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ABSTRACT Electrochemical model-based observers for battery state estimation play an important role
in advanced battery management system design to provide accurate real-time estimates of unmueasurable
critical internal variables. In this work, the observability of an electrochemical battery model is studied
through a thorough nonlinear observability analysis to quantify the measure of observability, and therefore
the quality of estimated variables, by accounting for the rank and the condition number of the observability
matrix. The paper highlights the need for nonlinear observability analysis instead of a linearized analysis,
and the practical aspects of the electrochemical model’s observability are investigated and quantified for
different input conditions, electrode’s chemistry, and discretization grid points.

INDEX TERMS battery state estimation, condition number test, lithium-ion battery, nonlinear observability
analysis, rank test, single particle model.

NOMENCLATURE

A Cell cross sectional area [m2].
Ds,j Solid phase diffusion [m2/s].
F Faraday’s constant [C/mol].
Ibatt Applied current [A].
κ(O) Condition number of matrix O.
Lj Domain thickness [m].
Lsei SEI layer thickness [m].
Msei Molar mass of SEI layer [kg/mol].
N Number of radial discretization grids.
O Observability matrix.
Rg Universal gas constant [J/mol-K].
Rj Particle radius [m].
Rl Lumped resistance [Ω].
Tref Reference temperature [oC].
Uj Open circuit potential [V].
as,j Specific interfacial surface area [m−1].
ce,0 Average electrolyte phase concentration

[mol/m3].

cs,j Solid phase concentration [mol/m3].
cs,j,surf Surface concentration [mol/m3].
cs,j,max Maximum solid phase concentration [mol/m3].
i0,j Exchange current density [A/m2].
iint,j Intercalation current density [A/m2].
kj Reaction rate constant [m2.5/s-mol0.5].
n Size of the state vector.
r Radial coordinate.
t Temporal coordinate.
u Input to the state-space system.
x State vector.
y Output of the state-space system.
αa Anodic transfer coefficient.
αc Cathodic transfer coefficient.
εj Active volume fraction of solid phase.
ηj Overpotential [V].
Subscript j Refers to negative or positive electrode.
Subscript n Refers to negative electrode.
Subscript p Refers to positive electrode.
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I. INTRODUCTION

THE growing market of lithium-ion batteries in consumer
electronics, automobiles, unmanned aerial vehicles, and

power grid sector grids has stressed the need and rele-
vance for a properly designed advanced Battery Management
System (BMS) that can ensure the battery’s reliability and
performance [1]. One of the key aspects of an advanced
BMS is monitoring critical battery variables of interest such
as State of Charge (SOC) and State of Health (SOH) [2]–
[4], which remain non-measurable via sensors, and use this
information to devise on-line control strategies to utilize the
batteries safely and effectively. The BMS relies on model-
based or data-driven estimation algorithms to “observe" these
unmeasurable variables [5]. In the case of model-based es-
timation, the algorithm uses available input/output sensor
information (current, voltage, and temperature) along with
a mathematical representation of the battery to estimate, as
accurately as possible, the internal battery state variables [6].
The accuracy of these estimates, however, largely depends
on the accuracy and fidelity of the battery model [1]. The
very first on-line BMS algorithms were relying on empirical
and highly calibrated equivalent circuit battery models [6],
[7], whereas the latest trend is to rely on the more accurate
electrochemical dynamics of the battery to retain relevant
physics for accurate state estimation [1]. Consequently, the
choice of models has largely gravitated from empirical equiv-
alent circuit models towards physics-based electrochemical
models that are capable of capturing the battery behavior
more accurately.

A. RELATED LITERATURE
Plenty of research has been carried out on electrochemical
model-based closed-loop observers/estimators that estimate
the battery internal states [8]–[18], such as the solid phase
lithium concentration from which the battery SOC is then
derived. The first step towards developing a model-based
observer for any dynamic system is to verify the observability
property of the model. This property corroborates if there
exists a relationship between the model states to be esti-
mated and the available input/output measurements. Hence,
it follows that observability of a system is a property that
guarantees that its internal states can be uniquely inferred
based on available measurements.

In one of the earliest defining works on battery state es-
timation, the issues with observability in an electrochemical
model are discussed and attributed to the peculiar structure of
the output voltage equation, which led to weak observability
when estimating the individual lithium concentration in the
positive and negative electrode [9]. In order to overcome
the issues of weak observability, different methods to es-
timate the lithium concentration in a single electrode or
both electrodes were presented in the literature ranging from
imposing an algebraic constraint on lithium conservation [9],
single electrode observers [12], inclusion of thermal model
and measurements [15], and interconnected observers [16].
Despite the abundance of such electrochemical model-based

closed-loop observers, there is only a fleeting emphasis on
the observability analysis of this model. Clearly, the weak ob-
servability of the electrochemical model is taken for granted,
and there has been no attempt to delve deep and present a
thorough observability analysis for different conditions such
as zero current, constant current, and dynamic current input
scenarios. In addition, it is neither apparent nor has it been
reported in the literature how the observability of this model
changes based on the positive electrode’s chemistry, which
can alter the steepness or flatness of the nonlinearities in the
output voltage equation. Further, the electrochemical model
is characterized by Partial Differential Equations (PDEs)
which are discretized into a system of Ordinary Differential
Equations (ODEs) for developing observers. Hence, it is
paramount to understand how the observability property re-
mains the same or deteriorates as the number of discretization
grid points change causing the sparsity of the system to
increase.

Evidently so, there is a need for a detailed observabil-
ity analysis of a nonlinear electrochemical model. In the
literature, observability analysis has been carried out on a
linearized electrochemical model [19], however, it is under-
stood that the nonlinear observability analysis at an operating
point is not the same as the observability of the linearized
system around that operating point [20]. More importantly,
nonlinear observability analysis takes the system inputs and
its derivatives into account, as opposed to the analysis for
linear or linearized systems [21], [22]. Neglecting the effect
of input renders the observability analysis on linearized sys-
tems to be incomplete, and therefore inadequate. Hence, the
proper evaluation of observability analysis/observer design
for nonlinear battery system over its linearized dynamics is
preferred.

Generally speaking, observability analysis, traditionally,
has been accompanied with the rank test of the observability
matrix in both, linear and nonlinear, systems. It is understood
that the rank test verifies whether the system is observable
or not, but does not comment on the quality of the observ-
ability. Studies have shown that the condition number of the
observability matrix is key to determining the quality of the
estimated internal states [12], [23]–[25]. There are situations
where the system is deemed observable but the quality of the
estimates could be poor enough to not warrant an observer
design, which, as it will be revealed in the following sections,
is the case with the electrochemical model when estimating
the lithium concentration in both electrodes.

B. CONTRIBUTIONS
From Section I-A, it emerges that there is a gap to be
addressed with respect to carrying out a thorough nonlinear
observability analysis of an electrochemical model. To that
end, this work aims to contribute to the existing literature
by (i) presenting a holistic nonlinear observability analysis
by taking into consideration the rank test and the condition
number, (ii) demonstrating that the nonlinear observability
analysis of electrochemical model carries more information
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than its linearized observability analysis counterpart, (iii)
evaluating the observability for different electrode chemistry,
(iv) evaluating the observability for diverse input condi-
tions (such as zero current and constant current of differing
magnitudes), and (v) studying the effect on observability
due to PDE to ODE spatial discretization grid points. In
addition, the improvement in observability brought about by
implementing an alternate observer design structure, such
as the novel interconnected observer [16], [17], is studied
and recommendations regarding the order of model-based
observers and future research directions are discussed.

C. OUTLINE

The remainder of this paper is organized as follows. In Sec-
tion II, the notations used in this paper are laid out. In Section
IV, the governing equations describing the electrochemical
model and its state space representation are presented. Sec-
tion III introduces the notion of observability for nonlinear
systems and discusses the rank and condition number to de-
termine the quality of observability. In Section V, the nonlin-
ear observability analysis of the electrochemical is described.
Section VI presents the results of the nonlinear observability
analysis and discusses the dependency of the observability
on input current conditions and positive electrode’s chemistry
and highlights the difference between nonlinear observability
analysis and linearized observability analysis. Moreover, the
observability issues with estimating lithium concentration
in both electrodes is emphasized and the improvement in
observability brought about by a choice of observer from
the literature, in the form of an interconnected observer, is
presented. This is followed by the discussion reflecting on
the impact and outlook of the presented work in Section VII
and the conclusions in Section VIII.

II. PRELIMINARIES

The following notations and symbols are used in the paper:

• ||·|| is the Euclidean norm; for a square matrix
A ∈ Rn×n, the Euclidean norm is ||A|| =√∑n

p=1

∑n
q=1(apq)2, where apq are the elements of

the matrix A, and p, q refer to the rows and columns
of the matrix.

• The gradient of a scalar function h(x) : Rn → R is
∂h

∂x
,

denoted as Oh.
• Subscript j denotes the domain in the lithium-ion bat-

tery, negative (n) or positive electrode (p), j ∈ [n, p].

Definition 1: Let h : Rn → R be a smooth scalar function
and f : Rn → R be a smooth vector field, then the
Lie derivative of h with respect to f is a scalar function
interpreted as differentiation of function h in the direction
of the vector f defined as

Lf (h) = Ohf. (1)

Definition 2: For any general nonlinear system given by

ẋ = f(x, u)

y = h(x, u), (2)

where h : Rn×R→ R and f : Rn×R→ R, the derivatives
of the output can be represented using Lie derivatives as

y = L0
f (h) = h(x, u)

ẏ = L1
f (h) =

∂L0
f (h)

∂x

dx

dt
+
∂L0

f (h)

∂u

du

dt

ÿ = L2
f (h) =

∂L1
f (h)

∂x

dx

dt
+
∂L1

f (h)

∂u

du

dt
+
∂L1

f (h)

∂u̇

d2u

dt2
....

(3)

III. OBSERVABILITY OF NONLINEAR SYSTEMS

In this work, we consider a class of dynamics systems, which
is linear in its states and nonlinear in the output, of the form{

ẋ = f (x, u) = Ax+Bu

y = h (x, u) ,
(4)

where x ∈ Rn denotes the internal system state variables,
u ∈ Rp denotes the inputs to the system, y ∈ Rm are
the system outputs, and h is a smooth continuous nonlinear
function.

Definition 3: The system in (4) is locally weakly observable
at x0 if there exists a neighborhood D containing x0 such
that for every state x1 ∈ D (where x0 6= x1), the inequality
h(x0, u) 6= h(x1, u) holds true for some finite t > 0.

Definition 4: The system is locally weakly observable if it is
locally weakly observable for all initial states.

Remark 1: For the nonlinear system given in (4), the deriva-
tives of the output can be represented using the Lie deriva-
tives as given in (5).

A. RANK TEST

Observability is a fundamental structural property of the
system that guarantees that the initial internal states of a
system can be reconstructed based on input and output sensor
measurements. It follows that if a system is observable, then
the internal state variables can indeed be estimated using the
input and output measurements, and an observer is designed
for the system. The standard approach to address nonlinear
observability utilizes constructs from differential geometry
to check the rank condition as introduced in [21].

Theorem 1: [21] The system (4) is locally weakly observable
at x0 if

rank (O) = n, (6)
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y
dy

dt
d2y

dt2
...

 =



h(x, u)
∂h

∂x

dx

dt
+
∂h

∂u

du

dt

∂

(
∂h

∂x

dx

dt
+
∂h

∂u

du

dt

)
∂x

dx

dt
+

∂

(
∂h

∂x

dx

dt
+
∂h

∂u

du

dt

)
∂u

du

dt
...



=


L0
f (h)

L1
f (h)

L2
f (h)
...

 =



L0
f (h)

∂L0
f (h)

∂x
(Ax+Bu) +

∂L0
f (h)

∂u
u̇

∂L1
f (h)

∂x
(Ax+Bu) +

∂L1
f (h)

∂u
u̇+

∂L1
f (h)

∂u̇
ü

...


. (5)

whereO is a matrix constructed from the gradient of the n−1
Lie derivatives evaluated at x0 given by

O =
d

dx


L0
f (h)

L1
f (h)
...

Ln−1
f (h)


x0

. (7)

B. CONDITION NUMBER TEST
The observability rank test essentially determines whether
the system is weakly locally observable. However, it does
not inform about the accuracy or quality of the estimates. To
that end, the condition number of the observability matrix
is considered as a measure of the system’s observability,
which quantifies the quality of estimates that can be inferred
from the input and output measurement data. The condition
number at a given operating point x0 is given by

κ(O) = ||O−1||||O||. (8)

In general, the condition number of a matrix indicates how
poorly conditioned and close to being singular the matrix is.
Therefore, a high condition number indicates that the errors
in measurements are amplified and result in state estimates
with large errors.

IV. BATTERY ELECTROCHEMICAL MODEL
In this work, a Single Particle Model (SPM) is chosen as the
electrochemical dynamic representation of the a lithium-ion
battery cell, as shown in Fig. 1. The SPM is a reduced-order
physics-based electrochemical model that approximates its
electrodes as spherical particles, assumes uniform current
distribution, and neglects electrolyte dynamics, thereby at-
taining a trade-off between computational complexity and
accuracy, hence making it suitable for real-time observer
and controller design. In this section, the SPM governing
laws describing the battery dynamics and its subsequent state
space representation are detailed.

FIGURE 1: Schematic of a Single Particle Model with both
its electrodes represented as spherical particles each.

A. GOVERNING EQUATIONS

The diffusion dynamics of lithium resulting due to the con-
centration gradient within the solid phase (j ∈ [p, n]) is given
by Fick’s law as

∂cs,j
∂t

= Ds,j

[
2

r

∂cs,j
∂r

+
∂2cs,j
∂r2

]
, (9)

where t and r are the temporal and radial coordinates,
respectively, j ∈ [p, n] represents the positive or negative
electrode, cs,j is the lithium ion concentration in the solid
phase of each electrode, and Ds,j is the diffusion coefficient.
The Neumann boundary conditions for the above Partial
Differential Equation (PDE) are defined for the concentration
at the center (r = 0) and the surface (r = Rj) of the
solid phase (where Rj is the radius of the spherical particle).
The flux of lithium ions at the center is zero, and the flux
at the surface is equal to the rate at which lithium ions are
being transported between the solid and electrolyte phase as
described below:

∂cs,j
∂r

∣∣∣
r=0

= 0
∂cs,j
∂r

∣∣∣
r=Rj

= ± Ibatt
Fas,jDs,jALj

,
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where Ibatt is the battery current, F is Faraday’s constant, A
is the cell cross-sectional area, Lj is the electrode thickness,
and as,j is the electrode electroactive surface area.

In lithium-ion batteries, the intercalation/de-intercalation
reactions occur at the surface of the particle, which induces
a charge transfer at the solid-electrolyte interface. In electro-
chemistry, this kind of interfacial charge transfer is assumed
to obey the Butler-Volmer equation, which describes the rate
of the reaction. The Butler-Volmer equation is expressed as

iint,j = i0,j

[
exp

(
αaFηj
RgT

)
− exp

(
αcFηj
RgT

)]
, (10)

which relates the intercalation current density iint,j at an
electrode to the overpotential ηj and the lithium concentra-
tion in the solid and electrolyte phase. Assuming the same
anodic and cathodic transfer coefficients (αa = αc = 0.5),
and uniform distribution of applied current into each elec-

trode
(
iint,j =

Ibatt
as,jALj

)
, the approximated Butler-Volmer

equation allows the overpotential of each electrode to be
modeled as

ηj =
RgT

0.5F
sinh-1

(
Ibatt

2as,jALji0,j

)
, (11)

where i0,j = Fk
√
ce,0cs,j,surf (cs,j,max − cs,j,surf ) is the

exchange current density, Rg is the universal gas constant,
ce,0 is the average electrolyte concentration, cs,j,max and
cs,j,surf are the maximum solid phase concentration and
surface concentration of both electrodes, respectively.

The equation for the terminal voltage of the battery is then
given by

V = Up (cs,p,surf ) + ηp (cs,p,surf , Ibatt)− Un (cs,n,surf )−
ηn (cs,n,surf , Ibatt)− IbattRl (12)

where Rl is the lumped contact resistance and Uj is the
open circuit potential of each electrode as a function of their
respective surface concentration.

B. STATE SPACE MODEL

The PDE describing the solid phase diffusion in (9) is radi-
ally discretized into N + 1 concentration nodes via Finite
Difference Method (FDM) to obtain a system of coupled
ODEs, which are presented as a general state space model
for the ease of understanding and numerical implementa-
tion. Let x = [x1, x2]

T ∈ R2N be the state vector,
u = Ibatt be the input current, and y = V be the
output voltage of the model. The state variables represent
lithium concentration in the discretized nodes of positive
and negative electrode, x1 = [cs,p,1, cs,p,2, . . . , cs,p,N ]

T and
x2 = [cs,n,1, cs,n,2, . . . , cs,n,N ]

T , respectively. Moreover,
the surface concentration in both electrodes is given as
x1,N = cs,p,surf , x2,N = cs,n,surf , respectively. Finally, the

state space formulation is

ẋ1 (t) = A11x1 (t) +B1u (t)

ẋ2 (t) = A22x2 (t) +B2u (t)

y(t) = Up (x1,N ) + ηp (x1,N , u)− Un (x2,N )−
ηn (x2,N , u)−Rlu, (13)

where the elements of the matrices A11, A22 ∈ RN×N are
the coefficients of the concentration states and the elements
of the column vectors B1, B2 ∈ RN×1 are coefficients of the
input current, described below

A11 =
Ds,p

∆2
r


−2 2 0 · · · 0 0
1/2 −2 3/2 · · · 0 0

...
...

...
. . .

...
...

0 0 0 · · · 2 −2

 (14)

B1 =
−2

∆rFas,pALp


0
0
...

N + 1

N



A22 =
1

∆2
r


−2 2 0 · · · 0 0
1/2 −2 3/2 · · · 0 0

...
...

...
. . .

...
...

0 0 0 · · · 2 −2



B2 =
2

∆rFas,nALn


0
0
...

N + 1

N

 .
Note that the state space model is linear in states but nonlin-
ear in the output expression. The linearity follows from the
assumption that the transport parameters in the solid phase
are assumed to be constant and not varying with respect to
concentration or temperature. The nonlinearity in the out-
put is due to the open circuit potential of both electrodes,
Up (x1,N ) and Un (x2,N ), which are a nonlinear function of
their respective surface concentrations, and the overpotential
of both electrodes, ηp (x1,N , u) and ηn (x2,N , u), which have
a nonlinear relationship with the respective surface concen-
trations and the input battery current.
Remark 2: For the ease of presentation, henceforth, the
variable n refers to the size of the battery state vector x ∈ Rn,
where n = 2N .

V. NONLINEAR OBSERVABILITY ANALYSIS OF SPM
The SPM given in (13) is considered for a complete nonlinear
observability analysis (in accordance with (5)) by evaluating
the observability matrix via rank and condition number tests.
The analysis will inform whether a SPM based observer is
weakly locally observable and if it can estimate the solid-
phase lithium concentration x ∈ Rn, in both the positive and
negative electrode, from the input current u ∈ R and output
cell voltage y ∈ R measurements.
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To construct the observability matrix, the Lie derivatives of
the nonlinear output function of the SPM is considered. The
0th Lie derivative of the SPM output is given by

L0
f (h) = h (x, u)

= Up (x1,N ) + ηp (x1,N , u)− Un (x2,N ) +

ηn (x2,N , u)−Rlu. (15)

The 1st Lie derivative is

L1
f (h) =

∂h(x, u)

∂x
ẋ+

∂h(x, u)

∂u
u̇

=
∂h(x, u)

∂x1,1
ẋ1,1 + . . .+

∂h(x, u)

∂x1,N
ẋ1,N+

∂h(x, u)

∂x2,1
ẋ2,1 + . . .+

∂h(x, u)

∂x2,N
ẋ2,N+

∂h(x, u)

∂u
u̇

=

[
∂h(x, u)

∂x1,1
. . .

∂h(x, u)

∂x2,N

]
ẋ+

∂h(x, u)

∂u
u̇

=

[
∂L0

f (h)

∂x1,1
. . .

∂L0
f (h)

∂x2,N

]
(Ax+Bu) +

∂L0
f (h)

∂u
u̇.

(16)

The general case of n− 1th Lie derivative produces

Ln−1
f (h) =

[
∂Ln−2

f (h)

∂x1,1
. . .

∂Ln−2
f (h)

∂x2,N

]
(Ax+Bu) +

∂Ln−2
f (h)

∂u
u̇+ . . .+

∂Ln−2
f (h)

∂u
u̇n−1. (17)

The observability matrix is constructed as the gradient with
respect to the state vector x of the above Lie derivatives,
given by

O =
d

dx


L0
f (h)

L1
f (h)
...

Ln−1
f (h)

 =


∂L0

f (h)

∂x1
. . .

∂L0
f (h)

∂xn
...

. . .
...

∂Ln−1
f (h)

∂x1
. . .

∂Ln−1
f (h)

∂xn

 .
(18)

It follows that if rank(O) = n, evaluated for all values x0 in
the state space trajectory, then the SPM is considered weakly
locally observable. Moreover, the condition number of the
observability matrix O will inform and quantify the quality
of the concentration estimates at any given operating point
x0.

VI. RESULTS AND DISCUSSION
The SPM observability matrix for the estimation of lithium
concentration in both electrodes from the input and output
measurements is given in (18). This section not only aims
at evaluating the observability of the SPM, but, more im-
portantly, aims to understand the practical aspects of de-
veloping an observer by evaluating the observability matrix
under different electrode chemistry nonlinearities, different

input conditions, and varying discretization grid points. The
following results are specifically for a lithium-ion cell with
Graphite at the negative electrode and Lithium Nickel Man-
ganese Cobalt Oxide (NMC) at the positive electrode, unless
specified otherwise. Note that the observability matrix and
condition number tests are evaluated at all possible points in
the state space trajectory, under the specified input condition.

A. NONLINEAR VS. LINEARIZED OBSERVABILITY
ANALYSIS
For nonlinear systems, the observability is defined in terms of
indistinguishability of states at every operating point x0 with
respect to the inputs. In essence, the observability property of
nonlinear systems also depends on the input, as opposed to
the analysis for linearized systems that exclusively depends
on the system matrix and the output distribution matrix. Ne-
glecting the effect of input renders the observability analysis
on linearized systems to be incorrect and incomplete.

A SPM with x ∈ Rn where n = 6 is subjected to a
constant discharge current of 1C. The observability matrix
rank and condition number from the nonlinear and linearized
observability (wherein the observability matrix is constructed
on a linearized SPM) analyses are compared in Fig. 2. For
both cases, it is observed that the observability matrix at all
possible points in the state space trajectory (in terms of SOC)
remains full rank, but the condition number is many orders
of magnitude higher in the linearized analysis case, clearly
indicating that the linearized observability matrix is close
to being singular and losing rank. On the other hand, the
nonlinear analysis with its inherent dependence on input and
its derivatives exhibits a higher condition number, thereby
providing a true picture of SPM’s observability.

B. DEPENDENCE ON INPUT CURRENT
The observability property of the SPM needs to be under-
stood in the presence and absence of current input. A SPM
with x ∈ Rn where n = 6 is subjected to a zero input and
different constant discharge current (1, 3, and 5C) conditions.
For each case, it is observed that the observability matrix at
all possible points in the state space trajectory (in terms of
SOC) remains full rank as shown in Fig. 3.a, however, the
condition number is very high in the absence of current as
witnessed in Fig. 3.b and also increases as the magnitude of
current decreases. This highlights the primary difficulty with
using SPM-based observers to estimate the concentration in
both electrodes. At steady-state, when the battery is at rest,
a single terminal voltage measurement is available at every
time step, which is to be used to estimate the open circuit
potential of the electrodes. There is no unique combination
of the electrode open circuit potentials that gives the exact
terminal voltage. Hence, the higher condition number at
steady state highlights this intrinsic challenge of estimating
individual electrode potential, and by extension, individual
electrode concentrations. Having said that, it is to be noted
that in the cases where input current is non-zero (for 1,
3, and 5C cases), the condition number is still fairly high
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FIGURE 2: Comparison between nonlinear and linearized
observability analysis for a SPM with n = 6 states under
a nominal discharge current of 1C. The rank test of the
observability matrix is in (a) and the condition number in (b).

(approximately 1010), which indicates that the accuracy of
the lithium concentration estimates in both electrodes are
poor.

C. DEPENDENCE ON DISCRETIZATION GRIDS AT
STEADY STATE

Next, one of the practical aspects of developing a SPM-
based observer is to select the discretization grid points (N ,
recall n = 2N ) while converting the original PDE battery
dynamics into a system of ODEs, such that the computational
complexity and model fidelity is compromised. To that end,
the rank of the observability matrix is evaluated for three
cases of (i) n = 4, (ii) n = 6, and (iii) n = 8 at all possible
points in the state space trajectory. At steady state, when
the input current is zero (u = Ibatt = 0), the lower bound
for the grid size is ascertained. In Fig. 3.c, it is evident that
with n = 4 that the observability matrix loses rank (rank

is 3 instead of 4) making the SPM not observable. This is
attributed to the fact that the reduced-order SPM (n = 4) has
truncated dynamics, which prevents to accurately capture the
battery dynamics, making it unsuitable for observer design.
Hence, a SPM with n ≥ 6 that captures more dynamics
(via states), and hence more information, will ensure the
observability matrix to hold a full rank. However, increasing
the discretization grid points (n ≥ 6) does not directly
translate to better observability. In Fig. 3.d, the condition
number of the observability matrix is evaluated for three
cases of (i) n = 4, (ii) n = 6, and (iii) n = 8 under
a constant discharge current of 1C. It is observed that as
the discretization grid points increase, the condition number
increases by a couple of orders of magnitude, thus making it
not preferable for observer design. Thus, there is a trade-off
to be considered when selecting the number of discretization
grid points, wherein increasing grid points (n ≥ 6) increases
the condition number but at the same time going low (n = 4)
makes the observability matrix lose rank.

D. DEPENDENCE ON POSITIVE ELECTRODE
CHEMISTRY
To generalize the nonlinear observability analysis for a SPM,
it is critical to investigate how the SPM-based observer will
function for different positive electrode’s chemistry in the
family of lithium-ion batteries. Assuming that the negative
electrode is always Graphite, the observability matrix is
evaluated for NMC, Lithium Manganese Oxide (LMO), and
Lithium Iron Phosphate (LFP). It is to be noted that the gra-
dient of the positive electrode’s open circuit potential curves,
which constitute the nonlinearities in the output voltage
equation of the SPM, are major contributors in determining
the rank and condition number of the observability matrix.
For a SPM with n = 6 under a constant discharge current
of 1C, the rank and condition number analyses are shown
in Fig. 3.d and 3.e, respectively. The plots highlight that
the observability matrix does not lose rank, however, the
condition number of LFP is orders of magnitude higher than
that of NMC and LMO. This is attributed to the flat open
circuit potential of LFP due to the two-phase region, thereby
making the gradients of the potential with respect to the
concentration to be close to zero. The flatness results in an
ill conditioned observability matrix with a higher condition
number.

E. OBSERVABILITY ISSUES AND SOLUTIONS
Clearly, from the aforepresented results, the observability of
the SPM while estimating the lithium concentration in both
electrodes, is riddled with dependencies on various factors
such as input current, discretization grids, positive electrode’s
chemistry. Moreover, it is observed nonlinear observability
analysis is more complete and informative than a linearized
one. And finally, in every case seen thus far, the observability
matrix has a very high condition number

(
≥ 1010

)
, which

translates to poor estimation accuracy. This signifies that
an observer designed to estimate the concentration in both

VOLUME 4, 2016 7



Allam et al.: Preparation for IEEE Access

0.2 0.4 0.6 0.8 1

0

1

2

3

4

5

6

7

(a)

0.2 0.4 0.6 0.8 1
10

0

10
10

10
20

10
30

(b)

0.2 0.4 0.6 0.8 1

0

2

4

6

8

(c)

0.2 0.4 0.6 0.8 1
10

0

10
10

10
20

10
30

(d)

0.2 0.4 0.6 0.8 1

0

1

2

3

4

5

6

7

(e)

0.2 0.4 0.6 0.8 1
10

0

10
5

10
10

10
15

10
20

(f)

FIGURE 3: Effect of input current (0C, 1C, 3C, and 5C) on the observability matrix (a) rank and (b) condition number for a
SPM with n = 6 states. Dependency of observability matrix’s rank on discretization grid points for SPM with n = 4 and n = 6
states at steady state in (c), and dependency of observability matrix’s condition number on discretization grids for SPM with
n = 4, n = 6, and n = 8 states under a nominal current of 1C in (d). Effect of electrode’s chemistry on the observability matrix
(e) rank and (f) condition number for a SPM with n = 6 states under a nominal current of 1C.
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electrodes, henceforth referred to as the observer for both
electrodes, from the available current and voltage measure-
ments will provide inaccurate results. Owing to this, the liter-
ature has proposed different observer schematics to overcome
this issue. Some observers are designed by assuming lithium
conservation and enforcing an algebraic relationship between
the lithium concentration of the two electrodes [9], [14],
which reduces the estimation problem down to only estimat-
ing the concentration in one electrode, thereby improving
the condition number of the observability matrix. Another
class of observers are designed for individual electrodes like
the single electrode observer [12] and the interconnected
observer [16], [17] that estimate the concentration in one
electrode in closed-loop and simulate the concentration of
the other electrode in open-loop. By choosing an electrode-
level observer structure, the condition number of the observ-
ability matrix is improved since the concentration in only
one electrode is to be estimated. This subsection aims to
quantify the improvement in the condition number of the
observability matrix brought about by choosing an observer
structure, such as the interconnected observer, by comparing
it with the observer for both electrodes seen in Sections VI-A
- VI-D.

The interconnected observer [16], [17] contains a dedi-
cated observer for each electrode (positive electrode observer
and negative electrode observer) to circumvent the observ-
ability issues (of estimating concentration in both electrodes)
with a bidirectional interconnection structure to enable con-
current estimation of lithium concentration in either elec-
trodes. Following the nonlinear observability analysis out-
lined in (5) for the positive and negative electrode observer,
the condition number of the respective observability matrices
is shown alongside the condition number of the observer for
both electrodes (under a constant current discharge of 1C)
in Fig. 4. As observed, a significant improvement is noticed
through the usage of an interconnected observer structure,
wherein the condition number for the positive and negative
electrode observers are many orders of magnitude lower (by
at least 105) than the observer for both electrodes. Note that
the condition number for the positive electrode observer is
lower than the negative electrode observer due to the steep
curve of the NMC open circuit potential as opposed to the
more flatter open circuit potential of the Graphite.

VII. IMPACT AND OUTLOOK
The nonlinear observability analysis presented in this paper
has been spurred from an interactive and thought-provoking
discussion among researchers in the field of battery con-
trol and estimation at the Advanced Battery Management
workshop held during the 59th IEEE Control Decision Con-
ference, 2020. This paper provides a systematic framework
to evaluate the observability of a nonlinear electrochemcial
model under different conditions (inputs, grid sizes, positive
electrode’s chemistry) and aid the synthesis of a model-based
observer. The substantial impact of the work includes

1) stressing the need for nonlinear observability analysis
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FIGURE 4: The condition number of the positive and neg-
ative electrode observer (from the intrerconnected observer
structure) compared to the observer for both electrodes.

instead of a linearized observability analysis. The com-
mon practice of linearized observability analysis does
not respect the nonlinearities of the system and neither
does it account for the input current and its derivatives,
thereby leading to an incomplete and incorrect analy-
sis, as far as the observability property of the system is
concerned,

2) demonstrating that a complete nonlinear observability
analysis can only be carried out by quantifying the
measure of observability by accounting for the rank
and the condition number of the observability matrix,

3) emphasizing that the observability property of the
electrochemical model depends on different conditions
such as the input current profile, electrode’s chemistry,
and discretization grid points, which informs the syn-
thesis of the structure and design of a model-based
observer.

Further, the framework for nonlinear observability analysis
for SPM laid out in this work can be extended to assess the
parameter identifiability of the SPM. It is to be noted that
the nonlinear battery electrochemical model (SPM) is highly
over-parameterized, which poses a problem during parameter
identification and motivates the need to carry out parameter
identifiability [26] of the model to assess whether the pa-
rameters can be identified from the available measurements.
However, by reformulating the model parameters as constant
state variables, an augmented state vector is created and the
differential geometry approach outlined in Section V can be
adopted to recast the parameter identifiability problem as
an observability analysis problem [27]. This is particularly
also important in determining the subset of model parameters
that are identifiable or observable as the battery ages, which
can be harnessed for developing battery health estimation
algorithms. In essence, the nonlinear observability analysis
framework presented in this work can be easily extended to
parameter identifiability studies.
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Moreover, this work brings to light an outlook that is lack-
ing in the process of electrochemical model-observer design.
The work highlights that the order of the electrochemical
model used in the observer is a trade-off between lower
condition number (better observability) and model accuracy.
As the model order increases, the condition number increases
exponentially, however, a decrease in model order introduces
modeling errors due to truncating or neglecting higher order
dynamics. This results in a model-based observer that may
not estimate state accurately since the underlying model is
not the best approximation of the real system. This begs the
need for robust observers that account for the modeling errors
in the form of uncertainties during observer synthesis.

VIII. CONCLUSION
In this work, a nonlinear observability analysis of a battery
electrochemical model is presented by accounting for the
rank and condition number of the observability matrix under
different conditions, ranging from different inputs and grid
sizes to positive electrode’s chemistry. The results confirm
that a nonlinear observability analysis is more complete
since a linearized analysis fails to respect the nonlinearities
of the system. Further, the results provide guidelines for a
proper observer design for nonlinear battery electrochemical
models.
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