parameters, ∈u is the input current, ∈yV is model
voltage output, and f and h are the state-space and output functions,
respectively.

Given M the number of simulation steps, the SPM voltage output
vector is expressed as [ ( ) ( )⋯ ( )]y t y t y t,V V V M1 2 for a given input
current profile, and the sensitivity matrix SV is denoted as follows:
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where λm,nom, m= 1⋯ 8, denotes the nominal value of the mth

model parameter. ( ) = ⋯y t k M, 1V
nom

k is the nominal value of
voltage obtained using the nominal parameter values.

The nominal values of SPM parameters required to calculate
Eq. 48, are taken from literature33. Following the approach presented
in a previous study26, we investigate the parameter sensitivity of
SPM adding SOC information to the sensitivity matrix, and using
cathode SOC, ySOCp, and anode SOC, ySOCn, as additional outputs of

Figure 4. Solid-phase concentration distribution in the cathode and anode spherical particles. (a) C/4 charge. (b) 2C charge. Δc̄s p, represents the cathode
concentration difference between location r = 0.5Rs,p and r = 0.6Rs,p or between r = 0.9Rs,p and r = Rs,p, respectively. Δc̄s n, represents the anode concentration
difference between location r = 0.5Rs,n and r = 0.6Rs,n or between r = 0.9Rs,n and r = Rs,n, respectively. Parameters used for simulation were taken from
literature 33.
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SPM, defined as follows:

θ θ

θ θ
θ θ

θ θ
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where θp
bulk and θn

bulk are defined in Table I
Augmenting the sensitivity matrix Eq. 48 with the two SOC

outputs, yields the new sensitivity matrix SV+SOC:

where ( )y tSOC kp and ( )y tSOC kn are the simulated SOC from the
cathode and anode at timestep tk, respectively. ( )y tSOC

nom
p

and
( )y tSOC

nom
n

are the nominal SOC trajectories of cathode and anode,
respectively, obtained using the nominal SPM parameters values.

The sensitivity matrix in Eq. 50 consists of three parts: 1) voltage-
based sensitivity (i.e., SV from Eq. 48), 2) cathode SOC-based
sensitivity (i.e., SSOCp), and 3) anode SOC-based sensitivity (i.e.,
SSOCn). The results of the sensitivity matrix can be visualized in two
ways. The first way is to plot the elements of the columns of Eq. 48 or
Eq. 50 showing the parameter sensitivity as a function of time, as
displayed in Fig. 5 (a)-(b). Figure 5 (a) shows the sensitivity matrix
purely based on output voltage (Eq. 48) and Fig. 5 (b) shows the
sensitivity based on both output voltage and SOC (Eq. 50). For
example, the second row of Fig. 5 is related to the parameter Rs,p,

and the value of the first timestep is calculated as ⎡
⎣

⎤
⎦
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Fig. 5(b), respectively. In these plots, dark color denotes high sensitive
parameters and light color denotes low sensitive parameters where low
sensitive parameters are hard to identify. From Fig. 5(a), it can be seen
that Rs,n, εn, and Ds,n have low sensitivity at high SOC region during the
first timesteps of discharge, and have higher sensitivity as the SOC
decreases. The second way to visualize sensitivity matrix results is to
calculate the Euclidean norm of each column (i.e., ∥ ∥SV

m:, 2 for Eq. 48
and ∥ ∥+SV SOC

m:, 2 for Eq. 50). In this way, the average parameter
sensitivity throughout the given current input is obtained. Figure 6 (a)-

(b) present the sensitivity of the 8 SPM parameters under constant
current and dynamic current conditions using both SV and SV+SOC,
respectively. As widely reported in the literature37–39 and also shown in
Fig. 6, the sensitivity of SPM model parameters is a function of the
current input, and that using SV+SOC improves the model parameter
sensitivity.26 We first identify electrode based parameters

⎡⎣ ⎤⎦ε εR Rs n s p n p, , using C/20 constant current data, given that their
sensitivity values are close under both constant discharge and hybrid
pulse powercharacterization (HPPC) current profiles. Then, transport
and kinetic parameters⎡⎣ ⎤⎦D D k ks n s p n p, , are identified using HPPC
dynamic data, given that their sensitivity values are higher under the
HPPC input.

Parameters identification.—In this section, the identification of
the 8 parameters of SPM is performed using the particle swarm
optimization (PSO) algorithm, where the cost function of the
optimization problem is formulated as follows:

Figure 5. Contour plot results based on FVM-S2 with Nr=100 scheme. (a) C/20 discharge (SV). (b) C/20 discharge (SV+SOC).
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where λiden
min and λiden

max are the vectors containing the lower and upper
bounds (defined in Table III) for the parameter vector

[ ]λ λ λ= ⋯,iden 1 8 , respectively, tk is the time index, and M is the
number of total time steps. ( )V tkexp is the measured voltage at time tk,

λ( )V t u, ,sim iden k is the SPM simulated voltage at time tk for a given
parameter vector [ ]λ λ λ= ⋯,iden 1 8 . SOCexp is the SOC calculated
by Coulomb Counting, SOCp

sim and SOCn
sim are the model

simulated cathode and anode SOC (Eq. 6), respectively.
In this study, the Matlab PSO toolbox is used, where the initial

guess values for SPM parameters were borrowed from literature33.
In the PSO, the population size was set to 20, and the self-adjustment
weight (i.e., c1) and social adjustment weight (i.e., c2) were set as 2
and 2, respectively.

Parameter identification is conducted in two steps. First, the
electrode based parameters ⎡⎣ ⎤⎦ε εR Rs n s p n p, , are identified using
C/20 discharge data. Then, the transport and kinetic parameters

⎡⎣ ⎤⎦D D k ks n s p n p, , are identified using HPPC data. The identified
SPM model parameters are listed in Table III, and identification results
for C/20 discharge and HPPC are shown in Fig. 7. The corresponding
values of the cost function (i.e., JV, JSOCp and JSOCn) are summarized in

Table IV. Model validation is conducted using C/4, C/2 and 1C
constant charge current and UDDS discharge current, and results are
shown in Fig. 8. The RMSE of voltage under 1C, C/2, C/4 charge, and
UDDS are 15.6 mV, 7.8 mV, 9.3 mV, and 9.7 mV, respectively. The
RMSE of simulated cathode SOC under 1C, C/2, C/4 charge, and
UDDS are 0.13%, 0.05%, 0.05%, and 0.10%, respectively. The RMSE
of simulated anode SOC under 1C, C/2, C/4 charge, and UDDS are
0.17%, 0.15%, 0.14%, and 0.14%, respectively.

Numerical Results and Discussion

Upon obtaining SPM model parameters, the performance of
FDM, FVM-S1 (using linear extrapolation) and FVM-S2 (using
Hermite extrapolation) are compared in terms of model accuracy and
mass conservation. In both FDM and FVM methods, the model
accuracy can be improved by increasing the number of Nr. In this
study, the model benchmark solutiona is obtained using FVM-S2
with Nr=100. Besides the model accuracy, the mass conservation
property of the two numerical methods is also analyzed. FVM
conserves mass by design, but very few studies investigated the mass
conservation of FDM scheme for SPM. In a previous study,21 a
revised FDM schemes was proposed to conserve mass when solving
Eq. 1 with non-constant diffusion coefficient Ds,j. However, the mass
conservation property of this method over multiple cycles simulation
was not shown. In this study, the total lithium-ion in the solid phase
is used to check mass conservation when running the SPM model
with multiple cycles. In the following sections, simulations are
conducted using the SPM model parameters taken from Table III.

Model accuracy.—The accuracy of FDM and FVM methods
highly depends on the number of spatial discretization nodes/CVs.
To evaluate the model accuracy of FDM, FVM-S1, and FVM-S2
against the benchmark solution from FVM-S2 with Nr=100, the
root-mean-square-error (RMSE) of voltage and electrode volume-
average concentration are utilized in this study.

Figure 6. Parameter sensitivity analysis results based on FVM-S2 with Nr=100 scheme. (a) SPM parameters sensitivity under C/20, (b) SPM parameters
sensitivity under HPPC, using both SV and SV+SOC

Table III. Identified electrochemical parameters for the LG INR21700-M50T battery cell.

Parameter Symbol Unit Lower bound λiden
min Upper bound λiden

max Anode (i = n) Cathode (i = p)

Particle radius Rs,j [m] 1.0e-6 1.0e-5 3.60e-6 6.25e-6
Solid-phase volume fraction εj [-] 0.7 0.8 0.7606 0.7633
Solid-phase lithium diffusivity Ds,j [m2/s] 1.0e-16 1.0e-14 3.97e-15 6.30e-15
Reaction rate constant kj [m2.5/(mol0.5s)] 6.0e-7 6.0e-6 3.17e-6 9.55e-7

aA benchmark solution can also be generated using FDM with Nr=100. The results
are very similar to those of the FVM-S2 benchmark.

Journal of The Electrochemical Society, 2023 170 120525



[ ]

λ λ

λ λ

= ∑ ( ( ) − ( ))

= ∑ ( ( ) − ( )) =

=

=

52

RMSE V t u V t u

RMSE c t u c t u j n p

, , , ,

, , , , , ,

M k
M

ref iden k sim iden k

cs j
avg

M k
M

s j
avg ref

iden k s j
avg sim

iden k

Voltage
1

1
2

,

1
1 ,

,
,

, 2

where Vref and cs j
avg ref
,

, are the benchmark results for voltage and
electrode volume-average concentration, respectively, and Vsim and
cs j

avg sim
,

, are the simulated voltage and electrode volume-average
concentration of SPM, respectively. Simulation results are obtained
using FDM, FVM-S1 and FVM-S2,and the electrode volume-
average concentration is calculated as follows:

∫
π

π= = [ ]
=

=
c

R
r c dr j n p

1
4 , , 53s j

avg

s j
r

r R

s j, 4

3 ,
3 0

2
,

s j,

The RMSE for FDM, FVM-S1 and FVM-S2 under C/4, 1C, and
4C constant-current charge with different Nr are shown in Fig. 9.
The RMSE errors decrease with the increase of Nr for all the
methods, and it can be seen that the model accuracy for FDM and

FVM-S2 are very similar. However, under small Nr, the RMSE of
volume-average concentration for both cathode and anode for FDM
is quite large, due to mass conservation issues. It should also be
noted that the voltage RMSE for FVM-S1 is the largest. An
explanation can be found in Fig. 4 where the lithium concentration
distributions within cathode and anode are given. It can be seen from
Fig. 4 that the concentration difference near the particle surface (i.e.,
Δc̄s p, ) is quite large for both cathode and anode. Therefore, using
linear extrapolation (i.e., FVM-S1) to calculate electrode surface
concentration leads to large errors. According to Eq. 5, the electrode
surface concentration is used to calculate cell voltage, which
explains the large calculation error of FVM-S1 when compared
with FDM and FVM-S2. Pybamm13 is an open-source battery
simulation package that enables fast battery simulations under a
variety of battery chemistries and operating scenarios. In Pybamm,
the user can run the battery model with default parameter values, or
the user can change parameter values, such as mesh (i.e., number of
Nr), to investigate how the battery behavior will change. We
compare FVM-S1 and FVM-S2 used in this study with Pybamm
under the same model parameter values and number of Nr. The
simulated results from Pybamm are shown in green dots in Fig. 9. It
can be seen that Pybamm results are very close to FVM-S1. This is
because FVM in Pybamm uses the linear extrapolation (Eq. 42) to
calculate the surface concentration as its default method. The
standard FVM scheme with linear extrapolation, FVM-S1, guaran-
tees mass conservation, but has lower model accuracy than the FDM
scheme with the same number of Nr. The proposed FVM-S2 scheme,
on the other hand, improves the model accuracy.

Mass conservation.—In addition to the analysis and comparison
of model accuracy of FDM, FVM-S1, and FVM-S2 schemes studied
in this paper, we investigate the mass conservation over multiple
cycles simulations for FDM and FVM-S2 schemes. In this section,
the SPM model is cycled multiple times and the electrode volume-

Figure 7. Identification results. (a) Voltage and SOC under C/20 discharge, and (b) Voltage and SOC under HPPC profile.

Table IV. Values of the cost function Eq. 51 under different current
data (identification).

RMSE
Current data

C/20 discharge HPPC

JV 0.0062 0.0067
JSOCp 0.0010 0.0018

JSOCn 0.0024 0.0024
J 0.0096 0.0109
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average solid-phase concentration for each electrode (i.e., cs j
avg
, in

Eq. 53) is monitored. Nr is set to 5 for both FDM and FVM-S2
schemes.

During multiple cylces simulation, the battery is subject to
constant current discharge and charge with same current rate to
ensure that the ampere-hour throughput for charge and discharge are

the same. Under this condition, lithium ions that intercalate into and
de-intercalate out of the cathode and anode during the charge and
discharge cycles are the same.b Therefore, the peak values of
electrode volume-average concentration (i.e., cs j

avg
, in Eq. 53) should

Figure 9. RMSE on voltage and electrode volume-average concentration under constant-current charge at several C-rates with respect to the spatial
discretization nodes/CVs, Nr. (a) C/4, (b) 1C, and (c) 4C. Simulation results from Pybamm are shown in green dots.

Figure 8. Experimental validation results for the SPM using data from the LG INR21700-M50T battery. (a) constant charge inputs at C/4, C/2 and 1C, and (b)
UDDS discharge profile.

bAlso, no side-reaction (i.e., SEI growth or Li plating) is added to the SPM.
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remain the same under the assumption that total mass of lithium ions
is conserved.

In the simulations conducted next, we indicate IC-IC as the IC
constant charge of amplitude I followed by IC constant discharge of
amplitude I. Figure 10 shows the simulation results under 2C-2C
cycling with the initial SOC equals to 0.5. First, a 300 s 2C current
was used to discharge the cell, followed by 300 s charge at 2C. In
Fig. 10 (c)-(d), the volume-average cathode and anode concentration
are given. The dash gray line represents the concentration value
when the cell first reaches the lowest voltage (i.e., P1 point in Fig. 10
(b)). If mass in the solid-phase is conserved, the peak concentration
value should always be the same. In Fig. 10 (c)-(d), the difference of
the volume-average concentration between two peaks are plotted.
The notation Δ =−c j n p, ,s j

avg
,

,P P1 2 is used to represent the difference

of volume-average concentration between the P1 peak (i.e., P1 point
in Fig. 10 (b)) and P2 peak (i.e., P2 point in Fig. 10 (b)) when cell
voltage reaches the lowest values. For example, the volume-average
concentration difference between the first and second peaks is
denoted as Δ −cs p

avg
,

,1 2 for cathode and Δ −cs n
avg
,

,1 2 for anode, respec-
tively. It can be seen that the volume-average concentration in FVM-
S2 remains the same over multiple cycles while these values are
drifting in FDM (decreasing in cathode and increasing in anode).
Figure 10 shows that mass is conserved in FVM-S2 but is not
conserved in FDM. In Table V, we calculate the volume-average
concentration difference between peak 1 and peak 2, and between
peak 1 and peak 3 (i.e., P3 point in Fig. 10 (b)) under 1C-1C, 2C-2C
and 4C-4C cycling simulations. It can be seen that when FDM
scheme is used, the volume-average concentration is drifting with

Figure 10. Comparative results under 2C-2C constant cycling simulations. (a) Input current. (b) Output voltage. (c) Cathode and anode volume-average
concentration from FDM with Nr=5. (d) Cathode and anode volume-average concentration from FVM-S2 with Nr=5.
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cycling. Also, the concentration difference between two peaks
increases with the increase of C-rate. The same simulation results
for FVM-S2 are also presented in Table V. We can see that mass is
always conserved for FVM-S2 scheme under different C-rates. It
should also be noted that under constant diffusion coefficient Ds,j

and constant current cycling condition, the concentration difference
for FDM is relatively small compared to the mean concentration. For
example, the mean cathode volume-average concentration during
4C-4C is 31 933 mol/m3, whereas the cathode concentration

difference between the first and third peak is 122 mol/m3, which is
0.38% of the mean cathode concentration.

Besides constant current cycling, the mass conservation of FDM
and FVM-S2 schemes under multi-rate current cycling is also
investigated, as shown in Fig. 11. The simulated current input
profile consists of three parts, namely 2C-2C, 1C-1C, and 0.5C-0.5C.
Figure 11 shows that the volume-average concentration for both
cathode and anode are drifting with cycling and the variation in
concentration is more pronounced than in the constant current

Figure 11. Multi-current cycling simulation results for FDM and FVM-S2 schemes.
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cycling conditions (see Fig. 10). Therefore, large calculation error
can accumulate during long-term cycling simulation. On the con-
trary, FVM-S2 scheme preserves mass.

In Fig. 12, we simulated FDM with number of spatial discretiza-
tion nodes Nr equal to 100 under 1C-1C and 4C-4C cycling
protocols. It can be seen that, the volume-average concentration in
FDM almost remains the same. From the results shown in Fig. 10
and Fig. 12, FDM works well even with small Nr, but mass
conservation in FDM is guaranteed when Nr is large enough.

For BMS application, it is preferred to use small Nr to reduce the
total computational burden. However, as can be seen from Fig. 9, the
accuracy of SPM decreases with small Nr for both FDM, FVM-S1,
and FVM-S2 schemes. To address this, parameters of the SPM were
re-identified and both the model accuracy and mass conservation are
analyzed. SPM solved with FVM-S2 with Nr=100 is used to
generate the reference solution of voltage and SOC. Then, SPM
solved by FDM with Nr=5 and FVM-S2 with Nr=5 are being
identified. The simulation results before and after parameter re-

Figure 12. Simulation results for FDM with Nr=100 under (a) 1C-1C cycling, and (b) 4C-4C cycling.

Table V. Volume-average concentration difference of cathode and anode.

C-
rate Cycle

Cathode [mol/m3] Anode [mol/m3]

=FDMN 5r − =FVM S2N 5r =FDMN 5r − =FVM S2N 5r

1C-
1C

Δ −
=c ,s j

avg
j n p,

,1 2
,

25 0 4 0

Δ −
=c ,s j

avg
j n p,

,1 3
,

26 0 4 0

2C-
2C

Δ −
=c ,s j

avg
j n p,

,1 2
,

58 0 21 0

Δ −
=c ,s j

avg
j n p,

,1 3
,

67 0 22 0

4C-
4C

Δ −
=c ,s j

avg
j n p,

,1 2
,

95 0 54 0

Δ −
=c ,s j

avg
j n p,

,1 3
,

122 0 63 0

Journal of The Electrochemical Society, 2023 170 120525



identification are given in Fig. 13. Here, the notation RefV indicates
the reference voltage. =XN Y Z S, ,r is used to represent different results,
where = [ ]X V c, s p

avg
, is the SPM model output, Y is the number of Nr,

= [ − ]Z FDM, FVM S2 is the chosen numerical method, and
= [ ]S raw re, iden indicates whether SPM parameters are re-identi-

fied, S=raw means the original parameters in Table III are used for
simulation, and =S reiden represents solutions obtained using re-
identified parameters. For example, = −VN 5,FVM S2,rawr represents the
simulated voltage obtained from SPM solved by FVM-S2 with Nr=5
and original parameters. It can be seen from Fig. 13 that model
accuracy increased after parameter re-identification for both FDM
and FVM-S2 scheme. Under 1C-1C, the RMSE of voltage before
and after re-identify parameters are 11 mV and 4 mV for FDM,
respectively, and are 12 mV and 6 mV for FVM-S2, respectively.
Under 4C-4C, the RMSE of voltage before and after re-identify
parameters are 25 mV and 6 mV for FDM, respectively, and are 28
mV and 6 mV for FVM-S2, respectively. Besides, Fig. 13 shows that

a small volume-average concentration difference (i.e., Δ −cs p
avg
,

,1 3) still
exists in FDM scheme after parameter re-identification. On the other
hand, the volume-average concentration for FVM-S2 before and
after parameter re-identification is always conserved.

Conclusion

This paper presented the FDM and FVM applied to the battery
SPM model. First, we provided the details of how to transform the
governing PDEs into ODEs using both schemes. Second, we
proposed a revised FVM scheme, called FVM-S2, which adopts
the Hermite extrapolation to calculate the solid-phase surface
concentration more accurately as opposed to the adopted linear
extrapolation (FVM-S1). Simulation results presented in this study
show that the proposed FVM-S2 scheme improves model accuracy
significantly compared with standard FVM scheme, FVM-S1.
Finally, the model accuracy of FDM, FVM-S1, and FVM-S2

Figure 13. Parameter re-identification results (a) 1C-1C cycling. (b) 2C-2C cycling.
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schemes were compared and mass conservation behavior for FDM
and FVM-S2 schemes were analyzed. Results show that mass in the
FVM-S2 scheme is always conserved, but a small concentration
drifting exist when the FDM scheme is used under constant diffusion
coefficient and constant current cycling, which becomes more
pronounced under multi-current cycling. Besides, we showed model
accuracy when using a small number of spatial discretization nodes/
control volumes can be improved by re-identifying parameters. The
relatively low number of discrete equations enables the implementa-
tion of the model to be run on the BMS.

This study provides findings of mass conservation analysis for
FDM and FVM schemes, which we hope can facilitate BMS model
selection. Also, the proposed FVM-S2 scheme with higher order
Hermite extrapolation can be extended to solve other battery models,
such as ESPM model and DFN model.

Appendix A. Ghost cells in the finite volume method

The ghost cells are introduced in the finite volume method to
calculate the control volumes near the left and right boundaries31.
Supposing the calculation domain is divided into Nr control
volumes, we introduce the ghost cells at j= 0 (i.e., ūs j0, ) and at
j= Nr + 1 (i.e., ¯ ( + )us N j1 ,r ) which are located just outside the calcula-
tion domain, as shown in Fig. 14.

The boundary conditions are used to calculate the values of the
ghost cells based on the values in the interior cells.

The boundary conditions of Eq. 1 after variable substitution are
shown in the last column in Table II. The boundary condition for
particle center is the Dirichlet boundary conditions23:

∣ = = [ ]=u j n p0, , 54s j r, 0

Above boundary condition can be approximated using the
average value of ūs j0, and ūs j1, :

¯ + ¯
≈ [ ]

u u

2
0 55

s j s j0, 1,

Therefore, the value of ghost cell ūs j0, is −ūs j1, .
The boundary condition for particle surface after variable

substitution is the Robin boundary condition23:
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Averaging ¯ ( + )us N j1 ,r and ūsN j,r to approximate the ∣ =us j r R, s j, term,
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Replacing Eq. 57 and Eq. 58 into Eq. 56, yields:
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Finally, the value of ghost cell ¯ ( + )us N j1 ,r is given as:
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Appendix B. Comparision of FVM schemes in cartesian co-
ordinates and spherical coordinates

In this paper, we proposed two different ways to solve the solid-
phase diffusion equation using FVM. The first way is to use variable
substitution us,j = cs,jr, and transforms the governing equation from
spherical coordinates to cartesian coordinates (i.e., FVM-cartesian).
The second way is to solve the equation directly in spherical
coordinates (i.e., FVM-spherical). These two methods are compared
under different Nr and different current conditions, and the simula-
tion results are summarized in Table VI.

Two metrics are used to measure the difference between these
two methods, namely the voltage RMSE and mean absolute relative
error (MARE) of the surface concentration, as follows:

where VFVM−cartesian and VFVM−spherical are the SPM simulated
voltage at time tk for the identified parameter vector λiden using
FVM-cartesian and FVM-spherical, respectively. u is the input
current. λ( )−c t u, ,s j iden k,

surf,FVM cartesian and λ( )−c t u, ,s j iden k,
surf,FVM spherical

are the SPM simulated electrode surface concentration of time
tk using FVM-cartesian and FVM-spherical, respectively.

Form Table VI, it can be found that the simulated voltage and
surface concentration between these two FVM methods are similar.

Appendix C. Hermite extrapolation

In numerical analysis, one often encounters the situation
that instead of a function f, only some discrete function values
f(xi) and their derivatives ′( )f xi are known. To interpolate the
discrete function values, the Hermite extrapolation method can be
used.40

Figure 14. Boundary conditions with ghost cells
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Letʼs assume that two distinct nodes x0 and x1, discrete
function values of these two nodes f(x0), f(x1) and their
corresponding derivatives ′( )f x0 and ′( )f x1 are given, the
third order Hermite extrapolation polynomial (i.e., H3) is given
as40:

∑ ∑( ) = ( ) ( ) + ′( ) ˆ ( ) [ ]
= =

H x f x H x f x H x 62
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where ( )H xl1, and ˆ ( )H xl1, are given as:
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where ( )L xl1, denoting the lth Lagrange coefficient polynomial of
degree 1 and is given by:
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Using Eq. 65 and Eq. 66 in Eq. 63, we obtain:
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Using Eq. 65 in Eq. 64, we obtain:
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Substituting Eq. 67 and Eq. 68 into Eq. 62, we have:
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As shown in Fig. 15, Eq. 69 is used to calculate the surface
concentration in this study, and we can obtain Eq. 70:

Table VI. Comparison between FVM-cartesian and FVM-spherical.

Current condition Number of Nr RMSE
MARE

Voltage [mV] cs p
surf
, [%] cs n

surf
, [%]

C/2 constant charge 5 0.9691 0.0754 0.1962
10 0.2456 0.0187 0.0494
40 0.0153 0.0012 0.0031

1C constant charge 5 1.4201 0.1341 0.2911
10 0.3604 0.0336 0.0741
40 0.0225 0.0021 0.0046

4C constant charge 5 2.5741 0.3302 0.4083
10 0.6809 0.0884 0.1090
40 0.0427 0.0055 0.0069
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Figure 15. Illustration of the Hermite extrapolation method
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where, x= Rs,j, = −x rN0 1r , and =x rN1 r are the locations of the last
two control volumes in position Nr − 1 and Nr, respectively.

( ) = ¯ ( − )f x cs N j0 1 ,r and ( ) = ¯f x csN j1 ,r are the volume-average concen-
tration for the last two control volumes ¯ ( − )cs N j1 ,r and c̄sN j,r , respec-

tively. ′( ) = ∂
∂ = −

f x
c

r r r
0

s j

Nr

,

1

and ′( ) = ∂
∂ =

f x
c

r r r
1

s j

Nr

, are the deriva-

tives of the last two control volumes ¯ ( − )cs N j1 ,r and c̄sN j,r , respectively.

ORCID

Le Xu https://orcid.org/0000-0001-5114-1119
Simona Onori https://orcid.org/0000-0002-6556-2608

References

1. J. B. Goodenough and Y. Kim, “Challenges for Rechargeable Li Batteries.”
Chemistry of Materials, 22, 587 (2010).

2. G. Plett, Battery Management Systems, Volume II: Equivalent-Circuit Methods
(Artech) (2015).

3. S. Santhanagopalan, Q. Guo, P. Ramadass, and R. E. White, “Review of models for
predicting the cycling performance of lithium ion batteries.” Journal of Power
Sources, 156, 620 (2006).

4. X. Hu, S. Li, and H. Peng, “A comparative study of equivalent circuit models for
Li-ion batteries.” Journal of Power Sources, 198, 359 (2012).

5. M. Doyle, T. F. Fuller, and J. Newman, “Modeling of Galvanostatic Charge and
Discharge of the Lithium/Polymer/Insertion Cell.” J. Electrochem. Soc., 140, 1526 (1993).

6. T. R. Tanim, C. D. Rahn, and C.-Y. Wang, “State of charge estimation of a lithium
ion cell based on a temperature dependent and electrolyte enhanced single particle
model.” Energy, 80, 731 (2015).

7. J. Newman, “FORTRAN Programs for Simulation of Electrochemical Systems.”
(2014), www.cchem.berkeley. edu/ jsngrp/fortran.html.

8. P. W. C. Northrop, V. Ramadesigan, S. De, and V. R. Subramanian, “Coordinate
Transformation, Orthogonal Collocation, Model Reformulation and Simulation of
Electrochemical-Thermal Behavior of Lithium-Ion Battery Stacks.” J. Electrochem.
Soc., 158, A1461 (2011).

9. S. Moura, Energy, Controls, and Applications Lab (eCAL) (University of
Californian) (2016), Available: (https://github.com/scott-moura/fastDFN).

10. G. Pozzato, A. Takahashi, X. Li, D. Lee, J. Ko, and S. Onori, “Core-Shell Enhanced
Single Particle Model for lithium iron phosphate Batteries: Model Formulation and
Analysis of Numerical Solutions.” J. Electrochem. Soc., 169, 063510 (2022).

11. S. Fasolato, A. Allam, X. Li, D. Lee, J. Ko, and S. Onori, “Reduced-Order Model of
Lithium-Iron Phosphate Battery Dynamics: A POD-Galerkin Approach.” IEEE
Control Systems Letters, 7, 1117 (2023).

12. R. Sadegh-Vaziri, H. Winberg-Wang, and M. U. Babler, “1D Finite Volume
Scheme for Simulating Gas-Solid Reactions in Porous Spherical Particles with
Application to Biomass Pyrolysis.” Industrial & Engineering Chemistry Research,
60, 10603 (2021).

13. V. Sulzer, S. G. Marquis, R. Timms, M. Robinson, and S. J. Chapman, “Python
battery mathematical modelling (PyBaMM).” Journal of Open Research Software,
9, 14 (2021).

14. T. Weaver, A. Allam, and S. Onori, “A Novel Lithium-ion Battery Pack Modeling
Framework—Series-Connected Case Study.” 2020 American Control Conference
(ACC), 365 (2020).

15. R. B. Smith and M. Z. Bazant, “Multiphase Porous Electrode Theory.”
J. Electrochem. Soc., 164, E3291 (2017).

16. M. Torchio, L. Magni, R. B. Gopaluni, R. D. Braatz, and D. M. Raimondo,
“LIONSIMBA: A Matlab Framework Based on a Finite Volume Model Suitable for
Li-Ion Battery Design, Simulation, and Control.” J. Electrochem. Soc., 163, A1192
(2016).

17. W. Li, J. Zhang, F. Ringbeck, D. Jöst, L. Zhang, Z. Wei, and D. U. Sauer, “Physics-
informed neural networks for electrode-level state estimation in lithium-ion
batteries.” Journal of Power Sources, 506, 230034 (2021).

18. A. Romero-Becerril and L. Alvarez-Icaza, “Comparison of discretization methods
applied to the single-particle model of lithium-ion batteries.” Journal of Power
Sources, 196, 10267 (2011).

19. L. Mishra, A. Subramaniam, T. Jang, K. Shah, M. Uppaluri, S. A. Roberts, and V.
R. Subramanian, “PerspectiveMass Conservation in Models for Electrodeposition/
Stripping in Lithium Metal Batteries.” J. Electrochem. Soc., 168, 092502 (2021).

20. S. Marelli and M. Corno, “A mass-preserving Sliding Mode Observer for Li-ion
cells electrochemical model.” 2018 European Control Conference (ECC) 2659–64
(2018).

21. A. N. Ford Versypt and R. D. Braatz, “Analysis of finite difference discretization
schemes for diffusion in spheres with variable diffusivity.” Computers Chemical
Engineering, 71, 241 (2014).

22. E. Kreyszig, Advanced Engineering Mathematics (John Wiley & Sons) (2010).
23. S. Mazumder, Numerical methods for partial differential equations: finite difference

and finite volume methods (Academic Press) (2015).
24. M. Guo, G. Sikha, and R. E. White, “Single-Particle Model for a Lithium-Ion Cell:

Thermal Behavior.” J. Electrochem. Soc., 158, A122 (2010).
25. D. J. Gardner, D. R. Reynolds, C. S. Woodward, and C. J. Balos, “Enabling new

flexibility in the SUNDIALS suite of nonlinear and differential/algebraic equation
solvers.” ACM Transactions on Mathematical Software (TOMS), 48, 24 (2022).

26. A. Allam and S. Onori, “Online Capacity Estimation for Lithium-Ion Battery Cells
via an Electrochemical Model-Based Adaptive Interconnected Observer.” IEEE
Transactions on Control Systems Technology, 29, 1636 (2021).

27. S. Y. S. Ha and S. Onori, “An Open-source Software for the Dolye-Fuller-Newman
Model with Co-simulation Parameter Optimization Framework.” J. Electrochem.
Soc., 1 (2023), Manuscript in preparation.

28. V. R. Subramanian, V. Boovaragavan, V. Ramadesigan, and M. Arabandi,
“Mathematical Model Reformulation for Lithium-Ion Battery Simulations:
Galvanostatic Boundary Conditions.” J. Electrochem. Soc., 156, A260 (2009).

29. H. Moumni, H. Welhezi, R. Djebali, and E. Sediki, “Accurate finite volume
investigation of nanofluid mixed convection in two-sided lid driven cavity including
discrete heat sources.” Applied Mathematical Modelling, 39, 4164 (2015).

30. M. Darwish and F. Moukalled, The finite volume method in computational fluid
dynamics: an advanced introduction with OpenFOAM® and Matlab® (Springer)
(2016).

31. R. J. LeVeque, “Finite Volume Methods for Hyperbolic Problems.” Cambridge
Texts in Applied Mathematics (Cambridge University Press) (2002).

32. Y. Zeng, P. Albertus, R. Klein, N. Chaturvedi, A. Kojic, M. Z. Bazant, and
J. Christensen, “Efficient Conservative Numerical Schemes for 1D Nonlinear
Spherical Diffusion Equations with Applications in Battery Modeling.”
J. Electrochem. Soc., 160, A1565 (2013).

33. C.-H. Chen, F. B. Planella, K. O’Regan, D. Gastol, W. D. Widanage, and
E. Kendrick, “Development of Experimental Techniques for Parameterization of
Multi-scale Lithium-ion Battery Models.” J. Electrochem. Soc., 167, 080534
(2020).

34. M. Ecker, T. K. D. Tran, P. Dechent, S. Käbitz, A. Warnecke, and D. U. Sauer,
“Parameterization of a Physico-Chemical Model of a Lithium-Ion Battery: I.
Determination of Parameters.” J. Electrochem. Soc., 162, A1836 (2015).

35. A. M. Bizeray, J. Kim, S. R. Duncan, and D. A. Howey, “Identifiability and
Parameter Estimation of the Single Particle Lithium-Ion Battery Model.” IEEE
Transactions on Control Systems Technology, 27, 1862 (2019).

36. G. Pozzato, A. Allam, and S. Onori, “Lithium-ion battery aging dataset based on
electric vehicle real-driving profiles.” Data in Brief, 41, 107995 (2022).

37. L. Xu, X. Lin, Y. Xie, and X. Hu, “Enabling high-fidelity electrochemical P2D
modeling of lithium-ion batteries via fast and non-destructive parameter identifica-
tion.” Energy Storage Materials, 45, 952 (2022).

38. W. Li, D. Cao, D. Jöst, F. Ringbeck, M. Kuipers, F. Frie, and D. U. Sauer,
“Parameter sensitivity analysis of electrochemical model-based battery manage-
ment systems for lithium-ion batteries.” Applied Energy, 269, 115104 (2020).

39. Z. Chu, R. Jobman, A. Rodríguez, G. L. Plett, M. S. Trimboli, X. Feng, and
M. Ouyang, “A control-oriented electrochemical model for lithium-ion battery. Part
II: Parameter identification based on reference electrode.” Journal of Energy
Storage, 27, 101101 (2020).

40. R. L. Burden, J. D. Faires, and A. M. Burden, Numerical analysis (Cengage
learning) (2015).

Journal of The Electrochemical Society, 2023 170 120525

https://orcid.org/0000-0001-5114-1119
https://orcid.org/0000-0002-6556-2608
https://doi.org/10.1021/cm901452z
https://doi.org/10.1016/j.jpowsour.2005.05.070
https://doi.org/10.1016/j.jpowsour.2005.05.070
https://doi.org/10.1016/j.jpowsour.2011.10.013
https://doi.org/10.1149/1.2221597
https://doi.org/10.1016/j.energy.2014.12.031
http://www.cchem.berkeley.%20edu/%20jsngrp/fortran.html
https://doi.org/10.1149/2.058112jes
https://doi.org/10.1149/2.058112jes
http://arxiv.org/abs/https://github.com/scott-moura/fastDFN
https://doi.org/10.1149/1945-7111/ac71d2
https://doi.org/10.1109/LCSYS.2022.3230083
https://doi.org/10.1109/LCSYS.2022.3230083
https://doi.org/10.1021/acs.iecr.1c00674
https://doi.org/10.5334/jors.309
https://doi.org/10.1149/2.0171711jes
https://doi.org/10.1149/2.0291607jes
https://doi.org/10.1016/j.jpowsour.2021.230034
https://doi.org/10.1016/j.jpowsour.2011.06.091
https://doi.org/10.1016/j.jpowsour.2011.06.091
https://doi.org/10.1149/1945-7111/ac2091
https://doi.org/10.1016/j.compchemeng.2014.05.022
https://doi.org/10.1016/j.compchemeng.2014.05.022
https://doi.org/10.1149/1.3521314
https://doi.org/10.1145/3539801
https://doi.org/10.1109/TCST.2020.3017566
https://doi.org/10.1109/TCST.2020.3017566
https://doi.org/10.1149/1.3065083
https://doi.org/10.1016/j.apm.2014.12.035
https://doi.org/10.1149/2.102309jes
https://doi.org/10.1149/1945-7111/ab9050
https://doi.org/10.1149/2.0551509jes
https://doi.org/10.1109/TCST.2018.2838097
https://doi.org/10.1109/TCST.2018.2838097
https://doi.org/10.1016/j.dib.2022.107995
https://doi.org/10.1016/j.ensm.2021.12.044
https://doi.org/10.1016/j.apenergy.2020.115104
https://doi.org/10.1016/j.est.2019.101101
https://doi.org/10.1016/j.est.2019.101101



