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Abstract

This paper develops a co-simulation framework based 
on the use of the package LiveLinkTM for Matlab to 
perform parameters optimization of dynamical 

systems implemented in COMSOL Multiphysics. The identi-
fication problem is recast as an optimization problem which 
is solved in Matlab. Code for the key steps of the approach is 
described in detail, and an implementation based on the 

particle swarm optimization (PSO) algorithm is proposed. 
The effectiveness and general applicability of the framework 
are shown for two energy systems: lithium-ion battery (LIB) 
and gasoline particulate filter (GPF). Matlab codes and 
COMSOL models for both case studies are made publicly 
available and can be used as a starting point to solve parameter 
identification problems for systems beyond the case studies 
presented here.

1. �Introduction

Physics-based modeling is an integral part of the scien-
tific research used for design optimization [1] and the 
development of control, management, and estimation 

strategies [2, 3]. Depending on the complexity and coupling 
of the spatial and time dynamics under investigation, different 
length scales—from atomic to system level—can be used to 
develop models with the desired level of accuracy. Since the 
dynamical behavior of a system is the outcome of the inherent 
interactions of different physics, the ability to simulate such 
phenomena is key for system design and has led to the devel-
opment of multiphysics simulation tools which are used for 
system design, testing, and analysis.

COMSOL Multiphysics® is a finite element software 
platform specifically designed for multiphysics simulations of 
a wide range of physical phenomena (mechanical, f luid 
dynamics, chemical, etc.) [4]. An application to fluid dynamics 
and electromagnetics is shown in [5], where microwave 
heating of liquids is modeled in COMSOL and compared to 
other open-source software tools. In [6], energy and 
momentum transport equations are used to model a plasma 

chemical reactor for the disposal of waste material. In [7], the 
flow and hydraulic characteristics of an optimized Chinese 
dome digester—a domestic biogas plant—are analyzed and 
compared to a traditional design, showing that the addition 
of baffles to the geometry can improve mixing in the reactor. 
In [8], a coupled thermal-hydraulic-mechanical-chemical 
model is used to simulate the behavior of methane hydrate–
bearing sediments during methane gas production. These are 
some examples from the recent literature showing the wide 
applicability of COMSOL, where the model development is 
assisted by a user-friendly interface offering the possibility to 
choose between built-in and user-defined equations and 
boundary conditions. Moreover, numerical solvers are highly 
configurable and ensure fast and stable solutions. An impor-
tant feature of COMSOL is the LiveLinkTM for Matlab®, which 
allows the communication between Matlab® and COMSOL 
with regard to the analysis and processing of simulation 
results, changing model parameters, and monitoring variables 
during the simulation of the model. This eases the analysis of 
COMSOL numerical solutions (e.g., for sensitivity studies) 
and, as shown in this work, model optimization.
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A fundamental challenge associated with multiphysics, 
and in general, dynamical systems simulations, is the problem 
of parameter calibration or identification [9]. In COMSOL, 
this problem can be tackled with the built-in optimization 
module, which allows us to find the optimal shape of a 
geometry or to identify model parameters [10]. This module, 
however, is constrained by the use of the gradient-based and 
gradient-free optimization libraries provided by COMSOL.

Identification problems are generally recast into optimi-
zation problems and, depending on their characteristics (e.g., 
linear/nonlinear, convex/nonconvex, mixed integer), the 
solution is tackled differently. For example, convex optimiza-
tion and solvers like Gurobi [11] are used for programs with 
convex objective functions subject to affine equality constraints 
and convex inequality constraints. For mixed-integer 
problems, branch-and-bound algorithms, based on the divide 
and conquer paradigm, are usually employed [12]. However, 
optimization problems can be characterized by rough and 
discontinuous optimization surfaces, making the evaluation 
of derivatives to find the optima difficult. In these cases, 
gradient-free techniques such as evolutionary algorithms are 
effective in solving problems with nonlinear objective func-
tions subject to linear or nonlinear static and dynamic 
constraints. They are also easily implementable and perfor-
mance does not deteriorate severely with the growth of the 
search space dimension; for this reason, they are valuable tools 
for the solution of a broad class of optimization problems [13]. 
These algorithms provide great f lexibility; however, the 
current version of COMSOL does not provide routines based 
on such approaches.

Introduced in this paper, the Matlab-COMSOL co-simu-
lation framework is formulated to develop parameter optimi-
zation routines based on evolutionary algorithms for a general 
class of systems described by partial differential equations 
(PDEs).1 Within this framework, the multiphysics system is 
implemented in COMSOL, where geometry (1D, 2D, or 3D), 
governing equations, mesh, and numerical solver settings are 
defined. On the other hand, Matlab is used in a co-simulation 
environment to perform parameter optimization by mini-
mizing a user-defined objective function. The framework is 
developed for particle swarm optimization (PSO), but it can 
be adapted to other optimization techniques such as genetic 
algorithms (GA) and differential evolution (DE) algorithms. 
The identification process is described theoretically, and codes 
for the key steps of the parameter optimization procedure are 
analyzed. The general applicability and effectiveness of the 
proposed framework is shown in two case studies: a lithium-
ion battery (LIB) and a gasoline particulate filter (GPF).

LIB are energy storage devices used in today’s portable 
electronics, hybrid and electric vehicles, power tools, etc. 
In this work, COMSOL is used to implement the Doyle-
Fuller-Newman (DFN) battery model [14], which considers 
charge and mass transport dynamics in the electrode (solid) 
and electrolyte (liquid) phases to describe the motion of 
lithium ions and their intercalation/deintercalation. 
Geometrical (e.g., positive electrode, negative electrode, and 
separator thicknesses), stoichiometric, and transport 

1 The proposed approach can be also applied to ordinary differential equa-
tions and differential-algebraic equations.

parameters (e.g., diffusion coefficients) are identified mini-
mizing the discrepancy between experimental and simu-
lated voltage profiles.

The GPF is a filtration device preventing the release in the 
atmosphere of the particular matter generated during gasoline 
combustion in engines. As shown in [15], to describe the 
exhaust gas motion inside the filter porous structure, energy, 
mass, and momentum balance equations are used, and param-
eters—namely, coefficients for inlet temperature and velocity 
profiles and the external convective heat transfer coefficient—
are determined from the identification framework proposed 
in this paper.

COMSOL models and Matlab identification codes for the 
two case studies are made available to the public on the 
Mendeley Data repository reported at the end of the paper 
and can be  used as starting point to solve identification 
problems for systems holding similar characteristics.

The remainder of the paper is organized as follows. In 
Section 2, basic concepts on the development and implementa-
tion of COMSOL models are presented. The Matlab-COMSOL 
co-simulation framework is described in Section 3, where the 
parameter identification framework and corresponding code 
are introduced. In Section 4, the effectiveness of the identifica-
tion framework is proved in two case studies: LIB and GPF. 
The paper is concluded in Section 5.

2. �COMSOL Model 
Implementation: Basics

A generic COMSOL model is defined by a tree composed of 
four principal nodes [16]:

	 1.	 Global Definitions: In this node, global parameters, 
variables, functions, and couplings are defined. By 
default, there are two subnodes:

•• Parameters: storing the list of global 
model parameters;

•• Materials: storing the material properties.

	 2.	 Component: In this node, geometry (1D, 2D, or 3D), 
model equations, and mesh are defined.

	 3.	 Study: This node defines the type of study to 
be performed, e.g., stationary or time dependent, and 
the corresponding solver settings.

	 4.	 Results: This node stores the solution of a simulation. 
There are five additional subnodes:

•• Datasets: containing a list of solutions;

•• Derived values: storing values derived from the 
postprocessing of a solution;

•• Tables: storing solutions from probes (i.e., 
“virtual sensors”);

•• Export: defining numerical data or images to 
be exported;

•• Reports: containing custom or automatically 
generated reports.
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Figure 1 shows a typical COMSOL model tree inclusive 
of the nodes listed above.

3. �Matlab and COMSOL 
Co-simulation

LiveLink for Matlab is a powerful feature of COMSOL 
Multiphysics that is used to set up the co-simulation with 
Matlab [17]. Thanks to this tool, Matlab can be used for the 
analysis and processing of simulation results, to change model 
parameters for sensitivity analysis, for example, using local 
sensitivity approaches, and for parameter identification [18]. 
This utility simplifies the analysis of COMSOL simulation 
results and model optimization.

In this paper, we focus on developing an optimization 
framework that can be used for parameter identification for 
systems implemented in COMSOL. General Matlab 
commands to simulate a COMSOL model are introduced next, 
followed by the description of the identification framework.

3.1. �Establishing the 
Communication

To establish the communication between Matlab and 
COMSOL, double-click on the COMSOL with Matlab icon as 
shown in Figure 2. This action automatically opens a console 
and a Matlab instance. The console shows the status of the 
communication and must remain open during the entire 
duration of the co-simulation. To track the COMSOL numer-
ical solver progress, the following code should be typed in the 
Matlab command window:

3.2. �Simulating COMSOL 
Models with Matlab

The first step to simulate a model in Matlab is to load the 
COMSOL f i le m o d e l _ n a m e . m p h  with the 
following command:

Before running the model, the initial (t_init) and final 
(t_final) simulation time instants are defined using the 
method set:

When using set, the arguments must be converted into 
a string and then passed to the method. A parameter can 
be modified in Matlab with set only if it is defined inside the 
Parameters node of Global Definitions (Figure 1). Additionally, 
when performing a time-dependent study, the following 
syntax can be used to specify the time instants at which results 
of a simulation are stored:

In COMSOL, the previous code defines a time vector 
between t_init and t_final, with sampling time t_step. 
The tag <study> is used as identifier for a generic COMSOL 
study. It is worth noticing that the previous code does not 
control the time-step taken by the numerical solver, which 
could use an adaptive or fixed time-stepping.

Once the model is loaded and the simulation time window 
is defined, we can run a COMSOL study with the following code:

 FIGURE 1  COMSOL model tree.  FIGURE 2  COMSOL with Matlab.
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The outcome of the study is saved in Results. As an 
example, to export data from a table with identifier <table>, 
one can use the following code:

As shown in Figure 3, to export data from a table or plot, 
subnodes Table and Plot must be added to Export.

3.3. �Parameter Identification 
of COMSOL Models with 
Matlab

We define the parameter vector for a generic dynamical 
system as

	 � � � ��
�

�
��

�� � �1
1

i N
N

par

par 	 Eq. (1)

where Npar is the number of parameters to be identified and 
ϑi, with i = 1, …, Npar, is the i-th unknown parameter. The 
optimal parameter vector θ* is obtained by solving the 
following optimization problem:

	 minimize
�

� �J f Y� � � � �; , 	

Eq. (2)
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The objective function J(θ) is a function of � �1 N  and 
Y ∈ ℝ1 × N, i.e., of the experimental data and simulation results, 
respectively.2 The minimization of J(θ) is subject to the 
governing equations (a) and inequalities (b) that define the 
feasible search space for the parameters to be identified. Given 
ϑi,  lbi ∈ LB and ubi 2 UB define the lower and upper bounds, 
respectively. LB and UB are 1 × Npar real vectors collecting the 
lower and upper bounds for all the parameters inside θ.

3.4. �PSO-Based Framework
The optimization problem in Equation 2 is solved using the 
PSO algorithm [19]. PSO is a computational method that 
solves optimization problems iteratively, starting with a 
population of candidate solutions, called particles, and 
moving these particles in the search space to find the 
optimum. PSO can deal with nonlinearities in both the objec-
tive function and constraints, proving to be a good candidate 
algorithm to solve identification problems in multiphysics 
simulations. The first step of PSO is to define the swarm size 
Nswarm, i.e., the number of particles in the swarm, which 
controls the number of candidate solutions used to explore 
the search space. The initial position of the swarm is defined 
by the following matrix:
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Eq. (3)

where each row in Equation 3 defines the initial guess for the 
j-th particle, with j = 1, …, Nswarm.3 During the first PSO itera-
tion (iPSO = 0), the COMSOL model is simulated for each candi-
date solution in Equation 3, and simulation results are stored 
in the following matrix:

	 Y0
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�
 	 Eq. (4)

2 For the LIB, experimental and simulated voltages are defined as  and V, 
respectively. For the GPF, experimental and simulated temperatures are 
defined as   and T, respectively.

3 If the number of rows in Θ0 is lower than Nswarm, the PSO algorithm will 
create initial guesses for the remaining particles.

 FIGURE 3  Export data from Results: Table and 
Plot subnodes.
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Evaluating the objective function J(θ) for each particle j 
in Equation 3, the following vector is obtained:

	
J � � � �0 0

1
0 0
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� �
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Eq. (5)

The best candidate solution �0
� is the one that minimizes 

the vector (5), i.e.,
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	 Eq. (6)

with J0
∗ the value of the objective function at �0

� . In the second 
PSO iteration (iPSO = 1), the position of the particles is updated 
according to the following matrix:
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Eq. (7)

The motion of particles in the search space is governed 
by the weighting factors wself and wsocial controlling the attrac-
tion of a particle to the best location it has visited and to the 
best locations visited by the neighboring particles, respec-
tively. For each θ1

j  in Equation 7, the COMSOL model is solved 
and results are used to evaluate the objective function J(θ). 

Values of the objective function are collected in the 
following vector:

	
J � � � �1 1

1
1 1

1� � � � � � � � � � ��
�

�
� �

�J J Jj N Nswarm swarm
	

Eq. (8)

The best candidate solution �1
� is updated as follows:
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	 Eq. (9)

where the minimization is performed while accounting for 
the best solution at the previous iteration (iPSO = 0). For a 
generic PSO iteration, the following update rule is used:
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	 Eq. (10)

The PSO algorithm is terminated when the relative change 
in JiPSO

∗  over the last #iter PSO iterations is less than the tolerance 
tol. Eventually, the optimal �NPSO

�  and JNPSO

∗ , solution of the opti-
mization problem in Equation 2, are returned. Settings of the 
PSO algorithm, in terms of Nswarm, wself, wsocial, #iter, and tol, deter-
mine how the search space is explored. PSO generally cannot 
guarantee the global optimality of the solution, and given a search 
space, it provides a solution that is optimal only compared to its 
neighbors. Therefore, depending on the characteristics of the 
optimization problem, the settings should be carefully tuned to 
ensure PSO convergence. This can be done by trial and error or 
by understanding the effect of different settings on PSO [13].

The flowchart in Figure 4 summarizes the identification 
process described in the previous paragraph and shows the 

θ

θ

 FIGURE 4  Identification framework exploiting Matlab and COMSOL co-simulation.
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 LISTING 1  main.m

communication links between Matlab and COMSOL. The 
PSO algorithm is implemented in Matlab and uses COMSOL 
to perform simulations for the different candidate solutions 
in ΘiPSO and build the vectors J(ΘiPSO). In Matlab, the PSO 
algorithm is initialized in the main.m script shown in Listing 
1, where the initial position of the swarm and PSO options 
are defined according to Table 1. PSO is run with the 
following code:

where x_opt and J_opt are �NPSO

� and JNPSO

∗ , respectively, and 
particleswarm is the Matlab implementation of the 
PSO algorithm.

In Listing 2, the function fit_comsol_model.m simu-
lates the COMSOL model for each θi

j
PSO

 and computes the value 
of the objective function. In the script, θi

j
PSO

 is indicated by x 

and code snippets from Section 3.2 (labeled with letters) are 
reused to load the model [b], set the time vector [c][d], 
run the model [e], and export the results [f]. Relying on 
the method set, lines 16 to 19 of Listing 2 modify the values 
of the parameters in the COMSOL model before running the 
simulation. Ultimately, line 28 computes the objective 
function. Matlab variables for Listing 2 are summarized in 
Table 2.

4. �Case Studies
The identification routine presented in Figure 4 is applied in 
two case studies: DFN battery model and GPF model, both 
developed in COMSOL Multiphysics 5.6. Matlab R2020b is 
used to run the PSO for parameter identification, with settings 
for the two case studies shown in Appendix A (Table A.1).

4.1. �LIB Cell
The identification framework is tested on a DFN battery elec-
trochemical model [14]. This pseudo-two-dimensional model 
relies on mass and charge transport PDEs to describe lithium-
ion motion in the electrolyte and its intercalation/deintercala-
tion in the electrodes. Electrodes are treated as spherical 
particles of a homogeneous medium in which mass transport 

TABLE 1 List of Matlab variables used in Listing 1.

Matlab variable Meaning
initial_position Θ0

lower_bound LB

upper_bound UB

n_vars Npar

swarm_size Nswarm

self_weight wself

social_weight wsocial

max_iter #iter

tol tol

x_opt ∗θ PSON

J_opt ∗J PSON

 LISTING 2  fit_comsol_model.m

TABLE 2 List of Matlab variables used in Listing 2.

Matlab variable Meaning
x θ

PSO

j
i

J J(θ)

y_exp 

y_sim
PSO

j
iY
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is resolved along the radius of the particle (r). In the electro-
lyte, one-dimensional transport of mass and charge, along 
the x coordinate, is assumed. The governing equations of the 
DFN model are listed in Appendix B (Table B.1) and the 
COMSOL implementation, following [20], is shown in Figure 
5. Mass and charge transport equations are highlighted, and 
a pictorial representation of the battery (with electrodes 
composed of spherical particles) is shown.

The identification framework presented in Section 3.3 is 
used to identify the following parameter vector:

	

� � ��L L L A D D k k R

x x c c
n s p cell s n s p n p c

n init p init s n s

, , , ,

, , , ,max ,

0 0

pp s n s p e n e s e p,max , , , , ,� � � � � �� 	
Eq. (11)

with Ln, Ls, and Lp the thicknesses of the negative electrode 
(n), separator (s), and positive electrode (p) as shown in Figure 
5, Acell the cross-sectional area, Ds,n and Ds,p the solid-phase 
diffusion coefficients, k0,n and k0,p the reaction rate constants, 
xn,init and xp,init the initial stoichiometric coefficients, cs,n,max 
and cs,p,max the maximum solid-phase lithium concentrations, 
ηs,n and ηs,p the active material volume fractions, and ηe,n, ηe,s, 
and ηe,p the electrolyte volume fractions.

The parameter vector in Equation 11 is identified mini-
mizing the following objective function:

	 J
N

i V i
i

N

� �� � � � � � � �� �
�
�1

1

2
 ; 	 Eq. (12)

where N is the number of data samples and   and V are the 
experimental and simulated voltage profiles, respectively. In 
this paper, model parameters are identified for a Sony 2.1Ah 
US18650VTC4 NMC cylindrical cell discharged at 1C constant 
current at 23°C. Properties of this cell, such as cut-off voltages 
and operating temperatures, can be found in [21].

In Table 3, the lower and upper bounds, initial position, 
and identified parameter vector θ* are listed. To show the 
goodness of the identification results, a comparison between 
experimental and simulated data is proposed in Figure 6. The 
one-shot identification of 18 parameters could lead to overfit-
ting experimental data, and as proposed in [22], a more robust 
approach splitting the identification between geometrical, 
stoichiometric, and transport parameters could be used. In 
this paper, to show the potentialities of the proposed frame-
work, we  stick to the one-shot identification. Additional 
details on the battery model and governing equations can 
be found in [22], where the proposed identification framework 
is used to identify parameters of both DFN and full homog-
enized macroscale battery models.

4.2. �Gasoline Particulate Filter
The identification framework is tested on a second case study, 
i.e., the GPF. The GPF is a filtration device used in gasoline 
direct-injection engines to trap particulates generated during 
combustion and prevent their release into the atmosphere.

In [15], a two-dimensional model for a clean4 and 
uncoated GPF accounting for mass, energy, and momentum 

4 A clean filter has no trapped particulate matter.

 FIGURE 5  DFN battery model: COMSOL implementation. Mass and charge transport equations are highlighted and a pictorial 
representation of the battery is shown in the bottom right corner. Both positive and negative electrodes are modeled as a 
conglomerate of spherical particles.
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transport is developed. The model considers 47 single 
channels, each composed of one inlet channel, one outlet 
channel, walls, and plugs, where transport PDEs are resolved 
in space (x and r coordinates) and time. Figure 7 shows the 
COMSOL implementation of the GPF model with highlights 
on mass, energy, and momentum balance equations, model 
parameters, geometry, and single channel. A summary of the 
model equations, governing the transport dynamics inside 
the filter, is shown in Appendix B (Table B.2). Geometrical 
properties of the GPF, available in the COMSOL model (at the 
link specified at the end of the paper) and in [15], were provided 
by the industrial partner of the project.

The identification framework described in Section 3.3 is 
used to identify the following parameter vector:

	 � � �� ��A B hext 	 Eq. (13)

 and  control the shape of the inlet exhaust gas velocity 
and temperature profiles, which are defined as follows:

	

Velocity profile

r t u u

u v

x x
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/

	 Eq. (14)

	

Temperature profile
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�

	 Eq. (15)

with D the diameter of the filter, vinlet the inlet exhaust gas 
velocity, ux

inlet  and ur
inlet  the x and r components of the inlet 

velocity profile, and inlet the inlet exhaust gas temperature. 
The parameter hext in Equation 13 is the convective heat 
transfer coefficient between the filter and the external environ-
ment, entering the following boundary condition:

	 � � �� � � �� �n k T h T Text ext 	 Eq. (16)

where k is the exhaust gas thermal conductivity and Text the 
ambient temperature.

TABLE 3 DFN identification results.

Parameter Lower bound Upper bound Initial position Identified vector θ* Unit
Ln 45 × 10–6 55 × 10–6 50 × 10–6 45 × 10–6 [m]

Ls 20 × 10–6 32 × 10–6 26 × 10–6 32 × 10–6 [m]

Lp 35 × 10–6 45 × 10–6 40 × 10–6 44.7 × 10–6 [m]

Acell 0.1006 0.1120 0.1063 0.1083 [m2]

Ds,n 1 × 10–14 6 × 10–14 3.5 × 10–14 2.3 × 10–14 [m2/s]

Ds,p 2 × 10–14 10 × 10–14 6 × 10–14 9.9 × 10–14 [m2/s]

k0,n 2 × 10–4 14 × 10–4 8 × 10–4 2 × 10–4 [Am2.5/mol1.5]

k0,p 1 × 10–4 8 × 10–4 4.5 × 10–4 1 × 10–4 [Am2.5/mol1.5]

Rc 0.0240 0.0360 0.0300 0.0359 [Ω]

xn,init 0.7500 0.8000 0.7750 0.7759 [–]

xp,init 0.3100 0.3600 0.3350 0.3392 [–]

cs,n,max 26,000 31,500 28,750 31,318 [mol/m3]

cs,p,max 45,000 50,000 47,500 49,089 [mol/m3]

ηs,n 0.5400 0.6600 0.6000 0.6315 [–]

ηs,p 0.5000 0.6000 0.5500 0.5097 [–]

ηe,n 0.2800 0.3600 0.3200 0.2803 [–]

ηe,s 0.3500 0.4500 0.4000 0.4494 [–]

ηe,p 0.2800 0.3600 0.3200 0.2822 [–]

J* = 0.014 [V]

 FIGURE 6  Comparison between 1C experimental and 
simulated voltage profiles for a Sony 2.1Ah US18650VTC4 NMC 
cylindrical cell tested at 23°C.
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The parameter vector θ in Equation 13 is identified mini-
mizing the following objective function:

	 J
N

i T i
i

N

� �
�

� �� � � � � � � �� �� �
�

1
1

2
 ; 	 Eq. (17)

where ι and Tι are the ι-th experimental and simulated 
temperatures, respectively. The objective function is the 
summation of the root mean squared errors computed at 
different locations inside the filter, namely, ι ∈ {2, 3, 7, 8, 10} 
(Figure 8). This allows to capture the spatial temperature 
gradient, leading to a robust identification of the parameters.

Identified parameters, together with the lower/upper 
bounds, initial position, and minimum of the objective func-
tions, are summarized in Table 4. A comparison between 
experimental and simulated temperature profiles in the center 
location of the filter (#8) is shown in Figure 8. For additional 
details on the GPF modeling and selection of the numerical 
solver settings, readers are referred to [15, 23], respectively.

4.3. �Numerical Solution
Identification problems are solved on a Dell Precision 7920 
Tower equipped with an Intel Xeon Gold 6136 CPU at 
3.00 GHz and 32.0 GB of RAM. The minimization of cost 
functions Equations 12 and 17 is shown in Figure 9, where 
each subplot depicts the number of model evaluations together 

with the objective function value. In red, the minimum value 
of the cost function, corresponding to the solution of the iden-
tification problem in Tables 3 and 4, is highlighted. Given the 
PSO settings in Table A.1, parameter vectors minimizing the 
objective functions are obtained in 56 h and 155 h for the 
battery and GPF case studies, respectively.

 FIGURE 7  GPF: COMSOL implementation. Mass, energy, and momentum balance equations are highlighted in the model tree 
on the left. In the middle, model parameters are shown. CAD geometry and one single channel are depicted on the right.

 FIGURE 8  Comparison between identification results and 
experimental temperature data measured in the center 
location of the filter.
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5. �Conclusions
The paper provides guidelines to set up and run COMSOL 
and Matlab co-simulations with the aim of model parameter 
identification. As shown by the LIB and GPF case studies, 
the proposed approach is general and can be used for the 
identification of unknown model parameters in various 
scenarios and with customizable objective functions. The 
framework proposed in this paper is based on PSO; however, 
the routine could be modified to use other gradient-free opti-
mization algorithms, such as GA (which uses similar prin-
ciples to PSO). In the battery field, the proposed framework 
adds to the available software for DFN development and, 
specifically, identification. As a matter of fact, except for 
DEARLIBS [24], current publicly available tools (such as 
PyBaMM [25] and LIONSIMBA [26]) focus on forward DFN 
model simulation and do not include embedded 
identification routines.

Matlab co-simulation scripts, together with LIB and GPF 
COMSOL models, are publicly available. Interested readers 
can freely download and use these resources to develop iden-
tification routines for COMSOL models.
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Nomenclature
0 - initial position
* - optimum
ϑ - model parameter
θ - model parameter vector
Θ - particles’ position
i - index indicating the i-th parameter to be identified
iPSO - PSO iteration
j - index indicating the j-th particle
k - index indicating the positive electrode, negative electrode, 
and separator (battery) or chemical species in the exhaust 
gas (GPF)
lb, ub - lower and upper bounds for one parameter
LB, UB - vector of the lower and upper bounds
J - objective function
J - vector of objective function evaluations
N - number of samples
Npar - number of parameters to be identified
NPSO - number of PSO iterations
Nswarm - number of particles
t - time [s]
wself, wsocial - PSO weights
x, r - axial and radial coordinates [m]
Y - simulation results
  - experimental data

Battery Case Study
ηe,k - electrolyte volume fraction, k = (n, s, p) [–]
ηs,k - active material volume fraction, k = (n, p) [–]
ϕe,k - electrolyte-phase potential, k = (n, s, p) [V]
ϕs,k - solid-phase potential, k = (n, p) [V]
Acell - cell cross-sectional area [m2]
ak - specific surface area, k = (n, p) [m2/m3]
cs,k - solid-phase lithium concentration, k = (n, p) [mol/m3]
cs,surf,k - solid-phase lithium concentration at the surface, k = 
(n, p) [mol/m3]
cs,k,max - maximum solid-phase lithium concentration, k = (n, 
p) [mol/m3]

θ
θ

 FIGURE 9  Objective function versus iterations number for 
the LIB and GPF case studies.

TABLE 4 GPF identification results.

Parameter
Lower 
bound

Upper 
bound

Initial 
position

Identified 
vector θ* Unit

 1.63 2.06 1.72 2.04 [–]

 0.82 1.00 0.91 0.91 [–]
h
ext 27.37 37.03 32.20 34.90 [W/(m2 K)]

J* = 61.76 [K]
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ce,k - lithium electrolyte-phase concentration, k = (n, s, p) [mol/
m3]
De k

e f f
,  - effective electrolyte-phase diffusion coefficient, k = (n, 

s, p) [m2/s]
Ds,k - solid-phase diffusion coefficient, k = (n, p) [m2/s]
F - Faraday constant [C/mol]
Iapp - applied current [A]
JLi,k - intercalation current density, k = (n, s, p) [A/m3]
k0,k - reaction rate constant, k = (n, p) [Am2.5/mol1.5]
Ke k

eff
,  - effective electrolyte conductivity, k = (n, s, p) [S/m]

Ks k
eff
,  - effective electrode conductivity, k = (n, s, p) [S/m]

Lk - region thickness, k = (n, s, p) [m]
n, s, p - negative electrode (n), separator (s), and positive 
electrode (p)
R - universal gas constant [J/(mol·K)]
Rc - contact resistance, k = (n, s, p) [Ω]
T - temperature [K]
t+ - transference number [–]
U0,k - open-circuit potential, k = (n, p) [V]
V - simulated voltage profile [V]
  - experimental voltage profile [V]
xk,init - initial stoichiometric coefficient, k = (n, p) [–]

GPF Case Study
p - exhaust gas pressure [Pa]
εεP
w - wall porosity [–]

ι - index indicating the temperature location
κw - wall permeability [m2]
μ - exhaust gas dynamic viscosity [Pa s]
ρ - exhaust gas density [kg/m3]
ρplug - plug density [kg/m3]
ρw - wall density [kg/m3]
[ck] - k-th species concentration [mol/m3]
Cp - exhaust gas specific heat capacity at constant pressure [J/
(kg K)]
Cw - wall specific heat capacity [J/(kg K)]
Dk - k-th species diffusion coefficient [m2/s]
eff - effective property
hext - external convective heat transfer coefficient [W/(m2 K)]
i, j ∈ ℝ2 - unit vectors
kgas - exhaust gas thermal conductivity [W/(mK)]
kplug - plug conductivity [W/(mK)]
kw - wall thermal conductivity [W/(mK)]
n ∈ ℝ2 - normal vector
T - simulated temperature [K]
  - measured temperature [K]
Text - room temperature [K]
u - exhaust gas velocity field [m/s]

v - exhaust gas Darcy velocity field [m/s]
vinlet - inlet exhaust gas velocity [m/s]
w - wall property
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Appendix A
Table A.1 shows the PSO settings for the battery DFN and 
GPF models, respectively. For the GPF, only 15 particles are 
used because the initial position is a good guess of the param-
eter vector. Among the parameters listed in Table A.1, 
swarm_size and max_iter are the most important to 
control the convergence of the algorithm.

Appendix B

TABLE B.1 DFN battery model governing equations.

Electrode mass transport equation—k = (n, p)

∂ ∂ ∂ =  ∂ ∂ ∂ 
, ,2

,2

1s k s k
s k

c c
D r

t r rr 	 Eq. (18)

Electrolyte mass transport equation—k = (n, s, p)

( )+−∂ ∂ ∂ η = + ∂ ∂ ∂ 
, ,

, ,,

1e k e keff
e k Li ke k

tc c
D J

t x x F 	 Eq. (19)

Electrode charge transport equation—k = (n, p)

∂ φ
=

∂

2
,

,, 2
s keff

Li ks kK J
x 	 Eq. (20)

Electrolyte charge transport equation—k = (n, s, p)

( )+−∂ φ ∂
− − =

∂ ∂

2 2
,, ,

,, 2 2

2 1 lneff
e ke k e keff

Li ke k

K RT t c
K J

Fx x
	 Eq. (21)

Intercalation current density—k = (n, p)

( )

( )
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⋅ −

 ⋅ φ − φ −  
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, 0, , , ,
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2sinh ,
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Li k k k s surf k e k

s k max s surf k

s k e k k

Li s

J a k c c

c c

F
U

RT

J

	 Eq. (22)

Output voltage equation

V = ϕs |x = Ln + Ls + Lp
 − ϕs |x = 0 − RcIapp	 Eq. (23)

TABLE A.1 PSO settings for the DFN battery model and 
GPF model.

Matlab variable DFN GPF
n_vars 18 3

swarm_size 400 15

self_weight 0.3 0.2

social_weight 3.6 3.7

max_iter 5 5

tol 0.5×10–6 0.5×10–6
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Web Resources
Matlab scripts for co-simulation and COMSOL models are available at the following link: https://data.mendeley.com/
datasets/298yzrnw35/2

TABLE B.2 GPF model governing equations.

Inlet/outlet channels

( )∂    = − ⋅∇ +∇ ⋅ ∇      ∂
k

k k k
c

c D c
t

u 	 Eq. (24)

( ) ( )∂
ρ + ρ ⋅∇ = ∇ ⋅ ∇

∂p p gas
T

C C T k T
t

u 	 Eq. (25)

∂ ρ + ⋅∇ = −∇ + µ∇ ∂ 
2p

t
u

u u u	 Eq. (26)

Walls

( )∂   ε = − ⋅∇ +∇ ⋅ ∇      ∂ ,
kw w

P k eff k k
c

c D c
t

v 	 Eq. (27)

( ) ( ) ( )
( ) ( )

( )

∂
ρ + ρ ⋅∇ = ∇ ⋅ ∇

∂

ρ = − ε ρ + ε ρ

= − ε + ε

1

1

w w
p p effeff

w w w
p P w w P peff

w w w
eff P w P gas

T
C C T k T

t

C C C

k k k

v

	 Eq. (28)

µ µ
κ

 ρ ∂
+ ⋅∇ = −∇ + ∇ − ∂ε ε ε 

2
w w w

wP P P

p
t
v v

v v v	 Eq. (29)

Plugs

( )∂
ρ = ∇ ⋅ ∇

∂plug w plug
T

C k T
t 	 Eq. (30)
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