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Extending Life of Lithium-Ion Battery Systems by
Embracing Heterogeneities via an Optimal
Control-Based Active Balancing Strategy
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Abstract— This article formulates and solves a multiobjective
fast charging-minimum degradation optimal control problem
(OCP) for a lithium-ion battery module made of series-connected
cells equipped with an active balancing circuitry. The cells
in the module are subject to heterogeneity induced by man-
ufacturing defects and nonuniform operating conditions. Each
cell is expressed via a coupled nonlinear electrochemical, ther-
mal, and aging model and the direct collocation approach is
employed to transcribe the OCP into a nonlinear programming
problem (NLP). The proposed OCP is formulated under two
different schemes of charging operation: 1) same charging time
(OCP-SCT) and 2) different charging time (OCP-DCT). The
former assumes simultaneous charging of all cells irrespective
of their initial conditions, whereas the latter allows for different
charging times of the cells to account for heterogeneous initial
conditions. The problem is solved for a module with two
series-connected cells with intrinsic heterogeneity among them
in terms of state of charge and state of health. Results show
that the OCP-DCT scheme provides more flexibility to deal with
heterogeneity, boasting of lower temperature increase, charging
current amplitudes, and degradation. Finally, a comparison with
the common practice of constant current (CC) charging over
a long-term cycling operation shows that promising savings,
in terms of retained capacity, are attainable under both control
(OCP-SCT and OCP-DCT) schemes.

Index Terms— Aging, batteries, electrochemical modeling,
optimal control.

NOMENCLATURE

cs, j Concentration in solid phase [mol/m3].
ce Concentration in electrolyte phase [mol/m3].
csolv Solvent concentration [mol/m3].
Tc Cell core temperature [K].
Ts Cell surface temperature [K].
Lsei SEI layer thickness [m].
Q Cell capacity [Ah].
Icell Cell current [A].
η j Overpotential [V].
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i0, j Exchange current density [A/m2].
U j Open-circuit potential (electrode) [V].
Voc Open-circuit voltage (cell) [V].
is Side-reaction current density [A/m3].
Ds, j Solid-phase diffusion [m2/s].
Rs, j Particle radius [m].
as, j Specific interfacial surface area [m−1].
A Cell cross-sectional area [m2].
L j Domain thickness [m].
F Faraday’s constant [C/mol].
cmax

s, j Maximum electrode concentration [mol/m3].
θeff

j Effective electrolyte conductivity [S/m].
k j Reaction rate constant [m2.5/s-mol0.5].
Rl Lumped contact resistance [�].
Rel Electrolyte resistance [�].
Rsei SEI layer resistance [�].
Rg Universal gas constant [J/mol-K].
Dsolv Solvent diffusion in SEI layer [m2/s].
�sei SEI layer porosity.
ρsei SEI layer density [kg/m3].
θsei SEI layer ionic conductivity [S/m].
csolv Solvent concentration [mol/m3].
Msei Molar mass of SEI layer [kg/mol].
β Side reaction charge transfer coefficient.
Cs Heat capacity of cell surface [J/K].
Cc Heat capacity of cell core [J/K].
Rc Conductive resistance—core/surface [K/W].
Ru Convective resistance—surface/surroundings

[K/W].
Tamb Ambient temperature [K].
Nr, j Number of radial discretization points.
Nsei Number of SEI layer discretization points.
csurf

s, j Surface concentration in solid phase [mol/m3].
csurf

solv Surface solvent concentration [mol/m3].
cavg

e Average electrolyte concentration [mol/m3].
θ surf

j surface stoichiometry in solid phase.
cbulk

s, j Bulk concentration [mol/m3].
Ea,ϕ Activation energy [J/mol].
θ

j
0% Reference stoichiometry ratio at 0% SOC.

θ
j

100% Reference stoichiometry ratio at 100% SOC.
k f Solvent reduction rate constant [mol−2s−1].
c∗

solv Optimal solvent concentration [mol/m3].
θsei SEI layer ionic conductivity [S/m].
Icell Cell current [A].
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Vcell Cell voltage [V].
Tc,ref Reference core temperature [K].
�e, j Electrolyte porosity.

s,n Anode surface potential [V].
Us Solvent reduction potential [V].
r Radial coordinate.
Rm Cell-to-cell heat transfer resistance [K/W].
Ncell Number of cells.
x State vector.
I0 Module current [A].
IB Balancing current [A].
X Optimization variable vector.
t f Charging time [s].
Ns Number of states.
NBP Number of break points.
Qnom Nominal capacity [Ah].
α, β1, β2, β3 Optimization parameters.
sp Smoothness degree.
dp Polynomial order.
P Free parameter set.
μ1, μ2 Karush–Kuhn–Tucker multipliers.
Bp,q B-Spline.
ωp,q Free parameters of optimization variables.
φ Thermal diffusivity.
Rcell Radius of a cylindrical 18650 cell [m].
BP Break point.
CCCV Constant-current constant-voltage.
CP Collocation point.
DAE Differential algebraic equation.
DOD Depth of discharge.
DCT Different charging time.
FDM Finite difference method.
GQF Gaussian quadrature formula.
IPOPT Interior point optimizer.
KKT Karush–Kuhn–Tucker.
LIB Lithium-ion battery.
NLP Nonlinear programming.
NMC Nickel–manganese–cobalt.
OCP Optimal control problem.
ODE Ordinary differential equation.
PDE Partial differential equation.
SCT Same charging time.
SEI Solid electrolyte interphase.
SOC State of charge.
SOH State of health.
SPM Single particle model.

I. INTRODUCTION

THE LIBs are the enabling technology to ensure a sus-
tainable future due to their high cell voltage, high

energy and power density, low memory effect, long life, and
increasingly reduced cost [1]. They have been extensively
utilized in a wide range of applications, including micro-
grids, consumer electronics, and electric vehicles (EVs) [2],
[3], [4]. Consumer acceptance of battery-powered devices is
highly dependent on their fast charging ability while main-
taining a safe and long-running operation. In EVs today,

constant current (CC) charging is used, where the charger
supplies a relatively uniform current, regardless of the battery
SOC or temperature [5], [6]. Batteries used in EVs consist
of a large number of cells connected both in series and
parallel. Variations in the parameters of individual battery
cells, such as capacity mismatch, impedance, and operating
temperature, are deemed to expand throughout the life of
the device. One of the tasks of the battery management
system (BMS) is to provide cell balancing functionality by
measuring and comparing the states of all cells after each
charging cycle. Recent advances in battery life management
have come from advanced BMS strategies that rely on battery
models around which estimation and optimization strategies
are designed. Much of the recent battery control/optimization
literature, though, has focused on single-cell operation under
fast charging. Methods to optimizing longevity under fast
charging operation for single cells have been proposed based
on model predictive control (MPC) [7], [8], NLP [9], [10],
and control vector parameterization (CVP) [11] either using
equivalent circuit models or electrochemical models. However,
the problem of battery fast charging while preserving its
health is a pack-level challenge that needs to be tackled
as such.

A. Motivation and Related Literature

A battery pack consists of individual cells, which are orga-
nized into modules made of cells connected in series/parallel.
Results obtained for single cells cannot be extrapolated or
generalized to the module/pack level due to the loss of
modularity in the system [12]. A fundamental characteristic
of an interconnected battery system (module and pack) is that
heterogeneity in the parameters within the series/parallel cells
is inevitable due to manufacturing and operating conditions,
which, if not monitored or corrected on time, could hinder
the performance and longevity of the battery system during
operation [13]. Manufacturing-induced heterogeneities, such
as capacity and impedance of single cells, are deemed to
be exacerbated over time and, at the same time, end up
being the cause of differences in temperature, SOC, DOD,
and charging rate [14], [15], [16]. For example, voltage and
charge imbalances limit the charge/discharge capabilities of
the pack, posing limitations on pack-level performance and
causing temperature imbalance, which is known to accelerate
battery pack aging [17].

Battery equalization methods are employed to bring the
cells in a pack to the same voltage/SOC [18]. These methods
fall into two main categories: passive and active balancing.
In passive methods, for example, in the form of a fixed
shunting resistor, no active control is used to balance the cells
and the excess energy from the high SOC cells is dissipated
until the charge matches the lower SOC cells in the pack.
Active balancing methods, on the other hand, offer more
flexibility in equalizing the energy of each cell in the pack [18]
and rely on active control strategies. It is worth mentioning
that in the literature, there is a lack of consensus as to what
is interpreted as an active or passive balancing framework.
In some cases, energy storing and redistributing components,
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such as dc/dc converters, are considered to constitute an active
balancing circuit, and in other cases, the presence of a control
strategy to balance the cells (either through switching shunt
resistors, transistors, or dc/dc converters) is considered to con-
stitute an active balancing circuit. For example, in cell-bypass
active methods, implemented either via shunt resistor or shunt
transistor method [18], the current of each cell is bypassed
whenever the cell voltage reaches the admissible upper limit
by means of a switch in series with a resistor or a transistor,
respectively. In the cell-to-cell methods, in the form of, for
example, bypass dc/dc converters [19], the extra energy stored
in the most charged cells is transferred to the least charged
cells. Alternatively, balancing and complete cell-bypassing
can be achieved by a module-integrated distributed battery
system architecture [20], in which each cell in the module
is individually managed by the modular converter without the
need for equalization circuits. The proposed work falls in the
category of active balancing, in accordance with [18], since
an optimal controller is proposed to actively switch the shunt
resistors in cell-bypass balancing methods or switch dc/dc
converters in cell-to-cell balancing methods.

While hardware strategies to enable active balancing are
in place, scant attention has been paid to synthesizing
optimization-based control strategies for battery pack/module.
The impact of different balancing strategies on cell-to-cell
variations, in terms of SOC, maximum capacity, and resis-
tance, is addressed in [21], where a formal framework based on
linearized electrochemical dynamics and multivariable control
theory is used to: 1) show that voltage balancing fails to
eliminate capacity and resistance imbalance between cells
and 2) design a strategy that is able to eliminate charge,
capacity, and resistance imbalance within the lifespan of the
pack. In [22], an electrothermal control scheme is devised for
load management of a battery module for onboard vehicle
operation to tackle charge and temperature imbalances by
leveraging constrained linear quadratic MPC. In [23], charge
imbalance and temperature imbalance are also tackled by
using a formal framework based on MPC to obtain insights
on how temperature imbalance can be controlled through an
average current. A simplified linear parameter varying model
is developed to represent charge and temperature imbalance.
In [24], SOC imbalance in series-connected cells is controlled
via a nonlinear MPC scheme upon proper simplifications of
the electrochemical battery dynamics and insights on an easily
implementable power supply scheme are provided.

B. Main Contributions

In this article, the system under investigation is an LIB
module of Ncell series-connected cells (see Fig. 1), where each
cell is connected to active balancing hardware, which could be
either as simple as an active shunt resistor or shunt transistor
method or more sophisticated hardware such as bypass dc/dc
converters.1 For the given system, we address the problem of
designing an optimization-based control strategy that controls
individual cells to achieve fast charging while guaranteeing

1The specific hardware design is outside the scope of this article. The reader
can refer to [18] for different active hardware balancing solutions.

minimum degradation of the pack to be implemented in active
balancing hardware. In Fig. 1, the current of the kth cell is
given by Icellk = I0 − IBk , where I0 is the module current
and IBk is the current absorbed by the balancing hardware
associated with kth cell. Battery pack life optimization is
achieved by controlling each individual cell while embracing
heterogeneities in terms of state and parameters—due to
either/both manufacturing defects or/and nonuniform operating
conditions. The formulated OCP will ultimately implement
SOC balancing along with SOH-aware balancing by tackling
the cell-to-cell heterogeneity. The optimal control is multiob-
jective in nature to face the conflicting objectives of minimum
time of charge (t fk ) under minimum degradation by optimizing
the current profiles.2

Cells in the module are modeled via coupled nonlinear
PDEs, ODEs, and DAEs describing the electrochemical, ther-
mal, and aging dynamics [25]. The SPM is employed to model
the electrochemical dynamics, a lumped two-state thermal
model with cell-to-cell heat transfer terms is used to derive the
core-cell temperature from ambient temperature, and finally,
aging is modeled through the growth of SEI layer on the
negative electrode.

Within the framework adopted, the cell is a multi-time-scale
system in which thermal dynamics acts as fast dynamics, the
electrochemical dynamics as semislow dynamics, and aging
dynamics as slow dynamics [17]. The nonlinear and multi-
time-scale nature of the cell dynamics are retained in the
formulation and solution of the multiobjective optimization
problem addressed in this work, and to the best of our
knowledge, to date, no study has addressed such a problem
using the high-fidelity multi-time-scale battery model. Note
the fact that aging dynamics includes SEI layer growth and
solvent concentration, where the former is a low-dimensional
slow variable and the latter is a high-dimensional one. The
computational burden imposed by the high-fidelity dynamics
at different time scales has led to the design of a surrogate
model to approximate the high-dimensional slow dynamics
(solvent concentrations) as a function of cell current and
ambient temperature.

To solve the optimization problem, the direct collocation
approach [26] is utilized to transcribe the OCP to an NLP [27]
by parameterization of the system states and inputs, and charg-
ing times. The interior point solver IPOPT [28] is then used to
solve the NLP problem, while the optimality of the solution is
discussed using the KKT conditions (first-order necessary con-
ditions). The OCP is formulated under two different schemes:
1) SCT (OCP-SCT) and 2) DCT (OCP-DCT). To confirm the
soundness of the proposed OCP-SCT and OCP-DCT schemes,
simulation studies are carried out on an illustrative example
of a battery module with two series-connected cells, each
equipped with active balancing hardware. The performance
and robustness of the proposed schemes are shown under
perturbation of parameters in terms of initial SOC and initial
SOH imbalances (through variation in the initial SEI layer
growth state).

2High C-rate currents would charge the battery faster at the expense of faster
growth of SEI layer, causing capacity and power fade.
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Fig. 1. Battery module with Ncell series-connected cells, where each cell is connected to balancing hardware. The current variable I0 refers to the module
current, variables Icell1 , . . . , IcellNcell

are the current magnitude through the cells, variables IB1 , . . . , IBNcell
are the balancing currents, and time variables

t f1 , . . . , t fNcell
are the charging time associated with each cell.

This article extends on the initial investigation proposed
in [29] in that: 1) it contains the description of the surrogate
model used to capture the solvent diffusion dynamics of the
SEI layer growth model; 2) it characterizes the time-scale
difference of the LIB dynamics; 3) it provides ample sim-
ulation scenarios of the two optimization schemes for an
effective and exhaustive comparison of the two; and 4) it
provides a comparative study of the two charging scenarios
with the traditionally used CC charging protocol. The main
takeaways and recommendations from the proposed study are
provided in the pursuit of a novel life-extension optimization
charging strategy that embraces cell-to-cell heterogeneities by
combining advanced optimization algorithms over multiscale
high-fidelity models using active balancing hardware setup.

C. Outline

The organization of this article is given as follows. Section II
lists the notations used in this article. Section III presents the
mathematical model for cells and battery modules. Section IV
describes the problem statement. Section V formulates the
proposed optimal control methodology. Section VI presents
the simulation results. Section VII presents the discussion and
conclusion.

II. NOTATIONS

The following notations are used in this article.
1) Given a real n-dimensional vector x with initial and final

values x(t0) and x(t f ) (t0 and t f are the initial and final
times), �x = ((|x(t f ) − x(t0)|)/(x(t0))) × 100% is the
percentage deviation of x with respect to its initial value.

2) Given the continuously differentiable function f (x),
∇ f (x) is the gradient of f (x) with respect to x .

3) The subscript j ∈ [n; p] stands for the cell domain (e.g.
n = anode and p = cathode).

4) The subscript i refers to the discretization grid position
when converting PDEs to ODEs via FDM in solid
electrodes and SEI layer spatial dimensions.

5) The superscript k represents the cell position within the
series-connected module.

III. BATTERY MODULE MODEL

This section presents the model of the LIB module with Ncell

series-connected cells. Each cell is equipped with an active

balancing circuitry that provides a practical way to reroute the
current flowing in each cell and that is used as an extra degree
of freedom to the optimal controller. The variables used in this
article are listed in the Nomenclature.

A. Cell Electrochemical Model

The SPM used to model the cell electrochemical dynamics
assumes that each electrode is a single spherical particle and
that the concentration gradient in the electrolyte phase is
uniform; hence, the diffusion electrolyte dynamics can be
neglected. SPM is described by two governing PDEs—one
for each electrode—representing the mass conservation in the
solid phase through Fick’s law

∂cs, j

∂ t
= Ds, j (Tc)

r2

∂

∂r

�
r2 ∂cs, j

∂r

�
, j ∈ [n, p] (1)

associated with the Neumann boundary conditions at the center
and surface of the spherical particle given by

∂cs, j

∂r

���
r=0

= 0

∂cs, j

∂r

���
r=Rs, j

= ±Icell

Ds, j (T )as, j AL j F
+ gs, j (2)

where gs, j is a nonlinear function of csurf
s, j , csurf

solv, Tc, Icell,
and Lsei. At the boundary of the particle when r =
Rs, j , the right-hand side (RHS) of the boundary condi-
tion in (2) has a negative sign for the negative elec-
trode, whereas the positive sign is for the positive elec-
trode. The sign is considered to indicate the intercalation
and de-intercalation of lithium within the positive and neg-
ative electrodes. For instance, when the cell is being dis-
charged (Icell > 0), the RHS sign ((∂cs,n/∂r)|r=Rs,n < 0)
indicates that lithium is being de-intercalated at the negative
electrode (due to the oxidation reaction) and intercalated
((∂cs,p/∂r)|r=Rs,p > 0) at the positive electrode (due to the
reduction reaction). During charging (Icell < 0), the RHS
sign indicates intercalation ((∂cs,n/∂r)|r=Rs,n > 0) at the
negative electrode and de-intercalation at the positive electrode
((∂cs,p/∂r)|r=Rs,p < 0). The complete expression of the
function gs, j for each electrode is reported in (18). We use
the FDM to radially discretize the PDEs (1) into a system of
ODEs [25]. Solid electrode parameters, including the diffusion
coefficient Ds, j and the reaction rate constant k j , follow an
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Arrhenius relationship with temperature given by:
ϕ(Tc) = ϕref exp

�
Ea,ϕ

Rg

�
1

Tc,ref
− 1

Tc

��
(3)

where Tc,ref = 298 K, ϕ to be either Ds, j , Dsolv, or k j , and
ϕref is the value of ϕ at reference temperature Tc,ref .

The surface overpotentials of each electrode, η j for j ∈
[n, p], are obtained from the Butler–Volmer kinetic equation
describing the rate of intercalation and de-intercalation of
lithium ions as

η j = Rg Tc

0.5F
sinh−1

�
Icell

2Aas, j L j i0, j

�
, j ∈ [n, p] (4)

where the exchange current density i0, j is given by

i0, j = k j F

�
cavg

e csurf
s, j

�
cmax

s, j − csurf
s, j

	
, j ∈ [n, p]. (5)

The cell voltage Vcell can be calculated as

Vcell = Up


csurf

s,p

� + ηp


csurf

s,p , cavg
e , Tc, Icell

� − Un


csurf

s,n

�
− ηn



csurf

s,n , cavg
e , Tc, Icell

� − Icell(Rl + Rel + Rsei) (6)

in which the cell ohmic resistance includes the contact resis-
tance Rl , electrolyte resistance Rel, and SEI layer resistance
Rsei, where the last two parameters are expressed as

Rel = 1

2A

�
Ln

θeff
e,n

+ 2Ls

θeff
e,s

+ L p

θeff
e,p



Rsei = Lsei

as,n ALnθsei
(7)

where θeff
e, j is a function of cavg

e , and �e,n, �e,s , and �e,p are the
porosity values in the negative electrode, separator, and posi-
tive electrode, respectively. The cell voltage is also dependent
on the open-circuit potentials of electrodes U j , with j ∈ [n, p],
that are calculated using empirical relationships as functions of
electrode surface concentration stoichiometry [17], [25] (also
shown in Fig. 5 for the cell chemistry used in this study).

The bulk SOC of each electrode is given by

SOCbulk
j =

cbulk
s, j

cmax
s, j

− θ
j

0%

θ
j

100% − θ
j

0%

, j ∈ [n, p] (8)

that varies between two stoichiometric values θ
j

100% and θ
j

0%,
representing fully charged and discharged conditions for each
electrode. In this article, SOCbulk

p is used as battery cell SOC
in the optimization algorithm as the cathode is the limiting
electrode.

B. Cell Thermal Model

The thermal dynamics is modeled using the lumped para-
meter two-state thermal model

Cc
dTc

dt
= Icell(Voc − Vcell) + Ts − Tc

Rc

Cs
dTs

dt
= Tamb − Ts

Ru
− Ts − Tc

Rc
(9)

where Tc and Ts are the core and surface temperature of
each cell, respectively. This model assumes that the internal
temperature is uniformly distributed across the core and the
surface temperature is uniform throughout the surface [30].

C. Cell Aging Model

A physics-based approach is employed for battery aging
that considers the anode SEI layer growth as a function of
solvent reduction kinetics and diffusion dynamics to predict
cell capacity loss and power fade. For the radial coordinate
r ∈ [Rs,n, Rs,n + Lsei] across the thickness of the SEI layer,
the solvent concentration available for reduction reaction at
the anode surface is modeled by

∂csolv

∂ t
= Dsolv(Tc)

∂2csolv

∂r2
− d Lsei

dt

∂csolv

∂r
(10)

with boundary conditions

−Dsolv(Tc)
∂csolv

∂r

���
r=Rs,n

+ d Lsei

dt
csurf

solv = is

F

csolv

���
r=Rs,n+Lsei

= �seic
bulk
solv . (11)

The PDE aging dynamics (10) is discretized via FDM where
a time-varying grid size is used to account for changes in the
SEI layer thickness [25]. The SEI layer growth is modeled as
follows:

d Lsei

dt
= − is Msei

2Fρsei
(12)

where the rate of change of Lsei is linearly proportional to the
side-reaction current

is = −2Fk f


csurf

s,n

�2
csurf

solv

× exp

�−β F

Rg Tc




s,n − Rsei Icell − Us

��
. (13)

The capacity loss is modeled by integrating the side-reaction
current as

d Q

dt
= is ALnas,n. (14)

D. State-Space Representation: Cell Level

Upon discretization, the governing PDEs are transformed
into a system of ODEs and DAEs using which the cell-
level state-space form can be derived. Note that DAEs are
related to the Butler–Volmer equation used to calculate the
overpotentials.

1) Solid-Phase Diffusion: The state-space representation
of the solid-phase diffusion dynamics for each electrode is
represented as

ċs, j = αs, j As, j cs, j + βs, j Bs, j
�
Icell − gs, j

�
(15)

where cs, j = [cs, j,1, . . . , cs, j,Nr, j ]T ∈ R
Nr, j with cs, j,Nr, j = csurf

s, j ,
Bs, j = [0, . . . , (2 + (2/(Nr − 1)))]T ∈ R

Nr, j

As, j =

⎡
⎢⎢⎢⎢⎢⎣

−2 2 0 0 · · · 0 0
1/2 −2 3/2 0 · · · 0 0
0 2/3 −2 4/3 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · 2 −2

⎤
⎥⎥⎥⎥⎥⎦ ∈ R

Nr, j ×Nr, j

(16)
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αs, j = Ds, j (Tc)

�r2
j

, βs, j =

⎧⎪⎪⎨
⎪⎪⎩

−1

AL j Fas, j�r j
, if j = n

1

AL j Fas, j�r j
, if j = p

(17)

and

gs, j


csurf

s, j , csurf
solv, Tc, Icell, Lsei

� =
�

as,n Ln Ais, if j = n

0, if j = p
(18)

with �r j = (Rs, j/(Nr, j − 1)) and Nr, j the number of radial
discretization grids in SPM.

2) SEI Layer Growth: The ODEs for SEI layer growth and
capacity loss are given by

L̇sei = βseigs,n and Q̇ = L̇sei

βsei
= as,n Ln Ais (19)

with βsei = (−Msei/(2Fρseias,n Ln A)).
3) Solvent Diffusion: The ODEs describing the solvent

diffusion dynamics are given by

ċsolv =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

2αsolv(csolv,2 − csolv,1)

+ βsolv

�
is

F
− d Lsei

dt
csolv,1

�
, if i = 1

αsolv


csolv,i+1 − 2csolv,i + csolv,i−1

�
+ γsolv



csolv,i+1 − csolv,i−1

�
, if 1 < i < Nsei

0, if i = Nsei

(20)

where αsolv = ((Dsolv(Tc))/(Lsei�ξ)2), γsolv =
(((ξ − 1)/(2Lsei�ξ))(d Lsei/dt)), and βsolv = ((2/(Lsei�ξ))+
(1/(Dsolv(Tc)))(d Lsei/dt)).

Here, csolv = [csolv,1, . . . , csolv,Nsei ]T ∈ R
Nsei with csolv,1 =

csurf
solv and ξ = ((r − Rs,n)/Lsei) and �ξ = (1/(Nsei − 1)) with

Nsei as the number of SEI layer discretization points [25].

E. Surrogate Model for Solvent Diffusion Dynamics

In the cell model, the aging dynamics, inclusive of the
SEI layer growth and solvent diffusion, acts as the slow
dynamics. In particular, the characteristic time scales of the
battery dynamics can be calculated as [17]

tter = R2
cell

φ
, telec = R2

s,n

Ds,n
, tag = R2

s,n

Dsolv
(21)

where tter, telec, and tag are the time scales of the thermal,
electrochemical, and aging dynamics, respectively, Rcell is
the radius of a cylindrical lithium-ion cell, φ is the thermal
diffusivity, Rs,n is the particle radius in the negative electrode,
Ds,n is the solid-phase diffusion in the negative electrode, and
Dsolv is the solvent diffusion. Incorporating parameter values
from the literature [17], [31], [32] shows that tag is in the order
of 108 s, while tter and telec are in the orders of 10–100 and
103 s, respectively, implying that the cell model is a three-
time-scale system in which tter < telec � tag.

The difference in temporal scales in the cell dynamics
is the cause of long—at time, prohibitive—simulation times
that are not compatible with the design of an optimization
strategy. In the aging dynamics, the SEI layer growth is the
low-dimensional slow variable whose dimension is determined

Fig. 2. Scheme of the surrogate model derivation to calculate c∗
solv.

by the number of cells in the battery modules, whereas the
solvent concentration dynamics is a high-dimensional state
whose dimension is dependent on the number of discretization
points of the solvent diffusion PDE.

The integration of solvent diffusion dynamics (10) repre-
sents the major bottle neck from a computational standpoint.
To get a fast simulation time, we propose a surrogate model to
capture the solvent diffusion dynamics (20) based on a joint
optimization/curve fitting approach (see Fig. 2). The surrogate
model is built to identify a constant value of csolv as a function
of Icell and Tamb to ensure that the final value of the SEI layer
thickness from the high-fidelity model is accurately predicted.
Note that the solvent concentration csurf

solv is used to calculate
the side-reaction current (13) based on which SEI layer growth
and cell capacity loss are calculated [see (12)].

The following unconstrained optimization problem is for-
mulated to find the optimal csurf∗

solv

csurf∗
solv = min

csolv

��Lhf
sei − L lf

sei



csurf

solv

��� (22)

where Lhf
sei is the SEI layer thickness from the SPM inclusive

of the solvent diffusion model (20), whereas L lf
sei(c

surf
solv) is the

SEI layer thickness when the constant solvent concentration
is used. Note that the SEI layer thickness values Lhf

sei and
L lf

sei(c
surf
solv) are the final values at the end of the charging time.

In Fig. 3, the difference between the final SEI layer thick-
ness values from the SPM with solvent diffusion dynamics
Lhf

sei and the SEI layer thickness from the surrogate model
L lf

sei(c
surf∗
solv ) is shown for six different charging C-rates of

[3C, 4C, 5C, 6C, 7C, 8C] at three different ambient tempera-
tures Tamb = [15 ◦C, 25 ◦C, 35 ◦C]. As observed, the SEI layer
thickness values coincide with each other, thereby proving
that the surrogate model is a suitable choice to replace the
higher dimensional model to solve the OCP successfully with
lower computation cost. The resulting optimal values of csurf∗

solv
obtained from the unconstrained optimization problem are fit
as a function of Icell and Tamb using the 5th-order polynomials.

F. State-Space Representation: Module-Level

The state and parameter heterogeneity due to manufacturing
imperfections and nonuniform operating conditions can cause
exacerbated aging of the battery pack when compared to a
single cell. The overall thermal and aging effects of the cells
in a module can be captured through heat transfer between
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Fig. 3. Comparison of the SEI layer thickness values between the SPM with solvent diffusion dynamics and the proposed surrogate model at the end of
charging cycles at C-rates = [3C, 4C, 5C, 6C, 7C, 8C] at three different ambient temperatures Tamb = [15 ◦C, 25 ◦C, 35 ◦C].

TABLE I

MODULE-LEVEL MATRICES AND STATE VECTORS

cells. The thermal interconnection between adjacent cells in
the battery module is provided via the thermal resistance
term Rm among a cell k with the downstream and upstream
cells, k − 1 and k + 1, respectively. This results in surface
temperature dynamics of interconnected cells that are modeled
as follows [33]:

Cs
dTsk

dt
= Tamb − Tsk

Ru
− Tsk − Tck

Rc

+ Tsk − Tsk+1

Rm
+ Tsk − Tsk−1

Rm
. (23)

The core temperature of cell k is resolved using the relation
already stated in (9). In the module-level matrix Amod

therm in
Table I, the surface temperature states, Tsk , embed the cell-
to-cell heat transfer from (23).

A convenient shorthand term for module-level dynamics
with Ncell series-connected cells is given as follows:

ċmod
s, j = Amod

s, j cmod
s, j + Bmod

s, j u − Gmod
s, j

Ṫ
mod = Amod

thermT mod + Bmod
thermu + Gmod

thermTamb

L̇
mod
sei = Gmod

sei

Q̇
mod = Gmod

Q

ċmod
solv = Gmod

solv (24)

where u includes the currents of all cells, the module-level
block diagonal coefficient matrices and state vectors are listed
in Table I, and the module state vector at the system level is

z(t) = �
cmod

s, j T mod Lmod
sei Qmod csolv

�T
. (25)
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Fig. 4. Battery module with Ncell series-connected cells, where each
cell is connected to balancing hardware. For both schemes (OCP-SCT and
OCP-DCT), the proposed optimal controller realized through NLP using direct
collocation optimizes the variables annotated in blue for fast charging and
minimized degradation.

Note that the RHS of the solvent diffusion dynamics, Gmod
solv ,

is a nonlinear function of the states and input that can be
derived for each cell using (20). It should be also pointed
out that αs, j and βs, j used in Amod

s, j , Bmod
s, j , and Gmod

s, j vary
between cells due to cell heterogeneity of design parameters,
nonuniform aging, and temperature distribution, respectively.

Upon the creation of the surrogate model to replace the
solvent diffusion dynamics, presented in Section III-E, the
module state vector used in the proposed optimal control
design is given by3

x(t) = �
cmod

s, j T mod Lmod
sei Qmod

�T ∈ �Ns (26)

where the number of states is Ns = Ncell(4 + 2(Nr − 1)) for
a given Nr .

IV. OCP FORMULATION

In this section, we formulate a multiobjective optimal con-
trol framework for fast charging and minimum degradation of
a battery module with Ncell series-connected imbalanced cells,
as shown in Fig. 4. In this configuration, the module capacity
is limited by the capacity of the weakest cell in the string. In
this work, we account for the intrinsic heterogeneity among
the cells in terms of charge, temperature, and SOH. Moreover,
battery health is defined both in terms of Q and Rsei, both
dependent on Lsei as seen from (7) and (19). To model cells
subject to SOH imbalances, the selection of different initial
conditions for Lsei is made.

A multiobjective OCP is formulated for two different charg-
ing schemes, OCP-SCT and OCP-DCT. The former assumes
that all cells are charged simultaneously, irrespective of their
nonhomogeneous initial states, whereas the latter assumes
different times of charging of the cell to reflect the nonuniform
initial states the cells are at. In particular, OCP-DCT is aimed
at providing a charging strategy that extends the battery life
and provides more flexibility against heterogeneity among the
cells. From Fig. 4, I0 = Icellk + IBk for k = 1, . . . , Ncell from
which one can define the vector

Icell = [Icell1 , . . . , IcellNcell
]T = [I0 − IB1 , . . . , I0 − IBNcell

]T .

(27)

3Note that csolv included in z(t) is now excluded from the system-level state
vector x(t) due to the inclusion of the surrogate model.

During charging, the module current I0 ∈ � and the vector
of balancing currents IB = [IB1 , . . . , IBNcell

]T ∈ �Ncell are
unknown and optimally planned. Each cell k is connected in
parallel to an active balancing circuitry whose current IBk is
determined by the proposed optimal controller. The following
OCP for the OCP-DCT scheme is formulated as:
X∗ = argmin

X∈�Nopt

αβ1h(t f )

+ (1 − α)


β2g1(Lsei) + β3g2(L̇sei)

�
(28)

where the vector of optimization variables X is comprised of
the vector of final times of charging t f = [t f1 , . . . , t fNcell

]T ∈
�Ncell , and the system state x(t) ∈ �Ns , the module current I0,
and the balancing current vector IB

X = �
t f , x(t), I0(t), IB(t)

�T ∈ �Nopt . (29)

The number of optimization variables is
Nopt = Ns + 2Ncell + 1 and the continuously differentiable
functions g1, g2, and h are defined as

g1(Lsei) = 1

Ncell

Ncell�
k=1

Lseik

g2(L̇sei) = 1

Ncell

Ncell�
k=1

L̇seik

h(t f ) = 1

Ncell

Ncell�
k=1

t fk . (30)

Note that g1(Lsei), g2(L̇sei), and h(t f ) are operators that
return the average of SEI layer thicknesses at the end of
charging, the average of the SEI layer thickness growth rates,
and the average of charging times, respectively. Thus, the
OCP (28) along with the definitions (30) forms a min-mean
optimization problem. The positive scalars β1 [s−1], β2 [sm−1],
and β3 [sm−1] are optimization weights corresponding to the
charging time and SEI layer growth objectives, which are
chosen prior to our exploration of the parameter space to
set the objective terms on the same order of magnitude. The
dimensionless scalar 0 ≤ α ≤ 1 is a tradeoff coefficient that
can be adjusted to give three different paradigms: fast charging
(α = 1), minimum degradation (α = 0), and balanced charging
degradation (0 < α < 1), as demonstrated in Section VI-D.

The operation of the battery module is subject to the
dynamic constraints (24) and the following operating con-
straints for each cell with k = 1, . . . , Ncell. To estab-
lish safety metrics, module and balancing currents, voltages,
core and surface temperatures, and solid concentrations of
all cells are enforced to lie within their physical bounds
for k = 1, . . . , Ncell

IBmin ≤ IBk (t) ≤ IBmax , I0min ≤ I0(t) ≤ I0max

Vcellmin ≤ Vcellk (t) ≤ Vcellmax

Tlkmin ≤ Tlk(t) ≤ Tlkmax , l ∈ {c, s}
θ

j
0%cs, jkmax ≤ cs j k(t) ≤ θ

j
100%cs, jkmax , j ∈ {n, p}. (31)

Initial conditions of the states are taken into consideration
as equality constraints

Lseik (t0) = Lsei0k
, Qk(t0) = Q0k
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Tlk(t0) = Tlk0 , l ∈ {c, s} (32)

SOCk(t0) = SOCinitialk (33)

and cells are charged to the same targeted SOC

SOCk(t fk ) = SOCtarget. (34)

In the OCP-DCT scheme, charging time is allowed to be
different for each cell and an upper bound on the charging
time is imposed as well

0 ≤ t fk ≤ t fmax . (35)

A second problem in the context of optimal charging is
investigated in this work where simultaneous charging time
of all cells in the module must be achieved. We refer to this
formulation as the OCP-SCT.

The OCP-SCT problem resembles the OCP-DCT scheme
except for the following differences.

1) The final times of charging are the same for all cells
from which one can consider t f ∈ �.

2) The number of optimization variables reduces to Nopt =
Ns + Ncell + 2; hence,

X = �
t f , x(t), I0(t), IB(t)

�T ∈ �Nopt (36)

in which t f is now a scalar.
3) The cost function associated with charging in (28)

reduces to h(t f ) = t f .
4) The constraint associated with the charging time reduces

to 0 ≤ t f ≤ t fmax in which the charging time of all cells
is the same.

In Section V, we solve the OCP-SCT and OCP-DCT
subject to dynamic constraints (24) and the operating
constraints (31)–(35).

Remark 1: Note that the vector of optimization variables X
proposed in (29) and (36) considers I0 to be a free variable.
Only a portion of the module current I0 provided by the
optimal solution flows through the cells (Icel l), meaning that
some of I0 is wasted (by bleeding through the balancing
hardware). However, since the value of I0 does not directly
affect the objective functions in (28), the resulting optimal
solution in terms of fast charging while ensuring minimum
degradation is guaranteed. The rationale behind having I0 and
IB in the optimization variable X is to build on it in the
future work by including additional objective functions such
as follows:

1) minimization of module energy consumption (which is
dependent on I0).

2) minimization of the temperature or heat loss in any
general balancing hardware (which is dependent on IB).

In the proposed formulation, since the objective functions are
not explicitly minimizing the energy consumption, the value
of I0 is not the optimal controller’s immediate concern. To that
end, there exists an alternate formulation of the optimization
variable vector X that can potentially be used to solve the same
OCP by eliminating I0 and IB from the vector of optimization
variables and replace it with the cell currents Icel l , given by

X = �
t f , x(t), Icel l(t)

�T
(37)

that satisfy the following algebraic relationships:
I0 = min



Icell1 , . . . , IcellNcell

�
IB = �

I0 − Icell1 , . . . , I0 − IcelNcell

�
. (38)

This formulation results in one less optimization variable
(without the I0 variable), and however, it may not be preferred
in the future when objective functions penalizing module
energy consumption and temperature or heat loss in the
balancing hardware are to be incorporated.

V. OPTIMAL CONTROL ALGORITHM

In this article, the direct collocation method [26] is
employed to solve the OCP characterized by nonlinear coupled
dynamic constraints (24). The original OCP (28) is transcribed
into an NLP problem [27] by approximating all elements
of the unknown vector X with polynomial splines. Spline
approximation refers to the operation of replacing a continuous
trajectory with a sequence of polynomial segments that are
glued together at given BPs.

This results in all trajectories to be discretized in time
0 = t0 < t1 < · · · < tNBP = t f , where NBP is the number of
BPs and t0 and t f are the initial and final times, respectively.
The order of polynomial segments, d , and the degree of
smoothness over the BPs, s, are specified in such a way that the
continuity of discretized trajectories at BPs and between them
is ensured. A spline can be parameterized as the weighted
sum of B-splines—piecewise polynomials of order d—such
that each optimization variable vector can be approximated as

X p(t) =
NFP p�
q=1

Bp,qωp,q, for p = 1, . . . , Nopt (39)

where Bp,q and ωp,q are the qth B-spline and free parameters
of the pth optimization variable, respectively, and NFP p =
NP (dp − sp)+ sp is the number of free parameters for the pth
optimization variable with NP = NBP − 1 as the number of
polynomial segments [34]. By parameterizing all of the system
trajectories t f , x(t), I0(t), and IB(t) (t f is scalar in case of
OCP-SCT), the total number of free parameters is calculated
as

Nt
FP = NFPx Ns + (NFP IB

+ NFPt f
)Ncell + NFP I0

(40)

where NFPx , NFP IB
, NFP I0

, and NFPt f
are the numbers of free

parameters for each state, balancing and module currents, and
charging times, respectively. These are design parameters to
be selected by users.

With this approximation in hand, the original OCP (28) is
transcribed to the NLP problem as follows:
P∗ = argmin

P
J (P)

s.t. gP1(P) = 0, gP2(P) ≤ 0, Pmin ≤ P ≤ Pmax (41)

where P = [ωp,q] ∈ �N t
FP is the finite set of free parameters;

and J ∈ �, and gP1 ∈ �m1 and gP2 ∈ �m2 are the cost, and the
vectors of linear/nonlinear equality and inequality constraints,
respectively, all expressed in terms of the vector of the static
parameters P .
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The Lagrangian function L : �N t
FP × �m1 × �m2 → �

associated with the NLP problem (41) is defined as

L(P,µ1,µ2) = J (P) + µT
1 gP1(P) + µT

2 gP2(P) (42)

with µ1 ∈ �m1 and µ2 ∈ �m2 . The KKT optimality condi-
tions [35] associated with (42) are

∇L = ∇ J (P∗) +
m1�

r=1

μ∗
1r

∇gP1r
(P∗)

+
m2�

r=1

μ∗
2r

∇gP2r
(P∗) = 0 (Stationarity) (43)

gP1(P∗) = 0, for r = 1, . . . , m1

gP2(P∗) ≤ 0, for r = 1, . . . , m2 (Primal feasibility) (44)

μ∗
2r

≥ 0, for r = 1, . . . , m2 (Dual feasibility) (45)
m2�

r=1

μ∗
2r

gP2r
(P∗) = 0 (Complementary slackness) (46)

where conditions (43)–(46) are called stationarity, primal
feasibility, dual feasibility, and complementary slackness,
respectively, and μ1r for r = 1, . . . , m1 and μ2r for r =
1, . . . , m2 are KKT multipliers. For any continuously differen-
tiable cost J and constraints gP1 and gP2 , if there exists a pair
of (µ∗

1,µ
∗
2) such that the KKT conditions (43)–(46) hold, then

a solution P∗ is a local optimum for the NLP problem (41).
It should be pointed out that when P∗ and (µ∗

1,µ
∗
2) are

any primal–dual optimal points with zero duality gap (strong
duality), and then, any pair of (P∗, (µ∗

1,µ
∗
2)) satisfies the KKT

conditions (43)–(46) [35].
Under the direct collocation approach, the cost and con-

straints are applied to the optimization variables t f , x(t),
I0(t), and IB(t) (t f is scalar in case of OCP-SCT) at CPs.
In this article, we determine the CPs based on the GQF using
which the BPs do not coincide with the CPs necessarily. GQF
can find an optimal set of CPs (not equally spaced) to fit
high-degree polynomials. After transcription of the OCP to
the NLP problem using the direct collocation, the interior
point solver IPOPT [28] is employed to solve the NLP
problem. All the dynamics, operating constraints, and the
cost are implemented symbolically. This formulation provides
symbolic differentiation of the OCP, which in turn results
in remarkable improvement in convergence time and solving
feasibility.

Remark 2: In view of (40), the number of free parameters
reduces to Nt

FP = NFPx Ns + NFP IB
Ncell + NFPt f

+ NFP I0
when

the OCP-SCT scheme is selected for the OCP. This results in
the NLP with less parameters to be optimized with a reduction
of computational effort and convergence time.

VI. SIMULATION RESULTS

In this section, we test the effectiveness of the proposed
optimal control algorithm for both OCP-SCT and OCP-DCT
schemes on a battery module with two series-connected
imbalanced cells (i.e., Ncell = 2), where each cell
is connected in parallel to an active balancing circuitry
(see Fig. 4).

TABLE II

SPECIFICATIONS OF THE CYLINDRICAL 18650 LIB CELL USED
IN THE SIMULATIONS

Fig. 5. Open-circuit potentials of NMC cathode/graphite anode cell.

A. Initialization and Setup

The battery considered in this article is a cylindrical 18650,
2-Ah lithium-ion NMC cathode/graphite anode cell whose
characteristics are reported in Table II [17]. The open-circuit
potentials of each electrode, U j , in terms of the surface
stoichiometry, θ surf

j = csurf
s, j /cmax

s, j , are shown in Fig. 5. Through-
out the simulations, we assume that there is an initial SOC
imbalance among the cells [SOC1(0) �= SOC2(0)], while no
mismatch between temperature, SEI layer thickness, resis-
tance, and capacities of individual battery cells is assumed.

The physical bounds for the operating constraints (31)–(35)
are set to IBmin = −6 A, I0min = −16 A, IBmax = 0 A, I0max =
−12 A, SOCtarget = 0.8, Vcellmin = 2.5 V, Vcellmax = 4.2 V,
t fmax = 2000 s, Tlkmin = 5 ◦C, and Tlkmax = 45 ◦C with l ∈ {c, s}
and k = 1, 2. Note that the minimum and maximum voltages
follow the battery specifications mentioned in Table II. The
initial conditions are picked as Lseik (0) = 5 × 10−9 m (this
is the typical SEI later thickness observed for a fresh cell),
Qk(0) = 2 Ah, and Tck(0) = Tsk(0) = Tamb. The numbers
of discretization points are set to Nr, j = Nsei = 10. Thus,
the number of states used in the OCP is Ns = 44. Given
the nominal capacity Qnom = Qk(0) = 2 Ah, the selected
bounds for module and balancing currents result in having cell
current between −16 and −6 A. For the balanced charging-
degradation scenario, the optimization weights and the tradeoff
coefficients are selected to be β1 = 1 [s−1], β2 = β3 = 5 ×
108 [sm−1], and α = 0.5; they are the same for both the
OCP-SCT and the OCP-DCT schemes.

For the surrogate model development, the cell current is
discretely sampled within its range, i.e., [−16 − 6] A (with a
sampling current of 2 A), and ambient temperatures are chosen
to be [15, 25, 35] ◦C. The 5th-order polynomials are fit to
the optimal points csurf∗

solv for all six sampled currents and each
ambient temperature. The MATLAB built-in functions fmin-
search and polyfit are employed to solve the optimization (22)
and fit the polynomials, respectively.
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Fig. 6. Results from the multiobjective OCP-SCT scheme with initial SOC mismatch SOC(0) = [0.2, 0.4] at Tamb = 25 ◦C.

Fig. 7. Results from the multiobjective OCP-DCT scheme with initial SOC mismatch SOC(0) = [0.2, 0.4] at Tamb = 25 ◦C.

B. Initial SOC Mismatch With Different Ambient
Temperatures

At an ambient temperature of Tamb = 25 ◦C, we first
solve OCP-SCT and OCP-DCT when the initial SOC for
the two cells is set to SOC(0) = [0.2, 0.4]. From Fig. 6,
under OCP-SCT scheme, both cells are charged simultane-
ously, while their voltages lie within Vcellmin = 2.5 V and
Vcellmax = 4.2 V. In Cell 1 (with lower initial SOC), there is
a higher rate of charge than in Cell 2 and the same time of
charge is enforced. This, in turn, leads to Cell 1 to experience
more aging and achieve higher core and surface temperature,

as it absorbs more current (the lower IB1 results in the
higher Icell1 ).

On the contrary, charging times are different for
Cells 1 and 2 when using the OCP-DCT scheme, as shown
in Fig. 7. As expected, Cell 2 (at higher initial SOC) is
charged faster, while both cells have the same rates of charging
across the different ambient temperatures. Once Cell 2 is fully
charged at t f2 , SOC2 is kept constant until Cell 1 reaches
SOCtarget at t f1 ; the cell current is absorbed by the power
units implementing the active balancing circuitry, leading to
I0 = IB2 over t f2 ≤ t ≤ t f1 ; Vcell2 drops at t f2 and

Authorized licensed use limited to: Stanford University. Downloaded on April 26,2023 at 16:37:28 UTC from IEEE Xplore.  Restrictions apply. 



1246 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 31, NO. 3, MAY 2023

Fig. 8. Optimization results for (a) OCP-SCT and (b) OCP-DCT schemes based on 20 simulations with initial SOC mismatch taken from a uniform
distribution over the interval [0.2, 0.4] at different ambient temperatures Tamb = [15, 25, 35] ◦C.

Fig. 9. Optimization results for (a) OCP-SCT and (b) OCP-DCT schemes based on 20 simulations with initial Lsei mismatch taken from a uniform distribution
over the interval [4, 6] × 10−9 m at different ambient temperatures Tamb = [15, 25, 35] ◦C.

TABLE III

PERFORMANCE COMPARISON BETWEEN THE OCP-SCT AND OCP-DCT SCHEMES WITH INITIAL SOC MISMATCH SOC1(0) = 0.2 AND

SOC2(0) = 0.4 AT DIFFERENT AMBIENT TEMPERATURES Tamb = [15, 25, 35] ◦C. THE BEST VALUE OF EACH METRIC IS SHOWN IN BOLD

remains constant over t f2 ≤ t ≤ t f1 ; the core and surface
temperatures of Cell 2 start decreasing at t f2 ; and the rates of
Lsei2 and Q2 slow down after t f2 . The figures also show that
the OCP-DCT scheme reduces degradation gradient between
cells [i.e., Lsei2(t f2) − Lsei1(t f1)] at all different ambient
temperatures.

To compare the results of OCP-SCT and OCP-DCT,
Table III lists quantitative comparisons between the two
schemes at Tamb = [15, 25, 35] ◦C. Referring to this table,
under either OCP-SCT or OCP-DCT, when Tamb increases,
the following trends are inferred: 1) the SEI layer thickness
variation of both cells increases; 2) the capacity loss variation
of each cell increases; and 3) the charging time of each
cell increases. According to this table, OCP-DCT decreases
max(�Lsei1 ,�Lsei2) by 73%, 40%, and 40% over OCP-SCT
when Tamb is set to 15 ◦C, 25 ◦C, and 35 ◦C, respectively;
this, in turn, leads to max(�Q1,�Q2) to be decreased by
72%, 40%, and 35% when OCP-DCT is used. In terms of

charging time, however, OCP-DCT increases max(t f1 , t f2) by
40%, 28%, and 42% over OCP-SCT when Tamb is 15 ◦C,
25 ◦C, and 35 ◦C, respectively.

C. Robustness to Initial SOC and SOH Imbalances

To further elaborate on the robustness of the pro-
posed OCP-SCT and OCP-DCT schemes, this section
is devoted to perform multiple simulations at different
ambient temperatures [15, 25, 35] ◦C for initial values of
SOC and SOH imbalance randomly taken from uniform
distributions.

1) Random Initial SOC Imbalance: For each ambient tem-
perature, Nsim = 20 simulations are carried out where initial
SOCs are drawn from a uniform distribution over the interval
[0.2, 0.4]. It can be seen from Fig. 8 that under either scheme,
when the ambient temperature increases, the maximum of SEI
layer thickness variations of the cells max(�L∗

sei1 ,�L∗
sei2) and
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Fig. 10. Pareto fronts for (a) OCP-SCT and (b) OCP-DCT schemes at different ambient temperatures Tamb = [15, 25, 35] ◦C when the optimization tradeoff
coefficient is discretely sampled as α = {0, 0.25, 0.5, 0.75, 1} and with an initial SOC mismatch SOC(0) = [0.2, 0.4].

the maximum charging times of the cells max(t∗
f1
, t∗

f2
) increase

as well.
Numerical results show that under the OCP-SCT scheme,

max maxkNsim
(�L∗

sei1 ,�L∗
sei2) = [0.08, 9.62, 57.15]%

and maxkNsim
(t∗

f ) = [510, 596, 717] s for Tamb =
[15, 25, 35] ◦C, where kNsim = 1, . . . , 20 is the kNsim th
simulation. On the other hand, with an OCP-DCT
scheme and under different ambient temperatures,
max maxkNsim

(�L∗
sei1 ,�L∗

sei2) = [0.04, 6.22, 38.64]% and
max maxkNsim

(t∗
f1
, t∗

f2
) = [587, 646, 738] s. These findings are

in agreement with our observations in Table III, showing
that the optimization under the OCP-DCT scheme leads
to the battery module with lower variation of SEI layer
thickness and longer charging time regardless of the ambient
temperature at which the simulation is performed.

2) Random Initial SOH Imbalance: In this experiment,
Nsim = 20 simulations are run for each ambient temperature
for both control schemes, where in each simulation, ini-
tial Lsei values are drawn from a uniform distribution
over the interval [4, 6] × 10−9 m to represent the SOH
imbalance at the beginning of the battery life. From
Fig. 9, the results reveal that with the OCP-SCT scheme,
max maxkNsim

(�L∗
sei1 ,�L∗

sei2
) = [0.09, 14.94, 77.10]% and

maxkMC (t∗
f ) = [498, 547, 783] s, and under the OCP-DCT

scheme, max maxkNsim
(�L∗

sei1 ,�L∗
sei2) = [0.06, 9.98, 57.87]%,

and max maxkNsim
(t∗

f1
, t∗

f2
) = [546, 620, 815] s all for Tamb =

[15, 25, 35] ◦C. These results are in line with what we found
from the case of initial SOC imbalance, showing that the
OCP-DCT scheme is able to mitigate the variation of SEI layer
thickness at the cost of higher charging time irrespective of
the ambient temperature. In comparison with the case of initial
SOC imbalance, the simulations with initial SOH imbalance
lead to the battery module with higher variation of SEI layer
thickness at any ambient temperature used.

D. Pareto Fronts: Effect of Tradeoff Coefficient α

Recall that the optimization tradeoff coefficient was picked
to be α = 0.5 in Section VI-A to study the balanced charging-
degradation scenario. However, this parameter could be varied
to weigh more or less battery degradation over time of charge,
given that the two costs have conflicting objectives. In this
section, α is discretely sampled as α = {0, 0.25, 0.5, 0.75, 1}
under which OCP-SCT and OCP-DCT schemes are run for
different ambient temperatures when there is an initial SOC

mismatch SOC(0) = [0.2, 0.4]. Fig. 10 shows that the max-
imum of SEI layer thickness variations of the cells reduces
as α decreases from 1 to 0 at any ambient temperature; the
battery module ages less but takes more time for charging
when we go from fast charging to minimum degradation
objective. This is also supported by numerical results from
which when α goes from 1 to 0, at Tamb = [15, 25, 35] ◦C:
1) under OCP-SCT, max maxkNsim

(�L∗
sei1

,�L∗
sei2

) decreases
by 72%, 38%, and 23%, and maxkNsim

(t∗
f ) increases by

66%, 49%, and 75%, respectively, and 2) under OCP-DCT,
max maxkNsim

(�L∗
sei1 ,�L∗

sei2) decreases by 71%, 26%, and
27%, and max maxkNsim

(t∗
f1
, t∗

f2
) increases by 97%, 46%, and

53%, respectively. Once again, the Pareto fronts support our
previously claimed observations, showing that the OCP-DCT
scheme can reduce the battery degradation at any ambient
temperature tested.

E. Comparison With Conventional Constant Current Profiles

To highlight the advantages and benefits of the proposed
optimal controller, a comparison is made with the standard CC
charging profiles.4 Given that research efforts are underway
to enable extreme fast charging, in which the battery pack
must be charged to 80% of its capacity in 10–15 min [36],
it is reasonable to evaluate the performance of the proposed
schemes against higher C-rates (>3C). The candidate CC
charging profiles selected are 3C and 8C, which are the
minimum and maximum permissible current magnitudes for
the cell considered in this work. The two CC profiles along
with the OCP-DCT and OCP-SCT profiles proposed in this
work are applied to the battery module of two cells connected
in series for 300 cycles each.5 An initial SOC imbalance of
SOC(0) = [0.2, 0.4] is assumed for the two cells in series.
The performance of the series-connected cells under the four
charging profiles [3C, OCP-DCT, OCP-SCT, 8C] is evaluated
at an ambient temperature of 25 ◦C in terms of charging time
for the first cycle and capacity loss at the end of 300 cycles.
In this case, the capacity loss for a series-connected cell k
is defined as the percentage change in its capacity at the
end of 300 cycles, with respect to the nominal capacity,
given by �Qk

loss = ((Qk
nom − Qk

300 cycles)/Qk
nom) × 100%.

4The CC-CV charging protocol is used in laboratory testing, whereas only
CC—or its variants—is used for in-vehicle charging.

5Note that one cycle is composed of the cells being charged from their
initial SOC to the final SOC of 0.8.
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Fig. 11. Charging time versus capacity loss tradeoff for (a) Cell 1 and (b) Cell 2, with an initial mismatch of SOC(0) = [0.2, 0.4], when subjected to 3C,
OCP-SCT, and 8C profiles for 300 cycles, respectively.

This study intends to demonstrate the health savings each
charging strategy offers, in terms of retained capacity over
multiple charging cycles.

In Fig. 11(a), we plot the charging time (blue circle)
and capacity loss at the end of 300 cycles (red triangle) of
Cell 1 for the charging profiles 3C, OPT-DCT, OPT-SCT, and
8C. It is noticed that the charging time reduces as the C-rate
increases from 3C to 8C, and as expected, the amount of
degradation has the opposite trend in which, as the C-rate
increases, the observed capacity loss is higher. However,
interestingly, the capacity loss observed for the OCP-SCT
and OCP-DCT profiles is lower than 8C and slightly lower
than 3C, thereby providing a balanced charging-degradation
solution. This indicates that the proposed optimal control
profile results in not only minimum degradation compared to
both 3C and 8C profiles but also provides a good tradeoff in
charging time between the two extremes of 3C and 8C. Similar
trends are also observed in the capacity loss of Cell 2 in
Fig. 11(b) for all charging profiles. Cell 2 has a higher initial
SOC, and hence, its charging time for the OCP-DCT profile
is shorter because the scheme allows for DCTs of the cells
to account for heterogeneous initial conditions, whereas the
charging time of Cell 2 is the same as that of Cell 1 for
the OPT-SCT profile. The results validate that the OCP-DCT
and OCP-SCT profiles outperform the standard CC profiles
by providing a balanced tradeoff between fast charging and
minimum degradation. Note that these results are simulated
for 300 charging cycles, and however, each cycle only consists
of an SOC window from 0.2 or 0.4 to 0.8 (depending on
the initial SOC of cells in the module). It follows that as the
battery ages and undergoes long-term cycling, the trends and
savings, in terms of capacity, will be more pronounced, thereby
highlighting the advantages of the proposed optimal controller.

VII. CONCLUSION AND DISCUSSION

A. Conclusion

This article formulated a multiobjective fast
charging-minimum degradation OCP for battery modules with
Ncell series-connected cells with an active balancing circuitry.
A surrogate model was proposed to mitigate computational

burden associated with the multi-time-scale nature of the cell
dynamics as well as the large-scale nature of LIB modules.
Two different OCPs were suggested: OCP-SCT and OCP-
DCT. Simulation studies were carried out on a battery module
with two series-connected cells in the presence of initial SOC
and SOH imbalances under different ambient temperatures.
Results demonstrated that both schemes outperform standard
CC charging profiles, and degradation and charging time
increase as ambient temperature increases. Our findings
showed that OCP-DCT provides more flexibility to handle
heterogeneities among the cells in terms of obtaining a more
uniform degradation among the cells, hence leading to a
longer utilization of the module.

In the future, the optimal control of series-connected mod-
ules during discharging will be investigated. In the discharging
case, the module current I0 is fixed as per the current/power
demand requested by the user or the application, resulting
in one less degree of freedom and optimization variable.
However, the objective functions will need to be modified
according to the discharging scenarios (for instance, charging
time objective function is not valid). Having said that, the
framework proposed in this article, which consists of using
the direct collocation approach to transcribe the OCP into an
NLP problem by parameterization of the system states and
input, will remain the same. It is worth mentioning that as the
number of cells in series increases, the computational burden
of solving the OCP will be higher. To that end, the proposed
optimal controller is more suited for offline simulations of
series-connected cells to generate solutions, trajectories, or ref-
erence surface maps, to aid our understanding of the optimal
split under different conditions and identify critical conditions
or faults. The results from the offline simulations can be used
in the form of lookup tables or maps for reference tracking
during real-time applications (with reduced-order models) in
resource-constrained onboard hardware.

B. Discussion: Impact of Our Work

The adoption of effective active balancing hardware in a
battery pack holds the potential to address the issue of guar-
anteeing longer (>8 years) life when used in EV applications.
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Currently, cell balancing via shunt resistors is widely used
in the industry. Since the proposed optimal controller is
applicable to any general active balancing hardware (either
shunt resistors, transistors, or dc/dc converters), it is easier
to adopt and it can be immediately deployed without adding
additional hardware costs.
In a series-connected module, the capacity of the module
is defined by the weakest (most aged) cell. Heterogeneity
among cells, if not embraced, will result in some cells to be
overly used over time, thus creating a fragile (age-wise) link
in the module. The ability to control each single cell while
acknowledging their initial states, health, and manufacturing
characteristics will result in a module/pack with uniform
characteristics and performance. In the quest for solutions that
provide longer battery life capability, among discovering new
materials and proposing novel manufacturing processes, the
system-level solution explored in this article positions itself
as an easily deployable method for targeted applications.
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