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SUMMARY

Connected/autonomous electric vehicles (C/AEVs) have the poten-
tial to provide safe, efficient, and low-carbon-emission transporta-
tion solutions. Proper and efficient management of the C/AEV
lithium-ion battery (LIB) system is key to guaranteeing that all ben-
efits associated with C/AEVs are achieved. This requires that the
design and control of LIBs be informed by the C/AEV system opera-
tion. This article first demonstrates that C/AEV operation is distinct
from human-driven electric vehicle operation, thus necessitating the
development of application-specific testing protocols to properly
characterize and model their LIBs. Laboratory-prone synthetic
duty cycles are generated from C/AEV driving data, enabling a
design of experiments representing a wide range of C/AEV driving
modes and LIB system sizes. We share data collected from 31 LIB
cells undergoing the synthetic cycling experiments. This paper pro-
vides the academic community with an application-specific C/AEV
LIB dataset for the design and calibration of data-driven battery
models for real-time control and operation.

INTRODUCTION

Connected/autonomous electric vehicles (C/AEVs) combine the benefits of autono-

mous vehicles and EVs. The Society of Automotive Engineers (SAE) defines six levels

of vehicle autonomy (L0 through L5) in increasing degrees of autonomy, with L0 rep-

resenting full human driver control and L5 requiring no level of human interaction or

control.1 At high levels of autonomy (L4/L5), autonomous vehicles can be networked

to form fleets of CAVs, which can improve traffic conditions at wide-scale deploy-

ment. CAVs have been demonstrated in simulation to improve traffic flow stability

and increase traffic throughput2 and to reduce stop-and-go traffic patterns in favor

of ‘‘smooth driving,’’3 and in field experiments, fleet-level control of CAVs dissipated

stop-and-go waves that, unfettered, would propagate and cause traffic.4 C/AEVs

have different operational characteristics from human-operated EVs or individually

operated AEVs. As C/AEVs are autonomously operated and fleet optimized, the

overall driving characteristics (e.g., acceleration and braking) will be different from

human-operated EVs.5–7 Additionally, C/AEVs can operate for between 10 and

16 h per day, far different from the traditional single-ownership model of EV driving

where the vehicle is inactive for upwards of 90% of the day.8

The different operation of C/AEVs compared with human-driven EVs impacts the

operation of lithium-ion battery (LIB) systems in each vehicle as well. The LIB systems

in C/AEVs will be continuously discharged during all-day driving to near-empty

states of charge (SOCs) and then will be charged with a predefined protocol to

then be discharged fully the next day. In other words, in C/AEVs, the LIB system is

fully discharged and charged in a consistent manner every day. In contrast,
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human-driven EVs often only experience two trips per day (e.g., from home to work

and back), therefore sitting idle for the majority of the day, and often spend multiple

days before being charged again.9 Furthermore, human-driven EVs exhibit a broad

range of minimum SOCs before charging, with approximately half of charging

events starting above 50% SOC.10,11 Together, this means that the depth of

discharge is much less severe, and the average SOC much higher, than for LIB sys-

tems in C/AEVs. The different operating characteristics of C/AEVs versus human-

driven EVs will have different impacts on their respective LIB systems for both

real-time operation as well as long-term degradation, as these impacts are highly

dependent on the application-specific cycling induced on the LIBs. These impacts

must therefore be studied rigorously, necessitating the development of C/AEV-spe-

cific duty cycles to replicate this application fully on LIB cells in a laboratory setting.

Duty cycles are used in laboratory experiments to generate application-specific bat-

tery data. A duty cycle is a control signal representing a response to operation in a

particular application. In the context of this article, a duty cycle is a power or current

profile representing the LIB cell dispatch (charge and discharge). In the simplest

case, duty cycles can be constant-current/constant-voltage (CCCV) charge and

discharge cycles, but duty cycles for individual EVs presented in the literature

have predominantly leveraged existing drive cycles developed for testing internal

combustion engine (ICE) vehicles, including DST and FUDS,12 UDDS and US06,13

ARTEMIS,14 and NEDC.15 These drive cycles are reported as vehicle velocity as a

function of time, as they are intended for vehicle dynamometer testing. In order to

produce current input signals for duty cycling, external tools such as ADVISOR16

or other vehicle simulators17 are used to model the EV drivetrain and extract the

voltage and current output of the LIB pack. This must then be scaled down to the

cell or the module level for laboratory testing. Few studies in the literature develop

and apply duty cycles generated directly from driving data, instead of from existing

drive cycles. For example, vehicle velocity data from three different trips were used

to compare the responses between LIB systems simulated for different EVmodels by

Sun et al., but these trips were selected ad hoc and were not further synthesized into

duty cycles.18 Drive cycles were synthesized directly from EV trip data by Gong

et al.,19 and ARTEMIS drive cycles were modified by Duan et al. to account for

different objectives for autonomous EV driving characteristics (e.g., smooth versus

‘‘swift’’ driving),5 but neither study converted these drive cycles into duty cycles,

nor did they apply them in laboratory LIB experiments.

Additionally, these studies still do not explicitly model the C/AEV use case where the

vehicles are continuously driven in charge-depleting mode through their entire

operating range until the LIB system minimum SOC is reached. As LIBs exhibit sub-

stantial differences in response between those cycled with arbitrarily selected syn-

thetic duty cycles compared with those cycled with duty cycles collected from real

driving data,19,20 laboratory study of C/AEV LIB systems must use application-spe-

cific duty cycles, as has been previously done for human-driven hybrid EVs and EVs.

To this end, this article presents the following contributions.

(1) A quantitative comparison demonstrating that C/AEVs yield operational char-

acteristics distinct from those in human-driven EVs, which in turn imposes

different operational characteristics of their respective LIB systems.

(2) The development of six synthetic duty cycles from LIB cell current and vehicle

velocity data representing real-world C/AEV operation in two different cities,
2 Cell Reports Physical Science 4, 101536, August 16, 2023



Figure 1. C/AEV driving datasets

C/AEV driving datasets (CDDs) are plotted for (A) City 1 and (B) City 2, with histograms on either

side for the cell current (left) and vehicle velocity (right) distributions. The x axes of both plots are

normalized to the city 1 CDD duration.
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used to design a suite of protocols representing a wide range of operatingmodes

for C/AEV LIB systems.

(3) A comprehensive experimental dataset collected from a batch of 31 high-

nickel-content LIB cells cycled with these synthetic-duty-cycle-based protocols,

made available to the academic community.

Broadly speaking, the synthetic-duty-cycle approach in this article and its resulting

dataset will help guide proper design of C/AEV LIB systems, inform real-time

C/AEV-specific control and management of LIB systems, and enable machine-

learning approaches for remaining useful life and end-of-life prediction.

RESULTS AND DISCUSSION

C/AEV driving datasets

The C/AEV driving datasets (CDDs) in this article consist of vehicle velocity data

collected from real-world autonomous hybrid EV driving in two cities (City 1 and

City 2), spanning both urban (intra-city) driving and highway driving, in units of me-

ters per second. The vehicle velocity was used in simulation to produce the current

for one cell in a C/AEV LIB system in units of C-rate (current in amperes normalized to

cell capacity in ampere hours). The CDDs presented in this study represent one full

day of C/AEV operation under the assumption that the C/AEV is charged fully and

only overnight and then discharged throughout the day during vehicle driving. All

data are obtained as time-series data sampled at 0.1 s resolution. Positive current

corresponds to discharge, and negative current corresponds to charge. Figure 1

shows the CDDs used in this article. For direct comparison between figures, the x

axes for all time-series figures in this article are normalized to the longer of the

two datasets (city 1).
Cell Reports Physical Science 4, 101536, August 16, 2023 3



Table 1. Summary of interval metrics as applied to micro-trips

Number Name Unit

1 peak discharge C-rate 1/h

2 peak charge C-rate 1/h

3 average discharge C-rate 1/h

4 average charge C-rate 1/h

5 variance of discharge C-rate 1/h2

6 variance of charge C-rate 1/h2

7 average total C-rate 1/h

8 peak frequency in discharge Hz

9 peak frequency in charge Hz

10 distance traveled m

11 peak velocity m/s

12 average velocity m/s

13 variance of velocity m2/ s2

14 number of starts from zero velocity unitless

These metrics are used in the synthetic-duty-cycle algorithm (Algorithm 1 in Note S1), as well as in

comparing C/AEV driving with human-driven EV driving. A complete description of each of these metrics

is in Note S1.
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Comparison of CDDs with human-driven EV driving data

The 14 metrics in Table 1 are used to compare the operational characteristics of the

City 1 and City 2 CDDs with those of a driving dataset from a human-driven EV in the

Vehicle Energy Dataset (VED), which presents data such as velocity, current, and

SOC as recorded from real-world driving.21 Each dataset is segmented into ‘‘mi-

cro-trips,’’ defined as periods of active driving between idle (zero-velocity) periods

no less than 30 s in length; this process is summarized in Figure S1. The metrics in

Table 1 are then computed for each of the micro-trips within the dataset. These re-

sults are summarized as boxplots in Figure 2, allowing for direct comparison of the

distribution of metric values for micro-trips as computed for the C/AEV and human-

driven EV datasets. For example, the average velocity of the human-driven EV is up

to twice that observed in the CDDs. Furthermore, while the minimum recorded SOC

from the human-driven EV was 21%, its SOC largely remained above 50%, demon-

strating the smaller SOC range of human-driven EVs compared with C/AEVs. Alto-

gether, this demonstrates the distinct differences between LIBs operating in

C/AEVs versus human-driven EVs and therefore necessitates the synthesis of appli-

cation-specific C/AEV duty cycles for laboratory testing.

Synthetic duty cycles

The synthesis of duty cycles from existing datasets has previously been applied for

generic vehicle driving (i.e., without considering the propulsion method),22 hybrid

EVs,23 EVs,20,24–26 and grid-scale energy storage27–29; the method presented in

this article modifies the authors’ previous work on synthetic duty cycles.

Six synthetic duty cycles were obtained from the City 1 and City 2 CDDs, described in

Table 2. These consist of one urban-driving synthetic duty cycle for each city (2a, 2b);

one urban-driving synthetic duty cycle that combined urban driving from both cities

(2c); two highway-driving synthetic duty cycles (1a, 1b); and one synthetic duty cycle

that combines both urban and highway driving from both cities (3). These synthetic

duty cycles all have an average C-rate of C/10, representing a full 10 h day of C/AEV

driving. Figure 3 shows all six synthetic duty cycles and a comprehensive visual rep-

resentation of their relationship to the City 1 and City 2 CDDs. For more detailed in-

formation on duty-cycle synthesis, the reader is referred to Note S1; a summary of

the generation process follows below.
4 Cell Reports Physical Science 4, 101536, August 16, 2023



Figure 2. Boxplots showing metrics in Table 1 as calculated for the City 1 (blue) and City 2

(orange) CDDs shown in Figure 1, as well as data collected from a human-driven EV (green) in the

Vehicle Energy Dataset (VED)

For each boxplot, the box extends from the first quartile to the third quartile of the corresponding

data, with a line at the median of the data. The whiskers extend from the box by 1.5 times the

interquartile range. The x axis is normalized to the maximum value for each metric.
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For urban driving, the synthetic-duty-cycle algorithm (Algorithm 1 in Note S1) was

developed, based on previous work from the authors.30 The algorithm takes a

CDD as its input and segments it into ‘‘micro-trips’’ as previously defined. A matrix

is formed by computing metrics corresponding to different features of C/AEV

driving for eachmicro-trip; thesemetrics are summarized in Table 1. This forms ama-

trix with dimensions corresponding to the number of micro-trips and the number of

metrics, respectively: 104 3 14 for the city 1 CDD, 142 3 14 for the city 2 CDD, and

245 3 14 for the combined city 1 and city 2 CDD. Principal-component analysis is

used to reduce the dimensionality of each matrix to 104 3 6 for the city 1 CDD,

142 3 6 for the city 2 CDD, and 245 3 7 for the combined city 1 and city 2 CDD,

respectively. k-means clustering is applied to the rows of each reduced-dimension

matrix to identify characteristic micro-trips within each corresponding CDD, and

these are then concatenated to form the synthetic duty cycle, which is then returned

by the algorithm. In order to accommodate the experimental hardware and data

collection pipeline, the duty cycles are then downsampled from the original 0.1 s res-

olution to a 1 s resolution.

It is worth noting that the SOC and the voltage from the CDDs were not used to

compute any metrics, in contrast to Moy et al.,30 where the state of energy of the

grid storage pack was used. This is due to a key difference between the C/AEV

and grid storage dispatch data. The CDDs correspond to charge-depleting

behavior, where the LIB ends at a lower SOC than at which it started. In addition,

as the LIB SOC decreases, so does its voltage. Then, the SOC and voltage values

are within distinct ranges for each micro-trip, and the corresponding computed
Cell Reports Physical Science 4, 101536, August 16, 2023 5



Table 2. Description of each synthetic duty cycle generated in this work, as well as the

combinations of synthetic duty cycle and average C-rate included in the experimental dataset

Synthetic duty cycle Description

Average C-rate

C/16 C/10 C/5 C/2

1a single highway micro-trip (city 1) with rest
determined as in Note S1

I, II I, II I, II –

1b four consecutive highway micro-trips (city 1)
with rest determined as in Note S1

I, II I, II – –

2a synthesized from urban driving in city 1 – I, II I, II I, II

2b synthesized from urban driving in city 2 – I, II I, II I, II

2c synthesized from urban driving in both city 1
and city 2

– I, II II I, II

3 mixed urban and highway driving:
concatenation of 2a, 2b, 2c, and 1a

– I, II I, II –

The Roman numerals (I, II) within each entry denote the cell duplicates. Details on this selection of com-

binations can be found in the experimental procedures. Experimental data corresponding to the column

for average C-rate of C/10 are plotted in Figure 4. The cell corresponding to synthetic duty cycle 2c at an

average C-rate of C/5 duplicate I shorted at the beginning of the experiment, and so the corresponding

data are unavailable in the dataset.
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metrics (e.g., average SOC during discharge) are also distinct for eachmicro-trip and

therefore do not yield any additional information for clustering and data reduction.

For highway driving, only one micro-trip across both CDDs met the highway driving

criteria (average velocity R 20 m/s), outlined and shaded in dark blue on the City 1

CDD in Figure 3. Therefore, a different method was used to form synthetic duty cy-

cles with the same average C-rate as the urban synthetic duty cycles by adding rest

periods to the highway-driving micro-trip. Synthetic duty cycle 1a cycles between a

single highway-driving micro-trip and a rest period, while synthetic duty cycle 1b cy-

cles between four consecutive highway-driving micro-trips and a rest period four

times as long as that in synthetic duty cycle 1a. In both cases, the rest period length

was chosen to maintain an average C-rate of C/10 to match those of the urban-

driving synthetic duty cycles. As with the urban-driving synthetic duty cycles, syn-

thetic duty cycles 1a and 1b are downsampled to 1 s resolution.

Finally, synthetic duty cycle 3 is the concatenation of synthetic duty cycles 2a, 2b, 2c,

and 1a, in that order, consisting of a mix of urban-driving synthetic duty cycles ob-

tained from three different datasets (City 1, City 2, and both City 1 and City 2 for syn-

thetic duty cycles 2a, 2b, and 2c, respectively), as well as the single highway-driving

micro-trip represented in synthetic duty cycle 1a.

The six synthetic duty cycles represent different modes of driving. The short highway

driving of synthetic duty cycle 1a could represent highway driving from home to

work, while the longer highway driving in synthetic duty cycle 1b could represent

longer trips with longer rest periods, such as a day trip to the beach. Synthetic

duty cycles 2a and 2b could represent driving only within City 1 and City 2, respec-

tively, whereas synthetic duty cycle 2c could represent a vehicle used for driving

within both City 1 and City 2 metropolitan areas. Finally, synthetic duty cycle 3 in-

cludes driving between different cities with different road conditions as well as high-

way driving, representing vehicles that experience a variety of driving conditions.

Figure S2 shows the wide range of operating characteristics, as defined by the met-

rics in Table 1, represented across the six synthetic duty cycles. Notably, the syn-

thetic duty cycles maintain the same average C-rate, which is key to developing

the full range of the experimental dataset in the following section.
6 Cell Reports Physical Science 4, 101536, August 16, 2023



Figure 3. Overview of the relationship between the city CDDs and the synthetic duty cycles presented in this article

At top, the current and velocity data from the city 1 and city 2 CDDs shown in Figure 1 are used to generate the synthetic duty cycles. The highway-

driving micro-trip in city 1 is highlighted and boxed in blue, and its resulting synthetic duty cycles are connected via blue arrows. The relationship

between the city CDDs and the resulting urban-driving synthetic duty cycles are shown using dark gold arrows. Synthetic duty cycle 3 is the

concatenation of synthetic duty cycles 2a, 2b, 2c, and 1a and therefore contains a combination of both urban as well as highway driving. As with the city

CDDs, each synthetic duty cycle is plotted with histograms on either side for the cell current (left) and vehicle velocity (right) distributions. The x axes of

all plots are normalized to the city 1 CDD duration.
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Experimental dataset

The dataset presented in this article comprises experimental data collected

from a batch of 31 identical high-nickel-content LIB cells (please see the data and

code availability section for more information). Figure S4 summarizes the process

from synthetic-duty-cycle generation to collection of experimental data. Each proto-

col (i.e., combination of synthetic duty cycle and average current) is conducted in

duplicate on two cells, both for experimental redundancy as well as the study of vari-

ation in battery response to identical duty cycling (as in the discussion). The exper-

iments take place in a thermal chamber with a temperature setpoint of 35�C, where
all cells are cycled from a maximum voltage of Vmax = 4:2 V to a minimum voltage of

Vmin = 3:1 V following battery specifications. A subset of this dataset from all cells

cycled at average C-rate C/10 is shown in Figure 4.
Cell Reports Physical Science 4, 101536, August 16, 2023 7



Figure 4. Experimental data generated by this study for an average C-rate of C/10, labeled by the

six synthetic duty cycles, and plotted for each set of cell duplicates for each duty cycle

For each synthetic duty cycle, the top subplot shows the synthetic-duty-cycle current profiles for

each cell duplicate, plotted with the corresponding histograms of measured cell current on the

right of each plot. Positive current corresponds to discharge. The bottom subplot contains the

voltage (blue) and temperature (green) responses from the input current profiles for each

duplicate, with histograms on either side of the plot for the measured voltage (left) and

temperature (right) values. The x axes in all plots are normalized to the city 1 CDD duration.
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Since the synthetic duty cycles are all generated with the same average C-rate, they

can all be scaled to create duty cycles of various different average C-rates. This al-

lows for an experimental design that induces a wide range of different operating

conditions that could be experienced by C/AEV LIBs. As an example, consider as
8 Cell Reports Physical Science 4, 101536, August 16, 2023
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a baseline case a cell cycled with the City 1 urban-driving synthetic duty cycle 2b at

an average current of C/10 (shown in Figure 3, third row from top at right, with exper-

imental data in Figure 4 at middle right). Increasing this current to a C/2 average cur-

rent (experimental data shown in Figure S7) could be interpreted as an LIB pack with

cells of smaller capacity driving the same vehicle; these cells must increase their

output current in order to produce the same pack power output as the baseline

case. Changing the synthetic duty cycle to the highway-driving synthetic-duty-cycle

synthetic duty cycle 1a (shown in Figure 3, second row from top at left, with exper-

imental data in Figure 4 at top left) while maintaining the same average current sim-

ulates the same LIB pack used for a C/AEV used primarily on the highway instead of

in urban environments.

To this end, the protocols included in the experimental dataset span several

different average C-rates for each of the six synthetic duty cycles, simulating fleet

operation of C/AEVs driving under different conditions. Along with the descriptions

of each synthetic duty cycle, Table 2 summarizes all protocols for all cells in the data-

set and is also used to construct the reference labels for each cell in the dataset. For

example, reference label ‘‘1a (C/16) - I’’ is the first cell duplicate cycled with synthetic

duty cycle 1a at an average C-rate of C/16.

Synthetic-duty-cycle response behavior

Figure 4 provides a way to analyze the voltage and temperature responses of LIB

cells by the synthetic duty cycle inputs. For example, in synthetic duty cycles 1a,

1b, and 3, cell temperatures increase during regions of high-current discharge

and decrease and relax during the rest periods. As seen in the voltage response

histograms, the voltage distributions for all synthetic duty cycles all contain distinct

peaks. Data are collected in increments of time (as opposed to increments of

voltage), so a plateau at a given voltage results in more data collected at that

voltage, leading to a corresponding peak in the voltage distribution. However,

these peaks originate from different phenomena within different duty cycles. Syn-

thetic duty cycles 1a, 1b, and 3 contain cycling based on highway driving, which

includes extended rest periods to maintain the same average C-rate as the other

synthetic duty cycles. The voltage distributions for these synthetic duty cycles are

dominated by the peaks resulting from these zero-current/constant-voltage

periods.

In contrast, synthetic duty cycles 2a, 2b, and 2c are based on urban driving and have

no extended rest periods. In the voltage distributions for these synthetic duty cycles,

three main peaks are seen at approximately 4.1, 3.8, and 3.5 V. These peaks corre-

spond to the plateaus in the voltage profiles, which are caused by the phase transi-

tions from the graphite in the negative electrode.31 It is interesting to note that

despite the dynamic discharge behavior of these protocols, the phase transitions

are still apparent in the voltage profiles as plateaus; this can be seen in Figure S6,

which shows the voltage profile of a cell cycled with a constant current discharge

at C/10. In other words, as far as the voltage response is concerned, these duty cy-

cles can also be thought of as transient signals superimposed on a C/10 constant cur-

rent discharge.

The experimental dataset provides a rich and diverse set of synthetic duty-cycle

current inputs, as well as voltage and temperature outputs. The voltage and

temperature histograms for all cells in the dataset are shown in Figure S8, demon-

strating the broad range of voltage and temperatures exhibited throughout

the dataset. In particular, higher average C-rates led to a shift of the temperature
Cell Reports Physical Science 4, 101536, August 16, 2023 9



Figure 5. Standard deviation of voltage response differences between cell duplicates

The inset in the figure represents the distribution in voltage differences between duplicates for the

synthetic duty cycle 2a at an average C-rate of C/5, with mean m= 0 and standard deviation s = 0:04.

The standard deviation s of such distributions is computed for each protocol (e.g., combination of

duty cycle and average C-rate) and is shown in the main plot as a function of C-rate.
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distributions to higher temperatures, as can be seen by the horizontal shift in

histograms moving down the right column in Figure S8. Since the reported

C-rate is an average, current extrema in these duty cycles are exacerbated

at higher average C-rates, leading to higher average temperatures. This can

be seen by comparing the current and temperature data for synthetic duty

cycle 2b at average C-rate of C/10 (in Figure 4, middle row at right), with data

from a cell cycled with the same duty cycle but at an average C-rate of C/2

(in Figure S7).

Voltage response differences between cell duplicates

From the duplicates in the dataset, the consistency of the voltage response to the

same applied current stimulus is also investigated. For a given protocol, the differ-

ences between the voltage curves of the two duplicates are calculated at each

point and referred to as ‘‘Duplicates Voltage Differences.’’ The inset in Figure 5

shows the distribution of these differences for synthetic duty cycle 2a (C/5) as an

example. The standard deviation of the distribution of these differences can be

used as a metric to quantify reproducibility of cell response to protocols across

multiple cells; a low standard deviation means that the differences between dupli-

cates with the same protocol are minimal and indicates that this protocol is repro-

ducible across multiple cells. Figure 5 shows that the standard deviation of the

duplicate voltage differences is highly correlated with the cycling C-rate (Pearson

correlation coefficient R = 0:93). Practically, this means that a higher average

C-rate will generate less reproducible voltage responses across cells cycled iden-

tically, suggesting that this arises from variations in cell resistance. A similar anal-

ysis was carried out on cell temperature responses (Note S2; Figure S3). In general,

the temperature difference distributions follow a similar trend: as the C-rate in-

creases, the spread in temperature differences between duplicates increases.

This finding suggests that more sample repeats should be considered when

designing C/AEV experiments involving higher C-rates in order to better capture

cell-to-cell variability.
10 Cell Reports Physical Science 4, 101536, August 16, 2023
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Outlooks and future work

This article provides a dataset from experiments, which directly leverage C/AEV LIB

cell and vehicle driving data, by cycling cells with protocols corresponding to a wide

range of possible C/AEV operations. This dataset can have immediate impacts for

on-board C/AEV LIB battery management systems (BMSs). These BMSs employ

models that must be calibrated from battery current input and voltage/temperature

response data, which accurately represent the C/AEV use case, to ensure safe real-

time control of the LIB system. Using the experimental dataset in this article for BMS

model development will result in C/AEV BMSs suited for the full range of battery

excitation modes induced on the LIBs by the C/AEV operation represented in the

dataset.

The synthetic duty cycles generated in this article will be key for investigating ef-

fects of application-specific duty cycling on aging in a laboratory environment.

The cells in this article are currently being continually cycled until they reach

end-of-life conditions. As the degradation trajectory of LIBs is highly dependent

on the application, the aging data collected during these ongoing experiments

will be useful in developing models for C/AEV LIB systems. This represents a

fundamental step in understanding the differences in aging trajectories under

different use cases within the C/AEV application. For example, if the cells experi-

ence a similar but less severe aging trajectory compared with those in EVs, BMSs

developed for safe, aging-aware operation of EV LIB systems could be adapted for

the milder C/AEV operation. On the other hand, if the C/AEV LIB aging trajectories

are completely distinct from those in EV LIBs, further study is needed to develop

aging-aware safety systems for C/AEV BMSs. One application of this aging data is

in data-driven machine-learning models that predict the remaining useful life and

end-of-life conditions for C/AEV LIB systems, which is important for determining

warranties in this specific application.32 Such models will require aging trajectories

that cover a wide range of C/AEV operation, parameterized by features character-

izing this operation. The cells aged with the protocols in this article, with features

such as the metrics in Table 1, could provide a rich and diverse set of training data

for machine learning.

The breadth of C/AEV driving captured by the synthetic duty cycles generated using

the methodology in this article can be improved in future work by broadening the

scope of the input data and experimental design. In this article, the CDDs comprise

C/AEV driving in two different cities, and the experiments are conducted at a single

temperature (35�C) on a single LIB chemistry and form factor. More combinations of

characteristic micro-trips (e.g., synthetic duty cycle 3) and blends of driving datasets

(e.g., synthetic duty cycle 2c) could also be used to form more comprehensive

testing protocols that represent more modes of C/AEV operation. Future data

collection in C/AEVs could include LIB system temperature, which could be used

to incorporate usage-dependent temperature variations (and their resulting impacts

on aging) during cycling.

Future work could also include an experimental design with additional cell chemis-

tries, such as nickel-/cobalt-free chemistries, in order to inform selections in cell

chemistry for the C/AEV application. The synthetic duty cycles could be used to

design experiments that accelerate aging based on scaling C-rates and elevating

temperatures as presented in this article. Such experiments could be used for qual-

ification testing of LIB cells for C/AEVs. For example, if cells aged in these experi-

ments are able to generalize the aging trajectory of C/AEV LIB systems, then the
Cell Reports Physical Science 4, 101536, August 16, 2023 11
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resulting aging data could be used to quickly screen different LIB cell chemistries for

this application.

The synthesis and design of experiments in this article were based on duty cycling at

the cell level. However, even with near-identical initial states, individual cells cycled

identically can still have different voltage responses, as shown in Figure 5. This ulti-

mately will lead to heterogeneity within the LIB system, as the cells age along

different trajectories.33 Future work could also leverage this dataset to inform a

new design of experiments for heterogeneously aged cells or experiments that simu-

late LIB modules or packs within a C/AEV using module- or pack-level synthetic duty

cycles.

The methodology presented in this article generates synthetic duty cycles from

CDDs that include vehicle velocity and cell current. Generally, the synthetic-duty-cy-

cle algorithm can accept any transient time-series data from system operation

without any particular constraint on the particular application or even the energy

storage technology. This algorithm is general enough to be applied to other

emerging electrified transportation technologies, for example, electric vertical

take-off and landing (eVTOL) aircraft, which is expected to be a $17.7 billion market

in the United States alone.34 As with C/AEVs, eVTOL applications induce different

stresses on the energy storage system, including higher C-rates, higher yearly en-

ergy throughputs, and longer sustained peak-power periods, when compared

with EVs.35 Similar to the work presented in this article, real-world eVTOL data can

be leveraged to create laboratory-compatible synthetic duty cycles that will inform

the selection of energy storage technologies and the system-level design and con-

trol of the energy storage system for this application.
EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Further information and requests should be directed to and will be fulfilled by Si-

mona Onori (sonori@stanford.edu).

Materials availability

This study did not generate new materials.

Data and code availability

The experimental data have been deposited at the Stanford Digital Repository un-

der https://doi.org/10.25740/ky011nj6376 and are publicly available as of the

date of publication.

All original code has been deposited at Zenodo under https://doi.org/10.5281/

zenodo.8111921 and is publicly available as of the date of publication.
Experimental hardware and data acquisition

The experiments were carried out at the SLAC Battery Informatics Laboratory. The

cells were cycled on a Maccor Series 4000 cycler. The temperature-controlled cham-

ber (CSZmodel #ZPS-16-2-H/AC) includes 96 channels with 10ms standard time res-

olution, with all experiments conducted with a temperature setpoint of 35�C. The
Maccor software MacTest32 was used to cycle the cells and acquire the data. The

acquisition rate was set to 1 s.
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In order to monitor self-heating and/or potential thermal runaway of individual cells,

the cell temperatures were monitored individually. For this purpose, individual ther-

mocouples (OMEGA SA1-T-120) were positioned on each cell using the included

self-adhesive tape. The data from the thermocouples were acquired via a DAQ sys-

tem (OMEGA OM-240 24-Channel Ethernet Data Logger with Embedded Web

Server). Thermocouple wires were routed out of the temperature-controlled CSZ

chamber via a side port on the chamber, filled with a polymeric/foam seal, and con-

nected to the DAQ system outside the chamber. Additional multiplexer boards

(OMEGA OM-240-MUX) were daisy chained to add more thermocouple channels

in series, allowing for the external temperature of each individual cell to be moni-

tored. Temperature data from each thermocouple channel were collected approxi-

mately every 12 min (low data-collection frequency was mainly due to throughput

limitations from the multiplexers).

The Maccor raw data were automatically converted to ASCII-formatted files through

the ‘‘Maccor InformationManagement Software’’ (MIMS) Server. Along with the tem-

perature measurements, these raw data and ASCII data files were then pushed to an

Amazon AWS S3 bucket. Data analysis was carried out on the ASCII data files in an

Amazon Sagemaker notebook instance using Python Jupyter Notebooks. Figure S5

shows the data generation and collection pipeline.

Synthetic-duty-cycle implementation

The synthetic duty cycles were implemented using the experimental setup as fol-

lows. Each cell was cycled with one of the combinations of average C-rate and syn-

thetic duty cycles in Table 2. The synthetic duty cycles were downsampled to 1 s res-

olution due to hardware limitations, resulting in some high-frequency information

loss and in the lowering of peak and average C-rates. Each particular combination

of synthetic duty cycle and average C-rate was cycled on two cells to provide redun-

dancy and robustness in anticipation of experimental failures. The experimental da-

taset includes discharge data from each of these cells, for which the cells start from

Vmax . The cycling protocol repeated the synthetic duty cycle in a loop for a specified

number of times, calculated by dividing the inverse of the average C-rate (e.g., 10 h

for a C/10 average profile) by the duration of the synthetic duty cycle. The synthetic

duty cycle itself was called as a waveform in the Maccor software and had the end

condition of stopping when the cell voltage reached Vmin. The discharge protocol

was programmed to loop over the synthetic duty cycle a few more times than neces-

sary to ensure that all cells reached Vmin by the end of each discharge cycle. After

each discharge cycle, all cells were charged from Vmin back to Vmax with a standard-

ized charging protocol (CCCV charge at C/2 with cutoff current of C/20).

The originally planned experiments included all six synthetic duty cycles each at

average C-rate C/10, C/5, and C/2, which would have yielded a total of 48 cells.

However, the synthetic duty cycles from the highway portions at C/2 average current

frequently violated the upper current limit on the Maccor cyclers, so synthetic duty

cycles 1a and 1b (C/2 average) were excluded. They were replaced by synthetic

duty cycles 1a and 1b at a C/16 average current. Synthetic duty cycle 3 (C/2 average)

was also excluded for the same reason. The 1b C/5 average current profile did not

complete a full repetition of the synthetic duty cycle before reaching the lower

voltage cutoff, so this protocol was also excluded from the experiments. One of

the cells shorted before any data could be collected, leaving only one duplicate of

synthetic duty cycle 2c at a C/5 average current. This yields the total of 31 cells

described in Table 2. Finally, some synthetic duty cycles were modified to leave a

buffer below the Maccor cycler limit. The protocols that were modified using this
Cell Reports Physical Science 4, 101536, August 16, 2023 13
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procedure were the synthetic duty cycles 1a (C/5 average), 1b (C/5 average), 2a (C/2

average), and 3 (C/5 average).

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.xcrp.

2023.101536.
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