
Adaptive Energy Management Strategy Calibration in PHEVs Based on a Sensitivity Study

Author(s): Federica Lacandia, Laura Tribioli, Simona Onori and Giorgio Rizzoni

Source: SAE International Journal of Alternative Powertrains , Vol. 2, No. 3 (December 
2013), pp. 443-455

Published by: SAE International

Stable URL: https://www.jstor.org/stable/10.2307/26169028

 
REFERENCES 
Linked references are available on JSTOR for this article: 
https://www.jstor.org/stable/10.2307/26169028?seq=1&cid=pdf-
reference#references_tab_contents 
You may need to log in to JSTOR to access the linked references.

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide 
range of content in a trusted digital archive. We use information technology and tools to increase productivity and 
facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org. 
 
Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at 
https://about.jstor.org/terms

SAE International  is collaborating with JSTOR to digitize, preserve and extend access to SAE 
International Journal of Alternative Powertrains

This content downloaded from 
�������������171.66.10.49 on Wed, 28 Apr 2021u, 01 Jan 1976 12:34:56 UTC 

All use subject to https://about.jstor.org/terms

https://www.jstor.org/stable/10.2307/26169028
https://www.jstor.org/stable/10.2307/26169028?seq=1&cid=pdf-reference#references_tab_contents
https://www.jstor.org/stable/10.2307/26169028?seq=1&cid=pdf-reference#references_tab_contents


INTRODUCTION
The automotive industry is striving to reduce fuel

consumption and emissions by improving the efficiency of
powertrains and adopting new technologies towards the
vehicle electrification. In this scenario, Plug-in Hybird
Electric Vehicles (PHEVs) are seen as a promising
technology that will have a major impact to reduce fuel usage
in the next several decades, [1]. PHEVs represent a
compromise between Hybrid Electric Vehicles (HEVs) and
Electric Vehicles (EVs), combining benefits of the two
architectures. Similarly to a charge-sustaining hybrid vehicle,
a PHEV is powered by two energy sources, gasoline and
stored electric charge. PHEVs have significantly greater
battery capacity than HEVs, and are characterized by the
ability of charging the battery from an external source such as
the electric power grid, solar power, etc. This external
charging ability allows the battery to be depleted during
vehicle operation and to be charged when the vehicle is
parked, providing the opportunity of using electrical energy

in lieu of gasoline, and therefore displacing petroleum
consumption, [2]. In a HEV, the battery is charged using the
internal combustion engine (ICE) and regenerative braking,
and the state of charge (SOC) is maintained in a relatively
narrow range throughout the driving cycle, with the general
objective of sustaining the battery SOC over a sufficiently
long time horizon (for example, a trip), [3]. HEVs can
achieve significant improvement in fuel economy by
optimizing the power split between the battery and the ICE.
The subject of optimal energy management of HEVs has
been amply covered in literature, and is reasonably well
understood, [4], [5], [6], [7], [8], [9], [10].

Energy management algorithms for PHEVs present
additional challenges and opportunities: the fact that the
battery is allowed to deplete its charge, and therefore is
expected to operate over a much wider range of SOC,
requires suitable attention to be paid to how the battery
energy is utilized throughout the driving trip, [11], [12]. For
example, one strategy might discharge the battery gradually
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throughout the driving cycle (blended mode), while another
strategy might discharge the battery completely, operating the
vehicle in EV-only mode as long as possible, and then
operate in charge sustaining operation. The SOC profile used
by the control strategy during a trip has been shown to
significantly affect the fuel economy of the vehicle in [13],
[14], and [15].

This paper presents a solution to the optimal energy
management of a PHEV that makes use of well-known
principles in optimal control. The problem is solved by
applying the Pontryagin's Minimum Principle, suitably
modified to yield an adaptive strategy, hereafter called A-
PMP. The adaptation of the control parameter of the PMP,
called co-state, is realized by use of the idea proposed in [16],
[17] for the HEV application, and further extended to the
PHEVs in [18]. The open question left unsolved in [18] is the
calibration of the parameters of the adaptation law to achieve
robustness against different driving cycles for in-vehicle
implementation.

In this paper, the Authors propose a calibration approach
based on a sensitivity study carried out over a wide set of
driving scenarios. The validation of the calibrated strategy is
demonstrated over a real driving cycle. The strategy design
and calibration study is done for the GM Chevrolet Volt. The
vehicle model used in this study is presented in the next
section.

VEHICLE DESCRIPTION AND
MODELING

The GM Chevrolet Volt is a powersplit PHEV equipped
with a planetary gear set and three clutches, [19], which
connect and disconnect the on-board power sources as
appropriate to implement various operating modes. The main
components of the vehicle powertrain, depicted in Fig. 1, are:

1.  MOT, which represents the traction electric machine
and is a reverse machine;

2.  GEN, which is the electric generator and can work in
reverse mode, as well;

3.  ICE, which is the internal combustion engine
connected to the generator;

4.  Planetary Gear Set, with three clutches (C1, C2, C3),
whose configuration rules the mode of operation of the
powertrain;

5.  Battery pack (BATT), that provides electric power to
MOT and GEN when needed.

Table 1 shows the vehicle main characteristics:
Table 1. Main characteristics of the vehicle

According to the different configuration of the clutches,
the GM Chevrolet Volt powertrain can work in four modes of
operation, [19], [20]:

• One-motor EV (C1 = 1, C2 = 0, C3 = 0)1: only MOT drives
the wheels, while ICE and GEN are switched off.

• Two-motor EV (C1 = 0, C2 = 1, C3 = 0): GEN is connected
to the planetary gear set, hence, both MOT and GEN can
supply power to the driveline.

• Range-extender mode (C1 = 1, C2 = 0, C3 = 1): MOT alone
propels the wheels and the engine generator unit (GENSET)
can supply power to the battery and extra power directly to
the electric motor, if needed.

• Power-split mode (C1 = 0, C2 = 1, C3 = 1): All the onboard
machines (i.e. MOT, GEN, ICE) are connected to the
planetary gear set and can supply power to the driveline.

Figure 1. Chevrolet Volt powertrain and main
components.

The vehicle simulator used in this study and realized in
Matlab®/Simulink® environment is an improved version of
the tool developed at IFP Energies Nouvelles and provided to
all participants of the PHEV Control Benchmark competition
held during the IFAC Workshop on Engine and Powertrain
Control Simulation and Modeling, in Rueil-Malmaison,
France, in October 2012 (http://www.ecosm12.org). A new
battery pack model, described later in this paper, was
implemented to replace the simplified one used in the
competition. The model used in this study is based on
experimental data provided for the LG Chem battery pack
used in the GM vehicle, [21].

The forward-looking, energy-based vehicle simulator
considers the longitudinal dynamics for the vehicle, the SOC
battery dynamics, and employs stationary maps for the
electric machines and the internal combustion engine, [19],
[22]. The ICE is modeled using its brake specific fuel
consumption map, while the electric machines, MOT and
GEN, are modeled by means of their efficiency maps.

1A value of 1 means that the clutch is closed, a value of 0 means that the clutch is open
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Vehicle Dynamics
The longitudinal vehicle dynamics is dictated by:

(1)

where, m is the vehicle mass, vveh the speed of the vehicle,
Tpwt and Tbrake are the torques, respectively, at the powertrain
and the friction mechanical brakes and rwh is the wheels
radius; g is the acceleration of gravity, while the road grade
variations (term sinα) represent a loss or a positive contribute,
depending on whether the grade is positive or not; c0, c1 and
c2 are coefficients, which aim at taking into account the
energy losses due to the road load.

Battery
The battery pack used in the Chevrolet Volt is

manufactured by LG Chem and has a configuration of 96S 3P
Li-Ion cells, [23]. Table 2 summarizes all the main
specifications of the storage system used in the vehicle, [21]:

Table 2. Battery characteristics

The battery model consists of a simple zero-th order
equivalent circuit model, as shown in Fig 2, where Voc is the
open-circuit voltage source, Req represents the equivalent
internal resistance and VL is the load voltage across the cell
terminals. The battery voltage output equation derives from
the well-known Kirchhoff voltage law:

(2)

where I is the current across the battery terminals2. The
battery parameters are a function of both SOC and
temperature. In this study, the dependence of the open-circuit
voltage on temperature is neglected, on the basis of
experimental data, [24]. With regard to the resistance, the
investigation is left to future studies and only the dependence
with respect to the SOC is considered. The resistance is
considered to assume the same values both in charge and
discharge, [23].

From Eq. (2), the battery power is a function of SOC and
is given by:

(3)

Figure 2. Zero-th order electrical circuit model of the
battery.

The SOC dynamics is defined as:

(4)

where ηc represents the coulombic efficiency of the battery,
[25], and Qnom is the nominal battery charge capacity. The
SOC dynamics can be expressed as a function of the battery
power, PBATT, by solving Eq. (3) for the current, and
replacing it into Eq. (4), to yield:

(5)

where f(SOC(t);PBATT (t))) indicates the non linear mapping
of the SOC dynamics.

Planetary Gear Set
In the Chevrolet Volt configuration, the trasmission

consists of a planetary gear set, where the motor is connected
to the sun, the generator to the ring and the transmission
output to the satellite carrier, [20]. In addition, a differential
with a fixed gear ratio (final drive in Fig. 1) connects the
transmission output to the front wheel axle. The angular
speeds of ring (ωr), sun (ωs) and carrier (ωc) are linked by the
kinematic Willis relation, [26]:

(6)

with ρ = 2:24 representing the ratio between the number of
teeth of the ring (Nr) and the number of teeth of the sun (Ns).

The torques relations for the gear set are condensed in the
following Eq. (7):

(7)

with Tr, Ts and Tc being the torques of ring, sun and carrier,
respectively, and where:

2The current is considered positive in discharge and negative in charge. The same consideration holds for the battery power.
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(8)
with fd the final drive ratio and Twh the torque at the wheels.

PROBLEM FORMULATION
The design of the energy management strategy for the

GM Chevrolet Volt is cast into a constrained optimization
problem aimed at minimizing the fuel consumption over a
given driving pattern, while providing the torque demanded
by the driver, Twh, at each instant of time, satisfying the
following constraint:

(9)
Formally, the optimization problem consists on

minimizing the following cost function, J:

(10)
where ṁfuel(u(t)) is the instantaneous fuel consumption rate,
u(t) is the control variable, that is the battery power (PBATT),
and [tf -t0] is the optimization horizon, corresponding to the
length of the driving mission. For the sake of fluency the
explicit dependence on time is here-after dropped.

The physical limits of the powertrain components are
given by

(11)
where, SOCmin and SOCmax are the minimum and maximum
allowable states of charge, and PBATT,min and PBATT,max are
the minimum and maximum thresholds for the battery power.
TMOT,min and TMOT,max are the minimum and maximum
possible torque values at a given angular velocity for the
MOT, and, similarly, TICE,min and TICE,max, and TGEN,min and
TGEN,max are the same physical limits for ICE and GEN,
respectively.

In addition to the physical limits of (11), the initial and
final conditions of SOC, namely SOC(t0) and SOC(tf), must
satisfy the following global constraints at t = t0 and t = tf :

(12)
where, in this study, SOC0 is assumed equal to 0.95
indicating that a fully charged battery is available at the

beginning of the trip and a SOCf equal to 0.3 is selected to
prevent battery wear at low SOC.

PONTRYAGIN'S MINIMUM
PRINCIPLE

The energy management problem in a PHEV can be
solved by using different approaches, including heuristic
strategies, numerical optimization methods and optimal
control theory, [27]. In this study, the latter approach is used
by means of the Pontryagin's Minimum Principle.

The design of the GM Chevrolet Volt, as it is sold
commercially today, is that of an Extended Range Electric
Vehicle (EREV), that is a vehicle which operates as a pure
electric vehicle as long as there is useful energy in the
battery, turning into a charge sustaining HEV when the lower
SOC threshold is reached. This mode of operation is often
referred to as a Charge Depleting/Charge Sustaining strategy
(CD-CS). In this paper a different approach is explored
which, unlike the CD-CS strategy, provides a blended
discharging mode of operation of the powertrain where the
final desired value for the SOC, SOCf, is only reached at the
end of the driving cycle. The advantages brought by the
blended strategy against the CD-CS have already been
demonstrated in literature by [15], [28] and in [29], where the
PMP was used to minimize a cost function representing the
well-to-wheel production of CO2 in a PHEV.

In the formulation of the PMP, the Hamiltonian function,
H, is defined as follows:

(13)

where λ is the co-state and represents the only optimization
parameter of the strategy. This equation expresses the
contribution of both the energy sources in the vehicle: fuel
and electric energy, [7], [30].

The global optimal solution of the problem is found by
instantaneously minimizing the Hamiltonian:

(14)

while satisfying the following constraints:

1.  state variable dynamics and global constraints on SOC:

(15)

2.  instantaneous constraints on the control and state
variables:

(16)
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3.  dynamic evolution of the co-state:

(17)

The PMP is a two boundary condition problem and it is
solved using the well-known shooting method, [7], [30]. The
two boundary conditions are given by Eq. (12). The solution
of the PMP results in the optimal SOC, SOCopt, and the
optimal co-state, λopt, trajectories.

In [14] and further in [15], it has been shown that λopt is
related to many factors, such as the length of the trip, the
features of the driving cycle (grade conditions, speed profile)
and the battery characteristics.

Figure 3 shows the SOC profiles, obtained when applying
the PMP, as a function of λ0, i.e. the initial condition used
when integrating Eq. (17). The results were obtained when
simulating the vehicle in response to a concatenation of three
driving cycles: US06, FHDS, FUDS. A value of λ0 greater
than the optimal one leads to a final SOC higher than the
desired one and, on the other hand, a lower value gives a
lower final SOC, making the choice of this parameter a
critical step in finding the solution of the optimization
problem. The initial value of the co-state which yields to the
desired final SOC of 0.3, shown in Fig. 3, is equal to 3.416
kg. The high sensitivity of the optimality with respect to the
choice of this parameter is a well-known fact when
implementing the PMP, [7].

In the PMP problem, the co-state evolves according to Eq.
(17). Nevertheless, the variation of this parameter depends on
the battery characteristics and in particular on the battery
efficiency. The fact that the battery efficiency is almost
constant in this application, [21], implies a very small
variation of the co-state during the driving mission, as shown
in [30] and [31]. The implication of this is that λ(t)= λ0 ∀t ∈
[t0, tf] and thus the determination of λ0 =λopt is in what
optimality lies.

Figure 3 suggests that the solution of the problem
obtained with the PMP results in a quasi-linear trajectory for
the SOC, with respect to the traveled distance, as already
shown in [13] and [18]. Nonetheless, this is true when there
are no variations in the altitude profile, otherwise the SOC
trend assumes more of a zigzag-like trajectory, as shown in
[15] and [18], and also in the simulation results of Fig. 20 and
Fig. 22.

Despite the fact that the optimal solution of the energy
management problem using PMP is obtained only via off-line
implementation, where an iterative search for λ is possible,
the non-causal nature of the PMP strategy lends itslef to the
design of a causal controller called APMP, where the co-state
is adapted as driving conditions change [18].

Figure 3. SOC trajectories w.r.t. distance for variations
of λ0 for a concatenation of driving cycles (US06, FHDS,

FUDS)

ADAPTIVE CONTROL STRATEGY
The adaptive control model, A-PMP, is a modification of

the one proposed by [17] for HEV applications and already
improved by [18] in the case of PHEVs. In particular, the A-
PMP is aimed at adapting the co-state as driving conditions
change. The co-state is updated in order to “force” the actual
SOC to track a linear SOC profile (later referred to as SOCre f
(s)) with respect to the total traveled distance, that is
supposed to be known.

The adaptation is by means of an AutoRegressive Moving
Average (ARMA) model, already proposed by [18]:

(18)

The co-state update is a result of a distance-based
adaptation, where a proportional gain is introduced to correct
the SOC divergences from the reference curve, SOCref (s). In
Eq. (18), k [km] is the sampling distance, s[km] is the current
covered distance and Kp [kg] is the proportional gain. SOCref
(s) is defined as an affine function of SOC with respect to the
distance, according to the following relation:

(19)

where

(20)

where D [km] is the total distance of the trip.
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The underlyning fact in the proposed adaptation law is
that the desired SOC profile is linear with respect to the
distance. This assumption is true only if the road grade is flat.
In order to handle more realistic situations (e.g. variation of
grade) a modification to the adaptation law is proposed, based
on [18], as well as some exceptions to the adaptation law (Eq.
(18)) are considered and implemented in the controller. In
particular:

1.  when SOC(s) = SOCref (s), the value of λ is reset and
set equal to the initial value λ0, to avoid instabilities due to
the proportional controller;

2.  to avoid charging the battery at the initial or final parts
of the driving mission, the possibility of using only the
electric machines is considered by setting λ equal to zero. As
the co-state has the physical meaning of an equivalence factor
between fuel and battery usage, [17], a condition of λ = 0 in
Eq. (13) encourages the use of the battery instead of the ICE;

3.  if SOC(s) > 0:35 when approaching the end of the trip
λ = 0 is imposed, as in the previous case, to drive only with
the electric motors, switching off the ICE.

CALIBRATION OF THE
ADAPTATION LAW

The parameters of the co-state adaptation law (18), which
are:

1.  the initial co-state value: λ0,

2.  the updating sampling distance: k,
3.  the proportional gain: Kp

need to be calibrated for (18) to be used in real-time
operation.

In order for the controller to ensure robustness against
changing in driving conditions, an investigation on the
influence of these parameters on the controller performance is
performed by means of a sensitivity study. The objective of
the calibration is to ensure that the best value of these
parameters is chosen so as to guarantee minimum fuel
consumed over different driving cycles.

To this aim, the sensitivity analysis conducted in this
study was carried over wide set of driving scenarios
(including urban, suburban and highway speed profiles). Flat
patterns are considered as baseline, since a relationship
between the variations in elevation and the SOC trajectory is
in general hard to find, [32], and, in this study, no
information about the road grade variation is assumed to be
available. The only assumption made is that the average cycle
speed and the total traveled distance are known.

The sensitivity analysis is conducted over the following
driving cycles:
• NEDC: a standardized cycle composed by urban and extra-
urban portions, Fig.4;
• Combined: a cycle composed by the concatenation of US06,
FHDS and FUDS, Fig.5;

• Composed Artemis: a pattern consisting of a sequence of
Urban, Extra-Urban and Highway Artemis, Fig.6;

• Artemis highway: a standardized highway driving cycle,
Fig.7.

The specifications of these cycles are summarized in
Table 3, where vavg is the average speed of the cycle, vmax is
the maximum speed, while Dae identifies the total electric
range driven from the beginning of the trip to the point at
which the ICE is switched on. This distance is commonly
known as All Electric range, [1], [12], and depends on SOC
utilization range. One can note that cycles with lower average
speeds present a larger All Electric range. Nevertheless, the
simulation campaign demonstrated that a direct correlation
would be unfair, since this value, which is related to the
driver torque request, is, by means of Eq.(1) more dependent
on the average acceleration, rather than the average speed. On
the other hand, in this study, only the average cycle speed is
assumed known, thus this parameter has been considered
prima facie evidence of the aggressiveness of the driving
cycle.

Table 3. Driving cycles features.

Figure 4. Speed profile of NEDC driving cycle

Since the total traveled distance is assumed to be known
and the dependence of the optimal solution on this parameter
has been shown, [18], different distances were considered in
the sensisivity study. The length of the cycles used in the
analysis varies between 10 km and 500 km with a non-
constant discretization step, which increases with the
distance. In particular, the distance interval of 10-200 km is
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analized more in depth as it represents a reasonable driving
range operated by a PHEV [2].

Figure 5. Speed profile of Combined driving cycle

Figure 6. Speed profile of Composed Artemis driving
cycle

Figure 7. Speed profile of Artemis highway driving cycle

Calibration of the Initial Co-State, λ0

The solution of the optimal problem has been already
proved to be significantly influenced by this parameter. Being

an optimization parameter of the PMP framework, the
analysis of the co-state was carried out solving the optimal
problem.

The Authors first solve the optimal problem from the
PMP for the driving cycles of Table 4, covering distances
going from 10 km to 500 km (see Fig. 8). This information is
then coupled with information about the cycle average speed
in the 3D map shown in Fig. 9.

It is interesting to notice that the optimal value of λ0 is a
monotonically increasing function of the total driven
distance, as shown in Fig. 8.

As the co-state represents an equivalence factor to convert
battery power into an equivalent fuel power, it is easy to see
why the optimal value of λ0 is equal to zero for distances
lower than the All Electric range (see Table 3). Forcing λ0 to
be equal to 0 is what makes the supervisory controller use the
battery instead of the engine, in order to meet the global
constraint on the final SOC. On the other hand, Fig. 8 also
shows that beyond the All Electric range, the value of λ0
instantly increases to values greater than 3 kg. Hence, this
value can be recognized as a threshold value, under which the
weight of the battery power is not relevant compared to the
fuel power and the optimization tool can only choose to use
the battery. Figure 8 shows that at great distances the optimal
value of λ0 reaches an asymptote. This behavior is more
pronounced for cycles with high average speeds, while cycles
with low average speeds, e.g. NEDC, are still characterized
by a slight in increase of λ0 with the distance. Thus, for high
distances, as the weight of the battery power becomes
comparable to the fuel power, the vehicle behaves like a pure
HEV rather than a PHEV.

Figure 8. Trend of λ as a function of distance for
different driving cycles

The final output of this analysis is the map shown in Fig.
9, which is used to initialize λ0 as a function of the distance
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and the average speed (the only driving information assumed
to be known)3 in the adaptation law of the A-PMP.

Figure 9. Map with the values of λ0 as a function of
distance and average speed

Figure 10. Optimal fuel consumption as a function of the
driving cycle and distance

Fuel consumption and equivalent fuel consumption are
also provided, in Figures 10 and 11 respectively, for the same
simulation set. In this paper, the fuel consumption represents
the actual amount of fuel consumed during the trip, while the
equivalent fuel consumption takes into account also the net
amount of battery energy used during the mission. The actual
fuel consumed by the engine (see Fig. 10) presents an
increasing trend with the trip distance, tending towards an
asymptotic value for long distances. On the other hand, the
equivalent fuel consumption (see Fig. 11) has an asymmetric

trend with respect to the fuel consumption. In fact, for
distances lower than the All Electric range, only the battery is
used as energy source for traction while for greater distances
the battery use is discouraged in favor of fuel use.
Furthermore, one can note that over large distances both the
actual fuel consumption and the equivalent fuel consumption
tend to level off, confirming that the powertrain behaves
asymptotically like a HEV.

Figure 11. Equivalent fuel consumption as a function of
the driving cycle and distance

Calibration of the Sampling Distance, K
The sensitivity analysis on this parameter aims at

understanding the benefits which can be obtained when
increasing or reducing the value of sampling distance k with
respect to the fuel consumption. For this analysis, the
initialization map, built after the sensitivity study on λ0, was
implemented in the A-PMP controller. The value of Kp was
hold, as a first attempt, equal to 5 kg, as in [18].

Results are presented for a driven distance of 120 km.
Simulations with different distances, i.e. from 0 km to 120
km, gave similar results, and they are not presented in the
paper.

In particular, Fig. 12 shows the fuel consumption as a
function of k, normalized with respect to the optimal fuel
consumption obtained with the PMP-based controller. The
fuel consumption is practically insensitive to variations of k,
for driving cycles with high average speeds, i.e. Artemis
highway, Composed Artemis and Combined. The percentage
variation of fuel consumption for these cycles falls in a very
small range, while for the NEDC, characterized by the lowest
average speed, the variation of the normalized fuel
consumption is slightly more pronounced. This can depend
on the fact that the first part of this driving cycle is composed
by four UDCs (Urban Driving Cycles), with a length shorter

3For driving cycles different from the ones employed in this calibration campaign, i.e. with different grade variations, lengths or average speeds, one can interpolate between the values in the
map.
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than 2 km (see Fig. 4). Values of k greater than 2 km can thus
result in a loss of information about this portion of the cycle,
giving worse results.

The worst-case scenario produces an error of 4%, for a k
of 4 km, while for a value of 1 km the error is within 2%.

Figure 12. Normalized fuel consumption variation as a
function of k

Calibration of the Proportional Gain, KP

The proportional gain in the adaptation law has the role of
correcting SOC deviations from the reference signal, SOCref
(s). The fuel consumption is analyzed against variations of Kp
by setting k = 1km.

Figure 13. Normalized fuel consumption variation as a
function of Kp

In Fig. 13 the fuel consumption, normalized with respect
to the PMP solution, varies as a function of Kp. The
maximum fuel consumption deviation is of around 3%, while
the optimal value of Kp gives the minimum error, i.e. 1%.
This value, corresponding to 5 kg has been chosen for the
proportional gain.

It is worth noting that the normalized fuel consumption
remains almost constant as Kp varies, the performance of the
algorithm not being influenced by the variation of this
parameter, as also was the case for k. The controller results in
being robust with regard to both these parameters.

The outcome of the sensitivity analysis is such that the
following values are used to calibrate the A-PMP: λ0 (maps),
k = 1km and Kp = 5kg.

VALIDATION
In this section, the calibrated adaptive control law is then

validated by simulating the vehicle behavior over realistic
driving cycles, significantly different from the regulatory
driving cycles used for the calibration process.

The first cycle, hereafter called Urban, is shown in Fig.14
and represents a urban cycle of 100 km, whose characteristics
are listed in Table 4. This cycle was obtained by means of
SUMO (Simulation of Urban MObility), which is an open-
source traffic simulation package developed since 2000 by
the Institute of Transportation Research at the German
Aerospace Center. The use of this tool, taking into account
driver ability and traffic conditions, generates driving profiles
which can allow more realistic estimations of fuel
consumption, [33].

Figure 14. Speed profile of the Urban Cycle

The second driving cycle used, later referred to as
Extraurban, is shown in Fig.16. This cycle is a result of a
GPS acquisition for a total length of 150 km. Both flat
patterns and road with elevation are considered. Figure 17
shows the grade profile used in combination with the Urban
cycle, while Fig.18 portrays the grade profile for the
Extraurban cycle.

The features of the driving cycles are summarized in
Table 4:
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Table 4. Real cycles features

Figure 15. Elementary cycle of the Urban Cycle, speed
profile

Figure 16. Speed profile of the Extraurban Cycle

Figures 19 and 21 show the SOC trajectories for the
Urban and Extraurban scenarios (with no grade variations).
Both profiles are very close to the reference SOC, SOCref. On
the other hand, Figures 20 and 22 show that, in presence of
altitude variations, the deviation of SOC from the reference
trajectory is highly pronounced and increases with the
steepness of the grade profile. The constraint on the final
SOC is not met, in neither of the two cases, since both the
grade profiles are characterized by a downhill segment in the
final part of the trip. In such an event, the battery is charged
even if λ is set equal to zero, thus switching off the engine. It
is worth noting that, if the knowledge of the upcoming
elevation profile were available, by means of on-board traffic
relevation systems such as cloud computing, GPS (Global

Positioning System), ITS (Intelligent Transportation System)
or GIS (Geographical Information System), one could in
principle think of feeding this information back to the
controller to track an optimal non-linear SOC profile,
achieving better results. Nonetheless, the possibility of
having information about the grade profile is left to future
studies.

Table 5 provides a comparison of the A-PMP solution
with the optimal solution of the PMP and the results obtained
with the CD-CS strategy, currently used on-board of the GM
vehicle. The same results are also depicted in Fig. 23. In this
work, the CD-CS strategy has been modeled depleting the
battery by making the powertrain operate in One-motor EV or
Two-motor EV modes, depending on the power request and
then sustaining the SOC by means of an Adaptive-ECMS
algorithm, [17], that ensures the SOC to be regulated at the
constant value of 0.3 SOC.

Figure 17. Grade profile used with the Urban Cycle of
Fig. 15

Figure 18. Grade profile used with the Extraurban Cycle
of Fig. 17
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Figure 19. SOC and adapted λ trajectories for the Urban
Cycle without grade, k = 1 km and Kp = 5 kg

Figure 20. SOC and adapted λ trajectories for the Urban
Cycle with grade, k = 1 km and Kp = 5 kg

Figure 21. SOC and adapted λ trajectories for the
Extraurban Cycle without grade, k = 1 km and Kp = 5 kg

Figure 22. SOC and adapted λ trajectories for the
Extraurban Cycle with grade, k = 1 km and Kp = 5 kg

Table 5. Strategies Comparison
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Figure 23. Comparison of the fuel consumption obtained
with the three strategies in the different scenarios

It can be seen that, in every scenario, the adaptive strategy
performs better than the CD-CS strategy, giving results close-
to-the-optimum even with aggressive altitude profiles. In
particular, the fuel consumption of the A-PMP is always
within 1% of the optimal solution from PMP in no grade
conditions, and reaches a maximum discrepance of around
20% in the scenarios with variable altitude profiles. On the
contrary, with the CD-CS strategy the difference is
significant also without grade, with an increase in fuel
consumption of at least 11% in no grade conditions and up to
36% when grade is considered.

CONCLUSIONS
In this paper a sensitivity analysis of an adaptive

supervisory controller, based on PMP, for the energy
management of PHEVs has been presented. By making only
use of the knowledge of total traveled distance and cycle
average speed, the algorithm proposed adapts the
optimization parameter of the PMP, i.e. the co-state, in order
to track a reference linear SOC trajectory. This adaptation
law introduces some parameters which require to be
calibrated.

In particular, two parameters of the adaptation law have
been shown to have small influence on the fuel consumption,
and such a constant value was selected, irrespective to the
driving conditions.

The calibration parameter with the greatest importance
has been shown to be the critical value of the co-state.
Thorough analysis of this parameter with respect to the length
of trip and nature/characteristics of the cycles was conducted
that generated a look-up table that the supervisory controller
would interrogate during vehicle operation.

Results presented to validate the calibration have shown
that an accurate initialization database for the co-state as a
function of the driving information, assumed to be known
(i.e. traveled distance and average speed), allows obtaining
results close-to-the-optimum even in driving conditions far

from the standardized speed profiles considered in the
calibration phase. In particular, realistic driving cycles have
been simulated obtaining encouraging results both with and
without road grade variations. The A-PMP is shown to
perform always better than the CD-CS strategy, presenting in
the worst case, only a 20% increase in fuel consumption of
the adaptive controller with respect to the PMP, against an
increase of 36% obtained by the CD-CS in the same scenario.
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