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a b s t r a c t 

Energy storage systems (ESSs) are a critical component of the electric grid, dispatching (charging and discharging) 
to performing grid applications such as frequency regulation, energy arbitrage, and peak shaving. Today, lithium- 
ion batteries are considered the best electrochemical ESSs in grid applications, and various cathode chemistries 
have been developed. On the electric grid, batteries can provide up to 13 ESS services, and different combinations 
of grid services and chemistries produce different battery aging and life performance under the given dispatch. 
Therefore, the characterization of each grid application dispatch can give an insight into optimal participation 
strategies for lithium-ion chemistries for each grid service. In this paper, an efficient algorithm is presented which 
uses a dispatch interval matrix to capture metrics in the ESS dispatch relevant to lithium-ion battery aging and 
performance, and implements unsupervised learning and dimensionality reduction on this matrix to produce 
characteristic duty cycles of the dispatch, from which synthetic duty cycles are produced that are suitable for 
laboratory testing and fast simulation. The algorithm is demonstrated for the dispatch under the grid application 
of peak shaving. Finally, an electrochemical-aging model is used to simulate a lithium-ion battery under both the 
original power dispatch and the synthetic duty cycle to validate the effectiveness of the method proposed in this 
paper to retain the operating stress factors. 
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. Introduction 

In 2019, worldwide renewable generation capacity reached over 2
erawatts, with the fastest-growing resources of solar photovoltaic and
ind power accounting for 90% of all net renewable capacity addi-

ions [21] . These resources can comprise a substantial amount of the
rid generation power. Variable renewable generation (i.e. wind and
olar power) constituted over 22% of the total energy generated on the
alifornia Independent System Operator (CAISO) grid in 2018 [45] . The

ntroduction of these variable generation resources poses challenges to
onventional methods for planning the daily operation of the electric
rid. For example, diurnal availability of solar generation can aggravate
eneration ramping problems when load power consumption increases
s solar power production decreases. This behavior, termed the “duck
urve ”, impedes further deployment of variable renewable generation
t scale [2] . 

Energy storage systems (ESSs) are considered as a solution to address
he aforementioned drawbacks of variable renewable generation. ESSs
onnected to the electric grid can participate in grid applications, such
s peak shaving, frequency regulation, solar firming, and voltage sup-
ort, offsetting the variability of renewable generation and maintaining
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rid stability. Among ESSs, electrochemical energy storage is the main
echnology deployed today for grid services, of which over 90% is pro-
ided by lithium-ion batteries (LIBs) [47] . The modular design of LIBs
llows for flexibility in construction and installation, and during opera-
ion, LIBs can respond quickly to meet power requests from various grid
ervices [6] . 

However, the degradation resulting from participation in grid ap-
lications has a strong impact on profitable LIB operation [3,48] . This
egradation results from both cycle aging and calendar aging. Cycle ag-
ng occurs when batteries are actively dispatched at non-zero power.
n LIBs, capacity fade caused by cycling occurs due to unwanted side
eactions, such as solid-electrolyte interphase (SEI) layer formation
nd growth, intercalation-induced stresses, and for graphite-anode LIBs,
ithium plating at the negative electrode [37] . These side reactions are
ependent on the operating temperature, state of charge, and C-rate,
efined as the ratio of power dispatch to nominal energy. On the other
and, calendar aging accounts for all degradation processes that result
ndependent of dispatch, and therefore occurs when the batteries are at
est. They are exacerbated by high temperatures and high state of charge
t which the battery is stored. Calendar aging is an important factor in
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Nomenclature 

Symbolquantity 

𝑋 dataset matrix, dimension ℝ 

𝑚 ×𝑛 

( 𝑋) 𝑞, ∗ 𝑞 th row of 𝑋
𝑚 number of observations of dataset matrix 𝑋
𝑛 number of variables of dataset matrix 𝑋
𝜇𝑖 mean of column 𝑖 of 𝑋, dimension ℝ 

𝑛 ×1 

𝐴 column mean-centered matrix of 𝑋, dimension ℝ 

𝑚 ×𝑛 

𝐶 sample variance matrix of 𝑋, dimension ℝ 

𝑛 ×𝑛 

𝜎𝑖 singular value 𝑖 of 𝐶, in order of decreasing value 
𝑣 𝑖 principal component 𝑖 of 𝑋, corresponding to 𝜎𝑖 , di- 

mension ℝ 

𝑝 ×1 

𝑉 matrix of principal components, dimension ℝ 

𝑛 ×𝑛 

Σ diagonal singular value matrix of 𝐶. dimension ℝ 

𝑛 ×𝑛 

𝑋 𝑝 𝑝 -dimension matrix representation of 𝑋, dimension 
ℝ 

𝑚 ×𝑝 

𝐹 𝑝 fraction of original variation of 𝑋 retained by 𝑋 𝑝 

𝐹 min minimum fraction of retained variation 
𝑝 ∗ optimal number of principal components for dimen- 

sionality reduction 
𝑃 reduced-dimension matrix representation of 𝑋, di- 

mension ℝ 

𝑚 ×𝑝 ∗ 

𝑘 number of clusters used in k-means clustering 
𝑥 𝑖 observation vector 𝑖 , dimension ℝ 

𝑚 

𝑐 𝑗 cluster centroid 𝑗, dimension ℝ 

𝑚 

𝑁 𝑐 optimal number of clusters 
𝑑𝑖𝑠𝑡 𝑤𝑖𝑡ℎ𝑖𝑛 ( 𝑘 ) maximum cluster spread, as function of 𝑘 
𝑑𝑖𝑠𝑡 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 ( 𝑘 ) minimum pair-wise distance between cluster cen- 

troids, as function of 𝑘 
𝑘 max maximum number of clusters used to determine 𝑁 𝑐 

𝑔[ 𝑏 ] sequence of values in time indexed by 𝑏 , of length 𝐵
𝐺[ 𝑐] discrete Fourier Transform of 𝑔[ 𝑏 ] indexed by 𝑐, of 

length 𝐵
𝑃 𝐺 periodogram of 𝐺[ 𝑐] , of length 𝐵
𝑓 frequency resolution of 𝑔[ 𝑏 ] 
𝑊 𝑛𝑜𝑚 rated power of the ESS 
𝐸 𝑛𝑜𝑚 rated energy capacity of the ESS 
𝑊 ( 𝑡 ) power dispatch for the ESS dataset, as a function of 

time 𝑡 
𝑆𝑂𝐸( 𝑡 ) state of energy for the ESS dataset, as a function of 

time 𝑡 
𝑇 ( 𝑡 ) outdoor air temperature for the ESS dataset, as a 

function of time 𝑡 
𝑑 interval used for characterization algorithm 

𝑁 𝑑 number of non-zero dispatch intervals 
𝑀 interval metrics matrix, dimension dimension 

ℝ 

𝑁 𝑑 ×12 

𝑤 𝑗 power dispatch for representative interval 𝑗
𝑅 𝑄 RMSE between capacity trajectories 
𝑄 𝑠𝑦𝑛 ( 𝑡 ) capacity trajectory under synthetic duty cycle cy- 

cling, as a function of time 𝑡 
𝑄 𝑑𝑖𝑠𝑝 ( 𝑡 ) capacity trajectory under power dispatch cycling, as 

a function of time 𝑡 

rid applications when the resting period is substantial or not negligible
ompared to dispatch periods [42] . 

There are two main factors that affect the degradation trajectory in
IBs. The first one is the charging/discharging pattern of duty cycles typ-
cal of grid applications. A duty cycle is a power or current profile rep-
esenting the battery charge and discharge operation in response to the
rid application dispatch. Each grid application imposes different duty
ycles on LIBs, leading to different capacity fade trends which can signif-
cantly impact their durability and operation lifetime [9] . For example,
2 
or a given battery chemistry, batteries that have been routinely charged
ith a relatively low C-rate will undergo a less detrimental degradation

rajectory with less cycle aging, and therefore will last longer than LIBs
hich have experienced frequent fast-charging. Fast-charging can cause
arious degradation modes triggered by side reactions, including ther-
al effects and graphite-anode lithium-plating phenomena. 

The second factor determining degradation comes from the cathode
hemistry. Nickel-manganese-cobalt oxide (NMC), Lithium-iron phos-
hate (LFP), and nickel-cobalt-aluminum oxide (NCA) are examples of
athode chemistries which can be adopted for grid applications. For
he same charging/discharging pattern, NCA and LFP typically have
igher specific power/energy and maintain a longer lifespan compared
o NMC [16,43] . However, NCA is known to be less safe due to thermal
unway effects triggered by the exacerbated heat release of oxygen and
vercharging, and is more predisposed to short circuiting than other
hemistries [9] . Overall, LIBs would experience different degradation
rajectories depending on combinations of the charging/discharging pat-
ern and lithium-ion chemistries. 

This paper focuses on the characterization of the grid-specific duty
ycles, which addresses LIB degradation in two aspects. First, the charac-
erization of grid applications systematically provides dispatch informa-
ion affecting LIB performance and lifetime performance. Second, syn-
hetic duty cycles to mimic grid-specific LIB dynamic behaviors can be
reated based on the characterization of grid duty cycles. The genera-
ion of synthetic duty cycles has the potential to facilitate laboratory
esting to identify battery aging trajectories while maintaining the same
haracteristics of grid duty cycles. In addition, understanding the degra-
ation mechanisms triggered by characteristic grid-specific duty cycles
s key to developing predictive LIB models that can be integrated into
ost/benefit analyses and real-time control strategies, in order to maxi-
ize profit and minimize lost capacity for LIBs. 

A wealth of literature has been produced on this topic for automo-
ive batteries, including the production and application of synthetic duty
ycles for laboratory testing of lithium-ion cells used in hybrid vehi-
les [28] , as well as the characterization of battery aging in plug-in hy-
rid vehicles using physics-based models [14] . However, current studies
n renewable grid applications show the lack of a systematic approach
o characterize grid-specific duty cycles. Sandia National Laboratory has
mplemented a testing protocol to assess the performance of ESSs using
uty cycles obtained for various grid applications, including peak shav-
ng, frequency regulation, photovoltaic (PV) smoothing, and solar firm-
ng [7] . For PV smoothing, ESS duty cycles were generated directly from
xisting PV generation profiles, without identification of characteristic
uty cycles [41] . For frequency regulation, duty cycling was analyzed
ia the Fourier transform, and “aggressive ” and “average ” days were
xtracted from the dispatch and used as characteristic duty cycles [39] .
he ad hoc , subjective construction of these duty cycles limits their gen-
ral application beyond such a test-bed study. In other studies, perfor-
ance and life of LIBs were investigated, by modelling LIB degradation

nd performance from simulated grid application dispatch. In [44] , the
ging of LIBs was modelled under frequency regulation given different
ispatch methodologies (e.g. re-establishing LIB state of charge between
uty cycles), and in [48] , the effects of different degradation models on
he optimal energy arbitrage revenue were demonstrated. However, the
nalysis of the impact of dispatch on degradation is limited by the lack
f rigorous characterization of the dispatch. The literature depends on
rbitrarily-selected days of dispatch to demonstrate modelling results,
hich do not adequately capture features of the dispatch that explain

he LIB degradation trajectories. 
Our previous work on characterizing duty cycles for grid ESSs for-

ulated a systematic approach using k-means clustering and spectral
nalysis on the power dispatch, and included a preliminary method of
reating synthetic duty cycles [31,32] . This paper follows the previous
pproach by including additional state of energy and ambient tempera-
ure information along with the power dispatch of the ESS into metrics
epresenting features in grid service operation that are relevant to LIB
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egradation. The proposed characterization algorithm presented in this
aper uses principal component analysis (PCA) to improve the perfor-
ance of k-means clustering and a more rigorous method to determine

he number of clusters for k-means clustering to produce characteristic
uty cycles, and subsequently synthetic duty cycles, for grid ESS dis-
atch. This paper also presents the validation of the synthetic duty cycles
sing an electrochemical aging model, demonstrating that the simulated
apacity fade trajectory of a cell cycled with the synthetic duty cycles
s the same as that of a cell cycled with the real dispatch profile. To the
est of our knowledge, this paper is the first to present such validation.

There are seven sections in this paper: Peak Shaving, Methods, Data
escription, Dispatch Interval Matrix, Algorithm for Duty Cycle Charac-

erization, Results and Discussion, and Conclusions. In the Peak Shaving
ection, we discuss the motivation for peak shaving, and how LIBs are
sed to support this grid application. In the Methods section, we describe
CA, k-means clustering, and the fast Fourier transform (FFT), and their
elevance to duty cycle characterization. In the Data Description section,
e present the dispatch data used for the characterization and synthesis
f duty cycles. In the Dispatch Interval Matrix section, we describe the
onstruction of a matrix consisting of metrics relevant to lithium-ion bat-
ery calendar and cycle aging from the dispatch data. In the Algorithm
or Duty Cycle Characterization section, we present the method for duty
ycle characterization using the dispatch interval matrix. In the Results
nd Discussion section, we apply the algorithm to different dispatches,
ompare the resulting characteristic duty cycles, present synthetic duty
ycles as constructed from characteristic duty cycles, validate the aging
haracteristics of the synthetic duty cycles against those of the original
ispatch, and discuss the applicability of this approach to general grid
SS dispatch. Concluding remarks are found in the Conclusion section. 

. Peak shaving 

In the stationary grid market, LIBs can provide up to 13 different
ervices, where each of them would require different energy and power
equirements [19] . In a back-up power application, for example, the bat-
ery system must provide energy quickly upon users’ need in emergency
ituations, which would call for batteries with high specific power; on
he other hand, in the daily charging and discharging residential pho-
ovoltaic/ESS application, the LIB must provide a more stable charging
nd discharging performance, requiring a battery with high cycle dura-
ility [43] . 

Among these grid services, peak shaving is most commonly per-
ormed by residential (household) LIBs, which are rapidly growing on
he grid. Between 2014 and 2018, annual installations of residential LIBs
n the United States increased from 2.25 MWh to 185 MWh, and are
rojected to exceed 2900 MWh by 2032 [18] . The basic concept of peak
having is rooted in the conventional electric grid operation, whereby
he electric utility supplies electricity via the utility distribution grid
o meet the load power demand of the consumer, e.g., house, office,
r factory. The consumer is then billed monthly by the utility for this
upplied electricity. The utility tariff rate determines this bill based on
lectricity costs such as time-of-use energy charges and power demand
harges, which are applied to the electric energy and peak (maximum)
ower supplied by the grid. These quantities are measured by the flow
f energy and power through the utility meter. 

Peak shaving is used to lower the monthly peak power supplied by
he grid ( “shaving ” the peak), while still keeping time-of-use energy
harges low. This reduces the power flow measured by the utility meter,
nd therefore lowers the utility bill for the consumer. Different strate-
ies for peak shaving have been demonstrated, including reducing peak
onsumption of flexible facility loads, managing charging of electric ve-
icles, and dispatching battery ESSs [4,46] . 

For ESSs, peak shaving is accomplished by managing the dispatch
f the ESS according to both the load and the tariff rate: discharging
hen the load is large, and charging from the grid when electricity is

heap [17] . This grid application has a large market size, with approx-
3 
mately 5 million potential residential ESS peak shaving systems in the
nited States alone [30] . Real-time operation of an ESS for peak shaving
an involve simple control loops to discharge or charge the ESS based
n power flow from the grid and state of charge of the battery [25] , or
nclude an optimization algorithm to compute optimal peak shaving dis-
atch given additional constraints, such as the power flow through grid
nfrastructure [36] or the utilization of local solar PV generation [33] .
n the system shown in Fig. 1 , the ESS can perform peak shaving by
ispatching to offset the load demand. 

. Methods 

This section presents the fundamental methods used in the duty cycle
haracterization. PCA is used to reduce the dimension of the dataset of
etrics computed for the ESS dispatch, which is then clustered accord-

ng to k-means clustering. In addition, the Fast Fourier Transform is used
o include frequency information from the dispatch into the metrics. 

.1. Principal component analysis 

PCA is used to reduce the dimensionality of a dataset consisting
f a large number of interrelated variables by first obtaining orthog-
nal vectors representing new, uncorrelated variables for the dataset,
hich are termed principal components. Dimensionality reduction then

akes place by projecting the dataset along a subset of these principal
omponents, while retaining as much as possible of the variation (i.e.
he spread of the data within each variable) originally present in the
ataset [23] . By representing the dataset of 𝑚 observations with 𝑛 vari-
bles as a real-valued matrix 𝑋 ∈ ℝ 

𝑚 ×𝑛 , PCA produces the principal com-
onents 𝑣 1 , 𝑣 2 , … 𝑣 𝑛 as vectors in ℝ 

𝑛 , with corresponding singular val-
es 𝜎1 , 𝜎2 , … 𝜎𝑛 ordered in decreasing magnitude (i.e. 𝜎1 > 𝜎2 > … > 𝜎𝑛 ).
he details of this process can be found in Appendix A . 

Next, 𝑋 is projected along a subset of its principal components
 1 , … , 𝑣 𝑝 , 𝑝 < 𝑛 , reducing 𝑋 from dimension 𝑛 to dimension 𝑝 . This is
erformed by multiplying the matrix 𝑋 by the matrix of vectors 𝑣 1 , … , 𝑣 𝑝 
o produce the PCA subspace matrix 𝑋 𝑝 

 𝑝 = 𝑋[ 𝑣 1 , … , 𝑣 𝑝 ] , 𝑋 𝑝 ∈ ℝ 

𝑚 ×𝑝 (1)

The optimal number of principal components 𝑝 ∗ is determined us-
ng the retained variation of 𝑋 present in 𝑋 𝑝 [23] . 𝐹 𝑝 is defined as the
ariation of 𝑋 𝑝 over the original variation of 𝑋

 𝑝 = 

∑𝑝 
𝑖 =1 𝜎𝑖 ∑𝑛 
𝑗=1 𝜎𝑗 

, (2)

Using the singular values 𝜎1 , … 𝜎𝑝 corresponding to the principal
omponents used to construct 𝑋 𝑝 to represent the variation of 𝑋 𝑝 , and
ll singular values to represent the original variation of 𝑋. 𝑝 ∗ is then de-
ned as the minimum number of components needed for 𝐹 𝑝 to exceed a
inimum threshold 𝐹 min by ensuring that a majority of the variation of
is retained in 𝑋 𝑝 with a minimal number of principal components 

 

∗ = arg min 𝑝 
{
𝐹 𝑝 > 𝐹 min 

}
, 𝑝 = 1 , 2 , … , 𝑛 (3)

The value for 𝐹 min is dependent on the application and the result-
ng trade-off between accuracy and computational effort. In this paper,
 min = 0 . 9 . 𝑃 is then the projection of 𝑋 onto the first 𝑝 ∗ principal com-
onents 

 = 𝑋[ 𝑣 1 , … , 𝑣 𝑝 ∗ ] , 𝑃 ∈ ℝ 

𝑚 ×𝑝 ∗ , (4)

Which represents the optimal PCA subspace for 𝑋, and is used as the
nput for k-means clustering in this paper. 

.2. K-means clustering 

Clustering is a class of unsupervised learning methods that organize
nd partition data into groups, for which members of a group share some
eatures [22] . Clustering has been widely employed for characterizing
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Fig. 1. Power flow diagram for a system that can use an ESS 
for peak shaving. A load bus electrically connects the utility 
distribution grid, the solar PV array, the load, and the ESS, al- 
lowing power to flow between them. Arrows indicate direction 
of power flow. Power flows into the load bus from the utility 
distribution grid, and then flows out to the load, and the direc- 
tion is unchanged by the dispatch of the ESS. The bidirectional 
dispatch of the ESS is highlighted in green, with direction of 
ESS charge and ESS discharge also shown. (For interpretation 
of the references to color in this figure legend, the reader is 
referred to the web version of this article.) 
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Fig. 2. Illustrative example of clustering on observations in a PCA subspace 
of two principal components, with number of clusters 𝑘 = 3 . Circles represent 
observations (i.e. rows of 𝑋 𝑟 ), while the cluster centroids 𝑐 𝑖 are labeled and 
denoted with crosses. Color is used to represent membership to a given cluster 
(e.g. all green circles are observations that have been assigned to the cluster with 
cluster centroid denoted by the green cross). Because 𝑑𝑖𝑠𝑡 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 (3) < 𝑑𝑖𝑠𝑡 𝑤𝑖𝑡ℎ𝑖𝑛 (3) , 
the clusters are indistinguishable from each other. (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version 
of this article.) 
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ime-series data [27] . In [10] , k-means clustering was applied to a yearly
olar generation profile to provide a reduced set of daily power profiles
or further voltage stability analysis, and in Xu and Zhang [52] wind
peed and insolation data clusters were used to construct multiple sce-
arios of renewable energy resources for a combined concentrated solar
ower/wind turbine plant. In [20] , clusters were used to generate rep-
esentative electricity load demand profiles for further sensitivity analy-
es, and in Rhodes et al. [38] , seasonal trends were demonstrated within
lectricity usage clusters, which were then used to drive a regression
odel between consumers and electricity consumption. In [13] , k-means

lustering was adopted as a technique to study driving cycles for elec-
ric vehicles, comparing clusters of charge/discharge pulses to the road
perating conditions during these pulses. 

In k-means clustering, 𝑘 is defined as the number of clusters to be
onstructed from 𝑚 observations of data. Each observation is assigned a
luster by the closest Euclidean distance to the cluster centroid, defined
s the mean of all observations in the cluster. Given 𝑘 desired clusters,
nd dataset of observation vectors 𝑥 1 , … , 𝑥 𝑚 , k-means clustering deter-

ines 𝑘 cluster centroids as a solution 𝜙∗ = 

[
𝑐 1 , … , 𝑐 𝑘 

]𝑇 
that minimizes

he cost function 𝐽 [1] 

 = 

𝑚 ∑
𝑖 =1 

min 
𝑗=1 , …,𝑘 

‖‖‖𝑥 𝑖 − 𝑐 𝑗 
‖‖‖2 (5)

Along with 𝜙∗ , the results of k-means clustering are the cluster as-
ignments of each observation. Each cluster 𝑗 consists of its centroid 𝑐 𝑗 
nd its observation members. Additionally, 𝑚 𝑗 is defined as the num-

er of observation members for cluster 𝑗, where 
∑𝑘 
𝑖 
𝑚 𝑗 = 𝑚 (as every

bservation is assigned to a cluster). 
Among all choices for 𝑘 , selecting the optimal number of clusters 𝑁 𝑐 

s an important step in the application of k-means clustering, as it entails
he generation of clusters that are distinct from each other. The position
f the cluster centroids and their respective observation members within
his subspace can thus be used to assess the output of k-means clustering,
nd ultimately obtain 𝑁 𝑐 . 

First, 𝑑𝑖𝑠𝑡 𝑤𝑖𝑡ℎ𝑖𝑛 ( 𝑘 ) is defined as the maximum average distance be-
ween the cluster centroid 𝑐 𝑗 and all 𝑚 𝑗 of the cluster members 

𝑖𝑠𝑡 𝑤𝑖𝑡ℎ𝑖𝑛 ( 𝑘 ) = max 

{ 

1 
𝑚 𝑗 

∑
𝑥 𝑖 ∈cluster 𝑗 

‖‖‖𝑥 𝑖 − 𝑐 𝑗 
‖‖‖2 , 𝑗 = 1 , 2 , … 𝑘, 

} 

(6)

Representing the maximum spread among all clusters. Clusters that
re tightly-packed together, where all cluster members are close to their
espective cluster centroids, will produce a small 𝑑𝑖𝑠𝑡 𝑤𝑖𝑡ℎ𝑖𝑛 ( 𝑘 ) , while clus-
ers that are spread out, where cluster members are far from their re-
pective cluster centroids will produce a large 𝑑𝑖𝑠𝑡 𝑤𝑖𝑡ℎ𝑖𝑛 ( 𝑘 ) . 

However, the relative positioning of each cluster must be taken into
onsideration. Because the cluster centroids represent the average posi-
4 
ion of each cluster, 𝑑𝑖𝑠𝑡 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 ( 𝑘 ) is then defined as the minimum pair-
ise distance between each pair of cluster centroids 

𝑖𝑠𝑡 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 ( 𝑘 ) = min 
{ ‖‖𝑐 𝑎 − 𝑐 𝑏 

‖‖2 , 𝑎 ∈ 1 , … , 𝑘 , 𝑏 ∈ 1 , … , 𝑘 , 𝑎 ≠ 𝑏 } 

(7)

Clusters which are close to each other will produce a small
𝑖𝑠𝑡 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 ( 𝑘 ) , while clusters which are far apart will produce a large
𝑖𝑠𝑡 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 ( 𝑘 ) . Note that if 𝑑𝑖𝑠𝑡 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 ( 𝑘 ) < 𝑑𝑖𝑠𝑡 𝑤𝑖𝑡ℎ𝑖𝑛 ( 𝑘 ) , clusters are more
pread out than they are distanced from each other, and they can over-
ap and become indistinguishable from each other. An example of this
ffect is shown in Fig. 2 . 

In order to produce clusters that are distinct from each other k-means

lustering will generate clusters that are tightly-packed and far apart
rom each other. The optimal number of clusters 𝑁 𝑐 is therefore the
alue of 𝑘 which maximizes the difference between 𝑑𝑖𝑠𝑡 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 ( 𝑘 ) and
𝑖𝑠𝑡 𝑤𝑖𝑡ℎ𝑖𝑛 ( 𝑘 ) 

 𝑐 = arg max 𝑘 
{
𝑑𝑖𝑠𝑡 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 ( 𝑘 ) − 𝑑𝑖𝑠𝑡 𝑤𝑖𝑡ℎ𝑖𝑛 ( 𝑘 ) 

}
, 𝑘 = 1 , 2 , … , 𝑘 max , (8)

here the optimal number of clusters 𝑁 𝑐 are determined up to a maxi-
um number of clusters 𝑘 max . In this paper, 𝑘 max = 30 . 

An example of ideal clustering compared to non-ideal clustering is
hown in Fig. 3 , in the case where a dataset is projected onto two princi-
al components ( 𝑟 = 2 ), and shown for 𝑘 = 3 and 𝑘 = 2 . Because the out-
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Fig. 3. Illustrative example of clustering on observations in a PCA subspace of two principal components. Circles represent observations (i.e. rows of 𝑋 𝑟 ), while the 
cluster centroids 𝑐 𝑖 are labeled and denoted with crosses. Color is used to represent membership to a given cluster (e.g. all green circles are observations that have 
been assigned to the cluster with cluster centroid denoted by the green cross). (a) For 𝑘 = 2 , 𝑑 𝑖𝑠𝑡 𝑏𝑒𝑡𝑤𝑒𝑒𝑛,𝑘 − 𝑑 𝑖𝑠𝑡 𝑤𝑖𝑡ℎ𝑖𝑛,𝑘 is small, i.e. clusters are loosely spread but close 
to each other. (b) For 𝑘 = 3 , 𝑑 𝑖𝑠𝑡 𝑏𝑒𝑡𝑤𝑒𝑒𝑛,𝑘 − 𝑑 𝑖𝑠𝑡 𝑤𝑖𝑡ℎ𝑖𝑛,𝑘 is large, i.e. clusters are tightly-packed and far apart from each other. (For interpretation of the references to 
color in this figure legend, the reader is referred to the web version of this article.) 
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ut for three clusters produces the greatest difference between 𝑑𝑖𝑠𝑡 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 
nd 𝑑𝑖𝑠𝑡 𝑤𝑖𝑡ℎ𝑖𝑛 , 𝑁 𝑐 = 3 for this dataset in the PCA subspace. 

.3. Fast Fourier transform 

In this paper, the fast Fourier transform is used to incorporate fre-
uency information in the power dispatch as metrics for the duty cy-
le characterization. The FFT is used to compute the Discrete Fourier
ransform of a signal represented by a time-series sequence of val-
es 𝑔[ 𝑏 ] , 𝑏 = 0 , 1 , 2 , … , 𝐵 − 1 of length 𝐵, in time. This sequence 𝑔[ 𝑏 ] is
hen decomposed into a sequence of sinusoidal components 𝐺[ 𝑐] , 𝑐 =
 , 1 , 2 , … , 𝐵 − 1 of length 𝐵, of different frequencies 𝑏𝑐∕ 𝐵 [8] 

[ 𝑐] = 

𝐵−1 ∑
𝑏 =0 
𝑔[ 𝑏 ] − 

𝑖 2 𝜋𝑏𝑐 
𝐵 , 𝑐 = 0 , 1 , …𝐵 − 1 (9)

From 𝐺[ 𝑐] , one can obtain the corresponding periodogram 𝑃 𝐺 , which
s an estimate of the spectral density of 𝑔[ 𝑏 ] , i.e. the distribution of power
mong the frequency components of the signal. 𝑃 𝐺 is defined as follows

 𝐺 = 

1 
𝐵𝑓 

|||𝐺[ 𝑐] |||2 , (10)

With 𝑓 as the known frequency resolution of 𝑔[ 𝑏 ] . Peaks in the peri-
dogram correspond to the dominant (high-power) frequencies within
he signal. 

The degradation of a battery is dependent on different mechanisms
or charging and discharging. For example, SEI layer growth is one of
he main causes of capacity fade and impedance increase in the LIB,
nd occurs predominantly on the anode during charging [35] . There-
ore, separating dispatch into charge and discharge profiles could yield
seful insights on potential modes of degradation upon usage. However,
harging and discharging are strictly negative and strictly positive, re-
pectively. As the FFT decomposes a signal along zero-mean sinusoidal
omponents, simply separating the charge and discharge and directly
aking the FFT of these profiles would yield a bias in the periodogram
ue to the non-zero mean of each separated profile, appearing as low-
requency components not present in the original dispatch. 

Mean centering is applied to ensure that the resulting separated
harge and discharge profiles have zero mean, while preserving the
requency components of these profiles. This procedure has previously
een applied to analyze duty cycles in hybrid automotive applica-
ions [29] , and is described for obtaining mean-centered discharge (or
harge) profiles, below. 
5 
1. Construct a new profile consisting of only non-negative (non-
positive) dispatch. 

2. Find each individual discharge (charge) instance within this new
profile, where a discharge (charge) instance is defined as the bat-
tery starting at 0 dispatch, positively (negatively) dispatching, then
returning to 0 dispatch. 

3. Construct a new mean-centered discharge (charge) profile by con-
catenating each discharge (charge) instance with a copy of reversed
sign (i.e. the same sequence of values as the original instance, where
positive values are exchanged for negative ones of the same magni-
tude, and vice versa). 

. Data description 

In this work, three datasets are considered, each representing the
peration of an ESS for three different facility loads. These datasets
re labelled by the load profiles used to generate them: namely, Large-
fficeNew, SuperMarketNew, and SecondarySchoolNew. Each dataset
ontains a power dispatch, in units of kW; the state of energy (SOE)
f the energy storage, normalized; and the outdoor air temperature, in
egrees Celsius. The three profiles are sampled at hourly intervals over
ne year. 

.1. Power dispatch 

For each yearly dataset, the power dispatch 𝑊 ( 𝑡 ) represents ESS op-
ration, where positive values indicate ESS discharge, and negative val-
es indicate ESS charge. The power dispatch is obtained from QuESt, an
pen-source, freely-available simulation tool for ESS developed by San-
ia National Labs [40] . QuESt allows users to select facility load profiles
the hourly consumption of power by the facility), ESS parameters such
s rated power and energy, and the tariff rate structure, in order to sim-
late the ESS operation for each month over one year by optimizing the
ispatch for peak shaving. 

The power dispatches considered in this paper are obtained from
uESt by simulating the operation of an ESS in San Jose, California with

ated power 𝑊 𝑛𝑜𝑚 = 200 kW and rated energy capacity 𝐸 𝑛𝑜𝑚 = 400 kWh,
n each load profile. The tariff rates were selected appropriate to the
eak load, i.e., ensuring that the peak facility load does not exceed the
aximum load power specified in the tariff. The power dispatches for
eak shaving on each load profile are shown in Fig. 4 . 
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Fig. 4. Power dispatch 𝑊 ( 𝑡 ) of a 200 kW, 400 kWh ESS on: (a) the LargeOfficeNew, with tariff rate E19; (b) the SuperMarketNew load, with tariff rate A10; and (c) 
the SecondarySchoolNew load, with tariff rate E19. Positive values indicate discharging, while negative values indicate charging. Load profile data and subsequent 
calculated ESS power dispatch data were obtained from QuESt [40] . Tariff rate data were obtained from Pacific Gas & Electric tariff [34] , as accessed via QuESt. 
Temperature data were obtained from TMY3 weather station data [50] . 

Fig. 5. State of energy 𝑆𝑂𝐸( 𝑡 ) of a 200 kW, 400 kWh ESS on the LargeOf- 
ficeNew load. This SOE is obtained from the power dispatch 𝑊 ( 𝑡 ) in Fig. 4 a, 
discretized hour by hour. 
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Fig. 6. Outdoor air temperature 𝑇 ( 𝑡 ) obtained from San Jose airport TMY3 
weather data, used as the temperature for the dispatch over the year 2019, dis- 
cretized hour by hour, for all datasets in this paper. 
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.2. SOE of energy storage 

The state of energy 𝑆𝑂𝐸( 𝑡 ) for each yearly dataset is also a direct out-
ut from QuESt, and is derived from the power dispatch. The SOE pro-
ides a normalized metric for the available dispatchable energy stored
y the ESS. Given the initial SOE, 𝑆 𝑂𝐸(0) , 𝑆 𝑂𝐸( 𝑡 ) can be calculated as:

𝑂𝐸( 𝑡 ) = 𝑆𝑂𝐸 (0) − 

1 
𝐸 𝑛𝑜𝑚 ∫

𝑡 

0 
𝑊 ( 𝜏) 𝑑 𝜏 (11)

In QuESt, for all datasets, the initial SOE is configured as 𝑆𝑂𝐸(0) =
 . 5 (i.e. 50% of rated energy capacity, or 200 kWh). Furthermore, the
ispatch is configured such that the battery is returned to 𝑆𝑂𝐸(0) at
he beginning of each month. This is the default constraint for SOE as
upplied by QuESt, and is preserved in this analysis to ensure that the
attery maintains safe operating conditions and does not over-charge or
ver-discharge across the dispatch. As an example, the state of energy
or the power dispatch on the LargeOfficeNew load shown in Fig. 4 a is
hown in Fig. 5 . 

.3. Outdoor air temperature 

The outdoor air temperature data 𝑇 ( 𝑡 ) were taken from TMY3 atmo-
pheric data, which in turn was derived from weather measuring stations
n the United States, as described in Wilcox and Marion [50] . This paper
ses outdoor air temperature data from the San Jose Airport measuring
tation, shown in Fig. 6 . 
6 
Key assumptions In QuESt, each power dispatch is the result of sim-
lating ESS dispatch with full knowledge of each load profile, i.e. a de-
erministic optimized dispatch. The load profile data implemented in
uESt were constructed from simulated building data according to the
.S. Department of Energy Commercial Reference Buildings [12] . It is
ssumed that the ESS exactly performs this dispatch. Lastly, the outdoor
ir temperature is assumed to be the same for all facilities. 

. Dispatch interval matrix 

Each dataset is pre-processed into the dispatch interval matrix 𝑀
efore the rest of the duty cycle characterization. First, the year is di-
ided into intervals (e.g. one hour, one day, two weeks, etc.). Then,
welve metrics relating to the power, SOE, and temperature are com-
uted for each non-zero power dispatch interval (i.e. when the ESS is
ctively dispatching), and then normalized. These metrics are listed in
able 1 and were chosen to address characteristics of the dispatch rel-
vant to lithium-ion battery calendar and cycle aging by including the
ower and frequency contents of the dispatch, as well as the operating
onditions (i.e. SOE and temperature) during dispatch. For non-zero dis-
atch days without discharge or charge, the respective metrics are set to
aN. In this paper, the interval is one day (24 h), starting from midnight

00:00) on January 1st. 
The metrics in Table 1 are now described in detail and demon-

trated for an example day of dispatch in the LargeOfficeNew dataset.
ig. 7 shows the power dispatch of this day, with charging periods high-
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Fig. 7. Example day of power dispatch taken from the LargeOfficeNew peak 
shaving dispatch shown in Fig. 4 a. The charging events are highlighted in blue, 
while the discharging events are highlighted in orange. (For interpretation of 
the references to color in this figure legend, the reader is referred to the web 
version of this article.) 

l  

u  

e
 

fi  

t  

r  

E  

F  

t  

e
 

a  

a  

b  

t  

d  

S  

o
 

i  

f  

m  

t  

p  

c  

a  

f  

p

6

 

d  

i  

c  

e  

t  

p  

s  

m
 

t  

d  

Fig. 8. Example day of dispatch, SOE, and temperature, with charging events 
highlighted in blue and discharging events highlighted in orange. (For interpre- 
tation of the references to color in this figure legend, the reader is referred to 
the web version of this article.) 
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ighted in blue and discharging periods highlighted in orange, which are
sed in the calculation of the following metrics. The actual values of this
xample day of dispatch are shown as the third column of Table 1 . 

Metrics 1 and 3 count the number of discharge/charge events, de-
ned as the ESS dispatch starting at zero power, dispatching posi-
ively/negatively, and then returning to zero power. Metrics 3 and 4
ecord the absolute maximum positive/negative power dispatch of the
SS during all discharge/charge events, highlighted in orange/blue in
ig. 7 . Similarly, metrics 5 and 6 record the absolute average posi-
ive/negative power dispatch of the ESS during all discharge/charge
vents. 

For metrics 7–10, the corresponding day of SOE and temperature
re also considered during the same charge and discharge events. These
re shown in Fig. 8 , with the discharge/charge periods highlighted in
lue and orange across the power dispatch, SOE, and temperature for
he example day. Metrics 7 and 8 record the average SOE of the ESS
uring all discharge/charge events, highlighted in orange/blue in Fig. 8 .
imilarly, metrics 9 and 10 record the average outdoor air temperature
f the ESS during all discharge/charge events. 

The process to determine the peak discharging/charging frequency
n metrics 11 and 12 is demonstrated below for the peak discharging
requency for the example day of dispatch. First, only the discharge seg-
ents (highlighted in orange in Fig. 7 ) are retained. These segments are

hen concatenated and mean-centered. This mean-centered discharge
rofile is shown in Fig. 9 a. Next, the mean-centered discharge profile is
oncatenated 100 times, as shown in Fig. 9 b, to produce a longer signal
s a input for FFT. The resulting periodogram is shown in Fig. 9 c. The
requency corresponding to the peak of this periodogram is used as the
eak discharging frequency. 

. Algorithm for duty cycle characterization 

The characterization algorithm shown in Algorithm 1 clusters the
ispatch interval matrix 𝑀 to produce characteristic duty cycles. A sim-
lar approach was used in Dembski et al. [11] , where vehicle driving
ycles were clustered given statistical metrics of the velocity and accel-
ration of the driving cycles. The clustering is performed exclusively in
he PCA subspace of 𝑀 . PCA has previously been shown to improve the
erformance of k-means clustering, as principal components have been
hown to be equivalent to the continuous solutions to the discrete cluster
embership indicators [15] . 

The algorithm is divided into four main sections. First, lines 1–4 of
he algorithm obtain the corresponding dispatch interval matrix 𝑀 , as
escribed in Section 5 . Next, lines 5–7 of the algorithm perform PCA and
7 
imensionality reduction as described in Section 3.1 on 𝑀 . As there are
2 metrics, there are also 12 singular values and principal components
f 𝑀 . The PCA subspace matrix 𝑃 is obtained using Eq. (4) , with 𝑝 ∗ ob-
ained using Eqs. (2) and (3) . Then, lines 8–9 of the algorithm perform
-means clustering on 𝑃 , including the determination and application of
he optimal number of clusters 𝑁 𝑐 , as described in Section 3.2 . This pro-
uces the 𝑁 𝑐 cluster centroids 𝑐 1 , … , 𝑐 𝑁 𝑐 of 𝑃 . k-means clustering on the
CA subspace matrix 𝑃 , and selection of the characteristic duty cycles.
inally, lines 10–14 of the algorithm obtain and return the character-
stic duty cycles from the power dispatch 𝑊 of the dataset. In line 11,
he representative interval 𝑑 𝑗 of cluster 𝑗 is determined using 𝑃 , by find-
ng the row of 𝑃 which minimizes the Euclidean distance to the cluster
entroid 𝑐 𝑗 

 𝑗 = arg min 𝑚 
{ ‖‖‖( 𝑃 ) 𝑚, ∗ − 𝑐 𝑗 

‖‖‖} 

, 𝑚 = 1 , 2 , … , 𝑁 𝑑 (12)

In line 12, the corresponding row of 𝑊 is used as the representative
ower interval dispatch 𝑤 𝑗 , which then represents the 𝑗th characteristic
uty cycle. This is repeated for all cluster centroids 𝑐 1 , … , 𝑐 𝑁 𝑐 of 𝑃 to
btain the 𝑁 characteristic duty cycles of the dataset. 
𝑐 
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Fig. 9. Process to determine the peak discharging frequency in the example day of dispatch shown in Fig. 7 . (a): The discharge segments highlighted in Fig. 7 are 
concatenated and mean-centered. (b): The mean-centered discharge in Figure 9a is concatenated 100 times. (c): The periodogram of Figureb. The frequency corre- 
sponding the peak of this periodogram is the peak discharging frequency. 

Algorithm 1 Characterization algorithm for ESS grid application dis- 
patch. 

Require: Arrays of: power dispatch 𝑊 , state of energy 𝑆𝑂𝐸, and out- 
door air temperature 𝑇 

1: for 𝑑 = 1 , 2 , …, 𝑁 𝑑 for 𝑁 𝑑 non-zero dispatch intervals in the year do 

2: Compute the 12 metrics for interval 𝑑 using ( 𝑊 ) 𝑑, ∗ , ( 𝑆𝑂𝐸) 𝑑, ∗ , 
and ( 𝑇 ) 𝑑, ∗ 

3: Store normalized metrics for interval 𝑑 in the dispatch interval 
matrix 𝑀 

4: end for 

5: Obtain principal components 𝑣 1 , …, 𝑣 12 and singular value 𝜎1 , …, 𝜎12 
of 𝑀 via PCA 

6: Select number of principal components 𝑝 ∗ using Equations 2 and~3 
with 𝑝 = 1 , …, 12 

7: Obtain PCA subspace matrix 𝑃 of 𝑀 using Equation 4 
8: Select optimal number of clusters, 𝑁 𝑐 using Equation 6,~7, and~8, 

with rows ( 𝑃 ) 𝑑, ∗ of 𝑃 as the observations 
9: Obtain cluster centroids 𝑐 1 , 𝑐 2 , …, 𝑐 𝑁 𝑐 of 𝑃 with number of clusters 
𝑁 𝑐 via k-means clustering 

10: for 𝑗 = 1 , 2 , …𝑁 𝑐 do 

11: Select representative interval 𝑑 𝑗 of cluster 𝑗 using Equation 12 
12: Obtain representative power interval dispatch 𝑤 𝑗 = ( 𝑊 ) 𝑑 𝑗 , ∗ 
13: end for 

14: return 𝑤 1 , 𝑤 2 , …, 𝑤 𝑁 𝑐 
as the 𝑁 𝑐 characteristic duty cycles 

7

 

L  

t  

l  

t  

d  

u  

c  

a

7

 

i  

𝑀  

d

Table 1 

Summary of interval metrics used in the characterization algo- 
rithm ( Algorithm 1 ), with example pre-normalized values for each 
metric as demonstrated by the daily dispatch in Figs. 7 and 8 . 

Number Name Example metric value 

1 Number of discharge events 2 
2 Number of charge events 2 
3 Peak discharge power 49.8 kW 

4 Peak charge power 191.5 kW 

5 Average discharge power 25.5 kW 

6 Average charge power 108.6 kW 

7 Average discharge SOE 0.256 
8 Average charge SOE 0.396 
9 Average discharge temperature 27.0 ◦C 
10 Average charge temperature 23.9 deg C 
11 Peak discharging frequency 3.5e − 5 Hz 
12 Peak charging frequency 1.4e − 4 Hz 

Fig. 10. Interval metrics matrix 𝑀 for the LargeOfficeNew dispatch, calculated 
using the metrics in Table 1 for all intervals with non-zero dispatch, with the 
interval set to one day. 
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. Results and discussion 

The characterization algorithm is demonstrated in detail for the
argeOfficeNew peak shaving load. The characteristic duty cycles are
hen presented and discussed for all three datasets in this paper, fol-
owed by the design and formation of synthetic duty cycles for labora-
ory testing of the calendar and cycle aging of batteries. The synthetic
uty cycles are then validated against their respective power dispatches
sing a physics-based electrochemical aging model. This section con-
ludes with a brief discussion of the applicability of the characterization
lgorithm to additional grid services. 

.1. Detailed results of the characterization algorithm 

The results of applying the characterization algorithm are presented
n this subsection for the LargeOfficeNew dataset. The interval matrix

is obtained and shown in Fig. 10 , where the interval is chosen as one
ay. 
8 
The optimal number of principal components 𝑝 ∗ for 𝑀 is then deter-
ined. Fig. 11 plots the fraction of retained variation 𝐹 𝑝 as a function

f number of principal components 𝑝 , as in Eq. (2) . From Eq. (3) , with
 min = 0 . 9 , the optimal number of principal components is obtained as
 

∗ = 5 . 
The interval matrix 𝑀 is then projected onto the 5 principal compo-

ents 𝑣 1 , … , 𝑣 5 shown in Fig. 12 a, to form the PCA subspace matrix 𝑃 
hown in Fig. 12 b. 
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Fig. 11. Fraction of retained variation, 𝐹 𝑝 , as a function of number of principal 
components, 𝑝 , for the interval matrix 𝑀 in Fig. 10 . The minimum fraction of re- 
tained variance, 𝐹 min = 0 . 9 , is plotted as a black dashed line. The optimal number 
of principal components, 𝑝 ∗ , is the minimum number of principal components 
needed to exceed 𝐹 min ( 𝑝 

∗ = 5 ). 
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Fig. 13. Determination of optimal number of clusters, 𝑁 𝑐 , as in Eq. (8) , by 
applying k-means clustering to 𝑃 for different number of clusters 𝑘 , up to 𝑘 max = 
30 . From this plot, 𝑁 𝑐 = 2 . 
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Next, the optimal number of clusters 𝑁 𝑐 is obtained by applying
q. (8) on the PCA subspace matrix 𝑃 . From Fig. 13 , 𝑁 𝑐 = 2 . 

k-means clustering is then applied to 𝑃 with two clusters, resulting in
he two cluster centroids shown in Fig. 14 a. The representative intervals
f the two cluster centroids obtained are the days of September 15th and
ay 15th, respectively, and the power dispatch of those days is shown

n Fig. 14 b and c, which are the characteristic duty cycles 𝑤 1 and 𝑤 2 of
he LargeOfficeNew dataset. 

.2. Characteristic duty cycles 

The characterization algorithm is applied to each yearly dataset.
he resulting characteristic duty cycles for each dataset are shown in
ig. 15 a–c. 

The characteristic duty cycles are indicative of the general behavior
f ESSs performing peak shaving. In particular, the characteristic duty
ycles show that the ESS immediately charges before the necessary dis-
harge needed to shave that day’s load consumption peaks. This is an
rtifact of the QuESt dispatch optimization for peak shaving, which only
eeks to minimize the electric bill, without considering management of
attery degradation. This presents an opportunity for a managed charg-
ng protocol for LIB in peak shaving: If the necessary discharge for shav-
ng the load peaks can be accurately predicted, then the charge could be
pread out throughout the inactive dispatch periods at a lower power,
hus reducing C-rate-related aging stress on the battery. On the other
and, the characteristic duty cycles show that active dispatch occurs
ainly during daytime hours, leaving the nighttime hours at the begin-
ing and end of each day fairly inactive. These inactive periods present
9 
dditional opportunity for participation in other grid applications, such
s energy arbitrage, when the battery ESS is not used for peak shaving.

The characteristic duty cycles are distinct within each dataset. For
xample, in Fig. 15 b, Duty Cycle 1 represents days with a high-power
harge to support a high energy, lower power discharge throughout the
ay, Duty Cycle 2 represents days with both a high power charge and
igh power discharge, and Duty Cycle 3 represents a relatively inactive
ay, with a much smaller charge and discharge for the day. Each duty
ycle captures different dispatching behaviors within the dataset. 

However, the characteristic duty cycles also are unique to each
ataset. Those of LargeOfficeNew are different from those of SuperMar-
etNew, in turn different than those of SecondarySchoolNew. These dif-
erences result from the different load profile and tariff rate in each
ataset, providing a venue of further study to analyze their effects on
SS dispatch. 

Along with the representative interval power dispatch, which are
sed to form the characteristic duty cycles, the representative interval
emperature can also be found. This “characteristic operating tempera-
ure ” during the characteristic duty cycles for each dataset is shown in
ig. 16 . 

The characteristic operating temperature provides further insights
owards the degradation of the battery. Comparing Figs. 15 and
6 shows that when the ESS is not actively dispatching and calen-
ar aging dominates the degradation process, the temperature is be-
ween 10and15 degrees Celsius. This information can be used for cal-
ndar aging laboratory testing of batteries stored in this temperature
ange, and develop temperature-dependent calendar aging models for
IBs. 
Fig. 12. (a): First 𝑝 ∗ principal components of 
the interval metrics matrix 𝑀 in Fig. 10 , where 
𝑝 ∗ = 5 is the optimal number of principal com- 
ponents for 𝑀 . (b): The PCA subspace matrix 
𝑃 of the interval metrics matrix 𝑀 , found by 
projecting 𝑀 onto the 𝑝 ∗ principal components 
in 12 a. 
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Fig. 14. (a): Cluster centroids obtained for 𝑃 in Fig. 12 b, with optimal cluster number 𝑁 𝑐 = 2 . Cluster centroid 1 corresponds to the row of September 15, and 
cluster centroid 2 to the row of May 15, in 𝑃 . (b) and (c): The characteristic duty cycles found from the cluster centroids at left, found using the power dispatch of 
the corresponding representative days of each cluster centroid. The characteristic duty cycles are labeled according to their representative days. 

Fig. 15. Characteristic duty cycles for peak shaving dispatch on the (a) LargeOfficeNew, (b) SuperMarketNew, and (c) SecondarySchoolNew load profiles. 

Fig. 16. Characteristic operating temperature, defined as the outdoor air temperature during the representative days used to create the characteristic duty cycles, 
for peak shaving dispatch on the (a) LargeOfficeNew, (b) SuperMarketNew, and (c) SecondarySchoolNew load profiles. 
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.3. Synthetic duty cycles 

Accurately estimating capacity fade of LIBs is key to understanding
ow to maximize their usability and lifetime in stationary grid applica-
ions. Testing the capacity fade of an LIB under actual grid application
ispatch is time-consuming, as battery degradation occurs over multiple
ears. However, identification of characteristic grid duty cycles enables
reation of synthetic duty cycles, which can be implemented in a labo-
atory environment in reasonable time. 

In order to account for both the cycle aging and calendar aging pro-
esses, two different synthetic duty cycles are constructed for each peak
having dispatch, taken by concatenating their characteristic duty cy-
les into a single signal. First, the characteristic duty cycles can be con-
 d  

10 
atenated in full to form the calendar/cycle life synthetic duty cycle.
lternatively, the zero-dispatch segments can be removed to form the
ycle life synthetic duty cycle. These are shown in Figs. 17–19 , as con-
tructed from Fig. 15 a–c, respectively. These synthetic duty cycles are
uch shorter than the yearly dispatch profiles, allowing for the labora-

ory testing on the full 8760 h in one yearly dispatch with only two to
hree days (48–72 h) of cycling data. 

.4. Validation of synthetic duty cycle aging characteristics 

A high-fidelity electrochemical aging model was used to validate
apacity fade trajectory resulting from cycling a cell under synthetic
uty cycles against the capacity fade trajectory resulting from cycling a
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Fig. 17. (a) Calendar/cycle life synthetic duty cycle and (b) Cycle life synthetic duty cycle for the LargeOfficeNew peak shaving dispatch. 

Fig. 18. (a) Calendar/cycle life synthetic duty cycle and (b) Cycle life synthetic duty cycle for the SuperMarketNew peak shaving dispatch. 

Fig. 19. (a) Calendar/cycle life synthetic duty cycle and (b) Cycle life synthetic duty cycle for the SecondarySchoolNew peak shaving dispatch. 
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ell under their respective power dispatches. The model is an enhanced
ingle-particle model (ESPM) which captures the calendar- and cycle-
ging effects of SEI layer growth and subsequent capacity loss [24,49] .
he ESPM uses current applied to a 2 Ah cylindrical NMC cell as an in-
ut to a system of coupled partial and algebraic differential equations
escribing the electrochemical, aging, and thermal dynamics of the cell.
herefore, in order to use this model for validation, the following modi-
cations were made to accommodate the system-level power duty cycle
nd dispatch profiles generated in this paper. First, the power profiles
ere downscaled from a maximum power of 𝑊 𝑛𝑜𝑚 = 200 kW to 3 W,
hich allows for the same dispatch behavior on the 2 Ah cell as for the
11 
00 kWh LIB. Next, power is incorporated as an input to the electro-
hemical aging model as demonstrated in Lee et al. [26] . Additionally,
he synthetic duty cycles presented in Section 7.3 are charge-increasing.
 cell repeatedly cycled with these duty cycles could increase in state
f charge until the cell overcharges. To prevent such behavior, a dis-
harge was included at the end of each synthetic duty cycle to ensure
hat they were charge-neutral. Aside from downscaling, the power dis-
atches were left unmodified. 

The capacity fade is then simulated using the ESPM for two cases:
 fresh, unused cell cycled under the power dispatch, and an identical
resh cell cycled under the corresponding synthetic duty cycle. In the
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Fig. 20. Flowchart for the validation process, starting with the power dispatch 
𝑊 ( 𝑡 ) and producing the RMSE 𝑅 𝑄 between the ESPM-simulated capacity fade 
trajectory resulting from cycling under the power dispatch 𝑄 𝑑𝑖𝑠𝑝 ( 𝑡 ) and the 
ESPM-simulated capacity fade trajectory resulting from cycling under the syn- 
thetic duty cycle 𝑄 𝑠𝑦𝑛 ( 𝑡 ) . 
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rst case, the ESPM simulated the cell cycling under the first 300 h of
peration on the power dispatch (i.e. starting from January 1st), while
n the second case, the ESPM simulated the cell cycling under synthetic
uty cycles that were repeated and concatenated to achieve the same
perating duration. Finally, the root-mean-squared error (RMSE) 𝑅 𝑄 be-
ween the capacity trajectory of the cell cycled under the power dispatch
 𝑑𝑖𝑠𝑝 ( 𝑡 ) and the capacity trajectory of the cell cycled under the synthetic
uty cycle 𝑄 𝑠𝑦𝑛 ( 𝑡 ) is calculated as 

 𝑄 = 

√ √ √ √ 

1 
𝑡 𝑒𝑛𝑑 

𝑡 𝑒𝑛𝑑 ∑
𝑡 =1 

|||𝑄 𝑑𝑖𝑠𝑝 ( 𝑡 ) − 𝑄 𝑠𝑦𝑛 ( 𝑡 ) 
|||2 (13)

here 𝑡 𝑒𝑛𝑑 is the simulated operation duration (300 h). The validation
rocess is shown in Fig. 20 . 

The capacity fade trajectories are shown in Fig. 21 for ESPM-
imulated cell cycling under the SuperMarketNew and Sec-
ig. 21. Comparison of the capacity fade trajectory resulting from cycling under the
he synthetic duty cycle for the (a) SuperMarketNew, and (b) SecondarySchoolNew y

12 
ndarySchoolNew power dispatches and their respective synthetic
uty cycles shown in Figs. 18 a and 19 a. The LargeOfficeNew dataset
as excluded from this analysis, as the power dispatch for this dataset

shown in Fig. 4 a) is relatively inactive at the start of the year.
herefore, a battery cycled under this dispatch will exhibit calendar-
ging-dominant capacity fade, which the ESPM cannot currently
ddress. 

For the SuperMarketNew and SecondarySchoolNew datasets, the
MSEs were 𝑅 𝑄 = 0 . 143% and 𝑅 𝑄 = 0 . 072% , respectively. This validates

hat the synthetic duty cycles are able to reproduce the same aging tra-
ectories present in the entire yearly power dispatch. 

.5. Applicability to general grid ESS dispatch 

In this paper, the characterization algorithm is demonstrated in
epth on the dispatch of energy storage for the grid application of peak
having. However, as discussed in Section 2 , there are 13 different grid
ervices, each of which require a different ESS dispatch. The applicabil-
ty of the methods used in this paper are not limited to peak shaving
nd can be applied to any grid ESS dispatch, with some modifications
s discussed below. 

It is first worth noting what portions of this paper would not need
o be modified from the approach presented for peak shaving. The gen-
ral framework of Algorithm 1 and its supporting methods presented
n Section 3 do not assume any particular grid service, only requiring
he resulting ESS dispatch. Similarly, once the characteristic duty cycles
re produced from Algorithm 1 , the creation and validation of synthetic
uty cycles will be the same for any grid dispatch, regardless of the grid
ervice performed. 

However, grid services can operate on different time scales than the
eak shaving presented in this paper, and under different operating con-
itions. For example, the grid service of frequency regulation requires
he ESS to dispatch by following a signal that changes every two sec-
nds [5] . Furthermore, as an electricity market service, frequency reg-
lation allows the ESS owner to bid and reserve a variable power ca-
acity allotted for frequency regulation signal-following [51] , with the
pportunity to recharge the ESS with electricity purchased from the day-
head market [3] . Compared to ESS dispatch for peak shaving, both the
ime scale and operating conditions are different in ESS dispatch for
requency regulation. 

Within the context of this paper, changing from peak shaving to fre-
uency regulation would require a change to the construction of the
ispatch interval matrix presented in Section 5 . Frequency regulation
ould require an interval much smaller than the 24-hour day used in

his paper. Previous studies have used 2-hour intervals for frequency
egulation ESS dispatch [39] . Once the interval is defined, the process
 power dispatch and the capacity fade trajectory resulting from cycling under 
early datasets. 
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f creating synthetic duty cycles would be the same as is presented in
his paper. 

. Conclusions 

This paper presented a framework for characterizing the duty cycle
f ESS dispatch for grid applications using dispatch metrics, principal
omponent analysis, and k-means clustering. The algorithm was applied
o three different peak shaving dispatch profiles, and characteristic duty
ycles were produced for each. As a result, lab-prone synthetic duty cy-
les were developed and applied to dispatch profiles for peak shaving.
he developed synthetic duty cycles were validated against their respec-
ive original dispatch profiles using an electrochemical aging model,
emonstrating that the aging characteristics were preserved while re-
ucing the testing signal from thousands to tens of hours, providing
ractable testing signals for laboratory testing of LIBs. Synthetic duty
ycles presented in this paper can be used to cycle fresh batteries (irre-
pective of their cathode chemistry) and/or second-life batteries retired
rom used electric vehicles. 

Furthermore, the research presented in this paper will lead to
aboratory-developed models that encode the characteristics of grid ap-
lication dispatch, leading to more accurate simulation tools for grid-
cale LIBs. The measured capacity and internal impedance of batteries
riven by synthetic duty cycles can be used, for example, for parameter
dentification of models for LIBs which include degradation from grid
ervice dispatch. Such models can be used to build degradation-aware
ontrol frameworks and simulation tools for grid-scale LIBs, which could
ead to better-informed strategies for the deployment and real-time op-
ration of this grid storage technology. 
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ppendix A. Principal component analysis 

The principal components and singular values of a real-valued matrix
 ∈ ℝ 

𝑚 ×𝑛 can be obtained by the following steps: 

1. Compute the vector 𝝁 ∈ ℝ 

𝑛 ×1 , with the 𝑗th entry 𝜇𝑗 as the mean of
the 𝑗th column of 𝑋

𝜇𝑗 = 

1 
𝑚 

𝑚 ∑
𝑖 =1 
𝑋 𝑖𝑗 , ∀𝑗 ∈ 1 , … , 𝑛 (14)

2. Subtract the column mean from all columns in 𝑋 to obtain the col-
umn mean-centered matrix, 𝐴 ∈ ℝ 

𝑚 ×𝑛 , with 𝟏 ∈ ℝ 

𝑚 ×1 as the vector
of all ones of length 𝑚 

𝐴 = 𝑋 − 𝟏 𝝁𝑇 (15)

3. Compute the sample covariance matrix 𝐶 ∈ ℝ 

𝑛 ×𝑛 

𝐶 = 

1 
𝑚 − 1 

𝐴 𝑇 𝐴 (16)

4. Use singular value decomposition to obtain the eigenvalues
𝜎1 , 𝜎2 , … 𝜎𝑛 and the eigenvectors 𝑣 1 , 𝑣 2 , … 𝑣 𝑛 of 𝐶

𝐶 = 𝑉 Σ𝑉 𝑇 , (17)
13 
where matrix 𝑉 ∈ ℝ 

𝑛 ×𝑛 and the diagonal matrix Σ ∈ ℝ 

𝑛 ×𝑛 are defined
as the following 

𝑉 = [ 𝑣 1 , 𝑣 2 , … , 𝑣 𝑛 ] (18)

Σ = 𝐝𝐢𝐚𝐠 ( 𝜎1 , 𝜎2 , … , 𝜎𝑛 ) , (19)

where the eigenvalues are ordered by decreasing magnitude (i.e.
𝜎1 > 𝜎2 > … > 𝜎𝑛 ). 

The columns of 𝑉 are the principal components of 𝑋. The eigenval-
es 𝜎1 , 𝜎2 , … 𝜎𝑛 of 𝐶 are the singular values of 𝑋. The principal com-
onents are orthogonal, i.e. 𝑉 𝑉 𝑇 = 𝑉 𝑇 𝑉 = 𝐼 , where 𝐼 is the identity
atrix. 
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