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Abstract—Aging and usage conditions affect the battery
parameters such as capacity and changes in the open-
circuit voltage and internal resistance dependencies on the
state of charge. This paper proposes an on-board strat-
egy for the simultaneous estimation of these parameters
and their robust evaluation during the battery life. The
proposed co-estimation framework consists of a set of
interconnected subsystems grounded on the integration
of recursive least-squares techniques and a Luenberger-
like observer which are independently designed by relying
on moving averages of voltage and current measurements.
Each subsystem is separately activated through logic vari-
ables which select the operating conditions proper for the
estimation purposes and allows tracking of model parame-
ters variations. The effectiveness of the proposed solution
over experiments with a cylindrical LG M50T INR21700 Li-
ion cell with NMC cathode and graphite/silicon anode.

Index Terms—Battery management system, state of
charge, state of health, experimental battery data.

I. INTRODUCTION

Knowledge of battery degradation due to aging and usage
conditions is key for energy management systems in many
applications such as electric and hybrid vehicles, smart grids,
satellites. Changes in the battery behavior can be captured by
means of corresponding variations of its model parameters [1].
It is widely recognized that the state of health (SOH) re-
duction highlights the loss of the battery charge capacity and
is dependent on the usage, e.g., charging/discharging patterns
and on the overall cycles or ampere-hour-throughput that the
battery has undergone during its life [2], [3], [4]. Degradation
manifests itself not only in the SOH reduction over time, but
also on variations of the open-circuit voltage (OCV ) vs. state
of charge (SOC) nonlinear map [5], [6]. The importance of
accounting for changes in the dependence of OCV on SOC as
the battery degrades has been recognized in the literature [7],
[8], [9], for all ranges of SOC values [10], [11]. Another well-
known effect of aging and usage conditions is the increase of
the equivalent internal resistance R0 [12] and the variations
of its dependence on SOC [13], [14].
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The references above indicate the importance for an online
identification of different parameters during the battery life
and this has motivated the use of the term “co-estimation”
standing for simultaneous tracking of SOC and variations of
the battery parameters. The problem of real-time estimation of
the battery parameters has been widely investigated in the lit-
erature either with model-free or model-based techniques. The
latter approach is the one used in our study. Despite the recent
progress towards the adoption of more sophisticated model-
based observers [15], estimation algorithms based on equiva-
lent circuit models (ECMs) are still the preferred solution for
the design of real-time estimators thanks to their straightfor-
ward and computational friendly implementation [16]. In this
paper, a novel co-estimation framework based on ECM for
simultaneous online evaluation of SOC, SOH , identification
of the parameters of polynomial OCV (SOC) and R0(SOC)
characteristics and tracking of the other equivalent circuit
parameters variations during Li-ion battery life is proposed.
The analysis of this “complete” co-estimation problem is still
in its infancy but there exist many studies which consider
co-estimation of SOC with specific subsets of the battery
parameters [17], so as discussed below.

The co-estimation problem of SOC and ECM parameters
has been investigated in [18] where a polynomial approxi-
mation of the OCV (SOC) map with constant coefficients
and a fixed capacity are used. A constant capacity is also
considered in [19] where a partial least-squares algorithm is
used by exploiting a step-by-step linearization of the battery
voltage as a function of SOC and battery current, whose
coefficients must be estimated online. The capacity is a fixed
parameter also in the co-estimation approach for SOC and
ECM parameters proposed in [20] where an offline identified
piecewise linear approximation of the OCV (SOC) map is
assumed and in [14] where the coefficients of the OCV (SOC)
characteristic are estimated online. Unfortunately the esti-
mation performance obtained with the latter approaches is
weakened by the commutations between the different regions
of SOC in the piecewise function which are fixed a priori.
A co-estimation strategy based on a Wiener configuration of
the ECM is presented in [21] where the capacity is assumed
as a constant and the map OCV (SOC) is obtained offline by
averaging the curves recorded during charging and discharging
phases.

Online identification of SOH based on cell voltage mea-
surements and not just current measurements is important for
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cell diagnostics and balancing, especially for hybrid electric
vehicles where battery is charged while driving. Many co-
estimation studies consider the battery health degradation
due to aging. In [22] the SOC is obtained by using an
OCV (SOC) characteristic which is fixed a priori and the bat-
tery health is indirectly evaluated by exploiting the variations
of the internal resistance. The same parameter is also used to
compensate the OCV (SOC) drift due to aging and the esti-
mation algorithm depends on the strong assumption of having
a slowly varying OCV (formally with zero time derivative).
Differently from [22], the typical approach used for the online
evaluation of SOH is the reduction of the battery capacity.
The combined SOC/SOH estimation algorithm presented
in [23] requires offline experimental procedures for SOH and
internal resistance evaluations which are triggered when the
relative estimation error of the voltage exceeds a threshold
to be designed. A sliding-mode observer for SOC/SOH
estimation has been proposed in [24] but a linear OCV (SOC)
characteristic is assumed except for very small values of
SOC and the knowledge of the ECM parameters is required.
The latter assumption is also needed for the Kalman filtering
approach proposed in [25] where the model parameters are
estimated offline by conducting specific driving test at the
beginning of service life of the battery. The online estimation
of the internal resistance is included in the SOC/SOH
algorithm discussed in [26], however the resulting scheme
of interlaced sliding-mode observers requires the knowledge
of the slope of the OCV (SOC) characteristic and some of
the ECM parameters. A Kalman filter for SOC detection
combined with a recursive least-squares (RLS) algorithm for
the ECM parameters is proposed in [27] but the equation used
for the OCV estimation requires the comparison with a pre-
recorded table OCV (SOC) which is not corrected online.
A similar difficulty emerges from the technique proposed
in [8] where the errors used for the online adaptations require
data for the OCV and the battery capacity. Fractional-order
models for SOC estimation with offline estimated ECM and
capacity parameters are used in [28] and in [6] by including
online SOH estimations with different expressions for the
dependence of OCV on SOC at various aging stages but
each with constant parameters. The SOC/SOH and ECM
parameters co-estimation problems analyzed in [29], [30],
[31] do not consider online adaptations of the OCV map
which, instead, is taken into account in our solution. Possible
changes of the parameters of the OCV (SOC) characteristic
are not considered in [32] either, where a hierarchical multi-
time-scale co-estimation framework is proposed and the SOH
monitoring is realized only offline at a regular interval while
in our case is performed in real-time.

The problem of online estimation of the OCV has been
investigated in [33] with adaptive Kalman filtering and in [34],
[35] with RLS equations, where the instantaneous value of
the OCV is used as a constant parameter to be estimated. A
similar idea is used in [36] where two Kalman filters with the
same measurement equation are integrated for the capacity
and the SOC estimations together with an RLS algorithm
for the ECM parameters identification. Differently from our
framework, the latter solutions do not consider the fact, since

the estimator runs synchronously with the battery use, the
OCV cannot be assumed with zero time derivative because of
the time variations of SOC. On the other hand, the parameters
of the OCV (SOC) curve are expected to change slower than
the SOC dynamics and not all operating conditions provide
useful data for the parameters estimation [8]. These aspects
are exploited for the design of our co-estimation framework.

The literature analysis presented above shows that finding
robust solutions to the complete co-estimation problem is
still an open issue. It is worth mentioning that having an
acceptable error in the SOC estimate is not enough to give
up on independently tracking the parameters’ changes due to
aging as justified by their different meaning and use in battery
management systems. This paper provides a contribution in
this direction by proposing a new framework where estimators
for SOC, SOH , OCV (SOC) and R0(SOC) characteris-
tics, and ECM parameters can be separately designed and
simultaneously (or independently) activated while keeping the
calibration effort low. Moreover, the novel implementation-
related aspects of the proposed framework are:
• the design of suitable moving average functions of the

measured variables designed by exploiting the time-scale
separation of the estimated variables;

• the introduction of logic variables to efficiently select the
operating conditions proper for the estimation.

The rest of the paper is organized as follows. In Section II
the ECM of the battery under study is presented. Section III
introduces the estimation framework along with its subsystems
for the OCV (SOC) and R0(SOC) characteristics, battery
capacity, SOC and ECM parameters. The complete integrated
estimator is described in Section IV. The effectiveness of the
proposed solution is verified over battery experimental data
and results are discussed in Section V. Finally, in Section VI
conclusions are summarized.

II. BATTERY DYNAMIC MODEL

The typical equivalent electric circuit of an ECM is shown
in Fig. 1, where ib is the battery current assumed to be positive
during discharge, eb is the voltage at the battery terminals, v`
is the voltage across the capacitor which captures the battery
dynamics in the R`C` branch, ` = 1, . . . , L, OCV is the
open-circuit voltage, R0 is the equivalent internal resistance.

Applying Kirchhoff’s circuit laws to the circuit of Fig. 1,
by including the state of charge equation, and by discretizing
the continuous-time differential equations with the backward-
Euler method and a sampling period h ∈ R+, one obtains

v`(k) =
R`C`

h+R`C`
v`(k − 1) +

hR`
h+R`C`

ib(k) (1a)

SOC(k) = SOC(k − 1)− h

Q
ib(k) (1b)

eb(k) = OCV (SOC(k))−
L∑̀
=1

v`(k)−R0(SOC(k))ib(k)

(1c)

for ` = 1, . . . , L, where k ∈ N is the discrete time-step, N
being the set of positive integers, and the initial conditions
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Fig. 1. Equivalent circuit model of the battery cell.

are v`(0) and SOC(0). The model (1) is in state-space
form with (1a)–(1b) being the dynamic equations of the state
variables v`, ` = 1, . . . , L, and SOC, the battery current ib
is the input and (1c) is the output equation. In particular, (1c)
is a nonlinear function of the state variable SOC through
the OCV (SOC) and R0(SOC) characteristics. The typical
dependence of the internal resistance R0 on SOC motivates
the approximation of a polynomial approximation in the form

R0(SOC) =
J∑
j=0

bj(SOC)j (2)

where bj ∈ R, j = 0, 1, . . . , J , J ∈ N is the desired order
of approximation determined by the polynomial degree [13],
[14] and R is the set of real numbers. The OCV (SOC) map
can be efficiently approximated by a polynomial function of
SOC [6], [18], [21]. Specifically, one can write:

OCV (SOC) =
P∑
p=0

ap(SOC)p (3)

where ap ∈ R, p = 0 . . . , P and P ∈ N is the desired order
of the polynomial.

III. ESTIMATOR SUBSYSTEMS

The architecture of the proposed estimator consists of three
interconnected subsystems: i) a SOC observer, ii) an RLS
estimator of the parameters of the polynomial OCV (SOC)
and R0(SOC) characteristics and iii) an RLS estimator of the
battery capacity Q.

A. SOC observer
The proposed SOC observer is obtained by using the

dynamic model (1) and the error between the measured and the
estimated battery voltage. To start with, for the development
of the SOC estimator we assume the battery capacity Q is
known. By using a Luenberger-like structure starting from the
model (1)–(3), one can write

v̂`(k) =
R`C`

h+R`C`
v̂`(k − 1) +

hR`
h+R`C`

ib(k)

+ g`(eb(k)− êb(k)) (4a)

ˆSOC(k) = ˆSOC(k − 1)− h

Q
ib(k) + gL+1(eb(k)− êb(k))

(4b)

êb(k) =
P∑
p=0

ap( ˆSOC(k))p −
L∑̀
=1

v̂`(k)

−
J∑
j=0

bj( ˆSOC(k))jib(k) (4c)

for ` = 1, . . . , L, k ∈ N, with initial conditions v̂`(0) and
ˆSOC(0), where v̂`, ˆSOC and êb are the estimated values of

the internal voltage, the state of charge and the battery voltage,
respectively, and g`, ` = 1, . . . , L+ 1 are the observer gains.
The observer (4) has two inputs: the measured current ib and
the measured battery voltage eb.

In the particular case J = 0 and P = 1, the model (4)
is linear and the observer gains g`, ` = 1, . . . , L + 1 can
be designed with classical techniques for linear systems. In
particular, it is easy to verify that the corresponding observ-
ability matrix is full rank for almost all nonzero a1 and h, if
RiCi 6= RjCj for any i 6= j. Therefore, a possible design rule
for the observer vector gain g ∈ RL+1 consists of assigning the
desired eigenvalues to the dynamic matrix of the observer (4).

B. Estimation of the OCV (SOC) characteristic
The OCV (SOC) map has been generally considered con-

stant, i.e., not subject to aging, in the vast majority of the
literature work focused on SOH estimation. In the proposed
estimator, the dependence of OCV on SOC is modeled with
a polynomial function whose parameters are updated and
estimated upon aging via an RLS algorithm.

Before presenting the proposed estimator, we briefly recall
the equations describing a generic RLS procedure. Assume
that a vector y(k) ∈ Rm, m ∈ N, available at time-step k ∈ N,
can be approximated through a linear combination of π ∈ N
unknown parameters θ̂(k) ∈ Rπ via ϕ(k)>θ̂(k) where ϕ(k) ∈
Rπ is a vector of known quantities at time-step k. Indicating
with ε(k) ∈ Rm the model error, one can write

y(k) = ϕ(k)>θ̂(k) + ε(k) (5)

for k ∈ N. By minimizing the root mean square (RMS) of the
estimation error and by using a forgetting factor µ ∈ (0, 1],
the equations describing the RLS algorithm can be written as

S(k) =(1− δ(k))S(k − 1)

+ δ(k)(µS(k − 1) + ϕ(k)ϕ(k)>) (6a)

γ(k) =S(k)−1ϕ(k) (6b)

θ̂(k) =θ̂(k − 1) + δ(k)γ(k)
(
y(k)− ϕ(k)>θ̂(k − 1)

)
(6c)

for k ∈ N, with θ̂(0) ∈ Rπ and S(0) ∈ Rπ×π initial conditions
of the estimator. The logic variable δ(k) ∈ {0, 1} enables the
estimation of the parameters, i.e. if δ(k) = 0 from (6a) it
follows S(k) = S(k− 1) and from (6c) it is θ̂(k) = θ̂(k− 1)
regardless of y(k) and ϕ(k). In particular, the variable δ allows
one to exclude data corresponding to operating conditions
which do not provide significant information for the estimation
of the parameters. The design rule for δ is described in Sec. IV.

Equation (6c) can be interpreted as a recursive estimator
of an unknown constant parameter vector, i.e., θ(k) = θ(k −
1) for all k. Note that, in the following the generic vector
θ̂(k) corresponds to different model parameters whether the
RLS expressions (5)–(6) are applied to the estimation of the
different parameters.

Let us consider the application of the RLS algorithm (5)–
(6) for the estimation of the parameters of the OCV (SOC)
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characteristic. For the sake of simplicity let us neglect for
now the dependence of the internal resistance on SOC. This
assumption will be removed in next subsection. From (1c), (2)
with J = 0, i.e., R0(SOC) = R0 and (3) one can write

eb(k) +R0ib(k) +
L∑̀
=1

v̂`(k) =
P∑
p=0

ap( ˆSOC(k))p + ε1(k) (7)

for k ∈ N, where ε1 is the error corresponding to the
approximation of the OCV (SOC) map with the polynomial
function of SOC with the desired order P .

The parameters ap, p = 0, 1, . . . , p, of the polynomial
function are usually known for a fresh battery but change
and therefore are unknown as the battery ages. Since aging is
characterized by slow varying dynamics, the parameters can
be assumed to have much slower variations as opposed to the
state of charge dynamics. In order to exploit this reasonable
hypothesis, we consider a filtered version of (7). In particular,
by taking the moving average over N samples on both sides
of (7) one can write

1

N

k∑
s=k−N−1

[
eb(s) +R0ib(s) +

L∑̀
=1

v̂`(s)

]
=

1

N

k∑
s=k−N−1

[
P∑
p=0

âp(s)( ˆSOC(s))p + ε1(s)

]

=
P∑
p=0

1

N

k∑
s=k−N−1

âp(s)( ˆSOC(s))p +
1

N

k∑
s=k−N−1

ε1(s)

=
P∑
p=0

α̂p(k)
1

N

k∑
s=k−N−1

( ˆSOC(s))p + ε2(k) (8)

for k ≥ N , where âp(k), p = 0, 1, . . . , P are the estimations
of the parameters ap, p = 0, 1, . . . , P , respectively, at the time-
step k and

α̂p(k) =
1

N

k∑
s=k−N−1

âp(s) (9)

for p = 0, 1, . . . , P . The parameters âp, p = 0, 1, . . . , P , are
influenced by the battery history rather than on the particular
conditions over the small time interval of length N in which
the moving averages are computed, see [37], [38] for a more
formal analysis of these arguments. This justifies (8) where
we used the slowly varying approximation for the parameters
âp, p = 0, 1, . . . , P with respect to the variations of SOC,
which allows one to approximate the moving average of the
product âp( ˆSOC)p with the product of the moving average of
each variable. The error variable ε2 in (8) takes into account
both this approximation and the error due to the polynomial
approximation of the OCV (SOC) through ε1.

By taking

θ̂(k)> =
(
α̂0(k) . . . α̂P (k)

)
, (10)

the expression (8) can be written in the form (5) with

y(k) =
1

N

k∑
s=k−N−1

[
eb(s) +R0ib(s) +

L∑̀
=1

v̂`(s)

]
(11a)

ϕ(k)> =
1

N

k∑
s=k−N−1

(
1 ˆSOC(s) . . . ( ˆSOC(s))P

)
(11b)

for k ≥ N . The application of the RLS algorithm (5)–(6)
with the definitions (10) and (11) can be extended to any
k ∈ N by choosing the initial conditions v̂`(σ), ` = 1, . . . , L
and ˆSOC(σ) for σ ∈ {−N, . . . , 0}. The estimate of the
internal voltages v̂`, ` = 1, . . . , L, for (11a) is provided by
the Luenberger-like observer.

It is interesting to note that if the coefficients ap, p =
0, 1, . . . , p are constant, then (7) and (8) are equivalent
with ε2(k) = 1

N

∑k
s=k−N−1ε1(s). On the other hand, the

OCV (SOC) map is subject to changes which are reflected
in drifting and variation of the parameters the OCV curve de-
pends on. Equation (9) is motivated by the fact that one would
expect that the OCV (SOC) map exhibits slow variations over
the moving average interval of N time-steps.

C. Online identification of the internal resistance

The RLS algorithm described above can be generalized in
order to include the online estimation of the internal resistance.
In particular, from (1c), (2) and (3) one can write

eb(k) +
L∑̀
=1

v̂`(k) =
P∑
p=0

ap( ˆSOC(k))p

−
J∑
j=0

bj( ˆSOC(k))jib(k) + ε1(k) (12)

for k ∈ N, where ε1 is the error corresponding to the
approximation of the OCV (SOC) and R0(SOC) maps with
the corresponding polynomial functions. By taking the moving
average over N samples on both sides of (12) and by using (9)
one can write

1

N

k∑
s=k−N−1

[
eb(s) +

L∑̀
=1

v̂`(s)

]
=

P∑
p=0

α̂p(k)
1

N

k∑
s=k−N−1

( ˆSOC(s))p

− 1

N

k∑
s=k−N−1

J∑
j=0

b̂j(s)( ˆSOC(s))j ib(s) + ε2(k)

=
P∑
p=0

α̂p(k)
1

N

k∑
s=k−N−1

( ˆSOC(s))p

−
J∑
j=0

β̂j(k)
1

N

k∑
s=k−N−1

( ˆSOC(s))j ib(s) + ε3(k) (13)

where

β̂j(k) =
1

N

k∑
s=k−N−1

b̂j(s) (14)

for j = 0, 1, . . . , J . In order to write (13) we used the
assumption that the coefficients of the polynomial function (2)
are slowly varying with respect to the time interval of length N
adopted for the moving average which allows to approximate
the moving average of the product with the product of the
moving averages. By taking

θ̂(k)> =
(
α̂0(k) . . . α̂P (k) β̂0(k) . . . β̂J(k)

)
,

(15)
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the expression (13) can be written in the form (5) with

y(k) =
1

N

k∑
s=k−N−1

[
eb(s) +

L∑̀
=1

v̂`(s)

]
(16a)

ϕ(k) =
1

N

k∑
s=k−N−1



1
ˆSOC(s)

...
( ˆSOC(s))P

ib(s)
ˆSOC(s) ib(s)

...
( ˆSOC(s))J ib(s)


(16b)

for k ≥ N . The application of the RLS algorithm (5)–(6)
with the definitions (15) and (16) can be used in alternative
to (10) and (11) in order to provide an online estimation for
the internal resistance too.

D. Identification of the battery capacity
The observer (4b) requires the exact knowledge of the

battery capacity Q. This parameter, which defines the battery
state of health, changes as the battery is cycled. In order
to estimate the battery capacity we propose to use the RLS
algorithm described below.

Taking the moving average over N samples on both sides
of (1b) one can write

− 1

N

k∑
s=k−N−1

ib(s) =
1

N
(SOC(k)− SOC(k −N))Q

=
1

N

(
ˆSOC(k)− ˆSOC(k −N)

)
Q̂(k) + ε3(k) (17)

for k ≥ N , where ε3 is an error which takes into account
the approximation between the actual capacity Q and its
estimation Q̂(k) at the time-step k. By taking

θ̂(k) = Q̂(k), (18)

the expression (17) can be written in the form (5) by choosing

y(k) = −
k∑

s=k−N−1
ib(s) (19a)

ϕ(k)> = ˆSOC(k)− ˆSOC(k −N) (19b)

for k ≥ N . The application of the RLS algorithm with the
definitions (18) and (19) can be extended to any k ∈ N by
choosing the initial conditions ˆSOC(σ) for σ ∈ {−N, . . . , 0}.

E. Identification of the circuit dynamics
In the following we assume the presence of a single RC

branch in the ECM in Fig. 1. The estimation of the ECM pa-
rameters R` and C` for ` = 1, . . . , L and L ≥ 2 would require
the use of techniques based on singular perturbations [11]
which for the sake of simplicity are not considered in our
analysis but could be integrated with the proposed framework
by adapting the procedure described below. In particular, the
parameters R1 and C1 are estimated by extending the typical
approach which exploits the relaxation phases, i.e., when the

RLSMA

MA

MA

α̂p, β̂j

ib

eb

MA

RLS
+
+

z−N
Q observer

ib
Q̂

SOC observer
ib

eb
ˆSOC

v̂

Fig. 2. Block scheme of the co-estimation framework. The inputs of
the estimator are the instantaneous measured voltage eb and current
ib; the block z−N is a delay of N time-steps; the MA blocks (from top
to bottom) implement the moving averages in (16a), (16b) and (19a), re-
spectively; the RLS blocks (from top to bottom) implement the recursive
least-squares algorithms (6) with (15)–(16) and (18)–(19), respectively;
the SOC observer block implements (21).

battery current is identically zero [16]. This choice allows one
to avoid the influence of the OCV (SOC) and R0(SOC) maps
in the identification of R1 and C1. By considering L = 1 and
ib = 0 in (1a) and (1c), with simple algebraic manipulations
one can write

eb(k) = OCV (0)− R1C1

h
(eb(k)− eb(k − 1)). (20)

The expression (20) is a linear regression equation in the
form (5) with the parameter vector θ = (OCV (0) R1C1)>,
y(k) = eb(k), ϕ(k)> = (1 eb(k−1)−eb(k)

h ). Then, the time
constant R1C1 can be estimated by applying an RLS algorithm
with the regression (20) reactivated at the beginning of each
relaxation phase. The parameter R1 is then obtained by
applying an RLS technique on the linear regression between
the voltage drop and the current discontinuity for different
relaxation phases.

It should be noticed that the observability of the linearized
ECM holds also in the presence of two or more RC branches
which motivates the possibility to use our framework also in
this more general case provided that these parameters of the
ECM are known or suitably estimated.

IV. THE INTEGRATED ESTIMATOR

The proposed estimation scheme is shown in Fig. 2. Both
the SOC observer and the two RLS estimators are charac-
terized by dynamic elements and therefore no algebraic loops
are involved in the whole scheme.

A. Subsystems interconnection
The estimation of the parameters α̂p, p = 0, . . . , P , and β̂j ,

j = 0, . . . , J , is performed by the block scheme in the upper
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side of Fig. 2 which implements (5)–(6) with (15)–(16). The
inputs of this subsystem are the battery current ib, the battery
voltage eb and the estimated state of charge ˆSOC and voltage
v̂`, ` = 1, . . . , L, obtained from the SOC observer.

The battery capacity estimation Q̂ is obtained by the
subsystem represented by the dashed block in the center of
Fig. 2 which implements (6) with (18)–(19). The inputs of
this subsystem are the battery current ib and the state of charge

ˆSOC estimated by the observer.
The interconnection of the SOC observer (4) with the RLS

algorithms used for the estimation of the battery capacity and
the parameters of the OCV (SOC) curve requires some mod-
ifications on the observer equations. The inputs of the SOC
observer are the measured current ib and voltage eb, similarly
as in (4), but for the entire scheme also the estimations of the
parameters Q̂, α̂p, p = 0, . . . , P , and β̂j , j = 0, . . . , J , must
be provided to the observer. In particular, the equations (4) of
the ideal SOC observer are replaced by the following

v̂`(k) =
R`C`

h+R`C`
v̂`(k − 1) +

hR`
h+R`C`

ib(k)

+ g`(eb(k)− êb(k)) (21a)

ˆSOC(k) = ˆSOC(k − 1)− h

Q̂(k)
ib(k) + gL+1(eb(k)− êb(k))

(21b)

êb(k) =
P∑
p=0

α̂p(k)( ˆSOC(k))p −
L∑̀
=1

v̂`(k)

−
J∑
j=0

β̂j(k)( ˆSOC(k))jib(k) (21c)

for ` = 1, . . . , L, k ∈ N, where the parameters Q̂(k), α̂p(k),
p = 0, 1, . . . , P , β̂j(k), j = 0, . . . , J , are obtained from the
RLS algorithms described in the previous section.

A formal analysis of the possible convergence to zero of
the estimation errors of the integrated estimator is nothing but
easy due to the nonlinearity of the entire system, see (21b)
where the inverse of Q̂ appears, (21c) where the products
of the parameters α̂p and β̂j with the corresponding powers
of ˆSOC are present. On the other hand one can propose
some rule of thumb for the design of the estimator gains.
In particular, the vector g and the scalar µ can be chosen
such that the dynamics of the SOC observer are faster than
those of the RLS algorithms dedicated to the estimations of
the battery capacity and the parameters of the OCV (SOC)
and R0(SOC) characteristics. Indeed, the SOC varies at each
cycle while the variations of these maps are expected to be
much slower and the battery capacity usually changes with
hundreds of charging and discharging cycles.

B. Enabling conditions
The on-board operating conditions of a battery depend on

a variety of aspects related to the specific application, loading
scenarios and charging strategies. Not all conditions though
determine useful information for the identification process.
This concept is exploited in the design of the enabling logic
parameters of the co-estimation framework proposed in this
paper, which are activated under specific operating conditions

of interest for the estimation problem at hand. The enabling
conditions are determined by exploiting measured variables
(or their direct elaborations), i.e., without using the estimated
variables.

In order to define the enabling conditions of the estimator
let us define the following logic variables

δ1(k) =

{
1 if |ib(k)| > ∆1

0 otherwise (22a)

δ2(k) =

 1 if

∣∣∣∣∣ib(k)− 1
N

k∑
s=k−N+1

ib(s)

∣∣∣∣∣ < ∆2

0 otherwise
(22b)

δ3(k) =

 1 if ∆−3 <

∣∣∣∣∣eb(k)− 1
N

k∑
s=k−N+1

eb(s)

∣∣∣∣∣ < ∆+
3

0 otherwise
(22c)

where δi ∈ {0, 1}, i = 1, 2, 3, ∆1, ∆2, ∆−3 and ∆+
3 are

positive real numbers which represent suitable thresholds to
be calibrated.

The RLS estimators of the parameters α̂p, p = 0, . . . , P ,
β̂j , j = 0, . . . , J , and Q̂ are activated only if the three logic
conditions are contemporary true, i.e., δ = δ1δ2δ3 = 1, see (6).
The SOC estimation is disabled only when the battery current
is zero, but the internal voltage is estimated in this situation
too in order to capture the dynamics of the relaxation phases.
When an estimator is disabled, the corresponding estimated
variables are kept equal to their values at the previous time-
step.

The logic variable δ1 in (22a) is zero if the absolute value of
the current is below a small threshold ∆1. The logic variable δ2
in (22b) is nonzero when the absolute value of the difference
between the current and its moving average is below the
threshold ∆2. The condition allows one to exclude situations
when large current variations over short time intervals occur.
Finally, the estimator does not perform any operations also if it
is not compliant with the condition expressed by (22c), i.e., the
difference between the instantaneous voltage and its moving
average must belong to the interval (∆−3 ,∆

+
3 ). This condition

is adopted for excluding the computation when large variations
of the voltage occur, e.g., at the beginning of the relaxation
phases. Moreover, since ∆−3 > 0, the condition (22c) disables
the estimator also when the voltage is constant, corresponding
to having small variations in SOC.

V. ESTIMATION RESULTS

The effectiveness of the proposed integrated estimator is
verified over experimental data collected for a cylindrical LG
M50T INR21700 Li-ion cell with NMC cathode chemistry,
nominal voltage 3.63 V, nominal capacity Q∗ = 4.85 A h.
Experiments were carried out at the Stanford Energy Control
Laboratory in the Energy Resources Engineering Department
at Stanford University. The experimental setup used for the
aging campaign is composed of the Arbin LBT21024 battery
cycler with a programmable power supply and an electronic
load; a MITS Pro data acquisition software for the program-
ming of test profiles and the environmental chamber AMEREX
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IC500R. Tests were performed at controlled temperature of
25 °C [39].

A. Aging campaign
The aging campaign consists in subjecting the battery to

a real driving profile - in the form of Urban Dynamometer
Driving Schedule (UDDS). Periodic characterization tests,
i.e., Capacity test and Hybrid Pulse Power Characterization
(HPPC) test, were performed to assess battery health.

The battery is charged by using the constant current-
constant voltage (CC−CV ) standard charging protocol. Each
iteration of the aging test starts with a C/4 discharge to bring
the battery from SOC = 1 down to SOC = 0.8. Then, a
UDDS driving cycle is implemented until the state of charge
reaches SOC = 0.2. The current and voltage profiles for this
sequence of operations at the beginning of the aging campaign
are shown in Fig. 3. The current and voltage profiles after 200
cycles are the same except for the initial CC phase which is
much shorter, i.e., a duration of 2565 s for the fresh battery
and 45 s for the aged one.
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Fig. 3. Current ib (top) and voltage eb (bottom) for the first part of the
aging campaign which consists of the following sequence: CC − CV
charging, discharge at C/4 rate, UDDS driving cycle.

Every 50 aging cycles a Capacity test and an HPPC test are
performed. The former consists of a C/20 constant discharge
whereas the latter consists of charge and discharge pulses at
different SOC. Each aging test is completed with a sequence of
a charging with constant current at 3C and a constant voltage
at 4 V, up to SOC = 0.8 followed by a charging with constant
current at C/4 and a constant voltage at 4.2 V until the battery
is fully charged.

B. Benchmarks and parameters tuning
The benchmark values of the battery capacity have been ob-

tained by using the capacity tests during the aging campaign.
The values obtained for the battery under test are Q = 4.85 A h
at the beginning of the battery life and Q = 4.65 A h after
200 cycles. The HPPC test is used for the determination of

the benchmark values of the ECM parameters. The R0(SOC)
maps for the fresh battery and after cycling are obtained by
computing the voltage discontinuities in correspondence to the
step changes of the current for different values of SOC. The
results are shown in Fig. 7 with stars. It should be noticed that
the data used for the determination of these maps are excluded
from the set of data exploited by the online estimator by means
of the logic variable δ3 in (22). The values R1 = 0.03 Ω
and C1 = 1.15 kF are obtained by implementing the strategy
discussed in Subsection III-E during the relaxation phases of
the HPPC tests where the estimations of the other parameters
are disabled by the logic variable δ1 which is zero. The
benchmark OCV (SOC) maps are obtained by implementing
charging and discharging tests at very small current, i.e., C/20,
at the beginning of the battery life ad after 200 cycles.

The main parameters to be tuned for the proposed method
are the thresholds ∆1, ∆2, ∆−3 and ∆+

3 used for defining
the logic variables δ1, δ2 and δ3 in (22). The value of ∆1

is chosen such that currents below a value which determine
negligible SOC variations are neglected. In our case we
have chosen ∆1 = 0.01 A. The value of ∆2 can be tuned
by considering a current step change of sufficiently small
amplitude ∆, e.g., 10% of the 1C current. In this case the
inequality (22b) becomes ∆

(
1− k

N

)
≤ ∆2 and one can

fix ∆2 by choosing a certain fraction of time-steps which
could be missed without loosing relevant information from
measurements. In our case we have chosen ∆2 = 0.15 A. The
threshold ∆+

3 can be calibrated similarly to ∆2 by considering
a step change ∆ equal to 10% of the minimum voltage of
the OCV (SOC) map and the corresponding inequality (22c),
which lead in our case to ∆+

3 = 0.05 V. The value of ∆−3 is
fixed by considering the voltage measurement accuracy which
in our case lead to ∆−3 = 0.003 V. A sensitivity analysis for
the chosen thresholds around their nominal values has been
carried out showing a good robustness of the proposed tuning
procedure. It should be noticed that during the validation tests
the thresholds for (22) are kept the same.

The other estimator parameters are: g1 = 0.5, g2 = 0.001,
µ = 0.99 for both the RLS estimators, P = 5, J = 2,
and all matrices S(0) equal to identity matrices with suitable
dimensions. All initial conditions of the estimated variables
are assigned equal to zero unless otherwise noted.

C. UDDS driving cycle

The validation test is obtained by considering a UDDS
driving cycle whose corresponding electrical variables are
reported in the discharge phase of Fig. 3. In this test the current
demanding to the battery system has a more practical profile
with respect to the standard CC/CV charging protocol. The
scope is to validate the effectiveness of the proposed estimator
especially in these more complex situations.

The estimator is run for the new battery and after 200 cycles.
Figure 4 shows the time evolution of the battery voltage error
eb − êb in the two cases. Note that different time instants
where the UDDS driving cycle starts for the two experiments
have been considered to avoid overlapping the curves of the
estimated parameters. The RMS of the voltage errors are 4.6 ·
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10−6 and 5.4·10−6, respectively. Figure 5 shows the estimated
SOC when an initial estimation error of 80% at the beginning
of the UDDS cycle is considered, i.e. ˆSOC(0) = 0.2 and the
battery starts at full charge. The RMS of the SOC estimation
errors are 5.4 · 10−6 when the battery is fresh and 7.2 · 10−5

after aging.
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Fig. 4. Error between the measured voltage eb and the estimated
voltage êb at the beginning of the battery life (top) and after 200 cycles
(bottom) for the UDDS driving cycle test.
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Fig. 5. Real (blue, continuous) and estimated (red, dashed) state of
charge for the UDDS test after 200 cycles.

Figure 6 shows the effectiveness of the proposed battery
capacity estimation also starting with different initial condi-
tions. For the case after 200 cycles the enabling conditions
are zero for a longer initial time interval because of the much
shorter CC phase. The convergence time evaluated when the
enabling conditions are active is about 150 s for all tests. The
steady-state errors of the estimated capacities with respect
to the benchmarks is less than 0.02 A h, i.e., 0.44% in all
scenarios, thus confirming the accuracy and the robustness of
the estimations.

The estimated quadratic functions which approximate the
R0(SOC) maps are shown in Fig. 7. The initial conditions of
the estimator are β̂j(0) = 0, j = 0, 1, 2. The RMS errors of the
estimated values with respect to the corresponding benchmarks
obtained from the HPPC tests are 2.2 · 10−3 for the fresh
battery and 6.9 · 10−3 after aging.
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Fig. 6. Battery capacity Q̂ for the UDDS driving cycle test evaluated with
initial conditions Q̂(0) = 3.1Ah and Q̂(0) = 6.1Ah at the beginning
of battery life (blue, continuous) and after 200 cycles (red, dashed), for
the UDDS driving cycle test. The corresponding benchmark values are
represented with dashed-dotted lines, blue and red, respectively.

The approximation of the OCV (SOC) map is chosen with
a fifth order polynomial with initial conditions α̂0(0) = 2.6 V
and α̂p(0) = 0, p = 1, . . . , 5. The parameters estimation
captures the variation of the OCV (SOC) due to the battery
aging, so as shown in Fig. 8. The RMS error of the polynomial
approximations are 5.9 · 10−3 when the battery is fresh and
1.5 · 10−2 after aging with 200 cycles.
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Fig. 7. Internal resistance characteristic R0(SOC) obtained with the
UDDS driving cycle test at the beginning of battery life (blue) and after
200 cycles (red). The corresponding benchmark values are represented
with stars, blue and red, respectively.
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Fig. 8. ˆOCV vs SOC evaluated at the beginning of battery life (blue,
continuous) and after 200 cycles (red, dashed), for the UDDS driving
cycle test. The corresponding benchmark values are represented with
dashed-dotted lines, blue and red, respectively.

D. Performance comparison
The effectiveness of the proposed strategy is shown through

a comparison with the co-estimation technique proposed
in [18]. The estimated R1 and C1 are practically the same
as those we obtained with the technique described in Subsec-
tion III-E. Table I summarizes the results for a performance
comparison. In particular, four tests with the UDDS driving
cycle have been carried out: fresh (first and second rows) and
aged (third and fourth rows) battery; our approach (first and
third rows) and the comparative technique (second and fourth
rows in light grey). The performance indices are the following:
π1 is the RMS error for the SOC estimation; π2 and π3
are the convergence time and the RMS error, respectively,
of the estimated internal resistance; π4 is the RMS error for
the estimation of the OCV (SOC) map; π5 is the percentage
relative error for the estimated battery capacity.

TABLE I
PERFORMANCE COMPARISON (SEE THE COMMENT ON THE TABLE FOR

THE NOMENCLATURE).

π1 π2 π3 π4 π5
5.4 · 10−6 1521 s 2.2 · 10−3 5.9 · 10−3 0.4%
5.6 · 10−6 1527 s 2.9 · 10−3 − −
7.2 · 10−5 1521 s 6.9 · 10−3 1.5 · 10−2 0.2%
7.0 · 10−5 1577 s 31.0 · 10−3 4.4 · 10−2 4.7%

The values of π1 show that the estimations of SOC obtained
with the two strategies are very close in both scenarios
due to the similar structure of the SOC observer used in
the two techniques. The most important advantage of the
proposed approach for a fresh battery (first and second rows
of Table I) is the fact that in our framework the OCV (SOC)
characteristic and the capacity are estimated online while the
benchmark values are used for implementing the comparative
technique, i.e., π4 and π5 in the second row are null. The
superiority of our technique becomes more evident in the

presence of variations of the parameters due to aging and
battery usage (third and fourth rows of Table I): the SOC
estimation error π1 is practically the same while all the other
indices πi, i = 2, . . . , 5, are much better with our approach.

The advantages of using the proposed enabling conditions
has been verified during a charging phase. In particular,
without (22) an increase of more than 60% of the convergence
time for the parameters of the OCV (SOC) and R0(SOC)
characteristics is obtained.

VI. CONCLUSION

The co-estimation of SOC together with the battery ca-
pacity, the OCV (SOC) and R0(SOC) maps and the other
ECM parameters are key for any effective battery management
strategy. In this paper, we have proposed an integrated estima-
tion strategy which combines a model based SOC observer
and RLS techniques for the estimation of the battery model
parameters. The algorithm is activated by logic conditions
aimed at capturing the operating conditions of interest for the
estimation procedure. The use of moving average functions
in the enabling strategy allows one to rule out the operating
conditions in which the current is too small or large current
variations appear in a very short time interval and/or the
battery relaxation phenomenon occurs. Experimental data have
been used to show the effectiveness of the proposed solution
for realistic driving cycles over battery life. Future research
will focus on extending the proposed strategy by considering
the thermal effects too and the explicit dependence of the
internal resistance on current rate and frequency.
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