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A Doyle-Fuller-Newman electrochemical battery model implementation in a robust and sleek MATLAB® framework for lithium-
ion batteries as an open-access MATLAB code is presented. The Doyle-Fuller-Newman (DFN) model, in the form of partial
differential equations, is first numerically discretized then converted to a differential algebraic equation (DAE). The most efficient
way to implement a DAE system is through the adoption of standard DAE solvers provided by available commercial software.
MATLAB® is a widely used software in the control community, and to the best of our knowledge, its standard solvers have failed
to successfully simulate the DFN model when the battery undergoes high C-rates of operations. One critical issue with DFN model
simulation is related to the inconsistency of initial conditions. In 2015, a robust single-step iteration-free initialization approach,
enabling solving DAE systems using a standard solver using Maple® symbolic environment, was proposed by Lawder et al. A
symbolic environment enables direct and efficient derivation of implicit ordinary differential equations from algebraic equations
during initialization. We perform the single-step iteration-free initialization approach in MATLAB® environment by adopting the
MATLAB® symbolic toolbox and simulate the DFN model with the ode15s solver. This framework allows users to robustly
simulate the DFN model and identify model parameters directly after numerical discretization, utilizing a standard solver.
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Lithium-ion battery (LIB) systems take advantage of the high
electrochemical potential of lithium (−3.040 V vs standard hydrogen
electrode) and provide the highest specific power density (300–1500
W kg−1) and specific energy density (100–250 Wh kg−1) against all
the electrochemical battery devices available on the market
nowadays.1 For this reason, LIBs are currently considered the best
means to store energy to support sustainable transportation systems
and renewable grid applications. In 2019, for example, a market of
LIBs was valued $36.7 billion and is expected to grow by an annual
rate of 18.0% to reach $129.3 billion by 2027.2

The growth of the LIB market is propelled by the increasing
demand electric vehicles (EVs) and renewable grid applications.
There were more than 1.18 million EVs on the U. S. roads in 2019.
Total EV sales in 2018 were increased by 81% compared to 2017. In
the first quarter of 2019, more than 61,000 electric vehicles were
sold in the U.S., representing a 10% increase over the same period in
2018.3 LIBs with different cathode chemistries, such as nickel-
manganese-cobalt oxide (NMC) and nickel-cobalt-aluminum oxide
(NCA), have been adopted for EV systems.4

A microgrid is a sub part of renewable grid systems, which is
defined as a discrete energy system consisting of distributed energy
sources and loads capable of operating independently from the main
power grid.5 The global microgrid market is currently valued at
$28.6 billion and is expected to grow at an annual growth rate of
10.6% to reach $47.7 billion by 2025.5 Electrochemical energy
systems are the main storage technology implemented and used
today for renewable grid services. Of electrochemical storage
systems installed since 2003, nearly 80% is proved by LIBs.6

Motivation

Despite the progress made in materials and manufacturing
processes that contributed to significantly reducing the cost of
batteries over the years, LIBs are still the most expensive single
components in EV systems and renewable grid applications (in
2018, EV batteries were at $156/kWh and grid batteries at
$223–323/kWh).7 When LIB systems are deployed for energy
applications, mathematical battery models are used to understand,
operate, and optimize their performance. The operation of battery
systems by adequate battery models can achieve further cost
reduction, enabling a greater depth of discharge, smaller size, and

longer life. This helps accelerate adoption of sustainable transporta-
tion systems and renewable grid applications.

A Battery management system (BMS) is used in both EVs and
stationary storage systems to monitor and optimize the system
behavior while guaranteeing safety. Current practice employs em-
pirical models to predict state of charge (SOC) and state of health
(SOH) owing to their easy and straightforward implementation.8

Typically, empirical models are calibrated upon laboratory-based
experimental data (e.g., 1C-constant charging and discharging) and
used to predict battery behavior.9 The accuracy of such models is
usually limited to the range over which they have been parameterized
and the calibration effort that goes to design accurate empirical
models is very high and chemistry-dependent, meaning that if a new
chemistry is to be adopted then a completely new BMS has to be
recalibrated. In addition, empirical models do not contain any
physical insights nor account for any aging degradation mechanisms
the battery undergoes to making them a rather simplistic tool.8

The lack of physicochemical information of the system states
and parameters causes inaccurate SOH predictions of the battery
system.

Now, the following fundamental questions arise. If the current
empirical models under-utilize the LIB system, would there be other
advanced mathematical models most likely to be implemented in the
next-generation BMS to maximize the usability and lifetime of the
battery system? If so, what obstacles would exist for these battery
models to be implemented in the BMS today? If such barriers delay
the implementation of advanced battery models in BMS, what
research approach would be required to accelerate the development
of advanced model-based BMS?

Advanced battery models.—Advanced LIB models can be
roughly categorized into molecular-level models, data-driven
models, and physics-based models.8 Molecular-level battery models
are used to understand LIBs as they adopt stochastic approaches
(e.g., kinetic Monte Carlo methods), molecular dynamics, and
density functional theory calculations to provide useful analytical
tools to understand chemical/kinetic phenomena at the molecular
and atomic scale; however, molecular-level models cannot be used
for battery controls due to their high computational cost (e.g., hour-
scale simulation).10

Data-driven models formulated upon machine learning techni-
ques have recently gained a great attention as tools to predict battery
performance due to their potential in achieving high accuracy
with low computational cost (e.g., millisecond-scale simulation).
However, data-driven battery models typically rely on extensivezE-mail: sonori@stanford.edu
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experimental data sets to predict the battery output (e.g., 20000 ∼
30000 data sets).11 More importantly, data-driven battery models
provide limited information on capacity/power fade as no informa-
tion on the electrochemical internal states are provided.12

Physics-based battery models characterize internal dynamics
such as transport and kinetic phenomena. Moreover, physics-based
battery models can incorporate transport phenomena, chemical/
electrochemical kinetics, side reactions, and thermal/stress/mechan-
ical effects.10 In LIBs, safety and capacity/power fade issues can
always occur during the battery operation, including thermal run-
away, electrolyte decomposition processes, lithium plating, and
formation of the solid-electrolyte interphase layer. For this reason,
an accurate estimate of the SOC and SOH is one of the key tasks of
the BMS. The SOC is defined as the level of charge of battery
relative to its capacity (0 ∼ 100%), and one of the SOH definitions is
the capacity of the battery in its fully charged state compared to the
capacity at the time of manufacturing industry (0 ∼ 100%).8

However, simply providing numerical values for the SOC and
SOH, as in empirical models, does not guarantee safety and full
utilization of the battery system.

Physics-based models offer internal electrochemical information
that can be used to maximize safety, usability and lifetime of the
battery.13 For example, lithium plating is considered one of the main
causes of capacity fade and thermal runaway in LIBs which is
known to occur during fast charging of LIBs when the overpotential
is less than zero.10 When EV batteries are charged at high rates, a
large amount of lithium ions accumulates on the electrode/electro-
lyte interface because the lithium solid diffusion is significantly
lower than lithium ion diffusion in the electrolyte. The lithium solid
diffusion limitation in the lithium ion intercalation process will result
in anode lithium plating. Lithium plating not only causes capacity/
power fade but also poses a significant safety issue. In addition,
recent works indicate that lithium plating can also occur at mild
charge conditions in cells after extended cycling, leading to rapid
aging of the cell.14,15 This is a fundamental breakthrough in the field
of SOH estimation. In the physics-based modeling framework, the
overpotential can be mathematically restricted above zero during
charge operation to minimize lithium plating thereby identifying
optimal charging routines to operate the battery system with
maximized usability, safety, and lifetime.10 For this reason, phy-
sics-based models have been regarded as advanced mathematical
tools to be used in the next-generation BMS.11 Multiple modeling
approaches, including reduced-order models, efficient simulations,
and alternative modeling frameworks, have been attempted towards
such an advanced model-based BMS.11,16–20

Physics-based models.—LIBs are composed of components at
both the micro- and macro-scale. Micro-scale components are the
solid particles in the positive and negative electrodes, whereas the
macro-scale ones include the electrolyte between the positive
electrode, separator, and negative electrode. The size of solid
particles varies across the electrode, and in general, each particle
has an irregular shape. During charging and discharging, lithium
ions move across the cell by ions transport, by means of diffusion
and migration.

Conventional physics-based battery models include the Doyle-
Fuller-Newman (DFN) model and its reduced counterparts, such as
the enhanced single particle model (ESPM) and single particle
model (SPM), as shown in Fig. 1.19 The DFN model is the most
widely accepted physics-based model to predict electrochemical
dynamics of LIBs in the battery community. The DFN model is
formulated based on the porous electrode and concentrated solution
theories, consisting of two porous electrodes, a separator, two
current collectors, and electrolyte. The electrodes are considered to
be a porous matrix, in which spherical solid particles surrounded by
electrolytes are described. Diffusion and migration of lithium ions
are modeled within the porous matrix. The DFN model is formulated
on assumptions that electrodes include ideal spherical-shape parti-
cles, and the effective coefficients for ionic diffusion and

conductivity are derived based on empirical laws.21 These assump-
tions can make the model ineffective–with lack of predictability
leading to underutilization (or overutilization) of the battery system-
–and inaccuracy at the condition of operations in which EV and grid
batteries would experience, e.g., low SOC, medium-high tempera-
ture, and medium-high C-rate.16

The DFN model is referred to as the pseudo-two-dimensional
(P2D) model because micro-scale components solve the diffusion of
lithium occurring in a spherical solid particle at each local position
of the macro-scale LIB system.17 In the DFN framework, solid
particles are distributed in one dimension along the x-axis of
electrolyte, and the solid particle concentration is described along
with the r dimension. Therefore, the concentration of each solid
particle is solved along with the r dimension at a particular point on
the x-axis in the electrolyte. This intrinsic characteristic of the DFN
framework yields the same results as solving a two-dimensional
model, leading to high computational cost. For this reason, within
the DFN modeling framework, additional assumptions are added to
generate simplified modeling formulations. For example, the ESPM
model assumes that each electrode can be represented by a single
spherical particle, which implies that all solid particles are uniform
and have the same chemical properties. In SPM, the electrolyte
dynamics is ignored.10 These reduced order models lack in predict-
ability under conditions of operation when the underlying assump-
tions are not verified, leading to underutilization (or overutilization)
of the battery system and inaccuracy.23

To overcome the limitations of DFN model, the full homoge-
nized macroscale (FHM) model was proposed.16,24 In the FHM
framework, homogenization methods to upscale pore-scale battery
dynamics are adopted to design a macroscale model of LIBs. The
FHM model is formulated under the assumption that the electrodes
are composed of spatial unit cells, causing micro-scale continuity in
the lithium-ion cell system. In addition, the FHM model’s effective
ionic properties are determined by resolving the closure problem in
the unit cell of the electrode microstructure.22 Compared to the DFN
model, the FHM model provides more accurate predictions over low
state of charge and medium-high temperature, as well as high C-rate.
The implemented 1-D FHM modeling framework exhibits a
decreased root mean square error (RMSE) up to 75% when
compared to the error generated from the DFN model under
medium-high temperature conditions.16

The DFN model.—Despite a lack of predictability of the DFN
model at high temperatures, low SOC, over battery aging, and at
high C-rates of operation, the DFN model has been and still is
considered the most acceptable physics-based model to study,
analyze and design lithium-ion batteries. The DFN model was
developed in 1993, and from 1993 to 2015, accurate physics-based
models, which can replace the DFN model, were not proposed.
During this period, numerous studies based on the DFN model have
been conducted on capacity fade, mechanical stress effects, and
safety issues for LIBs. For example, capacity fade phenomena
including the SEI layer growth and lithium plating have been added
to the DFN model.1,25 Mechanical stress and thermal effects have
been incorporated into the DFN model to study safety issues.26 In
addition, although advanced model-based BMS has not yet been
commercialized, several numerical approaches for efficient simula-
tions (e.g., polynomial approximation, orthogonal collocation
method, and non-linear model predictive control) have been
attempted to implement the DFN model in the next-generation
BMS.17,27,28 Understanding the DFN model and its implementation
is an enabler of advanced model-based BMS. The remaining of the
paper studies, analyzes, and discusses model equations, numerical
discretization methods, and implementation issues of the DFN
model.

Governing equations.—The DFN model is in the form of partial
differential equations (PDEs) including multivariable functions and
their partial derivatives.21 The model predicts the dynamics of
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lithium concentration in the solid phase ( )c x r t, ,s j, at the anode and
at the cathode (j = p, n), lithium concentration in the electrolyte

( )c x t, , electrolyte potential ϕ ( )x t, ,e and solid phase potential
ϕ ( )x t, .s j, All equations, variables, and parameters, which are
adopted in the DFN implementation are described in Tables I–IV.
Equations 1 ∼ 17 in Tables III–V describe the DFN model
dynamics. Variables and parameters are shown in Tables I and II,
respectively. Equations 1, 5, and 7 in Table III represent electrolyte
dynamics in the positive electrode, separator, and negative electrode.
Equations 2, 6, and 8 in Table III represent electrolyte potential in
macro-scale systems. Equations 3 and 9 in Table III represent solid
particle potentials in micro-scale systems, and Eqs. 4 and 10 in
Table III represent solid particle concentrations in micro-scale
systems.

Additional equations related to governing equations are also
given in Tables IV and V. In Eqs. 11 and 12, Bruggeman coefficients

are used to describe effective diffusivity and conductivity in the
porous electrodes. The specific particle area (ai), particle surface to
volume (Eq. 13), is derived under the assumption that all solid
particles have idealized spherical shape and uniform size. In Eqs. 14
and 15, the Butler-Volmer kinetic expression is adopted for the pole
flux at the positive and negative electrode, describing the charge
transfer processes, which occurs at the surface of solid particles–
electrolyte interfaces. The open circuit potential (OCP) is defined as
the difference of electrochemical potential between the positive and
negative electrodes when the cell is disconnected from any circuit.
Different cell chemistries produce different OCP equations, and
three different OCPs at the positive and negative electrode are
presented as examples in Table V. Equations 16–1 and 17–1 are
experimentally obtained from Ref. 31 using LG M50 INR 21700
(Cathode chemistry: NMC, anode chemistry: graphite and silica),
Equations 16–2 and 17–2 represent the OCP at the LiCoO2 positive

Figure 1. Physics-based battery models. The DFN model has high computational cost and no analytical solutions. This has led to the formulation of ESPM and
SPM by means of simplified descriptions of electrolyte dynamics and nonuniform reaction distributions. However, these reduced order models have predictive
limitations under some usage conditions. The FHM model was proposed in 2015.22 There are two main advantages of adopting the FHM model compared to the
DFN model: (i) The FHM model consumes only 60% of the computational costs over the DFN model. (ii) Compared to the DFN model, the FHM model
provides accurate predictions over the entire SoC range, over wide temperature window, and at higher C-rate.

Table I. List of variables for the DFN model.

Symbol Variables Units

c Electrolyte concentration mol/m3

cs,i Solid phase concentration (i = positive, negative) mol/m3

φs Solid phase potential V
φe Liquid phase potential V

I Applied current density A/m2

Ui
Open circuit potential at positive and negative (i = pasitive, negative) V

Ji Pore wall flux at positive and negative (i = positive, separator, negative) mol/m2/s
θi State of charge at positive and negative (i = positive, negative) —

Journal of The Electrochemical Society, 2021 168 090527



Table II. Parameters for the DFN model.

Symbol Parameter

(Geometric parameters)
σi Solid phase conductivity (i = positive, negative) S/m
εi Porosity (i = positive, separator, negative) —

Brugg Bruggeman coefficient —

D Electrolyte diffusivity m2/s
Ds,i Solid phase diffusivity (i = positive, negative) m2/s
Ds0,i Reference solid phase diffusivity (i = positive, negative) m2/s
ki Reaction rate constant (i = positive, negative) mol/(m2·s)
k0,i Reference reaction rate constant (i = positive, negative) mol/(m2·s)
cs,i,max Maximum solid phase concentration (i = positive, negative) mol/m3

Acell Electrode area m2

(Transport parameters)
Rp,i Particle radius (i = positive, negative) m
ai Particle surface area to volume (i = positive, negative) 1/m
li Region thickness (i = posieive, separator, negative) C/mol
t+ Transference number —

F Faraday’s constant C/mol
c Electrolyte concentration mol/m3

(Kinetic/Thermal parameters)
R Gas constant J/(mol·K)
T Temperature K
Α Transfer coefficient —

Ea,i,D Activation energy for temperature dependent solid phase diffusion (i = positive,
negative)

J/mol

Ea,i,k Activation energy for temperature dependent reaction constant (i = positive, negative) J/mol

Table III. Governing equations for the DFN model.

Governing equations

(Positive)

( )ε = + ( − )∂
∂

∂
∂

∂
∂ +D a t j1p

c

t x eff p
c

x p p,
(1)

σ κ− − + ( − ) =ϕ ϕ κ∂
∂

∂
∂ +

∂
∂

t I1eff p x eff p x

RT

F

lnc

x, ,
2s e eff p, (2)

( )σ =ϕ∂
∂

∂
∂

a Fj
x eff p x p p,

s (3)

( )= −∂
∂

∂
∂

∂
∂

r D
c

t r r s p
c

r

1 2
,

s p s p,
2

, (4)

(Separator)

( )ε =∂
∂

∂
∂

∂
∂

Ds
c

t x eff s
c

x,
(5)

κ− + ( − ) =ϕ κ∂
∂ +

∂
∂

t I1eff s x

RT

F

lnc

x,
2e eff s, (6)

(Negative electrode)

( )ε = + ( − )∂
∂

∂
∂

∂
∂ +D a t j1n

c

t x eff n
c

x n n,
(7)

σ κ− − + ( − ) =ϕ ϕ κ∂
∂

∂
∂ +

∂
∂

t I1eff n t eff n x

RT

F

lnc

x, ,
2s l eff n, (8)

( )σ =ϕ∂
∂

∂
∂

a Fj
x eff n x n n,

s (9)

( )= −∂
∂

∂
∂

∂
∂

r D
c

t r r s n
c

r

1 2
,

s n s n,
2

, (10)

Table IV. Additional equations for DFN model.

ε= · =D D i p s n, , ,eff i i
brugg

, (11)

σ σ ε= ( − ) =i p s n1 , , ,eff i i i, (12)

ε= ( − ) =a i p n1 , , ,i R i
3

i

(13)

( )= ( − ) (Ф − Ф − )αj c k c c c sinh U2p p sp surf sp sp surf
F

RT s e p
0.5

, , max ,
0.5 (14)

( )= ( − ) (Ф − Ф − )αj c k c c c sinh U2n n sn surf sn sn surf
F

RT s e n
0.5

, , max ,
0.5 (15)
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electrode and graphite negative electrode, respectively.29 Equations
16–3 and 17–3 are adopted for OCP at the positive and negative
electrodes (LG INR 18650).16

Discretization.—For implementation reasons, the DFN model is
spatially discretized and converted to differential algebraic equations
(DAEs), a set of ordinary differential equations (ODEs) and
algebraic equations (AEs) of the type:

= ( ) [ ]y
f y z

d

dt
tODE system: , , 18

( ) = [ ]g y ztAE system: , , 0 19

where z represents the set of discretized AE variables, including the
solid and liquid phase potential, y represents the set of discretized
ODE variables, including the electrolyte and solid phase concentra-
tion, and t is the simulation time (note: the AE system is defined as a
multivariate polynomial equation; ODE system is an equation
involving ordinary derivatives of a function).

For implementation of the DFN model, conventional discretiza-
tion methods, such as the finite difference method (FDM), finite
volume method (FVM), and finite element method (FEM), have
been widely adopted.30,32 The FDM is the most direct approach to
discretizing the PDE system. In the FDM framework, a point on the
x-axis (or r-axis) represented by the continuum representation of
the governing equations is converted into a set of discrete equations.
The FVM divides the spatial axis domain in the PDE system into
finite-sized elements of control volumes. The FVM is established by
the integral conservation law on each of the control volumes where
the flux entering a given volume is identical to leaving the adjacent

volume. The FEM subdivides the PDE system into pieces of the
finite-sized elements, so-called finite-elements mesh. After that, the
FEM reconnects the elements at nodes defined as points at which
lines of the elements intersect. The FEM is known to require quite
sophisticated mathematics for its formulation.

The FDM is considered the easiest and most straightforward
discretization method while producing an accurate performance on
regular geometries (e.g., one-dimensional setting and rectangular-
shaped models). In the FDM, for example, time and space domains
of the DFN model are converted into time domains at each local
point; the first and second order x- and r-derivatives of PDEs are
converted into ODEs as follows (see Fig. 2):

∂ ( )
∂

= ( ) − ( ) [ - ]+ −Y x t

x

Y t Y t

h
First order:

,
20 1i i i1 1

∂ ( )
∂

=
( ) − ( )

[ - ]+ −c x r

r

c t c t

h

,
20 2

i j i j i j

r

, 1, 1,

∂ ( )
∂

= ( ) − ( ) + ( ) [ - ]− +Y x t

x

Y t Y t Y t

h
Second order:

, 2
21 1i i i i

2

2
1 1

2

∂ ( )
∂

=
( ) − ( ) + ( )

[ - ]− +c x t

r

c t c t c t

h

, 2
21 2

i j i j i j i j

r

2
,

2

1, , 1,

2

where discretized values of variables along the x-axis is represented
as Yi (solid phase potential, electrolyte phase potential, and electro-
lyte concentration), discretized values of solid concentration is

represented as cj,i, the node spacing h is defined as h =
+

,
N

1

1
the

Table V. Open circuit potential at the positive and negative electrode.

LG INR 2170029

θ θ
θ
θ

θ θ

= − + − ( ( − ))
− ( ( − ))
+ ( ( − ))

( ⩽ ⩽ ) =

U 0.8090 4.4875 0.0428 tanh 18.5138 0.5542

17.7326 tanh 15.7890 0.3117

17.5842 tanh 15.9308 0.3120

0.2661 0.9084 ;

p p p

p

p

p p
c

c

sp surf

sp

,

, max

(16–1)

θ θ
θ

θ
θ

θ θ

= + (− )
+ − ( ( − ))
− ( ( − ))
− ( ( − − ))
( ⩽ ⩽ ) =

U 0.2482 1.9793 exp 39.3631
0 0.0909 tanh 29.8538 0.1234
0.04478 tanh 14.9159 0.2769
0.0205 tanh 30.4444 0.2769 0.6103

0.0279 0.9014 ; ;

n n

n

n

n n

n n
c

c

sn surf

sn

,

, max

(17–1)

Cathode:LiCoO2, Anode: Graphite
30

θ θ θ θ

θ
=

− + − + −

+
− + − + − +

U

4.656 88.669 401.119 342.909 462.471

433.434

1 18.933 79.532 37.311 73.083 95.96
p

p p p p

p

2 4 6 8

10

θ θ( ⩽ ⩽ ) =0.4 1 ;p p
c

c

sp surf

sp

,

, max
(16–2)

θ θ
θ

θ
θ θ

= + +
− + + ( − )

− ( − )
( ⩽ ⩽ ) =

θ θ

U 0.7222 0.1387 0.029

0.2808 exp 0.90 15

0.7984 exp 0.4465 0.4108

0.01 1 ;

n n n

n

n

n n
c

c

0.5

0.0172 0.0019

n n

sn surf

sn

1.5

,

, max

(17–2)

LG INR 1865015

θ θ θ θ

θ θ

= − + − + +

( ⩽ ⩽ ) =

U 10.72 23.88 16.77 2.595 4.563

0.3 1 ;

p p p p p

p p
c

c

4 3 2

sp surf

sp

,

, max

(16–3)

θ
θ θ

θ
θ θ θ

= − + (− )
+ (− ) − ( − )
− ( − ) −
( − )( ⩽ ⩽ ) =

U 0.1493 0.8493 exp 61.79
0.3824 exp 665 exp 39.42 41.92
0.3131 arctan 25.59 4.099 0.009434 arctan

32.49 15.74 0 1

n n

n n

n

n n n
c

c

sn surf

sn

,

, max

(17–3)
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spatial coordinate of x-axis and r-axis is expressed as x and r,
respectively. i represents the node point along the x-axis (i = 0…N),
and j represents the node points along the r-axis (j = 0…N); N is the
number of node point.

Implementation issues with the DFN model.—High computa-
tional cost has been one of the critical issues with the DFN models.16

Multiple DAEs are spatially created, which causes high computa-
tional demands in conventional numerical discretization methods.17

Assume that 20 node points on the linear length scale are used to
discretize the cathode, the separator, and the anode. In this case, the
cathode generates 20 ODEs for the electrolyte concentration and a
total of 40 AEs for the electrolyte and solid phase potential
combined. In addition, assume that the solid particle is discretized
with the number of node points 5. All solid particles in the cathode
generates a total number of 100 ODEs. The solid particles are placed
at each discretized point along with x-axis of the LIB (5 × 20). This
results in a system of 160 DAEs for the cathode.

The anode is discretized in the same manner resulting in 160
DAEs. In the separator, using 20 node points will result in a total of
40 DAEs, consisting of 20 ODEs for the electrolyte concentration
and 20 AEs for the electrolyte potential. Thus, the total number of
DAEs of the full-order DFN model becomes 160 + 160 + 40 = 360.
Given the large number of DAEs to be solved, simulation of the
DFN model is computationally expensive. This has been typically
considered one of the main obstacles to incorporate the DFN model
into the advanced model-based BMS.17,28

Further, in the DAE system, ODEs are represented as governing
equations (see Eq. 18), and AEs act as constraints (see Eq. 19) where
consistent initial conditions (ICs) are defined to be initial values of y0
and z0 satisfying the AE.33 In the DFN model, consistent initial
conditions for all electrochemical variables are not known a priori.33

For this reason, initial guesses are typically determined by the
equilibrium states of LIBs. Initial guesses of solid-phase potentials at
positive and negative electrodes are obtained from the values of
negative and positive open-circuit potentials, respectively. Open-
circuit potentials are a function of solid particle concentrations at the
surface, and therefore, initial guesses of open-circuit potentials
are determined by initial guesses of solid particle concentrations at
the surface. The initial guesses of solid concentrations at the surface
are given by the state of charge of the battery, and the initial guesses
of average solid phase concentrations can be set up to be equal to the
solid phase concentrations at the surface. However, when the current
is applied to the battery (at time t = 0+ from a situation of rest,
iapp = 0 at t = 0−) the battery exits from its equilibrium states, and the
aforementioned initial guesses no longer satisfy the AE constraints.

Typically, standard solvers provided with commercial software
include their own capabilities to identify consistent ICs for DAE
systems.34 For example, MATLAB® ode15s is known to simulate
DAE systems with such inconsistent ICs.34 In the DFN model,
however, when high C-rates are applied to the battery, the difference
between initial guesses based on the equilibrium status and
consistent ICs can be considerable. In addition, when using high
number of node points (note: the number of node points is defined in
Fig. 2), conventional numerical discretization methods, including the
FDM, FVM, and FEM, generate numerous numbers of discretized
variables along with spatial scales. In this case, if inconsistent ICs
are given, standard solvers might not identify the consistent ICs
between the spatial electrochemical variables, leading to an un-
successful simulation of the DFN model.34 In the case of the DFN
model, many standard solvers are known to cause lack of conver-
gence. This usually happens under high C-rate operating conditions
or at a high number of node points in conventional numerical
discretization methods. In order to determine consistent ICs,
researchers have typically implemented iterative-based initialization
approaches (e.g., fsolve and bisection algorithms); however, these
iterative algorithms often come with high computational cost or fail
to obtain consistent ICs.34

Lastly, multiple parameters identification also remains a challenge
in the DFN model.35 The DFN model requires over 20 parameters to
fully describe the physical, chemical, and electrochemical properties
of LIBs.31 In commercial LIBs, model parameter values are generally
not provided because battery manufacturers treat them as trade

Figure 2. Finite difference discretization of the DFN model. The spatial coordinate position is described, using the one-dimensional coordinate. Xci, Xsi, Xai, and
ri represent the local node at cathode, separator, anode, and solid particle, respectively (cathode: i = 0…n, separator: i = 0…k, and anode: i = 0…m, solid
particle at cathode: i = 0…np, and solid particle at anode: i = 0…nn). The number of node points is defined as discrete points in x- and r- domains (Number of
node points for cathode: n, separator: k anode: m, and solid particle at cathode: np, and solid particle at anode: nn). The node spacing (h) represents a distance
between the nearest two nodes.

Table VI. Parabolic profiles of solid particles.
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secrets.35 Multiple parameters in the DFN models, such as geometric,
kinetic, and transport parameters, can be mathematically identified
simultaneously from available measurements of voltage, current, and
temperatures.35 However, given the complexity of the DFN model and
the large number of parameters, identifying multiple parameters often
is not a simple research task unless very good initial guesses of the
parameters are provided in advance. In addition, not all model
parameters can be guaranteed to be identified uniquely and with
satisfactory confidence.35,36

Ideally, the best way of identifying parameters is to conduct
separate experiments. In a recent study, most parameters of the DFN
model were experimentally obtained, and they were applied to the
DFN model to show the fit to voltage data obtained by experiment
measurements from a commercialized cell.31 Geometric parameters
of the DFN model include the electrode and separator thickness,
particle radius, electrode, and separator porosity. The structure of
two electrodes and a separator was obtained by scanning electron
microscopy (SEM). Porosity and pore size were investigated with
combinations of several experimental techniques including the
Brunauer–Emmett–Teller theory, X-ray tomography, and SEM.
Transport parameters involve diffusivity and conductivity of the
solid phase and electrolyte. The solid phase diffusion coefficients
were determined by observation of the change of SOC through the
galvanostatic intermittent titration technique (GITT) from half-cell
measurements. The GITT procedure consists of a series of current
pulses, each followed by a relaxation time. It has been known to be
difficult to directly obtain diffusivity and conductivity of the
electrolyte after cell opening, due to its evaporation, oxidation,
and reduction. The empirical relation between diffusivity/conduc-
tivity and electrolyte concentration was obtained from the
literature.37 In this way, diffusivity and conductivity were indirectly
calculated. Kinetic parameters contain the activation energy and
exchange current coefficient. Those parameters were investigated
through electrochemical impedance spectroscopy measurements. In
addition, the thermodynamic OCP and lithium stoichiometry in the
electrode are obtained using the GITT.

However, these experimental protocols are a time-consuming
destructive process. In addition, it is not straightforward to obtain all
model parameters experimentally. In Ref. 31, some parameters are
assumed or adjusted to be fitted with experimental voltage data, and
other parameters are calculated by empirical formulas. More
importantly, the multiple parameters identification techniques are
essential to update the transport and kinetic parameters or any
degradation inputs of LIBs within a very short span of time during

battery operation.37 During the LIB operation, capacity fade occurs,
and therefore kinetic/transport parameters are continuously changed
over cycles. To accurately predict the battery performance, model
parameters must be updated by the adequate parameter identification
technique. Any mismatch between model and experimental data
over cycles of operation can be resolved with the updated para-
meters. Therefore, accurate identification of model parameters is a
crucial technique to formulate precise physics-based models.

Current open-access codes for the DFN model.—From a user’
perspective, the most efficient way of implementing DFN battery
models is to adopt standard DAE solvers provided by prevalent
commercial software. Among many other software, MATLAB® is
the most popular control-oriented software; however, its own
standard solvers typically present issues related to the initialization
in conventional numerical discretization methods. For this reason,
other numerical implementation techniques/software have been
utilized. COMSOL® is one of the popular modeling software
equipped with robust DAE solvers to implement and solve phy-
sics-based battery models. However, its expensive license fee is a
barrier to collaboration and software sharing. In addition, it provides
limited flexibility for different numerical discretization methods and
does not allow to directly script parameter identification techniques
without additional software.16,38

Several open-source battery modeling software packages offer
alternative options; Examples include DUALFOIL,39 FastDFN,40

LIONSIMBA,41 and PyBAMM.42 DUALFOIL is written in
FOTRAN, which has become a dead computational language.
FastDFN and LIONSIMBA are MATLAB® based software
packages, and PyBAMM is written in python language. FastDFN
simulates the DFN model by directly deriving time-stepping
analytical Jacobian based on the Newton’s method. LIONSIMBA
and PyBAMM import external solvers-e.g., the Implicit Differential-
Algebraic (IDA) solver as part of SUNDIALS, which has been
known to be one of the robust solvers today; however, it has been
reported that these solvers also fail when inconsistent ICs are
provided in extreme operating conditions.41,43 In addition, these
software packages lack the parameter identification routines required
to allow for BMS implementation of physics-based battery models.
Each of these packages implements the DFN model under a specific
choice of operating condition based on model parameters obtained
from the literature.

We address the consistent initialization problem by relying on a
single-step iteration-free initialization approach developed in

Figure 3. Particle swarm optimizaiton. (a) The particle swarm optimization algorithm (b) Flow chart of the particle swarm optimization. The particle swarm
optimization algorithm was developed in 1995. In particle swarm optimizaiton, a solution is represented as a particle, and each particle include two vectors of
position and velocity. Each particle moves to a new position using velocity based on the global best position in the PSO algorithm. Once a new position is
reached, the best positions of each particle are updated.
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Refs. 33 and 44 based on a symbolic software environment. A
symbolic environment enables direct and efficient derivation of
implicit ODEs from algebraic equations, which is an essential step
for the iteration-free initialization (see the detailed process in the
DEARLIBS implementation section).33 To date, the DFN model has
been successfully implemented with such an initialization approach in
Maple®.29,45 We perform the single-step iteration-free initialization
approach in the MATLAB® environment by adopting the MATLAB®
symbolic toolbox and simulate the DFN Model with the ode15s solver.
Moreover, a closed-loop optimization-based identification method is
provided that allows for the selection of model parameters upon
voltage and current data. To the best of the authors’ knowledge, this is
the first time that implementation of the DFN models using the
MATLAB® ode15s solver has been documented along with a closed-
loop identification routine. The single-step iteration-free initialization
method implemented in the DEARLIBS was developed and imple-
mented in MAPLE environment in Ref. 33 and related patent.44

The reader must be reminded that the DEARLIBS is intended
solely for academic purposes, and an academic use only license is
available at https://github.com/DEARLIBS. Commercial use of
DEARLIBS might infringe the original patent of the single-step
iteration-free initialization.

DEARLIBS.—In this paper, we provide the DEARLIBS (Doyle-
Fuller-Newman Electrochemical Battery Model Implementation in
Robust and Sleek MATLAB® Framework for Lithium-ion
Batteries). The objective of DEARLIBS is to provide a
MATLAB® framework for robust and sleek implementation of
physics-based battery model, where the DFN model is adopted as
an example (note: “robust” in this context refers to the ability of the
solver to generate a successful simulation without a crash- e.g., even
under extreme fast charging and/or dynamic battery operation). The
DEARLIBS consists of DAEs after numerical discretization, a
standard MATLAB® solver, and a parameter identification routine
with voltage data from experimental measurements, as shown in
Algorithm 1. The DEARLIBS adopts the finite difference method,
over which the single-step iteration-free initialization approach is
applied. The MATLAB® standard ode15s solver is then adopted as
the solver of choice to solve the problem. The robustness of the
DEARLIBS allows to simulate the DFN model under extreme
operating conditions as well as couple parameter identification
techniques because the DEARLIBS includes the single-step itera-
tion-free initialization approach.

The DEARLIBS will enable users’ straightforward access to such
a computational framework, thereby addressing the aforementioned

implementation issues of the DFN model for use in the next-
generation BMS. For example, users can easily replace DAEs on
Line 1 of the pseudo code in Algorithm 1 with control-oriented
alternative models such as FHM for LIBs. Different discretized DAE
equations derived from various numerical discretization methods,
such as FVM, FEM, and the orthogonal collocation can also be
implemented on Line 1 in the pseudo code. For parameter
identification, the DEARLIBS allows users to continuously identify
model parameters with different optimizers to arrive at robust
optimization approaches. Different optimization routines can be
attempted from Line 5 of the pseudo code.

Paper structure.—This paper consists of four sections: the
DEARLIBS implementation, Fast charging simulation, Parameter
identification, and Conclusion and Perspective sections. In the
DEARLIBS implementation section, the single-step iteration-free
initialization approach and parameter identification technique are
described in detail. The DEARLIBS possesses two strengths; (i)
successful simulation under fast-charging operating conditions and
(ii) straightforward and robust implementation of parameter identifica-
tion routines. In the fast-charging simulation section, we demonstrate
the DEARLIBS performance over high C-rates. Model parameters of
the LiCoO2 cathode/graphite anode chemistry and NMC/graphite
18650 cylindrical battery systems were tested. The objective of the
Parameter identification section is to show the parameter identification
performance of the DEARLIBS. The experimental voltage profile at the
constant C-rate is used to identify model parameters, and the model
validation is confirmed by comparing model voltage outputs with
voltage data from experimental measurements using the urban dynamic
driving schedule (UDDS). Geometric model parameters were adopted
from Ref. 31 and the particle swarm optimization (PSO) was integrated
into the DFN model on the DEARLIBS to mathematically identify
kinetic/transport parameters.16

DEARLIBS Implementation

This section describes details of the DEARLIB pseudo code
presented in the Introduction section. The DEARLIBS was carried
out on a computing system with Intel Xeon Gold 6136 CPU @
3.00 GHz, 12 Core(s), 24 Logical Processors, using the global
optimization and symbolic math toolbox of the MATLAB® soft-
ware.

Line 1 in Algorithm 1: equations.—For the macro-scale system,
governing Eqs. 1, 2, 3, 5, 6, 7, 8 and 9 in Table I are adopted. Next,

Table VII. Comparison between DEARLIBS and implementation of ode15s without single-step iteration free initialization (NMC).

Case I) Simulation results and computational time of the DEARLIBS (NMC)

C-rate
Number of node point (anode, separator, cathode)

(2, 2, 2) (5, 2, 5) (10, 5, 10) (20, 10, 20) (30, 20, 30)

1C 0.49 s 1.68 s 2.37 s 40.25 s 46.58 s
2C 0.25 s 0.98 s 3.92 s 40.61 s 35.48 s
5C 0.23 s 1.43 s 2.54 s 31.22 s 29.42 s
8C 0.18 s 0.86 s 2.93 s 18.83 s 31.32 s
10C 0.22 s 0.53 s 1.88 s 21.38 s 23.10 s

Case II) Simulation results and computational time of ode15s implementation (NMC)
C-rate Number of node point (anode, separator, cathode)

(2, 2, 2) (5, 2, 5) (10, 5, 10) (20, 10, 20) (30, 20, 30)
1C 0.50 s 0.61 s 2.54 s
2C 0.15 s 1.33 s 8.63 s
5C 0.27 s 0.08 s 1.94 s Simulation Failure (not converging) Simulation Failure (not converging)
8C 0.39 s 0.07 s Simulation Failure (not converging)
10C 0.19 s 0.08 s
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finite difference Eqs. 20 and 21 are inserted into the governing
equations to obtain the DAE system. The DAEs are directly coded in
a symbolic form. For the micro-scale system, the concentration of
solid particles, which is approximated by parabolic profiles
(Equations 22 and 23 in Table VI), is implemented by replacing
Eqs. 4 and 10 in Table III.18 The solid phase concentration is
represented by the solid particle concentration at the surface ( )csi surf,

and solid particle average concentration ( )c ,si ave, rather than numeri-
cally discretizing solid particles along with a radial axis (i = p, n).
This type of volume-averaging combined with the parabolic profiles,
and solid concentration profiles are expressed as ODEs, as shown in
Table VI. Equations 22 and 23 are directly incorporated into Line 1
in the ODE symbolic form. Equations 11–17 are coded in a symbolic
form as well.

Line 2 in Algorithm 1: Single-step iteration-free initializa-
tion.—In the single-step iteration-free initialization method, the
DAE system is separated into AEs and ODEs, and AEs are
converted into implicit ODEs by the perturbation method.46 Next,

a switch function is multiplied by the original ODEs in the DAE
system. Lastly, the original ODEs including the switch function and
implicit ODEs are simultaneously simulated with a MATLAB®
standard ode15s solver.33 During a solving process, while implicit
ODE systems identify the consistent ICs, the switch function
converts the original ODEs into zero. Once consistent ICs are
determined, the switch function is set to one, meaning that the ODEs
are reverted to the original equations. In this way, consistent ICs are
guaranteed with a single-step iteration-free process. This section
describes the detailed driving process of the single-step iteration-free
initialization.33,46

First, we show a process of AEs being converted into implicit
ODEs. Here, ( ′) =g t 0 represents a set of AEs, as a function of time.
When a perturbation parameter (ε) is a very small constant (=1),

ε( ′ + )
ε→

g tlim
0

becomes zero as follows:

′ ε( ′) = ( + ) = [ ]
ε→

g gt tlim 0 24
0

When ε′ = +t t , Eq. 24 becomes

′ε ε( + ) = ( + ) = [ ]
ε→

g gt tlim 2 0 25
0

From Eq. 25,

ε( + ) = [ ]g t 0 26

Combining Eq. 26 with Eq. 24 produces the following:

ε( ′) = ( + ) = [ ]g gt t 0 27

The original AEs to be solved is ( ′) =g t 0. From Eq. 27, however,
solving g(t + ε) = 0 in confirmed to be equal to solving ( ′) =g t 0.
By the Taylor series expansion,

ε ε ε ε( + ) = ( ) + ( ) + ( ) + …≈ ( ) + ( )
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Combining Eq. 27 with Eq. 28, leads to

ε ( ) − ( ) = [ ]g
g

d t

dt
t 0 29

or

ε ( ) = − ( ) [ ]g
g

d t

dt
t 30

We have demonstrated that solving the original set of AEs ( ( ) = )g t 0

equals to solving ε = − ( )( ) g tgd t

dt
from Eqs. 26, 27, and 30.

Next, we apply a switch function to a set of ODEs. Here, y(t)
represents the set of differential variables, and f(t) represents a set of
functions and Eq. 31 represents the ODE systems

( ) = ( ) [ ]y
f

d t

dt
t 31

Now, a switch function, TH, is introduced

= ( + ( ( − ))) [ ]T tanh q t t
1

2
1 32H j

where q is a weighting factor and tj is the time allowed for the
perturbation approach to find consistent ICs. If q has enough large
values (e.g., 1000), the switch function becomes zero when t < tj.
When t > tj the switch function becomes one. Now, when Eq. 33 is
applied to Eq. 34 it leads to:

Figure 4. Robust and Sleek MATLAB® Implementation under fast charging
conditions when the number of node point is (20,10,20). (a) LiCoO2 cathode
and graphite anode battery system (b) NMC/graphite 18650 cylindrical
battery system. A blue-color solid line, orange-color dashed line, yellow-
color dotted line, purple-color dash-dot line, and green-color dashed line
represent simulation results of 1C, 2C, 5C, 8C, and 10C, respectively.
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( ) = ( ) ( + ( ( − ))) [ ]y
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d t
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t y z tanh q t t, ,
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1 33j

In Line 2 (see Algorithm 1), Eqs. 30 and 33 are coded based on DAE
system implemented in Line 1. That is,

(i) When <t t ,j ε = − ( )( ) g tgd t

dt
will find consistent initial condi-

tions.
(ii) When >t t ,j = ( )( ) f tyd t

dt
and ε = − ( )( ) g tgd t

dt
are solved simul-

taneously.

The single-step iteration-free initialization approach was origin-
ally developed in a symbolic software environment. The symbolic
environment enables to efficiently derive Eq. 30, which is an
essential step in the approach. In the DFN model, for example,
governing Eqs. 2 and 8 in Table III are converted to Eqs. 34 and 35
as AEs after the FDM discretization, as follows:
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The non-linear third term of Eq. 34 ( )κ ( − ) ( ) − ( )
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, 1 1 can impose restrictions on the direct

derivation of implicit ODEs (Eq. 30), either manually or using the
non-symbolic format of MATLAB®. The direct conversion of AEs
to implicit ODE systems can be efficiently achieved with the help of
a symbolic environment.

Line 3 in Algorithm 1: Odefunction.—The odeFunction con-
verts a system of symbolic first-order DAEs to a MATLAB®
function handle acceptable as input arguments to the numerical
MATLAB® DAE solver ode15s.47

Line 4 in Algorithm 1: Initial guesses.—Initial guesses based on
the equilibrium status as initial conditions.

Line 5 in Algorithm 1: Parameter identification.—In this part,
simultaneous identification of multiple parameters is carried out,
adopting experimental voltage profiles of constant current-discharge.
The model voltage outputs are fitted with the voltage data by
experimental measurements to identify parameter values, using
evolution optimization techniques.

In the DEARLIBS, the PSO algorithm is implemented (The
default PSO setting: the maximum iteration number is 50 and
the particle size is 30). In the PSO, the optimal value of the objective
function is identified by an iterative process that allows a candidate
solution called particles to reach a better objective function value.
These particles include the objective function value and velocity. In
the first iteration, all particles involve an objective function value
consisting of random parameters within the lower and upper bound,
and the PSO identifies the particle representing the best objective
function value among these particles. In the next iteration, the other
particles change their velocity direction to be directed towards the
position of the particle including the best objective function value in
the first iteration. The same process is repeated until the optimal
objective function is identified (see Fig. 3).

Various parameter identification techniques are currently used to
identify the parameters of LIBs, including Kalman filter methods,
recursive least squares methods, non-recursive least squares
methods, and evolutionary computation methods.38,48,49 Among
many other identification techniques, the PSO algorithm has several
advantages; (i) It does not require the optimization problem to be
differentiable, as required by classic optimization methods such as
gradient descent and quasi-newton methods. (ii) It can therefore also
be used on optimization problems that are not even continuous,
noisy, and change over time. The optimization routine finds the
optimal values for which the objective function subject to the model
equations, initial conditions, and bounds for the parameters, is
minimized. The final identified parameters are obtained by solving
an optimization problem where the sum of squares of the differences
in the voltage outputs between the model and experiment divided by
the total number of experimental data points of the system is
minimized inn the Root Mean Square Error sense, and unknown
parameters are used as decision variables.

Line 6 and 7.—The ode15s solver is adopted.

Line 8.—Voltage data by experimental measurement is em-
bedded.

Line 9.—The objective function of the optimization approach is
coded as follows:

Table VIII. Geometric, operational, and electrochemical parameters.

Symbol Parameter Values Units

Geometrical parameters
lp Thickness of positive electrode 7.56 × 10−5 m
ls Thickness of separator 1.2 × 10−5 m
ln Thickness of negative electrode 8.52 × 10−5 m
Rp Particle radius at positive electrode 5.22 × 10−6 m
Rn Particle radius at negative electrode 5.86 × 10−6 m
Acell Electrode area 0.11 m2

εp Porosity at positive electrode 0.35 —

εs Porosity at separator 0.47 —

εn Porosity at negative electrode 0.25 —

Operational parameters
iapp Applied Current 1C: 5 A
Electrochemical parameters
F Faraday constant 96485 sAmol−1

R Ideal gas constant 8.314 JK−1mol−1

T Temperature 278.5, 298.5, 308.5 K
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where N is the total number of experimental data points for charging
and discharging, np is the number of estimating parameters, Vexp,j

and Vmodel,j(p) indicate the experimental and model predicted voltage
value for the jth data point, p is the vector of the estimating
parameters, and pL and pU represent the lower and upper bounds for
the vector of the estimating parameters (p).

Fast Charging Simulation

One of the most critical issues that still prevents the spread of
EVs is the long charging time. However, during the fast-charging
process, issues with battery life, efficiency, and safety can occur by
unwanted side reactions and consequent thermal runaway. To
address these issues, material scientists have worked on developing
new materials to accommodate fast charging, and control engineers
have designed charging optimization and thermal management
strategies. The DEARLIBS can provide insights to understand the
chemical/kinetic phenomena without physical destruction of the
battery system. This section shows the robustness of the DEARLIBS
under fast charging operation. Because DEARLIBS is a flexible
physics-based battery modeling framework, once more accurate
alternative modeling tools are implemented, they can be used
simultaneously to provide an insight into battery design development
and to develop optimal control techniques.

In this section, two lithium-ion battery cells (LiCoO2 cathode/
graphite anode and NMC/graphite 18650 cylindrical battery sys-
tems) are simulated by adopting model parameters from Refs. 15
and 30. Model parameters of the NMC/graphite 18650 cylindrical
battery system are obtained from our previous studies,16 and these
parameters were confirmed to be validated with experimental data up
to 15C. Model parameters of the LiCoO2/graphite battery system
have been widely used in the literature when new algorithms and
codes are developed.40,42 The OCPs Eqs. 16–2, 17–2 and 16–3, 17–3
in Table V are used for two battery systems, respectively.

To the best of the authors’ knowledge, there have been no
attempts to qualitatively define stiff operating conditions in the DFN
model. In the DFN model, reasons for simulation failure are: 1) high
C-rates and 2) high the number of node points. In this section, the
stiff operating condition is addressed by employing the ode15s
solver without the single-step integration-free initialization approach
(see Case II: Simulation results and computational time of ode15s
(NMC) in Table VII). Simulations were conducted for the NMC/
graphite 18650 cylindrical battery system. The ode15s solver
simulates the DFN model well from 1C to 5C rates for low number
of node points (∼ (10, 5, 10)). However, within the same C-rate
range, when the number of node points increases and reaches (20,
10, 20), the solver fails. At 8C and 10C rates, the DFN model does
not converge even for the case of number of node points equal to
(10, 5, 10). High number of node points while operating the battery
at high C-rates should be successfully simulated, to properly
reproduce fast charging simulation scenarios.

To investigate the performance of the DEARLIBS, Lines 1–4 and
6 in Algorithm 1 are implemented without parameter identification
routines presented in Line 5, 7, 8, 9 of Algorithm 1, and the ode 15 s
solver is directly utilized to solve the DFN model after numerical
discretization and single-step iteration-free initialization. The pro-
posed DEARLIBS successfully simulates the DFN model over the
entire C-rate range (up to 10C), as shown in Fig. 4. Table VII shows
the computational time as a function of C-rate and grid points (see
Case I: Simulation results and computational time of the DEARLIBS
(NMC) in Table VII).

Parameter Identification

In this section, we demonstrate that the proposed DEARLIBS can
couple parameter identification routines with the DFN model. All
experimental results are based on a commercially available cylind-
rical cell manufactured by LG Chem (model: LG M50 INR 21700
5000 mAh).50 The cell voltage was obtained using the Arbin battery

Figure 5. Comparison of voltage profiles between experimental data and
battery model outputs from the DFN model at 1C constant discharge
condition. Voltage profiles from experimental measurement and DFN model
outputs are compared at (a) 5 °C, (b) 25 °C, and (c) 35 °C (Experimental
data: empty circle dots, the P2D model: blue-color straight line).
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testing system equipped with highly accurate sensors capable of
measuring the load current and cell voltage (Model: Arbin
LBT21024).51 A thermal chamber (Model: Amerex IC500R
Thermal Chamber) was used to conduct temperature-controlled
experiments.52 The battery cell was charged and discharged in a
thermal chamber at different temperatures (5 °C, 25 °C, and 35 °C).

Voltage measurements were acquired from CC discharging and
dynamics current profiles: First, a CC-CV profile (CC: Constant
Current, CV: Constant Voltage) was applied to the cell to reach full
charge capacity. Then, the battery cell was charged at 1C, and once
the cell voltage reached 4.2 V, it was charged with the CV until the
applied current decreases to C/10 (note: a C-rate of 1C is defined as
the applied current when the battery is charged for one hour). After
CC-CV charging, the cell was at rest for 30 min. The next
experimental procedure is described as follows:

(i) For constant discharge, C/20 was applied to the cell until it
reaches 2.8 V.

(ii) For dynamic discharging, the battery was discharged at C/5
until it reaches SOC 85% (SOC was calculated by Arbin
battery testing instrument). After that, the UDDS was applied
to the cell until the cell voltage value reaches 2.8 V.

The geometric parameters of LG M50 INR 21700 are presented
in Table VIII.31 Using this information, the remaining eight kinetic
and transport parameters are identified, adopting the PSO algorithm.

The identified eight kinetic/transport parameters are the electrolyte
diffusion coefficient, electrolyte conductivity, solid phase conduc-
tivity at the positive and negative electrode, solid phase diffusivity at
the positive and negative electrode, and reaction rate constants at the
positive and negative electrode. Parameter identification has been
simultaneously carried out using voltage data by experimental
measurement of discharging (1C) at 5 °C, 25 °C, and 35 °C. Also,
for the best performance of the optimization problem, the diffusion
and kinetic rate constants are expressed in term of a decimal function
(D = 10−A, Ds,p = 10−B, Ds,n = 10−C, kp = 10−D and kn = 10−E),
and indices (A, B, C, D, and E) of the decimal function are used as
optimizing variables since the original parameters (diffusivity and
reference rate constants) are too small (∼10−15) to be identified
properly.

Initial guess and upper/lower bounds.—Initial guesses were set
up based on Ref. 31 and lower and upper bounds were adjusted based on
the initial guesses (±30% from initial guesses) to obtain converged values
of the unknown parameters while minimizing the RMSE. The initial
guesses for the electrolyte diffusion coefficient, the electrolyte conduc-
tivity, solid phase conductivity at the positive and negative electrodes, the
solid phase diffusivity at the positive and negative electrode, and the
reaction rate at the positive and negative electrode were set up as follows
(see Table IX): At 5 °C, initial guesses are determined by 0.6 × 10−9m2

s−1, 1.17 S m−1, 0.18 S m−1, 215 S m−1, 4 × 10−15m2 s−1, 0.8 ×
10−14m2 s−1, 0.2 × 10−11mol (m−2·s), and 0.9 × 10−12mol (m−2·s),
respectively. At 25 °C, initial guesses are set up to 1× 10−9m2 s−1, 1.17
S m−1, 0.18m2 s−1, 215 S m−1, 4.0× 10−15m2 s−1, 3.3× 10−14m2 s−1,
0.7 × 10−11mol (m−2·s), and 0.7 × 10−12mol (m−2·s), respectively. At
35 °C, initial guesses are 1.2 × 10−9m2 s−1, 1.17 S m−1, 0.18 S m−1,
215 S m−1, 6.5 × 10−15m2 s−1, 6.0 × 10−14m2 s−1, 1.3 ×
10−11mol/(m2·s), and 1.3 × 10−12mol/(m2·s), respectively. The lower
and upper bounds for kinetic/transport parameters were given as ±30%
from the initial guesses.

Identified parameters.—The converged parameters for the elec-
trolyte diffusion coefficient, the electrolyte conductivity, solid phase
conductivity at the positive and negative electrodes, the solid phase

Table X. Root Mean Square Errors of voltage profiles at 1C between
Different Number of Node points.

(2, 2, 2) (5, 5, 5) (10, 5, 10) (20, 10, 20)

5 °C 19 mV 16 mV 17 mV 30 mV
25 °C 21 mV 17.5 mV 18 mV 16 mV
35 °C 23 mV 20 mV 20.5 mV 20 mV

Table IX. Identified Kinetic/Transport Parameters at Different Temperatures.

Symbol Parameter Temp. Lower bound Upper bound Initial guess Final value (Units)

D Electrolyte diffusion coefficient 5 °C 0.42 × 10−9 0.78 × 10−9 0.6 × 10−9 0.71 × 10−9

25 °C 0.7 × 10−9 1.3 × 10−9 1 × 10−9 0.7 × 10−9 (m2 s−1)
35 °C 0.84 × 10−9 1.56 × 10−9 1.2 × 10−9 1.12 × 10−9

κ Electrolyte conductivity 5 °C 1.51
25 °C 0.82 1.52 1.17 1.33 (S m−1)
35 °C 1.35

σp Solid phase conductivity at positive 5 °C 0.13
25 °C 0.13 0.23 0.18 0.15 (S m−1)
35 °C 0.23

σn Solid phase conductivity at negative 5 °C 157
25 °C 150.5 279.5 215 279.5 (S m−1)
35 °C 279.5

Ds,p Solid phase diffusivity at positive 5 °C 2.8 × 10−15 5.2 × 10−15 4 × 10−15 3.6 × 10−15

25 °C 2.8 × 10−15 5.2 × 10−15 4 × 10−15 4.9 × 10−15 (m2 s−1)
35 °C 4.55 × 10−15 8.45 × 10−15 6.5 × 10−15 5.5 × 10−15

Ds,n Solid phase diffusivity at negative 5 °C 0.56 × 10−14 1.04 × 10−14 0.8 × 10−14 0.78 × 10−14

25 °C 2.31 × 10−14 5.94 × 10−14 3.3 × 10−14 4.3 × 10−14 (m2 s−1)
35 °C 4.2 × 10−14 10.8 × 10−14 6 × 10−14 7.3 × 10−14

kp Reaction rate constant at positive 5 °C 0.14 × 10−11 0.26 × 10−11 0.2 × 10−11 0.19 × 10−11

25 °C 0.49 × 10−11 0.91 × 10−11 0.7 × 10−11 0.8 × 10−11 mol/(m2·s)
35 °C 0.91 × 10−11 1.69 × 10−11 1.3 × 10−11 1 × 10−11

kn Reaction rate constant at negative 5 °C 0.63 × 10−12 1.17 × 10−12 0.9 × 10−12 1.02 × 10−12

25 °C 0.49 × 10−12 0.91 × 10−12 0.7 × 10−12 0.5 × 10−12 mol/(m2·s)
35 °C 0.91 × 10−12 1.69 × 10−12 1.3 × 10−12 1.19 × 10−12
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diffusivity at the positive and negative electrode, and the reaction
rate at the positive and negative electrode are as follows (see
Table IX). At 5 °C, identified values are 0.71 × 10−9m2 s−1,
1.51 S m−1, 0.13 S m−1, 157 S m−1, 3.6 × 10−15m2 s−1, 0.78 ×
10−14m2 s−1, 0.19 × 10−11mol (m−2·s), and 1.02 × 10−12mol
(m−2·s), respectively. At 25 °C, identified parameters are con-
firmed as 0.7 × 10−9m2 s−1, 1.33 S m−1, 0.15 S m−1, 279 S m−1,
4.9 × 10−15m2 s−1, 4.3 × 10−14m2 s−1, 0.8 × 10−11mol/(m2·s),
and 0.5 × 10−12mol/(m2·s), respectively. At 35 °C, converged
parameters are determined as 1.12 × 10−9m2 s−1, 1.35 S m−1, 0.23
S m−1, 279 S m−1, 5.46 × 10−15m2 s−1, 7.34 × 10−14m2 s−1, 1 ×
10−11mol/(m2·s), and 1.19 × 10−12mol/(m2·s), respectively.

Performance of the DFN model.—In this parameter identifica-
tion test, we used 20 node points for the negative electrode, 10 node
points for the separator, and 20 node points for the positive electrode
(notation: (cathode, separator, anode) = (20, 10, 20)). The mini-
mized RMSEs were 30 mV, 16 mV, and 20 mV at 5 °C, 25 °C, and
35 °C, respectively, as shown in Fig. 5. The RMSE was investigated
for different numbers of node points (see Table X). The general
trend is that the RMSE decreases while the number of node points
increases. In most cases, the RMSE was decreased with higher
numbers of node points and converged at (20, 10, 20). However, the
RMSE of (20, 10, 20) at 5 °C was confirmed to be a higher value
compared to the lower number of node points. One of the possible
reasons can be the stiffness characteristic of simulations at 5 °C.
During the parameter identification process, different sets of para-
meters are attempted repeatedly to fit model outputs to the experi-
mental voltage profiles, and the simulation might not be converged

to produce better RMSE values. This will be investigated further as
part of future work.

Arrhenius relationship.—The Arrhenius equation, a formula for
the temperature dependence of reaction rates, describes the dependence
of the rate constant of a chemical reaction on the absolute temperature,
the reference reaction rate constant and other constants as following:

= [ ]−k k e 37i i
E RT

0,
a i k, ,

where ki is the reaction rate constant, T is the absolute temperature,
k0,i is the reference reaction rate constant, Ea,i,k is the activation
energy for the reaction, i is the positive and negative electrode, and R
is the gas constant. Taking logarithms of both right- and left sides
yields Eq. 30 as shown in below:

⎛
⎝

⎞
⎠

=
−

+ [ ]k
E

R T
ln kln

1
38i

a i k
i

, ,
0,

In Eq. 38, the Arrhenius Eq. 37 is converted into the linear equation

whose slope is −E

R
a i k, , when ln ki is plotted as a function of ( ).

T

1

Likewise, the solid phase diffusion coefficient can also be expressed
as Arrhenius relationships (see Eq. 39).

= [ ]− /D D e 39s i s i
E RT

, 0,
a i D, ,

where Ds,i is the solid phase diffusion coefficient, Ds0,i is the
reference solid phase diffusion coefficient, Ea,i,D is the activation
energy for the diffusion, T is the absolute temperature, i is the

Figure 6. Arrhenius relationships between identified solid phase diffusion coefficients and rate constants at different temperatures. The identified parameters in
this work exhibit the Arrhenius relationships.
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positive and negative electrode, and R is the gas constant. Taking
logarithms of both right- and left side terms produces a plot of ln Ds,i

vs ,
T

1 whose gradient is −E

R
a i D, , and intersection is ln Ds,0, as shown in

Eq. 40.

=
−

+ [ ]D
E

RT
ln Dln 40s i

a i D
s i,

, ,
0,

Equations 38 and 40 can be utilized to determine the reference
reaction rate constant at the positive and negative electrode (k0,p and
k0,n), the activation energy for the reaction at the positive and the
negative electrode (Ea, p, k and Ea, n, k), the reference solid phase
diffusion coefficient at the positive and the negative electrode
( )D and D ,s p s n0, 0, and the activation energy for the diffusivity at
the positive and the negative electrode ( )E and Ea p D a n D, , , , as pre-
sented in Fig. 6. In addition, Arrhenius relationships between
identified solid phase diffusion coefficients and rate constants at
different temperature were investigated to confirm model para-
meters’ behavior. The results shown in Fig. 6 indicate that the solid
phase diffusion coefficients and reactions rates follow the Arrhenius
relationship closely.

Validation.—In this section, we validate identified parameters in
the previous section. We simulate the DFN model in DEARLIBS
with UDDS schedule profiles at 25 °C, using (20, 10, 20). The
UDDS profile represents city driving conditions for light-duty
vehicle tests (see Fig. 7a), including dynamic operational conditions
that operate the battery system every 0.1 s time step (e.g., 300-
second simulation will include 3000 steps). Thought the UDDS was
originally created as a reference for fossil-fueled vehicles, it is also
used to estimate how many miles an EV can travel on a single
charge. The DFN implementation is successfully validated with the
experimental UDDS voltage profiles, as shown in Fig. 7b. The
percentage voltage error is illustrated as a function of time in Fig. 7c,
where the error value is calculated as shown below:

∑
= ∣ − ∣· ·

=

V V
N

V
% voltage error

100
exp j model j

i

N
exp j

, ,

1 ,

N represents the total number of experimental data points for UDDS
profiles, Vexp,j and Vmodel,j indicate the experimental and model

Figure 7. Simulations of the DEARLIBS under dynamic operational condi-
tions. (a) UDDS current profiles (red) (b) voltage profile by experimental
measurment (blue) and simulation results of DFN implementation (orange)
(c) percentage voltage error of voltage profiles between model outputs and
experimental measurment over time (blue). Initial state of charge is 85%, and the
number of node point is (20,10,20) = (Cathode, Separator, Anode).

Figure 8. Comparison of voltage profiles at 1C constant discharge between
the ESPM and DFN model, and experimental measurments. In this results,
ESPM are implemented using the same MATALAB® framework. Governing
equations are implemented on the same framework.
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predicted voltage value for the jth data point. The percentage voltage
error is confirmed to be less than 5% in Fig. 7c.

Conclusion and Perspective

This work provides a robust and sleek DFN MATLAB®
implementation- DEARLIBS. The robustness of proposed DFN
implementation was tested under fast charging conditions with
high numbers of discretization node points. Besides, the DFN model

parameters were identified with constant current-discharging data at
different temperatures, and confirmed to follow Arrhenius relation-
ships, and validated using UDDS profiles.

The significant advantage of DEARLIBS compared to current
open-access codes is that it maximizes users’ convenience to include
a parameter identification routine along with a standard solver
provided by MATLAB®. In DEARLIBS, for example, model
parameters in different chemistries can be identified to obtain
different sets of parameters. Different cathode chemistries have
been developed for LIBs available today (e.g., NCA, NMC, lithium-
manganese, lithium-titanite, and lithium-iron-phosphate). In the EV
systems, NCA and NMC cathode chemistries have been mostly
adopted.4 In the electricity market, batteries can provide up to 13
different services, where each of them would require different
energy and power requirements. In the back-up power application,
for example, the battery system must provide energy quickly upon
users’ needs, which would call for batteries with high specific
power.4 On the other hand, in the daily charging and discharging
residential photovoltaic/battery application, the battery system must
provide a more stable charging and discharging performance.4 In this
case, the batteries with a longer life cycle and higher durability are
preferred. In DEARLIBS, users can implement their own parameter
routines with in-house experimental data for different chemistries
with minimized efforts. A direct implementation of standard solvers
enables coupling parameter identification routines with minimized
efforts, and this will help accelerate spread of the battery models as
well as renewable energy systems. In contrast, current open-access
codes lack parameter identification techniques in their modeling
framework, and it might not be efficient to couple it with parameter
identification.

Parameter identification is an essential component and key
developmental phase to maximize battery performance for a specific
energy application. A robust and efficient initialization algorithm is
one of the most crucial parts to efficiently implement parameter
identification techniques. During the parameter identification pro-
cess, a set of model parameter values are changed at every iteration.
The iteration process requires different consistent initial conditions
depending on a set of updated parameter values. To overcome the
initialization issue, the efficient and robust initialization algorithm,
which was proposed by Matt Lawder et al. in 2015, is implemented
in DEARLIBS.33 The study of parameter identification in various
cathode chemistries will be reported in the next work by utilizing the
DEARLIBS.

Another possible research task that can be performed by
DEARLIBS is the comparison and analysis between different types
of physics-based models along with different lithium-ion chemis-
tries. In the current practice, battery performance between the DFN
model, ESPM, and SPM has been compared without the addition of
experimental data.53–55 In these studies, model parameters for
specific chemistry such as LiCoO2 have typically relied on the
literature. It is assumed that the DFN model produces actual battery
performance, and the ESPM is known to maintain only a few mV

Table XI. Identified Kinetic/Transport Parameters between ESPM and DFN model.

Symbol (Unit) Parameter Lower bound Upper bound Initial guess
Final value

% Error
ESPM DFN

D (m2 s−1) Electrolyte diffusion coefficient 0.7 × 10−9 1.3 × 10−9 1 × 10−9 1 × 10−9 0.7 × 10−9 42%
κ (S m−1) Electrolyte conductivity 0.82 1.52 1.17 1.33 1.33 0%
σp (S m−1) Solid phase conductivity at positive 0.13 0.23 0.18 N/A 0.15 N/A
σn (S m−1) Solid phase conductivity at negative 150.5 279.5 215 N/A 279.5 N/A
Ds,p (m

2 s−1) Solid phase diffusivity at positive 2.8 × 10−15 5.2 × 10−15 4 × 10−15 5.2 × 10−15 4.9 × 10−15 6.1%
Ds,n (m

2 s−1) Solid phase diffusivity at negative 2.31 × 10−14 5.94 × 10−14 3.3 × 10−14 2.53 × 10−14 4.3 × 10−14 41%
kp mol/(m2·s) Reaction rate constant at positive 0.49 × 10−11 0.91 × 10−11 0.7 × 10−11 0.7 × 10−11 0.8 × 10−11 12.5%
kn mol/(m2·s) Reaction rate constant at negative 0.49 × 10−12 0.91 × 10−12 0.7 × 10−12 0.53 × 10−12 0.5 × 10−12 6%

Algorithm 1. DEARLIBS in Pseudo-code.

Inputs: Applied current and voltage data by experiment measurement
Output: Voltage profiles from model outputs and identified parameter
values

(Symbolic form DAEs after numerical discretization)
Line 1: Set up model parameters, applied current, and number of node
points

Ordinary differential equations (ODEs)

= ( )f y zt, , ;yd

dt

Algebraic different equations (AEs)
( ) =g y zt, , 0

where z represents the set of AE variables, y represents the set of ODE
variables, and t represents simulation time (Symbolic form ODEs after
single-step iteration-free algorithm)

Line 2: ODEs = ( ) ( + ( ( − )))y zf t tanh q t t, , 1yd

dt j
1

2

Implicit ODEs ε = − ( )g y zt, ,gd

dt
where ε represents the perturbation

coefficient, tj represents the simulation starting time, and q represents
the switch function coefficient

Line 3: Convert symbolic form into function MATLAB® handles:
odeFunction

Line 4: Input y = y 0,g = g 0(initial guesses based the equilibrium status)
(Parameter identification)
Line 5: Set up lower and upper bounds for parameters to be identified
Call in-built optimization:
1st iteration: Go to objective function (line 9)
2nd iteration ∼ end: Compare present and previous objective function and
go to line 9

Once completing parameter identification routines, go to line 6
Line 6: Obtain optimal battery performance by ode15s (y, g, y 0 g, 0)
(Objective function)
Line 7: Receive parameters and simulate the model by ode15s (y, g, y 0 g,

0)
Line 8: Call voltage data from experiment measurement
Line 9: Calculate objective function and go to line 5

∑= ( − )
=

obj V V
N j

N
model j exp j

1

1 , ,
2 where Vmodel j, represents jth voltage

data from model outputs, Vexp j, represents jth voltage data obtained by
experiment, and N represents the total number of experimental data
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errors up to 5C for the discharging voltage profiles obtained from the
DFN model.53–55 However, the DFN model includes the aforemen-
tioned inaccuracy at the operating condition of low SOC, medium-
high temperature, and medium-high C-rate.16 In addition, the current
research is conducted with model parameters of several specific
chemistries collected from the literature.53–55 More detailed studies
on the comparison between battery models are required for different
lithium-ion chemistries. For this reason, parameter identification
routine implemented in DEARLIBS is a necessary technique to
accelerate the relevant research topics.

Figure 8 shows an example of the voltage comparison between
ESPM and DFN models with experimental voltage data, using
DEARLIBS (1C constant discharge at 25 °C). In the ESPM
framework, the solid particle concentration is described along with
the r dimension, and it is formulated upon the assumption that each
electrode can be represented by a single spherical particle. This
implies that all solid particles are uniform and have the same
chemical properties. The variation of electrochemical potential in the
solid particles along with x-axis is ignored whereas the electrolyte
concentration and potential are considered. In the ESPM framework,
the molar flux of the electrolyte for the solid particles is considered
to be the average value across each electrode as follows:53,56

⎛
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In addition, this assumption can lead to the analytical solution of
liquid phase potential as shown below:53,56
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where x represents the spatial coordinate of the electrode.
In Fig. 8, the ESPM implements Eqs. 1, 4, 5, 7, 10 in Table III,

Eqs. 11–13 in Table IV, Eqs. 16–1 and 17–1 in Table V, and
Eqs. 41–42. The kinetic/transport parameters in ESPM are identified
with experimental voltage data with 1C CC-discharge, using the
same upper and lower bounds from the DFN model (see Table XI).
The RMSEs of the ESPM and the DFN model are 18 mV and
17 mV, respectively. Future work will involve detailed simulation
and optimization studies on the ESPM, SPM, and DFN models along
with model parameters of different chemistries obtained from
parameter identification routines in DEARLIBS.

In addition to the aforementioned advantages, physics-based battery
models can incorporate thermal/stress/mechanical effects, chemical/
electrochemical kinetics, transport phenomena, and side reactions in
DEARLIBS. The safety issues and capacity/pawer fade can always
occur during the battery operation, including thermal runaway, electro-
lyte decomposition processes, lithium plating, and formation of the
solid-electrolyte interphase layer. The proposed DEARLIBS can be
used by both modelers, battery experimentalist, and control engineers,
to understand lithium-ion battery systems and get accurate estimates
under various operating conditions and across different chemistries.
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