This paper describes the experimental dataset of lithium-ion battery cells subjected to a typical electric vehicle discharge profile and periodically characterized through diagnostic tests. Data were collected at the Stanford Energy Control Laboratory, at Stanford University.

The INR21700-M50T battery cells with graphite/silicon anode and Nickel-Manganese-Cobalt cathode were tested over a period of 23 months according to the Urban Dynamometer Driving Schedule (UDDS) discharge driving profile and the Constant Current (CC)-Constant Voltage (CV) charging protocol designed at different charging rates – ranging from C/4 to 3C.

Ten (10) cells are tested in a temperature-controlled environment (23°C). A periodic assessment of battery degradation during life testing is accomplished via Reference Performance Tests (RPTs) comprising of capacity, Hybrid Pulse Power Characterization (HPPC), and Electrochemical Impedance Spectroscopy (EIS) tests. The dataset allows for the characterization of battery aging under real-driving scenarios, enabling the development of models and management strategies in electric vehicle applications.
<table>
<thead>
<tr>
<th>Subject</th>
<th>Electrical and Electronic Engineering.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specific subject area</td>
<td>EV Real-driving and diagnostic tests of lithium-ion batteries.</td>
</tr>
<tr>
<td>Type of data</td>
<td>Table.</td>
</tr>
<tr>
<td>How data were acquired</td>
<td>Hardware:</td>
</tr>
<tr>
<td></td>
<td>• Arbin Instruments LBT21024 and Arbin measurement system;</td>
</tr>
<tr>
<td></td>
<td>• Amerex IC500R thermal chamber;</td>
</tr>
<tr>
<td></td>
<td>• Gamry EIS 1010E;</td>
</tr>
<tr>
<td></td>
<td>• T-type thermocouple sensor, Omega.</td>
</tr>
<tr>
<td></td>
<td>Software:</td>
</tr>
<tr>
<td></td>
<td>• MITS Pro software and Data Watcher.</td>
</tr>
<tr>
<td>Data format</td>
<td>Raw and processed data.</td>
</tr>
<tr>
<td>Description of data collection</td>
<td>The Arbin system supplies the user-defined current profile to the battery cell and records the output voltage. A cycle is defined by the following Steps 1 to 6:</td>
</tr>
<tr>
<td></td>
<td>1) CC charge at a constant C-rate of C/4, C/2, 1C and 3C until 4V;</td>
</tr>
<tr>
<td></td>
<td>2) CV charge until current reaches the cutoff value of 50mA;</td>
</tr>
<tr>
<td></td>
<td>3) charge at C/4 until the cutoff voltage of 4.2V is reached (corresponding to 100% SOC);</td>
</tr>
<tr>
<td></td>
<td>4) CV charge until current reaches the cutoff value of 50mA followed by 30 minute rest;</td>
</tr>
<tr>
<td></td>
<td>5) CC discharge at C/4 to bring the battery at 80% SOC;</td>
</tr>
<tr>
<td></td>
<td>6) UDDS discharge to 20% SOC. Steps 1. to 6. are repeated.</td>
</tr>
<tr>
<td></td>
<td>After either 25 or 50 cycles (consisting in Step 1. to 6.), RPTs, i.e., capacity test, EIS, and HPPC, are performed. The capacity test is performed at C/20 from a fully charged (i.e., 100%SOC) battery. To monitor the battery impedance as a function of the SOC and throughout the aging, EIS is performed at 20, 50, and 80% SOC. The temperature of the cells is regulated to 23°C via the Amerex IC500R thermal chamber. In both raw and processed data, negative current defines discharge and positive current defines charge.</td>
</tr>
</tbody>
</table>
Data source location
Institution: Stanford Energy Control Lab, Energy Resources Engineering Department, Stanford University.
City, State: Stanford, California.
Country: United States of America.
Latitude and longitude for collected samples/data: (37.426666918636386, -122.17397631867011).

Data accessibility
Repository name: Dataset_SECL_INR21700-M50T
Data identification number (permanent identifier, i.e. DOI number): osf.io/qsabn
Direct link to the dataset: https://osf.io/qsabn/?view_only=2a03b6c78ef14922a3e244f3d549de78

Value of the data
- The experimental campaign collects real-driving and diagnostic tests for ten INR21700-M50T NMC battery cells tested at 23°C and charged according to Constant Current (CC)-Constant Voltage (CV) charging protocol with CC charging rates of C/4, C/2, 1C and 3C.
- The discharging aging experiments are designed to mimic a typical electric vehicle real-driving pattern in the form of Urban Dynamometer Driving Schedule (UDDS) that brings the battery State of Charge (SOC) from 80% to 20%.
- Reference Performance Tests (RPTs), in the form of capacity test, Hybrid Pulse Power Characterization (HPPC), and Electrochemical Impedance Spectroscopy (EIS), are performed periodically to evaluate the cell degradation.
- The dataset provides EV real-driving aging cycling data that can enable robust development and fine-tuning of battery aging models for health estimation strategy design and model-based diagnostic methods.
- To the best of the authors’ knowledge, this dataset is the first of its kind as it provides battery aging data from EV real-driving scenarios.

1. Data description

The dataset is composed of EV real-driving profiles and RPTs for ten INR21700-M50T NMC cells over a period of 23 months. Technical specifications of the cells are summarized in Table 1.

To reproduce the aging experienced by the lithium-ion cells during real-world EV operation, the charging/discharging profiles shown in Figure 1 were used. A Cycle is composed by the sequence of 6 steps, listed in Table 2. A Cycle starts with a CC charge performed at a C-rate of C/4, C/2, 1C, or 3C, as specified in the second column of Table 3 (Step 1). Once the battery voltage reaches 4V, a CV phase starts (Step 2) until the current goes below 50mA. Next, Step 3 (CC at C/4) and Step 4 (CV) are designed to bring the battery to 4.2 V, corresponding to 100% SOC. Step 5 is used to discharge the battery from 100% to 80% SOC at C/4 constant current. In Step 6, a concatenation of UDDS cycles is used to discharge the battery from 80% to 20%. The driving profile is the same used in Figure 6 of [3] normalized to the cell capacity used in this
Manufacturer: LG Chem
Model: INR21700-M50T
Positive electrode: LiNiMnCoO2
Negative electrode: graphite and silicon [1]
Size (diameter × length): 21.44mm × 70.80mm
Weight: 69.25g
Nominal capacity (Q_{nom}): 4.85Ah
Nominal voltage: 3.63V
Charge cutoff voltage: 4.2V
Discharge cutoff voltage: 2.5V
Cutoff current: 50mA

Table 1: Technical specifications INR21700-M50T NMC cell [2].

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Exit condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CC charge at C-rate specified in the second column of Table 3</td>
<td>4V is reached</td>
</tr>
<tr>
<td>2</td>
<td>CV charge</td>
<td>Current below 50mA</td>
</tr>
<tr>
<td>3</td>
<td>CC charge at C/4</td>
<td>4.2V is reached</td>
</tr>
<tr>
<td>4</td>
<td>CV charge followed by 30 minute rest</td>
<td>Current below 50mA</td>
</tr>
<tr>
<td>5</td>
<td>CC discharge at C/4</td>
<td>20% discharged capacity (80% SOC)</td>
</tr>
<tr>
<td>6</td>
<td>UDDS discharge</td>
<td>60% discharged capacity (20% SOC)</td>
</tr>
</tbody>
</table>

Table 2: Description of the experimental Cycle.

work. After each RPTs, the cells are brought to 100% SOC via 1C CC charge followed by CV until the current is below 50mA and left at rest for one hour (see, Figure 1 the plot for $N = 1$).

The diagnostic tests, i.e., capacity, EIS, and HPPC tests, are run periodically (for the majority of the cells every 25 cycles, see Table 3). Capacity test, performed at C/20 discharge from a fully charged cell, is used to evaluate the cell discharged capacity, HPPC is used to evaluate the battery high frequency resistance at different SOC, and EIS is performed to assess the battery impedance between 0.01Hz and 10kHz at 20%, 50%, and 80% SOC.

Aging leads to a reduced discharged capacity and increased impedance, as shown from capacity tests in Figure 2(a) and EIS tests Figure 2(c), respectively. At the same time, from the HPPC tests in Figure 2(b) one can observe an accentuated voltage drop due to increased impedance at low SOC as the aging progresses. Plots of Figure 2 are for cell W8.

Table 3 reports on the total RPTs performed on the tested cells until February 1st, 2022 at various C-rate during charging. Between one diagnostic test and the next, cells are cycled according to the procedure described in Figure 1. For each RPT, the number of cycles reached by the cell is reported. The first RPT (#1) is performed before starting the aging cycling campaign and provides information on the pristine cells. For cells W5, W8, W9, and W10 9 diagnostic
Fig. 1: First three cycling profiles for cell W8 after the first RPT. According to Table 3, charging is performed at C/2. The charging profile for $N = 1$ is such that the battery is charged at 1C CC until voltage reaches 4.2V, then one hour of rest time follows the CV charging. In the cycles $N = 2$ and $N = 3$, instead, the charging profiles follow the protocol outlined in Step 1 through 4 of Table 2. In the zoomed window, the 6 steps for the Cycle are streamlined, as defined in Table 2. Positive and negative currents are for discharge and charge, respectively.

tests were performed. Cell W4, G1, V4, and V5 have a lower number of RPTs because the aging campaign was started later. A few off-trend situations have been recorded. The calculated impedance of W3 from the HPPC test was approximately twice as high as the impedance of the other cells, which led to the aging campaign for this cell to be terminated. In the case of cell W7, tests were stopped because impedance measurements exhibited inconsistencies, wherein a lack of any physically meaningful trend was observed as the cell aged.

For each cell, discharged capacities are calculated from the capacity tests performed at each RPT. The discharged capacity, measured in Ah, and normalized with respect to Q_{nom} (defined as in Table 1), is computed integrating the current $I(t)$ with respect to time:

$$Q_{dis} = \frac{1}{3600} \int I(t) \, dt \times 100 \quad [\%]$$

(1)

with 3600 the seconds to hours conversion factor. Capacity tests are performed at C/20 CC with $I(t)$ constant and equal to 0.24A. Discharged capacity curves for each cell are shown in Figure
Table 3: Cells label, test charging condition, temperature and diagnostic test number. For each diagnostic test, the number of cycles experienced by the cell is reported. All cells are tested at 23°C.

3(a).

1.1. Dataset structure

The dataset provides both raw (.xlsx) and processed (.mat) data. Raw data are saved in excel spreadsheets, that can be be used to extract raw diagnostic and cycling data. The main limitation of using the raw data is the large size (248.9GB for the whole dataset), that prevents fast data analysis and processing. To allow for fast data analysis, relevant signals are extracted from raw data and saved in .mat files, this operation reduces the size of the overall dataset down to 93.7%. It is worth mentioning that data inside .mat files are neither filtered nor resampled.

The dataset folder, available online (as specified in the “Data accessibility” field), is structured as in Figure 4. The parent folder Dataset_SECL_INR21700-M50T has two sub-directories: cycling_tests and diagnostic_tests.

The folder cycling_tests contains the aging cycling data for all the cells. Cycling data are divided into the folders Cycling_# (with # = 1,...,8). Each folder Cycling_# collects both raw data, divided by cell (i.e., G1, V4, etc.), and processed data, inside _processed_mat. Raw cycling tests are composed of several .xlsx files, that must be merged for the analysis. The .mat files are obtained after merging raw .xlsx files and are available to the user. Inside the folder _processed_mat, the Matlab script data_analysis.m is provided to plot voltage and current profiles.

As shown in Figure 4 (bottom), between two cycling folders, RPTs are performed and collected into diagnostic_tests. Raw data for each RPT are divided into folders named Diag_# (with # = 1,...,9). For example, the diagnostic test #1 in Table 3 corresponds to Diag_1. Each folder Diag_# contains capacity, EIS, and HPPC tests inside the subfolders Capacity_test, EIS_test, and HPPC_test, respectively. The subfolder _processed_mat inside diagnostic_tests collects the processed .mat files and the Matlab file data_analysis.m for the analysis of voltage, current, and impedance.
2. Experiment Design, Materials, and Methods

Cycling and diagnostic experiments are performed with the equipment available at the Stanford Energy Control Lab (Figure 5). Both cycling and diagnostic tests are designed with the MITS Pro software[^1], which allows to define protocols, i.e., the sequence of steps to be followed in order to perform an experiment. The DAQ[^2] is interfaced with Arbin LBT21024[^3], which generates and inputs the desired current profile to the ten INR21700-M50T NMC cells tested and measures the output voltage. Each cell is tested inside the Amerex IC500R thermal chamber[^4] and instrumented with a T-type thermocouple to measure the surface temperature in the center location. The Gamry EIS 1010E is connected to the Arbin LBT21024 and MITS Pro (via USB link) and used to perform EIS tests at different SOC, namely, 20, 50, and 80%[^5].

Each test is exported in .xlsx files, raw data structures that can be conveniently converted into .mat files.

3. Ethics Statement

Hereby, we Simona Onori, Anirudh Allam, and Gabriele Pozzato assure that for the manuscript Lithium-ion battery aging dataset based on electric vehicle real-driving profiles the following is fulfilled:

1. This material is the authors’ own original work, which has not been previously published elsewhere.
2. The paper is not currently being considered for publication elsewhere.
3. The paper reflects the authors’ own research and analysis in a truthful and complete manner.
4. The results are appropriately placed in the context of prior and existing research.
5. All sources used are properly disclosed. Literally copying of text must be indicated as such by using quotation marks and giving proper reference.
6. All authors have been personally and actively involved in substantial work leading to the paper and will take public responsibility for its content.

4. Declaration of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

5. Credit author statement

Gabriele Pozzato: analyzed the data, prepared the dataset, and wrote the paper; Anirudh Allam: run the experimental campaign; Simona Onori: conceived the experimental campaign and edited the paper.

Acronyms

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC</td>
<td>Constant current</td>
</tr>
<tr>
<td>CV</td>
<td>Constant Voltage</td>
</tr>
<tr>
<td>DAQ</td>
<td>Data acquisition system</td>
</tr>
</tbody>
</table>
Acknowledgment
The research presented within this paper is supported by the Bits and Watts Initiative within the Precourt Institute for Energy at Stanford University. The authors would like to thank Edoardo Catenaro for setting up the experimental campaign in 2020 [4].

References

Fig. 2: RPTs for cell W8: (a) capacity test at C/20 CC, (b) HPPC, and (c) EIS at 50% SOC. Light-blue arrows indicate where the signals move upon aging. In (b), positive current indicates discharge and negative current charge, respectively.
Fig. 3: (a) capacity fade curves for the tested cells. Discharged capacities are computed from capacity tests according to Equation (1). In the bottom, the distribution of the discharged capacity for pristine cells (diagnostic test #1).
Interpretation

Dataset_SECL_INR21700-M50T

Diag_#: diagnostic tests
Cycling_#: cycling tests

_processed_mat: processed .mat files
_Diag_1
_Diag_2
...
Fig. 5: Equipment available at the Stanford Energy Control Lab (https://onorilab.stanford.edu/).