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collected from constant-temperature laboratory testing when developing robust

state-of-health estimators.
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CONTEXT & SCALE

Deploying battery state of health

(SoH) estimation and forecasting

algorithms is critical for ensuring

the safe and reliable performance

of battery electric vehicles (EVs).

SoH estimation algorithms are

designed and trained using a

bottom-up approach, i.e., from

data collected in the laboratory

upon cycling cells under

predefined load conditions and

temperatures. In this work, we

take a different stance and from

battery system field data, we

gauge the health of the battery
SUMMARY

Deploying battery state of health (SoH) estimation and forecasting
algorithms are critical for ensuring the reliable performance of bat-
tery electric vehicles (EVs). SoH algorithms are designed and trained
from data collected in the laboratory upon cycling cells under prede-
fined loads and temperatures. Field battery pack data collected
over 1 year of vehicle operation are used to define and extract
performance/health indicators and correlate them to real driving
characteristics (charging habits, acceleration, and braking) and sea-
son-dependent ambient temperature. Performance indicators (PIs)
during driving and charging events are defined upon establishing
a data pipeline to extract key battery management system (BMS)
signals. This work shows the misalignment existing between labora-
tory testing and actual battery usage, and the opportunity that ex-
ists in enhancing battery experimental testing to deconvolute time
and temperature to improve SoH estimation strategies.
pack through the introduction of

online performance indicators

(PIs) in the form of resistance

during driving and impedance

during charging. The analysis

conducted shows that

seasonality-dependent

temperature highly affects the PIs

and reveals the weakness of data

collected from laboratory testing

at constant temperature in

developing robust SoH

estimators.
INTRODUCTION

With global warming continuing to threaten the fabric of our environment, ecosys-

tems, economy, and health, implementing immediate and effective strategies to

curb greenhouse gas emissions is the need of the hour.1 Road transportation repre-

sents a major contribution, accounting for 27% of the total US emissions in 2020.2

Thus, complete decarbonization of the road transportation sector by reducing our

reliance on fossil fuels is a potent solution that can mitigate global warming. In

pursuit of this goal, electrified mobility solutions featuring lithium-ion batteries are

proposed and implemented by automakers and supported by governments, glob-

ally.3–5 Due to their high energy and power density, lithium-ion batteries can accel-

erate the realization of sustainable mobility through electric vehicles (EVs), whose

sales exceeded 10million in 2022 (14% of all new cars sold, considering both battery

electric and plug-in hybrid EVs as EVs).6 However, the impending cobalt supply

chain issues,7 the dependence on critical earth materials,8 and the immaturity of re-

cycling infrastructure call for more emphasis on judicious monitoring and usage of

batteries in EVs by safely extracting their full potential, thereby increasing their life-

span and minimizing their environmental impact.

Battery systems in EVs consist of cells electrically connected in series and/or parallel.

An electronic control unit, known as the battery management system (BMS), is con-

nected to the battery system and tasked with the aforementioned responsibility of

judicious monitoring and usage control. One of the critical tasks of the BMS is health

monitoring, wherein the state of health (SoH) of the battery is estimated through

model-based9–11 or data-driven12,13 algorithms. The SoH estimates, in turn, can
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be used by the BMS to enforce safe operating bounds and enable health-conscious

control strategies (especially important in the future, with the introduction of

extreme-fast charging protocols). Typically, SoH estimation algorithms are devel-

oped starting from laboratory data (for the most part, experiments are collected

at cell level), deployed in a real-time BMS, and expected to provide accurate health

estimates over the entire lifespan of the battery system. As we rationalize this bot-

tom-up approach, which goes from laboratory and predefined design of experi-

ments to on-the-road vehicle deployment, the following observations are made:

(1) Laboratory data could fail to accurately reflect real-world field data. In a lab-

oratory setting, batteries are typically cycled from beginning of life to end of

life under predefined conditions of load and temperature-controlled environ-

ments.12,14,15 Meanwhile, real-world driving is driver-specific and contains

partial charging, partial discharging, mild or aggressive driving and braking,

varying operating conditions, long resting/parking period leading to calendar

aging, or most likely a combination of all of them. Thus, datasets collected in

the laboratory can be partially, or not at all, representative of real-world oper-

ating conditions and are based on a simplistic assumption that the lifetime

operating conditions follow a history-independent trajectory. Moreover, the

pseudo-linear capacity trajectories noted from laboratory testing are not

reflective of the actual capacity trends effectively experienced by the battery

with periodically varying loads.

(2) SoH algorithms from laboratories may falter in the field. To develop accurate

online battery system performance and health forecasting methods, it is

important that the algorithms are built on data that mimic the actual loads

the batteries experience in vehicles. For instance, the commonly used

extended Kalman filter (EKF) for state of charge (SoC) and capacity estimation

can very well lose accuracy or even diverge when deployed on the field due to

lack of intrinsic robustness. This is especially true for data-driven methods,

wherein the machine learning (ML) models are limited by the quality of the

data used to train the health prediction models. Thus, any SoH algorithms

not based on realistic driving data are likely to be inaccurate in the field, espe-

cially over longer time periods.

(3) A holistic definition of SoH for an EV battery system is still lacking. Battery ca-

pacity is considered to be the most important SoHmetric or indicator. Ideally,

battery capacity is evaluated under a full low-current charge/discharge/

charge cycle. However, for EVs in the field, it is impractical to subject the

battery system to these ideal test conditions, making estimated capacity an

unreliable health indicator, if used independently. Moreover, varying temper-

ature profiles define an effect on the battery capacity fade, which is different

from what is reported in the literature, where linear degradation trajectories

are shown upon cycling the battery at a constant temperature from the begin-

ning to the end of life.

(4) Laboratory experiments and algorithm development at the cell level

outnumber module- and pack-level testing and BMS design. Meanwhile,

real-time operating conditions can exacerbate the variability between cells

in the form of thermal and aging gradients propagating to the EV battery sys-

tem, making the problem of battery performance and health forecasting even

more challenging.16

The analysis shown in this paper highlights the shortcomings and limitations of a bot-

tom-up approach and directs attention to the gap between how battery cells are

tested in a laboratory and subsequently how performance and health algorithms
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are designed and what batteries actually experience in real-world scenarios, both at

cell andmodule/pack levels. We believe that there is an opportunity in complement-

ing the bottom-up design approach for SoH estimation with a top-down strategy

that, from battery pack field data, aims at unearthing performance and health

indicators.

Standardized test procedures conducted on battery packs under laboratory condi-

tions17 do not account for the variability induced in terms of electrochemical, ther-

mal, and aging behaviors between cells due to in-field operating conditions.

Reasonably, the true performance and the overall health of a battery pack should

be evaluated under real-world conditions.18 With the advancement in computing

power and progress in ML algorithms for life estimation, using large amounts of

real-world data to build battery health forecasting algorithms has become

feasible.19–23 In this work, we are concerned with how data are handled and pro-

cessed to generate metrics that signify the performance of the battery pack and

learn the dependence of such performance metrics on operating conditions directly

from field data collected from an EV battery pack. We believe that addressing these

points is the precursor to developing intelligent data-driven performance fore-

casting/prediction models and redesigning laboratory experiments to account for

field operating conditions.

Surveying the literature, Song et al.20 analyzed 1-year worth of operating data for

700 electric passenger vehicles (including EVs and hybrid EVs), wherein the data

mostly contain evenly sampled signals pertaining to operating conditions of the

vehicle and battery pack. The metric or indicator to signify the battery SoH is consid-

ered to be the pack capacity computed during charging; yet the capacity computed

during operation (charging or discharging) might not be entirely reliable since it is

heavily dependent on C-rate and temperature. In Huo et al.,22 BMS data of 16 elec-

tric taxis were collected over a 2-year period, and the SoH, considered to be the

battery pack capacity, is evaluated through periodic temperature-controlled test

procedures. It is worth mentioning that this operation removes the effect of temper-

ature on capacity, but it is not realistic to expect temperature-controlled conditions

to be available for all vehicles in real time while developing forecasting models. Data

from 18 electric city buses containing position, accumulated vehicle mileage, and

operating information of battery system including battery voltage, temperature,

and current are analyzed by She et al.24 The accumulated mileage is considered

to be the metric reflective of battery pack capacity. This method may not be gener-

alizable since it effectively neglects calendar aging of batteries, which is not re-

flected in the mileage information. He et al.21 and Wang et al.23 analyze field data

from 100 EVs and 8,032 EVs, respectively, and the metric that reflects battery

pack capacity is again considered to be the cumulative mileage. Instead, Giordano

et al.19 apply load profiles mimicking field operation to battery cells in laboratory

settings to generate a close-to-real dataset, which is then used to estimate the resis-

tance—defined over current pulses of 10 s—and considered as a health metric.

Finally, Zhang et al.25 use battery pack data from 7,296 plug-in hybrid EVs to

develop ML models, adapted over time, for the prediction of the battery aging

trajectory.

Throughout the reviewed literature, we observe that:

(1) A structured procedure to create a generalizable pathway between logged

data and health- and performance-based analysis is missing. A typical BMS

has thousands of signals, and any of them could contain critical battery health
Joule 7, 2035–2053, September 20, 2023 2037
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and performance information. A documented data pipeline that packages

these data seems to be missing in the literature and is still required.

(2) In most cases, a well-rounded set of performance and health metrics are

missing. The pack capacity can only be measured, or roughly estimated, under

certain load profiles in temperature-controlled conditions. Hence, additional

metrics communicating the performance and health of the pack in terms of

the available power it can deliver and remaining energy stored, to be computed

in real time, do not seem to be fully embraced in the open literature.

(3) There is only a fleeting mention of how the battery’s performance and health

are affected by seasonal/cyclic temperature variations.

(4) Papers elaborating on lithium-ion battery field data do not make their data

and code available for others to download, limiting the impact and reproduc-

ibility of the results.26

In this work, we address the above shortcomings by leveraging BMS signals

collected from a battery pack of a mid-size electric sport utility vehicle (e-SUV) driven

over a period of 1 year. By applying a pre-processing pipeline to clean, re-sample,

and group those signals in a structured way to reduce dimensionality, we create

the basis for analysis and data-driven model development in the future. We derive

a set of performance indicators (PIs) going beyond the metric of battery pack capac-

ity and show their dependence on operating conditions, namely the battery temper-

ature. The findings of this work could lay the foundation to synthesize robust health

forecasting algorithms going forward. The e-SUV battery pack field data are made

available to the public. The major contributions of the paper are the following:

(1) Establishing a data pipeline: the available BMS data spanning more than

1,600+ signals are cleaned, segregated according to their sampling time,

and sorted deliberately into driving and charging scenarios. A data pipeline

is established for extracting relevant BMS signals by eliminating missing or

noisy data, redundant data, categorical signals (vehicle operating modes,

e.g., if the vehicle is in driving or charging conditions, DC-AC charging acti-

vation status, cell balancing activation status, and warnings, e.g., if the battery

is overcharging), and misaligned signals and make them ready for post-pro-

cessing.

(2) Analyzing BMS signals to unearth PI that are easy to monitor onboard over

time: the processed data are analyzed to extract three PIs beyond just capac-

ity, concerning power, in the form of (1) resistance during acceleration events,

(2) resistance during braking events, and (3) charging impedance.

(3) Revealing the dependency of PIs on varying temperature: a thorough analysis

of the proposed PIs for the data spanning the entire year is presented,

revealing their high correlation with temperature variation with months and

seasons. It is therefore challenging to uniquely attribute whether the cause

of changes in PIs (and by extension health indicators) is due to specific degra-

dation mechanisms and time, or to varying temperature. Including varying

temperature and charging rates and/or seasonality trends in the design of

laboratory experiments and battery algorithms would generate effective da-

tasets more representative of actual battery usage.
RESULTS AND DISCUSSION

Field data analysis

In this work, BMS data from an Audi e-tron, a mid-size e-SUV, driven in the San Fran-

cisco Bay Area, CA, during the period November 2019 and October 2020, are used,
2038 Joule 7, 2035–2053, September 20, 2023
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Figure 1. Battery pack and dataset properties

(A) Schematic of the e-tron’s 95 kWh battery pack containing 36 modules with 12 cells each in a 4p3s

topology and the accompanying current, voltage, and temperature sensors.

(B) Percentage contribution of charging, driving, and idle time in the 3,750 h worth of logged BMS

field data.

(C) Comparison between processed and original dataset sizes. The dataset is conveniently divided

into 16 folders. On top, the original size of the CSV files is shown; in the middle, the size of the

cleaned dataset (stored in MATLAB files [MAT] and divided by folder) is displayed; and at the

bottom, the percentage size reduction from CSV files to MAT files is shown.
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analyzed, and shared. The vehicle is powered by a 95 kWh lithium-ion battery pack

comprising 36 modules connected in series, wherein each module contains 12

lithium-ion pouch cells that have a rated capacity of 60 Ah nestled in a 4p3s electrical

topology, as shown in Figure 1A. The nominal voltage of the pack is 396 V, and the

total pack capacity is rated at 240 Ah. The e-tron’s BMS has a primary-secondary ar-

chitecture and a junction box. The secondary units are the module-level controllers

that are tasked with the responsibility of monitoring voltages across each group of

four cells in parallel and temperatures within a module, whereas the primary unit

of the pack-level controller communicates with and controls the numerous second-

ary units. The junction box measures the pack-level current, voltage, and tempera-

ture and also isolates the high-voltage system from the low-voltage modules.

Furthermore, the mth module is equipped with three voltage (vm;1; vm;2; vm;3) and
Joule 7, 2035–2053, September 20, 2023 2039
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two temperature (tm;1; tm;2) sensors, and all the sensors from multiple modules are

wired to one module-level controller. Voltage sensors measure the voltage across

each group of four cells in parallel, and temperature is measured at the module level

(exact locations of temperature sensors cannot be disclosed). The BMS and the com-

ponents within (junction-box, module-level controller, and pack-level controller)

utilize the controller area network (CAN) bus to serially communicate the measured

signals and control variables among each other and to communicate with various

other relevant electronic control units in the vehicle. Although the exact composition

of the BMS data is proprietary, the data include voltage, current, temperature, con-

trol variables such as SoC, and other categorical information necessary for safe and

reliable battery operation.

The data were collected from daily driving and charging over a period of 12 months.

The total duration of logged data is approximately 3,750 h, and the percentage of

charging, driving, and idle time (i.e., the time in which the vehicle is parked and

the battery is not charged) is visualized in Figure 1B, which shows that calendar aging

during idle could be an important aspect to account for while developing battery

health forecasting algorithms. In this context, the computation of the proposed

PIs from driving and charging operation already accounts for any form of degrada-

tion. The data logger taps into the CAN bus through various ports to store signals

transmitted and received by the BMS and the components within (junction box,

module-level controller, and pack-level controller).

In this work, a robust data pre-processing pipeline is proposed to tackle the big (2

TB), uneven, and sparse dataset. The goals of the proposed pipeline are to (1)

address the problem of variable logging patterns and timestamps that causes spar-

sity; (2) remove categorical signals (such as vehicle operating modes, DC-AC

charging activation status, cell balancing activation status, and warnings); and (3)

import the comma-separated values (CSV) files to MATLAB and drastically reduce

the memory size by 98.91%, from 2 TB to 22.1 GB, making it conducive andmanage-

able for further analysis. The dataset size reduction is shown graphically in Figure 1C,

where data were conveniently divided into 16 folders. A comprehensive description

of the pipeline and dataset cleaning procedure is shown in experimental

procedures.

Performance indicators

The processed field data are used to derive a set of online PIs that can be computed

to fortify our understanding of battery operation over time and its interplay with

temperature.

The battery pack capacity from BMS is the only indicator available onboard defining

performance and health. As shown in Figure 2, the available capacity as estimated by

the BMS changes over time and recovers after a few months resting period (attrib-

uted to the COVID-19 pandemic lockdown). Details on the battery capacity estima-

tion algorithm are proprietary, and we postulate that the capacity recovery is due to

a combination of higher environmental temperatures, which lead to increased avail-

able capacity,27 and rejuvenation due to the long period of storage.28 Considering

the whole acquisition window, from November 2019 to October 2020, the battery

experiences a capacity fade of 1.6 Ah.

However, capacity is not enough to describe the performance of the battery pack. In

this work, we propose indicators computed from field data—intrinsically accounting

for time and temperature—that can be used to go beyond capacity and have a
2040 Joule 7, 2035–2053, September 20, 2023



Figure 2. Battery pack capacity

The available capacity from BMS is shown as a function of date and pack temperature. Between

February and May 2020, the vehicle was not used due to COVID-19 restrictions, and from November

2019 to October 2020, an overall capacity decrease of 1.6 Ah is recorded. Details on the battery

capacity estimation algorithm are proprietary, and for this reason, labels have been removed from

the y axis.
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holistic set of metrics to define battery performance and health. Notably, for the first

year of EV operation, this work shows that indicators are affected by temperature,

which outwins time effects.

All the computations for the extraction of PIs are carried out using voltage and cur-

rent at the pack level. This corresponds to assuming that the entire battery pack can

be approximated as a single lumped battery cell and that PIs for the lumped cell

fairly signify the performance of the battery pack.

Resistance during braking and acceleration

PIs described in this section are the resistances computed during the vehicle’s

braking and acceleration. During these events, abrupt changes in the battery pack

current (herein referred to as ‘‘current peaks’’) and voltage can provide valuable in-

sights into the actual power capability of the battery pack over time. The algorithm

separates battery pack current peaks during braking and acceleration and then cal-

culates the two resistances.

Over the entire 1-year-long dataset, a total of 392 braking and 529 acceleration

peaks are detected, and the resistances in braking and acceleration, referred to as

RBR and RACC , respectively, are computed.

For example, in Figure 3, the peak detection algorithm is applied to a small dataset

(approximately 1 h), wherein all the peaks detected during the acceleration events

are highlighted in blue, and the ones detected during braking in red. The

zoomed-in plots illustrate the detection of a peak during a braking event (red) and

one during an acceleration event (blue).

The resistance values computed during braking and acceleration peaks show similar

magnitude. Figures 4A and 4B show that the computed resistance values follow a

Gaussian distribution, with means (m) and standard deviations (s) equal to

ðm = 29:8 mU; s = 3:6 mUÞBR and ðm = 29:4 mU;s = 3:8 mUÞACC , for RBR and RACC ,

respectively. All the points that fell more than three standard deviations from the

mean were considered outliers and have been removed. Figure 4C shows the resis-

tance values computed over the entire dataset as a function of the date and battery

temperature recorded by the BMS for all the braking and acceleration peaks. The

average monthly temperature in Palo Alto, CA, obtained by averaging historical

low and high-temperature values,29 is superimposed to both braking (RBR ) and accel-

eration (RACC ) resistances to show how lower environmental temperatures—between
Joule 7, 2035–2053, September 20, 2023 2041



Figure 3. Peak detection algorithm

From current and voltage battery pack profiles (on the left), the peak detection algorithm is used to

detect braking (red) and acceleration (blue) peaks. The top-right plot shows the detected peaks

over a driving profile of 50 min (from folder #2 in Table 1). The zoomed-in plots illustrate the

detection of two peaks during braking and acceleration. In this scenario, peaks are defined inside a

time window of 1 s.
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November 2019 and February 2020—are correlated to higher resistance values.

Conversely, between June 2020 and October 2020, the battery shows lower resis-

tances ascribable to the higher environmental temperature.

A redesign of Figure 4C is provided in the right-hand side plots of Figure 5 to display

the dependence of resistance with the pack recorded temperature and time. The left-

hand side plots of Figure 5 instead show a negative correlation between resistance and

pack temperature for the whole dataset. This result is supported by the fact that trans-

port processes are slower, and the overpotential is higher at lower temperatures,30 re-

sulting in a higher value of the resistance as the temperature decreases.

Further details on the computation and formulation of RBR and RACC are reported in

experimental procedures.

Charging impedance

Although battery loads during driving are based on decisions made by the user (i.e.,

acceleration or braking), battery charging operation is generally standardized. Dur-

ing charging events, we calculate the charging impedance, indicated as ZCHG, from

the continuously changing voltage in charge and the applied constant current over a

moving time window Dt. Differently from the driving resistances that are computed

over a short time interval during braking and acceleration, the charging impedance

is computed over the entire duration of the charging event.

When the battery is under a load, its output voltage is seen as the summation

of the open circuit voltage, the function of the battery chemistry, and the overpo-

tential. The latter is given by the superposition of several voltage drops due to
2042 Joule 7, 2035–2053, September 20, 2023
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Figure 4. Distribution of the resistance

(A and B) This figure shows the statistical distribution of the resistance computed from peaks

extracted during (A) braking and (B) acceleration events for the entire dataset.

(C) Resistances during braking and acceleration events are plotted as a function of date and pack

temperature. The average monthly temperature in Palo Alto, CA29 is superimposed to both braking

and acceleration resistances. This shows that lower environmental temperatures during the end of

autumn/winter result in higher resistance values, whereas during summer/beginning of autumn

with higher environmental temperatures the battery shows lower resistances.
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contact resistance, electrolyte resistance, charge transfer resistance (associated

with lithium intercalation and deintercalation reactions), and polarization due to

diffusion.31 These phenomena are characterized by different timescales, from

100 to 10 kHz for contact and electrolyte resistance to 10 Hz–10 mHz for diffusion

polarization.32 The charging impedance ZCHG lumps these effects at different time-

scales into one indicator, providing a performance and health metric of the bat-

tery pack.

The EV battery pack dataset contains charging signals at C/240, C/20, and C/2, as

shown in Figures 6A and 6B, where C indicates the C-rate, i.e., the rate at which

the battery is fully charged or discharged relative to its nominal capacity. Besides

these, one fast-charging event at 1.5C is present, which is not considered in the anal-

ysis because of its low statistical significance. Additionally, four charging events

showing discontinuous current patterns are discarded from the analysis. The effect

of current and the time window Dt used to compute the charging impedance is

described in experimental procedures, and in Figure 6C, the battery charging

impedance for Dt = 100s and all the C/20 charge events is shown where peaks

and valleys can be distinguished in the ZCHG-SoC plane. The charging impedance

collected over consecutive charging events exhibits variations of peaks and valleys

as a function of temperature. Notably, in the 50%–60% SoC region, the peak of

the pack charging impedance decreases with temperature. A similar trend is

observed for the valleys in the 70%–100% range. Such an observation has important

practical implications in that even under partial discharge conditions (say the battery

is never discharged below 70% SoC), the charging impedance could be used as a PI.
Joule 7, 2035–2053, September 20, 2023 2043



Figure 5. Resistance analysis

Resistance in braking (top right) and acceleration (bottom right) as a function of time and pack

temperature. On the left-hand side plots, the resistances are shown to be negatively correlated

with the pack temperature.
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The shape and position of charging impedance peaks and valleys over time have

striking similarities with the differential voltage (DV) analysis. The DV technique is

based on differentiating the battery terminal voltage with respect to charge or

discharge capacity and allows to detect gradual changes in the battery degradation

performance.33 Specifically, the DV curve transforms voltage plateaus, correspond-

ing to two-phase material regions, into clearly identifiable valleys and one-phase

material regions into peaks.34 Therefore, modifications of the battery performance

are assessed by tracking the shrinking of valleys and the dampening of the peaks.

Analytically, an interpretation of the charging impedance can be given in terms of DV

analysis by means of the following equation:

ZCHG =
DV

DQ
Dt = DVDt; (Equation 1)

which shows that ZCHG can be interpreted as a DV curve scaled with respect to the

time window Dt. Although in this work DV is not used to explain material phase

changes, the mathematical link (1) provides a system-level interpretation of the DV

curve as an impedance curve. This further supports the use of impedance as an on-

board indicator to complement the current BMS design and assess the battery

degradation performance.

When performing laboratory experiments, the common practice is to control the

temperature to a constant reference point that in hindsight allows to decouple ther-

mal from time (i.e., degradation) effects.35 This is what is done to understand how

the battery degrades over time. However, this practice fails to reproduce the com-

plex interplay between degradation modes and temperature that batteries instead

experience in the field.

In this context, field data reveal how convoluted time and temperature are when it

comes to quantifying battery performance and degradation. Unexpectedly, data
2044 Joule 7, 2035–2053, September 20, 2023
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Figure 6. Charging rate and charging impedance

(A) The average charging rate used for the e-tron over the 1-year period of data acquisition. The

charging rates of C/240, C/20, and C/2 could also be expressed as 600 W (level 1), 7.6 kW (level 2),

and 60 kW (level 3).

(B) The distribution of charging events for the e-tron over the 1-year period of data acquisition.

(C) Charging impedance plotted for all C/20 charging events as a function of SoC and temperature.

Curves are obtained using Dt = 100 s and by filtering the signals obtained from Equation 3 via a

moving average filter tuned at 500 s.
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collected over 1 year of EV operation shows that temperature has a dominant effect

on PIs and outwins time. The coupling between battery performance and tempera-

ture makes the definition of reliable indicators challenging. To the best of our knowl-

edge, current SoH algorithms are not developed to account for this convoluted

behavior, which in turn could aggravate heterogeneities within the pack. This calls

for designing laboratory experiments that can capture highly temperature-depen-

dent real-world behavior to help synthesize intelligent performance and health fore-

casting methods.

The PIs proposed in this work—intrinsically accounting for temperature and time—

could be used to decouple these effects, for example, by analyzing charging imped-

ance profiles computed only at one specific temperature and tracking modifications

of peaks and valleys over time. Finally, these indicators could be linked to capacity

and power fade and used as features for ML models to complement current BMS

strategies.
Conclusions

Field vehicle data logging is not common in academic literature as the challenge re-

sides in accessing proprietary systems and expensive hardware. In this work, we

developed tools to extract key information on battery pack performance using a

1-year worth of battery pack data collected from an EV. First, we developed a robust

data pre-processing pipeline tomanipulate large, uneven, and sparse field data con-

taining all the BMS signals into a manageable data structure with reduced cardinal-

ity, from 2 TB to 22.1 GB. Second, the processed BMS dataset was used to generate

on-the-fly resistance and charging impedance signatures to track the performance of

the battery pack.
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Table 1. Dataset structure

Folder # Time interval
CSV files
size (GB)

MAT files
size (GB)

1 and 2 November 1–November 6, 2019 83.8 1.07

3 and 4 November 22–November 27, 2019 52.4 0.65

5 and 6 December 13–December 16, 2019 68.4 0.20

7 and 8 December 18–December 20, 2019 130.5 1.22

9 December 20–January 10, 2020 327 3.98

10 December 20, 2019–January 2, 2020 45.6 0.30

11 and 12 January 17–January 24, 2020 97.8 1.05

13 May 27–July 27, 2020 658 7.19

14 May 27–July 27, 2020 275 3.21

15 August 26–October 14, 2020 182 2.05

16 August 25–October 15, 2020 95.3 1.13

Charging (1, 3, 5, 7, 9, 11, 13, and 15) and driving (2, 4, 6, 8, 10, 12, 14, and 16) folders with corresponding

acquisition time intervals. Third and fourth columns show the sizes of the BMS dataset before and after

the cleaning.

ll
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The peak detection algorithm during braking and acceleration events to compute

the resistance, and the impedance during charging rely on simple mathematical

operations, which are computationally inexpensive—with low memory require-

ments—and easily generalizable for any resource-constrained BMS hardware imple-

mentation. These indicators are universal and have general applicability across

chemistries and applications (EVs, fleets, grid storage, portable electronics, etc.),

as they rely on onboard available measurements. Specifically, the proposed indica-

tors do not require additional sensing elements or the implementation of artificial

stimulus signals to assess the battery’s performance and health.

A limitation of the proposed resistance calculation is in the peak detection algo-

rithm, which requires an optimal tuning of three parameters (thr, DA, and Dt as listed

in Table 2). In this work, parameters are tuned at the beginning of life over the 1-year

worth of operating data; however, this calibration could necessitate adaptation over

the battery life. Another limitation is that ideally, resistances during braking and ac-

celeration and charging impedance should be computed at the same C-rate, SoC,

and temperature over time. However, there is usually no control over the driver’s

behavior, and given the short duration of the dataset at hand, an accurate extraction

of the indicators is needed to make quantities comparable over the battery life. In

this context, ‘‘driver-in-the-loop’’ solutions, where the driver is engaged, e.g., to

avoid shallow discharges and explore the whole SoC range, could allow the extrac-

tion of more coherent indicators. This approach follows the line of diesel internal

combustion engine vehicles, where the driver is asked to pull over and allow the

regeneration of the diesel particulate filter if excessive soot builds up.36

Finally, incorporating field operating conditions and seasonality in laboratory

testing would help in developing robust SoH estimation strategies.

EXPERIMENTAL PROCEDURES
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Onori (sonori@stanford.edu).

Materials availability
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Table 2. Peak detection algorithm parameters for braking and acceleration events

Variable Acceleration event Braking event

thr 5 A 2 A

DA 100 A �100 A

Dt 1 s 1 s

ll
Article
Data and code availability

Field data containing the measured pack current, voltage, temperature, and SoC

from BMS for all the driving and charging events used for the analysis reported in

this paper are available at the following Mendeley data repository: https://doi.

org/10.17632/7vdkzpnjgj.2.
Field data analysis and cardinality reduction

The collected dataset of CAN signals is divided into 16 folders that total a size of

approximately 2 TB, 8 containing driving data and 8 charging data (Table 1). The

16 folders contain 127,722 CSV files in total, wherein each folder is made up of

various CSV files ranging from 2,000 to 40,000. Every CSV file logs 1,655 BMS-

related CAN signals, and it only stores 10 s worth of data (hence the large number

of CSV files to store data sequentially with respect to time). An important point to

consider is that the 1,655 CAN signals are not logged at the same time instants.

Since different CAN messages (and the signals within each message) have different

sampling times, they are logged with different timestamps. Furthermore, BMS-

related CAN signals could be transmitted/received cyclically, or transmitted/

received only under certain conditions, thereby making the pattern of logged

data uneven and inconsistent. Importing any such inconsistent dataset in MATLAB

results in sparsity, making it unsuitable for analysis or modeling.

The data pre-processing pipeline was applied to the complete 2 TB data and run on

the Sherlock high-performance computing cluster at Stanford University.37 A total of

1,349 h were clocked to sift through 2 TB of CSV files spanned across 16 folders col-

lecting charging and driving events. Using this pre-processing pipeline, the cardinal-

ity of the dataset is compressed from 2 TB to 22.1 GB. Table 1 shows the size of each

folder before (third column) and after (last column) the pipeline is applied. The MAT

files obtained as a result of the pre-processing pipeline are then ready to be

analyzed to derive the necessary performance metrics.

Pre-processing pipeline in MATLAB

Importing the large number of CSV files from the BMS field data into MATLAB runs

into memory issues; therefore, the CSV files within a folder are divided into batches

of 1,500 files (approximately 15,000 s or 4 h worth of logged data) to make reading

and saving easier.

The MATLAB pipeline developed in this work is summarized in Figure 7. To begin

with, to manage and process the large collection of CSV files, a tabular object is

created using the tabularTextDatastore function in MATLAB. To manipulate or

perform mathematical operations and analyze the smaller portions of stored data,

the tall function in MATLAB is employed to hold the data in tall arrays that remain

unevaluated until they are accessed through the gather function. The array is struc-

tured to contain the name of the CANmessages, the name of the signals, the accom-

panying timestamp, and the signal values. While doing so, categorical signals are

deleted and the number of signals is reduced from 1,655 to 1,193. The issue induced

by the uneven and sparse data logging is tackled, and empty values are also
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Figure 7. Data pre-processing pipeline

CSV files are first converted into a tabular object using the MATLAB function tabularTextDatastore.

At this point, categorical signals are removed, and empty cells (indicated by ‘‘-’’) are deleted from

numerical signals. In this example, signal 1 and signal 2 are numerical signals with x and y generic

values. Signal 3, on the other hand, is categorical (e.g., cell balancing activation status, warnings)

with z indicating the corresponding values. Cleaned numerical signals are then stored in tall arrays

(using the MATLAB function tall) and converted into MAT files using the MATLAB function gather.

ll
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removed. Next, the gather function is used to import and save the arrays in MAT files

as a structure object that contains the signals, including their values and timestamps,

split as per charging and driving conditions, making it convenient to use it for

analysis.
Resistance computation during braking and acceleration

For the calculation of resistances during driving, braking and acceleration events are

selected to be sufficiently short to avoid heat generation and/or significant change

of SoC. The voltage response curve corresponding to the change in current is

measured and used to compute the resistance during braking (RBR ) and acceleration

(RACC ) as
38:

Ri = � Vðt2Þ � Vðt1Þ
Iðt2Þ � Iðt1Þ = � DV

DI
; i˛ fBR;ACCg (Equation 2)

where (Vðt1Þ,Iðt1Þ) and (Vðt2Þ,Iðt2Þ) are the voltage and current tuples at the beginning

and end of the pulse, respectively. The voltage profile changes with aging15 and

temperature,39 and Equation 2 evaluates the corresponding resistance variation.

In this work, charge and discharge currents are defined to be negative and positive,

respectively, hence the minus sign in Equation 2 ensures that Ri R 0.

The parameters of the rule-based algorithm are as follows:

(1) The peak event should last at least Dt = t2 � t1 s.

(2) The absolute value of Iðt1Þ (the current at the beginning of the acceleration

or braking peak) must be smaller than the threshold value thr , such that �
thr% Iðt1Þ% thr . This is to ensure that the event is approximately starting

from rest.

(3) To capture the portion in which the current is increasing (acceleration) or

decreasing (braking), the derivative of the measured current between time in-

stances t1 and t2 must never change sign during the peak event. Mathemati-

cally, it can be formulated as dI
dtACC

R 0 and dI
dtBR

%0. Moreover, to avoid being

affected by the noise in the measured current signal, the derivative of the cur-

rent is filtered by means of a moving average filter tuned at 100 s.
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Figure 8. Braking and acceleration peaks

Peak detection during (A) braking and (B) acceleration. Values for DA and Dt are shown in Table 2.

ll
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(4) The peak should have a change in current (increase or decrease) of at leastDA,

i.e., large enough to register a significant voltage change that can be used to

compute the resistance.

Figure 8 shows two examples of peak detection during (Figure 8A) braking and (Fig-

ure 8B) acceleration. The parameters of the algorithm were optimized in order to

detect a congruous number of peaks that are as consistent as possible. The set of

parameters used is noted in Table 2, and in the MATLAB implementation, some

additional conditions allow for reducing numerical errors by excluding peaks that

do not satisfy the aforementioned rules.
Charging impedance computation

The battery charging impedance is defined on the charging events of the 1-year-

long dataset. The charging data are divided into 49 charging events by making

the following assumptions: a profile is considered a single charging event if it is sepa-

rated from previous and next charging events by at least 2 min; if the average current

is almost null, the charging event is discarded from the dataset.

The charging events are divided into three different sets as a function of the C-rate:

C/240, C/20, and C/2 as shown in Figure 6. The battery charging impedance,

measured in Ohm, is computed at each time instant tk as follows
40:

ZCHGðtkÞ = � Vðtk+DtÞ � VðtkÞ
I

= � DV

I
; (Equation 3)

where tk = kTs is the kth time instant such that k ˛ ½0;N�4N, N is the number of sam-

ples within the charging event, Ts is the sampling time at which the impedance is

computed (the Ts used in Figure 6C is equal to 0.01 s), and Dt is the, strictly positive,

moving time window over which the voltage drop in Equation 3 is calculated. Fig-

ure 9 highlights the computation of the charging impedance curve from folder #7

at time instants t0 and t0 +Ts, with t0 the time at the start of the charging event. Dur-

ing charge, the current is negative, and theminus sign in Equation 3 is used to ensure

ZCHG R0.

Voltage profiles used for the computation of this indicator have an increasing

trend and are affected by quantization; hence, a linear fitting is applied to remove

the quantization noise. Current profiles are constant and affected by quantization

(Figure 10), which introduces an error of G1 A and makes the impedance profiles

noisy (Figure 11, plots on the left). To cope with this problem, the time window Dt

is finalized via a sensitivity analysis from Dt ˛ f0:01;0:1;1; 10;100g s. Increasing

the time window does not affect the current, which is constant, but leads to a

higher voltage difference DV and allows to filter out the effect of the current

signal quantization, thus leading to smoother impedance profiles. It is worth
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Figure 9. Charging impedance calculation

Graphical representation of how the charging impedance is calculated starting from a charging

event voltage measurement. Each value of the charging impedance curve is computed by dividing

the voltage drop over a time window Dt—in the future—by the current amplitude. As shown by A

and B, the distance between each impedance calculation point is equal to Ts. Impedance curves vs.

time and SoC are shown on the right-hand side plots.

ll
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mentioning that an excessively long-time window (beyond 100 s), while still

removing the quantization noise, could potentially reduce the information content

of the impedance profile. As shown in Figure 11 (from the bottom to the top),

charging impedance curves depend on the C-rate. A charging current of C/2

leads to a dampening of the impedance peak in the 50%–60% SoC region and

to possible information loss. At C/240, the quantization error of the current sensor

and the charging current (I) are of the same order of magnitude. This leads to an

impedance profile sensitive to current modifications due to quantization, which

results in jumps of the corresponding impedance curve (Figure 11, bottom

right plot).

In this work, C/20 charging events are used to compute the charging impedance

profiles. It is found that the best time interval Dt is 100 s (Figure 11, dashed

black box).

ZCHG and DV curves

The battery impedance during charge is defined according to Equation 3. Multi-

plying Equation 3 by 1=Dt on the right- and left-hand sides, the following expression

is obtained:

ZCHG
1

Dt
= � DV

I

1

Dt
(Equation 4)

The term � IDt at the denominator of Equation 4 is equal to the charged capacity

over the time window Dt, defined as the following integral:

DQ = �
Z tk+Dt

tk

Idt = � IDt (Equation 5)
Figure 10. Current quantization

C/240 charge current signal and quantization error of G1 A of the current sensor (folder #9 in

Table 1).
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Figure 11. Charging impedance curve calculation

ZCHG as a function of C-rate and Dt.

(A) Increasing Dt (from left to right) reduces the quantization noise. (B) Jumps in the impedance at

C/240 are due to quantization errors which are of the same order of magnitude of the charging

current, and they are ‘‘eliminated’’ as the C-rate increases. (C) At high charging current of C/2, both

the valleys at high SoC and peaks are attenuated. In this work, C/20, Dt = 100 s, and Ts = 0:01 s are

chosen to compute the charging impedance profile (dashed black box).

ll
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whereDt is the time interval for the charging impedance calculation. From Equations

4 and 5, the charging impedance is rewritten as follows:

ZCHG =
DV

DQ
Dt = DVDt (Equation 6)

Equation 6 provides the mathematical link between charging impedance and DV

curve (DV ) and shows that ZCHG can be interpreted as a DV curve scaled with respect

to the time interval Dt; likewise, the DV curves are a scaled version of the battery

charging impedance. In Figure 12,DV curves at C/20 derived from ZCHG in Figure 6C

are shown.
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Figure 12. DV curve

DV curves plotted for all the C/20

charging events as a function of

SoC and temperature. Curves are

obtained considering Dt = 100 s

and further cleaning the signals via

a moving average filter tuned at

500 s.
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