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Physics-based linear model predictive
control strategy for three-way catalyst
air/fuel ratio control

Abdullah-al Mamun1 , Qilun Zhu1, Mark Hoffman2 and Simona Onori1,3

Abstract
Current practice of air-fuel ratio control relies on empirical models and traditional PID controllers which require exten-
sive calibration to maintain the post-catalyst air-fuel ratio close to stoichiometry. In contrast, this work utilizes a physics-
based Three-Way Catalyst (TWC) model to develop a model predictive control (MPC) strategy for air-fuel ratio control
based on internal TWC oxygen storage dynamics. In this paper, parameters of the physics-based temperature and oxy-
gen storage models of the TWC are identified using vehicle test data for a catalyst aged to 150,000 miles. A linearized
oxygen storage model is then developed from the identified nonlinear model, which it is shown, in simulation, to follow
the nonlinear model with minimal error during nominal operation. This motivates the development of a Linear MPC
(LMPC) framework using the linearized TWC oxygen storage model, reducing the requisite computational effort relative
to a nonlinear MPC strategy. In this work, the LMPC utilizing a linearized physics-based TWC model is proven suitable
for tracking a desired oxygen storage level by controlling the commanded engine air-fuel ratio, which is also a novel con-
tribution. The offline simulation results show successful tracking performance of the developed LMPC framework.
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Introduction

Ongoing efforts to reduce harmful fossil fuel emissions
in conjunction with ever tightening emission standards
have stimulated great interest in improved emission
control strategies.1–3 In a Three-Way Catalyst (TWC),
unburned hydrocarbons and carbon monoxide in the
exhaust gas are converted to carbon dioxide while oxi-
des of nitrogen are converted to nitrogen gas. TWC
conversion efficiency critically depends on the quantity
of stored oxygen, which, in turn, changes based on the
exhaust gas air-fuel ratio.4 To simultaneously facilitate
both oxidation and reduction reactions, the TWC can-
not be completely saturated with or devoid of oxygen.
Conventional feedback control strategies alter engine
air-fuel ratio based on estimates of the gaseous oxygen
quantity downstream of TWC. In contrast, directly uti-
lizing the TWC oxygen storage level within the air-fuel
ratio control strategy promises to deliver higher exhaust
gas conversion efficiencies.

In the automotive industry, the common practice is
to dither the pre-catalyst air-fuel ratio near stoichiome-
try. A feedforward-feedback controller is generally

implemented where pre and post-catalyst lambda mea-
surements are used to correct the air-fuel ratio signal
computed from the feedforward path.5,6 A wide body
of literature has focused on developing control strate-
gies to maintain the air-fuel ratio close to stoichiometry
while compensating for disturbances and delays in the
system.7–11 Even though the current control techniques
work well in most cases, they require extensive calibra-
tion of the feedforward and feedback controllers for
effective emissions mitigation.

Unfortunately, the pollution conversion efficiency as
a function of the pre-catalyst air-fuel ratio only
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represents the steady-state behavior of the catalyst.
Transient TWC behavior is dominated by the slow
dynamics of oxygen storage and release,12 altering the
conversion efficiency even though the upstream lambda
value remains constant. Therefore, for emission
control, it is more important to track a desired TWC
oxygen storage level rather than tracking pre and post-
catalyst air-fuel ratio.6 A TWC model with oxygen
storage dynamics would facilitate such model-based
TWC control. Additionally, during highly dynamic
operation, air and fuel disturbances caused by intake
manifold wave dynamics and wall-wetting, respectively,
cause disturbances to air-fuel ratio tracking.13 Thus,
temporary air-fuel ratio excursions are possible even in
a well-calibrated system. Through TWC oxygen stor-
age level tracking, such excursions can be effectively
damped, resulting in higher conversion efficiency.

Another important factor for TWC control is rewet-
ting after a fuel cut-off event. During a fuel cutoff, the
TWC becomes saturated with oxygen. In current
calibration-based control efforts, the TWC oxygen level
is intentionally depleted after the cut-off event by
enriching the air-fuel ratio command, which consumes
excess fuel.12 Maintaining a steady TWC oxygen stor-
age level through active tracking of a oxygen storage
reference has the potential to reduce rich TWC re-wet-
ting. Therefore, a model-based control approach that
takes into account the system states, such as oxygen
storage level, can lead to increased conversion of the
harmful exhaust species in the TWC. Reduced break-
through of harmful emission species using a model-
based control approach might also facilitate a TWC
size reduction or even the elimination of a secondary
TWC brick, reducing the capital cost of the aftertreat-
ment system. Different model-based control techniques
utilizing estimated oxygen storage level are used for
TWC emission control.

A combined PID controller and Linear Quadratic
Regulator (LQR) scheme is proposed in Tomforde
et al.6 where the PID controller keeps the pre-catalyst
air-fuel ratio close to a desired setpoint and the post-
catalyst LQR corrects that setpoint based on the
estimated TWC oxygen storage level. The spatial distri-
bution of oxygen storage level is modeled by connect-
ing multiple cells in series where the oxygen storage
level of each cell depends empirically on mass flow rate
and air-fuel ratio only. A similar cascade controller is
developed in Balenovic and Backx14 where an Internal
Model Controller (IMC) for engine air-fuel ratio con-
trol is placed in the inner loop and a proportional feed-
back TWC controller is placed in the outer loop. The
proportional feedback controller is tuned to keep the
relative oxygen level at a desired value determined from
a control oriented empirical storage model. Later, this
work was extended by replacing the outer TWC feed-
back controller with a neural network trained from off-
line nonlinear MPC solution.15 A similar approach is
presented in Muske and Jones16 to minimize emissions
as well as fuel consumption. In this case, feedback is

provided by a moving horizon oxygen storage level
estimation scheme, and the control action is calibrated
based on the offline solution of a nonlinear MPC. In
Mallik,17 a state feedback controller and an adaptively
tuned PID controller are developed to maintain a refer-
ence oxygen storage level. Finally in Trimboli et al.18 a
model predictive controller is developed and MPC
feedback laws are computed as piecewise affine func-
tions for online implementation.

Clearly, empirical oxygen storage models similar to
Brandt et al.19 and Guzzella and Onder20 are commonly
utilized for TWC air-fuel ratio control. However, such
lumped empirical models not only neglect the spatial
non-uniformity of TWC oxygen level but also unable to
maintain their accuracy as the catalyst ages. In contrast,
a physics-based TWC model takes into account the
underlying physical processes, such as heat-transfer,
chemical kinetics, and fluid dynamics. Additionally,
physical models include oxygen storage capacity, a
quantity that can be related to TWC performance
degradation over time. Therefore, such a physics-based
model enables improved air-fuel ratio control over the
lifetime of the TWC through proper oxygen storage
level estimation.

From the above literature, it is evident that offline
MPC is often used to extract rule-based air-fuel ratio
control strategies for TWC. The practice of extracting
such rules from offline MPC stems from the computa-
tional complexity of the nonlinear TWC oxygen stor-
age dynamics model in the MPC framework. Inclusion
of spatial oxygen storage level variations via a physics-
based TWC model would further increase the computa-
tional load of air-fuel ratio control using a nonlinear
MPC. Therefore, a computationally efficient online
MPC algorithm is needed for tracking a non-uniform
distribution of oxygen storage level in a TWC, which is
still missing in the literature. This paper fills that void
by developing an LMPC strategy using a linearized,
physics-based TWC oxygen storage model. The avoid-
ance of nonlinear MPC reduces the computational
load, making it possible to implement the proposed
TWC control strategy within ever advancing ECUs.
LMPC is widely accepted by the industry for its com-
putational efficiency, and well-developed stability the-
ories.21 Current micro-processors, including ECUs, are
fast enough to solve quadratic Programming (QP)
problems in milliseconds using active set22 or interior
point QP algorithms.23 This technology evolution
enables the application of real-time MPC in systems
with fast dynamics to find optimal transient control
actions.24 In Bemporad,25 the first instance of MPC
developement is found for production engine control
units.

This work utilizes existing 1-D, physics-based tem-
perature and oxygen storage model of a TWC and spa-
tially discretizes temperature and oxygen storage level
along the length of the TWC.26 The TWC oxygen stor-
age and thermal model parameters are identified for an
aged catalyst. Subsequently, an observer is built around
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the model to estimate the nonuniform axial distribution
of oxygen storage level from sensor measurements. A
LMPC controller is then developed to track reference
oxygen storage levels in each discretized zone within
the TWC. To implement the LMPC, a linearized ver-
sion of the 1-D, physics-based, TWC oxygen storage
model is developed. The accuracy of the linearized and
nonlinear oxygen storage level models is thoroughly
examined for different time steps and lengths of MPC
prediction horizon. A simulation study shows that the
proposed LMPC framework can successfully track the
desired TWC oxygen storage level during transient
drive cycles.

Future extension of this research will validate the
proposed TWC control strategy experimentally study
the robustness of the proposed control against model-
ing error and measurement noise.

The remainder of this work is organized as follows.
Section 2 describes the chemical processes inside a
TWC. A nonlinear physics-based TWC model, model
parameter identification, and linearized TWC model
are presented in Section 3. Sections 4 and 5 outline the
formulation and the implementation of the linear MPC,
respectively. Section 6 presents the characterization of
engine delay dynamics for future in-vehicle implementa-
tion of the proposed controller, and Section 7 sum-
marizes the conclusions.

Three-way catalyst device

A TWC is an exhaust gas aftertreatment device that
mitigates emission of harmful gases such as nitrogen
oxide, carbon monoxide, and hydrocarbons by convert-
ing them into nitrogen, carbon dioxide, and water as
shown in (1).27 The TWC has a substrate with narrow
channels through which the exhaust gas flows. The sur-
face of the substrate is covered with a washcoat con-
taining alumina oxide, cerium oxide, a mixture of
precious metals, and stabilizers.12

CxHy +(x+
y

4
)O2 ! xCO2 +

y

2
H2O

CO+
1

2
O2 ! CO2

NOx !
1

2
N2 +

x

2
O2

ð1Þ

Conversion efficiency of these species depends on the
air-fuel ratio, A=F, defined as the ratio of air mass
(mair) to the fuel mass (mfuel) in the exhaust gas. The
exhaust gas entering the TWC is quantified using the
normalized air-fuel ratio, l, defined as follows:

l=
(A=F)actual
(A=F)stoich

ð2Þ

where, (A=F)stoich denotes the air-fuel ratio required for
complete combustion of the fuel which is 14.7 for gaso-
line engines. In (2), (A=F)actual is the actual air-fuel ratio
of the exhaust gas defined as:

(A=F)actual=
mair

mfuel
ð3Þ

As shown in Figure 1, the conversion efficiency of the
pollutants reaches its maximum near stoichiometry,
l=1. l . 1 corresponds to lean operation (excess air
compared to stoichiometry) while l \ 1 corresponds to
rich operation (excess fuel compared to stoichiome-
try).20 Lack of oxygen during rich operation affects the
conversion efficiency of carbon monoxide and hydro-
carbons. In contrast, excess oxygen during lean opera-
tion prevents reduction of nitrogen oxide. To maintain
a window of opportunity for high conversion efficiency,
cerium oxide (Ce2O4) and precious metals are added in
the washcoat of the catalyst.28 During transient vehicle
operation, the pre-catalyst normalized air-fuel ratio,
lpre, fluctuates significantly. The washcoat allows tem-
porary storage and release of oxygen to maintain a
lambda value close to unity. The oxygen storage level
needs to be controlled to keep the conversion rate high
during vehicle operation.

TWC physics-based model

To model the dynamic TWC behavior, a nonlinear tem-
perature and oxygen storage model are obtained from
Sabatini et al.26 The temperature model computes the
brick temperature at different axial locations within the
catalyst for a given exhaust mass flow rate, _mexh, and
exhaust gas temperature, Texh. The brick temperature,
Tcat,mid, calculated at the mid point of the brick is then
used as a time varying parameter in the oxygen storage
model. The oxygen storage model estimates the amount
of oxygen stored at different axial locations of the cata-
lyst at each time instant for a given lpre, Texh, and _mexh.
In the following subsection, the temperature and oxy-
gen storage model of TWC from Sabatini et al.26 are
summarized.

Figure 1. Variation of pollutant species conversion efficiency
versus normalized air-fuel ratio, l (figure reproduced from
Sabatini et al.26).

Mamun et al. 3



Temperature model

The partial differential equation (PDE) based TWC
temperature model presented in Sabatini et al.29 is used
in this work to capture the gas and solid phase tem-
perature dynamics inside the catalyst:

_mexh

ACS
cpg

∂Tg

∂z
= hAgeo(Tcat � Tg) ð4Þ

rs(1� e)cs
∂Tcat

∂t
=(1� e)ls

∂2Tcat

∂z2
� hAgeo(Tcat � Tg)

+ _Qreac �
Aout

Vcat
hout(Tcat � Tamb)

ð5Þ

where, cpg, _mexh, Tg, Tcat, rs, cs, e, Tamb, and _Qreac are
the specific heat of the exhaust gas, exhaust mass flow
rate, exhaust gas temperature, catalyst temperature,
TWC solid phase density, TWC solid phase specific
heat, TWC open cross sectional area, ambient tempera-
ture, and heat generation due to chemical reactions,
respectively. Since modeling the heat generation from
chemical kinetics is computationally expensive, the sim-
plified heat generation model used in this paper
expresses the chemical heat generation rate, _Qreac by a
hyperbolic tangent function, which is dependent on the
exhaust mass flow rate, catalyst solid phase tempera-
ture, and catalyst light-off temperature as follows30:

_Qreac =0:5Kreac _mexhtanh½a(Tcat � Tlight�off)�+0:5 ð6Þ

where, Kreac, a, Tlight�off are a proportional constant,
the slope of the hyperbolic tangent function, and the
light-off temperature, respectively.

Oxygen storage model

Most of the TWC oxygen storage can be attributed to
cerium oxide (Ce2O4), also known as ceria, in the wash-
coat. The oxygen absorption and release in ceria are
modeled by the following reactions:

O2 +2Ce2O3 $ 2 � Ce2O4 ð7aÞ

CO+2Ce2O4 $ CO2 +Ce2O3 ð7bÞ

The rate of the above oxygen absorption and release
reaction determine the rate of change in the TWC oxy-
gen storage level. The oxygen storage level, f, is a nor-
malized quantity describing the ratio of the stored
oxygen in a TWC (i.e. the concentration of ½Ce2O4�) to
the maximum amount of oxygen that the TWC can
store. The maximum amount of oxygen that a TWC
can store, is defined as the oxygen storage capacity,
OSC (in mol=m3). OSC is the sum of the cerium (IV)
oxide concentration, ½Ce2O4� that has already absorbed
oxygen and the cerium (III) oxide concentration,
½Ce2O3� that is still available for oxygen absorption.

f=
½Ce2O4�

½Ce2O4�+ ½Ce2O3�
ð8Þ

The spatially discretized TWC thermal model with five
cells and oxygen storage model with three cells pro-
vided in Sabatini et al.26 are used in this paper for sub-
sequent analysis. In each cell of the thermal model,
uniform TWC temperature is assumed and similarly, in
each cell of the oxygen storage model, uniform oxygen
storage level is assumed. The catalyst temperature com-
puted at the TWC midpoint by the temperature model
is used as an input to the oxygen storage model as
shown in Figure 2. Throughout the rest of the paper,
the temperature at the axial centerpoint location of the
TWC brick is denoted as Tcat,mid. The oxygen storage
level at j th cell from the inlet of the TWC is expressed
as Sabatini et al.26:

∂fj

∂t
=

1

OSC
½2(A1e

� E1
RuTcat,mid(OSC � (1� fj))2½O2�j

� A1e
DG1�E1

RuTcat,mid(OSC � fj)2co)

� (A2e
� E2

RuTcat (OSC � fj)½CO�j

� A2e
DG2�E2

RuTcat,mid(OSC � (1� fj))½CO2�j)�
ð9Þ

Figure 2. The input, outputs, and spatial discretization of the temperature model and the oxygen storage model of a TWC. The
nonlinear temperature model is run in open loop fed by the exhaust gas temperature and exhaust gas mass flow rate which output
the mid brick temperature (Tcat, mid). The inputs to the oxygen storage model are the exhaust gas temperature, exhaust mass flow
rate, and pre-catalyst normalized air-fuel ratio and output is the normalized air-fuel ratio after the first brick.
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With the concentration of species at the inlet as initial
conditions, the concentration of species at cell j are
obtained where ½O2�j = fO2

(½O2�j�1,fj), ½CO�j =
fCO(½CO�j�1,fj), ½CO2�j = fCO2

(½CO2�j�1,fj). For con-
trol developement purposes, we use three discretized
cells, that is, j=1, 2, 3, whereas for identification we
use 40 discretized cells.

Normalized air-fuel ratio

The pre-catalyst normalized air-fuel ratio, lpre, is an
input to the oxygen storage model. Given lpre, the spe-
cies concentration at the TWC inlet are determined by
Kiwitz et al.27:

½O2�= max (½O2�stoich, (lpre �
1

2
)½CO�stoich

+(lpre � 1)½CO2�stoich)
½CO�= max (½CO�stoich,
½O2�stoich +(lpre � 1)½CO2�stoich

lpre � 1
2

)

½CO2�=0:12 � ½CO2�stoich

ð10Þ

The stoichiometric gas concentrations in (10) are
obtained from Guzzella and Onder20 as a function of
the total exhaust gas concentration (co) as follows:

½O2�stoich =1%co

½CO�stoich =2%co

½CO2�stoich=12%co

ð11Þ

In this work, the normalized air-fuel ratio downstream
of first brick is denoted as lmid. Given the concentration
of O2, CO, and CO2 downstream of the brick, the nor-
malized air-fuel ratio is computed as follows20:

lmid =
2½O2�+ ½CO�+2½CO2�

2½CO�+2½CO2�
ð12Þ

Model parameter identification

In this work, the temperature and oxygen storage
model parameters are identified for a 150,000mile aged
TWC and utilized in the subsequent controller develop-
ment. The experimental data for identification was
gathered at the Department of Automotive
Engineering, Clemson University. A 150,000 aged cata-
lyst is mounted in a commercially available passenger
vehicle, which is run on a Renk Labeco 500HP Chassis
Dyno and subjected to various drive cycles. The nor-
malized air-fuel ratio at the pre-catalyst and mid-
catalyst locations are measured using wide band
lambda sensors. The exhaust gas temperature and cata-
lyst brick temperature are measured using type K ther-
mocouples and the exhaust mass flow rate data is
extracted from the vehicle ECU. For identification, a
concatenated drive cycle is generated where the US06,
FTP, and HWY test cycles are run back to back.

Figure 3 shows the chassis-dyno setup used for testing
and presents a schematic of the TWC sensor locations
used during testing. Similar to Sabatini et al.26 the fuel
cut off portion of the signals were not used for identifi-
cation. Reactivity is stymied during fuel cuts and
excluded from the lean fuel cut data in the model
identification.

First, the temperature model parameters are identi-
fied since they are independent of the oxygen storage
dynamics and only depend on the mass flow rate and
temperature of the exhaust gas. From (4)–(6) those are

uT = ½rs � cs h hout Kreac s Tlight�off� ð13Þ

The temperature model is discretized along the
length of the TWC into 40 cells and simulated using
the exhaust gas mass flow rate and exhaust temperature
recorded during the chassis-dyno experiments and the
brick temperature (Tcat) at each discrete cell is com-
puted at each time step. Since the brick temperature is
measured halfway along the length of the brick, the
simulated brick temperature at the center location
along the length of the brick is compared with the mea-
surement. A particle swarm optimization (PSO) algo-
rithm is used to minimize the root mean square error
(RMSE) between measured and simulated brick tem-
peratures, that is

TWC

Brick 

(a)

(b)

Figure 3. (a) The chassis-dyno and the experimental setup
used for vehicle and TWC data collection at the Clemson
University Department of Automotive Engineering, (b)
schematic layout of the thermocouples and wide-band lambda
sensors to measure the exhaust gas temperature, TWC brick
temperature, and normalized air-fuel ratio before and after the
first TWC brick.
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RMSET =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPK
t=1 (Tcat,mid,meas, t � Tcat,mid, sim, t)

2

K

s

ð14Þ

where, Tcat,mid,meas, t, and Tcat,mid, sim, t are the measured
and simulated brick temperature at the center, respec-
tively, at time step t, from 1 to K, where K is the total
number of time steps in the concatenated drive cycle.
The model-predicted catalyst temperature is then used
in the oxygen storage model to identify the following
unknown parameters:

uf = ½A1 A2 E1 E2 aCe2O4
bCe2O4

cCe2O4
OSC�

ð15Þ

The identification of parameter vector uf is performed
using PSO with a 40 spatial discretization cell along the
oxygen storage level PDE dynamics. The oxygen stor-
age model is simulated using lpre, _mexh, Texh, and Tcat

as inputs and normalized air-fuel ratio at mid location,
lmid is calculated from (12). The simulated output,
lmid, sim, t at each time step t is compared with measured
normalized air-fuel ratio at mid location, lmid,meas, t and
the following RMSE is minimized using PSO:

RMSEf =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPK
t=1 (lmid,meas, t � lmid, sim, t)

2

K

s
ð16Þ

Table 1 includes the identified parameters for the TWC
aged to 150,000miles. The identified temperature and
oxygen storage model is validated using experimental
data from a US06 drive cycle. Figure 4 presents the
pre-catalyst normalized air-fuel ratio, exhaust mass
flow rate, and exhaust gas temperature obtained while
running the US06 drive cycle in the chassis-dyno. The
experimental input profiles in Figure 4 are used to
simulate the identified temperature and oxygen storage
model. The brick temperature, Tcat,mid and lmid com-
puted from the model are compared with the measured
data. Figure 5 shows the validation results where the

brick temperature Tcat,mid and lmid from the identified
model are compared with the experimental data. The
temperature model predicts the brick temperature with
a normalized RMS error (NRMSE) of 1.98% with
respect to the range of measured brick temperature.
Similarly, the oxygen storage model predicts the lmid

value with a normalized RMS error of 2.94% with
respect to the range of measured lmid.

Linearizion of the TWC oxygen storage model

In this section, the linearization of the TWC oxygen
storage model is carried out. The TWC states at time t
are represented by the state vector x(t)=

Table 1. Identified parameters for a 150,000 miles aged
catalyst.

Parameter Value

rs � cs 5.295 3 106

h 111:275
hout 14:2499
Kreac 2.21 3 108

s 0:0165
Tlight�off 410:86
A1 4.177 3 108

A2 120:762
E1 3.51 3 104

E2 4.215 3 103

aCe2O4
3:5433

bCe2O4
23.62 3 104

cCe2O4
0

OSC 19:64
Figure 4. Experimental data set showing the pre-catalyst
normalized air-fuel ratio, lpre, exhaust gas temperature, Texh, and
exhaust mass flow rate, _mexh during US06 drive cycle operation
of the test vehicle in the chassis-dyno.

Figure 5. Validation of the simulated catalyst brick
temperature and normalized air-fuel ratio after the first brick for
a catalyst aged to 150,000 miles relative to the experimentally
measured values while running the US06 drive cycle.
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½f1(t) f2(t) f3(t)�T where x 2 R
3
½0, 1�. Given the

exhaust gas temperature and mass flow rate, the TWC
brick temperature at each time step is computed using
(4)–(6) and provided to the oxygen storage model in (9)
as a time varying parameter. The control variable in
the oxygen storage model is the pre-catalyst air-fuel
ratio lpre, whereas the exhaust temperature Texh and
exhaust mass flow rate _mexh are considered as distur-
bances to the model. With u(t)= lpre(t) as the model
input and w(t)= ½Texh(t) _mexh(t)�T as the disturbance
vector, the control-oriented TWC dynamic model can
be expressed as follows:

_x(t)= f(x(t), u(t),w(t)) ð17Þ

At a given state, input, and disturbance operating
point, (xo, uo,wo) from Taylor series expansion in (17),
the following linearized model is obtained:

_x(t)= fo(xo, uo,wo)+A(x(t)� xo)
+Bu(u(t)� uo)+Bw(w(t)� wo)

ð18Þ

where the linearized state, input, and disturbance
matrices A, Bu, and Bw are such that A 2 R

333,
Bu 2 R

331, and Bw 2 R
332, respectively, and are found

from numerical perturbation as follows:

A= ½∂f
∂x
�xo, uo,wo

=
f(xo + dx, uo,wo)� f(xo, uo,wo)

dx

Bu = ½
∂f

∂u
�xo, uo,wo

=
f(xo, uo + du,wo)� f(xo, uo,wo)

du

Bw = ½
∂f

∂w
�xo, uo,wo

=
f(xo, uo,wo + dw)� f(xo, uo,wo)

dw

ð19Þ

The linearized, continuous-time system in (18) is dis-
cretized at each sampling time dt using Euler method.
At each time instant t= k:

x(k+1)� x(k)

dt
= f(xo, uo,wo)+A(x(k)� xo)

+Bu(u(k)� uo)+Bw(w(k)� wo)

x(k+1)= x(k)+ dt½ f(xo, uo,wo)+A(x(k)� xo)

+BuDu(k)+Bw(w(k)� wo)�
x(k+1)= (I+A � dt)x(k)+BuDu(k) � dt
+Bw(w(k)� wo)dt+ f(xo, uo,wo)dt� A � xo � dt

ð20Þ

The above model is used in the LMPC implementa-
tion to predict the oxygen storage system behavior over
N steps into the future. At the beginning of each pre-
diction horizon, the system is linearized around a given
nominal state xo and input uo, and wo. In (20), Du(k)
represents the difference between the input at time k,
u(k), and the nominal input uo.

The nominal state xo needed for the linearization is
obtained from an extended Kalman filter (EKF)31

which estimates the oxygen storage level at the three
spatial cells, for a given input uo and wo. It is noted that
the nominal point for linearization may not be an

equilibrium of the system. Therefore, the value of f0
might not always be zero.

Overall, the discrete-time linearized system is given
as:

x(k+1)=Ad � x(k)+BdDu(k)+Bnn ð21Þ

where

Ad = I+A � dt
Bd =Bu � dt
n =Bw(w(k)� wo)dt+ f(xo, uo,wo)dt� A � xo � dt
Bn = I

and Ad 2 R
333, Bd 2 R

331, and Bn 2 R
333
½0, 1� were n is a

disturbance to the linearized system model with known
values. The exhaust temperature and mass flow rate are
generated from the engine model. The non-zero deriva-
tive terms (caused by linearizing the system at non-
equilibrium) are computed directly using the nonlinear
TWC dynamics model.

To assess the accuracy of the linearized model, used
to predict the evolutiona of the system dynamics in
place of the nonlinear one, a comparison with the non-
linear model response is carried out.

The linearized TWC oxygen storage model is reset
to the nonlinear model response at the beginning of
every prediction time horizon. Figure 6 shows a quali-
tative schematic of the behavior of the linearized model
compared to the nonlinear one over a prediction hori-
zon of lenght N. For the quantitative investigation, the
nonlinear and linearized TWC oxygen storage model
are simulated for four different sampling times
(0:005sec, 0:01sec, 0:05sec, 0:1sec) and three different
lengths of prediction horizon (N=1 time step, N=10
time steps, N=20 time steps). The performance of the
nonlinear model and the linearized model are com-
pared in terms of the average TWC oxygen storage
level over the three descritized cells, �fi, and normalized
air-fuel ratio at the mid location, lmid. For each combi-
nation of sampling time and prediction horizon, the
normalized RMSE for lmid and �f are computed as
follows:

Rlmid
(%)=

1003

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPK

t=1
(lmid, nonlin, t�lmid, lin, t)

2

K

r
lmid, nonlin,max � lmid, nonlin,min

R�f(%)=
1003

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPK

k=1
(�fnonlin, k��flin, k)

2

K

r
�fnonlin,max � �fnonlin,min

ð22Þ

Here, the normalizations are done with respect to the
range of lmid, nonlin and �fnonlin from the nonlinear model,
respectively. The fuel cutoff events are included in the
computation in equation (22) since the identified model
responds correctly to such events as shown in Figure 5.

In the catalyst, the exhaust mass flow rate and
exhaust gas temperature change at every time step,
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causing the catalyst brick temperature to change. Since
the brick temperature is a time varying parameter in the
Ad matrix, to keep the linearized model time invariant,
the exhaust gas temperature and exhaust mass flow rate
are kept constant over the prediction horizon. Keeping
the Ad, Bd, and n matrices time invariant is important
to reduce the complexity of the LMPC formulation. In
reality, the exhaust gas temperature and mass flow rate
change at every sampling time. Therefore, the assump-
tion of constant Texh and _mexh within the prediction
time horizon needs to be examined. For this purpose,
two different cases are considered: (i) the Ad, Bd

matrices and the disturbance of the linearized model n

are time variant due to changes in Texh and _mexh, (ii) the
Ad, Bd matrices and n are time invariant. A comparison
of these two cases is presented for simulation of the

150,000miles aged catalyst model in Table 2 over the
US06 drive cycle. The normalized RMS error between
the nonlinear and linearized models are listed for differ-
ent combinations of sampling time and prediction time
horizon length, N. Results show that assuming time
invariant values of the linearized model matrices does
not impact the linearization accuracy significantly over
these ranges of sampling time and prediction horizon.
In fact, sometimes the accuracy is better for case (ii)
compared to case (i) which can be attributed to the rela-
tive magnitude of lmid, lin and �flin compared to the mag-
nitude of lmid, nonlin and �fnonlin, respectively. For larger
sampling times, the discrepancy between the nonlinear
and the linearized model increases. From the tables, a
sampling time of 0.05 s and a prediction horizon of 10
time steps into the future, that is, N=10, is selected for

Table 2. NRMSE of lmid and �f for a TWC aged to 150,000 miles over US06 cycle.

(a) Time varying linearized model.

Time horizon
steps (N)

0.005 s 0.01 s 0.05 s 0.1 s

NRMSE�f

(%)

NRMSElm

(%)

NRMSE�f

(%)

NRMSElm

(%)

NRMSE�f

(%)

NRMSElm

(%)

NRMSE�f

(%)

NRMSElm

(%)

Simulation time step

1 0 0 0 0 0 0 0 0
10 0.002 0.04 0.01 0.11 1.13 1.77 4.15 9.06
20 0.01 0.12 0.11 0.26 3.87 3.4 7.96 11.16

(b) Time invariant linearized model.

Time horizon
steps (N)

0.005 s 0.01 s 0.05 s 0.1 s

NRMSE�f

(%)

NRMSElm

(%)

NRMSE�f

(%)

NRMSElm

(%)

NRMSE�f

(%)

NRMSElm

(%)

NRMSE�f

(%)

NRMSElm

(%)

Simulation time step

1 0 0 0 0 0 0 0 0
10 0.002 0.04 0.01 0.11 1.88 1.62 3.62 6.16
20 0.01 0.13 0.11 0.26 4.28 3.45 7.65 8.04

Figure 6. Graphical representation of nonlinear and linearized dynamics over the MPC prediction horizon.
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MPC implementation. Such a selection is based on the
tradeoff between the accuracy of the linearized model
and the computational load of the LMPC.

For accuracy comparison purposes, a specific case
study is presented in Figures 7 and 8, where the
150,000mile-aged catalyst model is simulated using
US06 drive cycle with a sampling time of 0.05 s and a
prediction time horizon of 10 time steps. The normal-
ized air-fuel ratio at the mid location, lmid, and the
average oxygen storage level, �f, are computed for both
the nonlinear and linearized models and plotted against
the experimental measurements as a baseline. The com-
parison for lmid in Figure 7 shows that, for a sampling
time of 0.05 s and prediction time horizon containing
10 time steps in the future, the normalized RMS error
between the nonlinear and the linearized model is
around 1.62%. Note that both models predict the usual
TWC behavior where the lmid response is damped and
delayed compared to the lpre signal. The error between
the nonlinear and linearized models in terms of average
oxygen storage level is shown in Figure 8. The figure
shows acceptable agreement between the nonlinear and
linearized oxygen storage level predictions with a nor-
malized RMS error of only 1.88%.

Linear model predictive control

For N time steps into the future, the goal of MPC is to
keep the oxygen storage level x(k) close to the reference
�xref while minimizing the control effort (correction to
the reference air-fuel ratio). Therefore, the overall opti-
mization objective is to find the optimal air-fuel ratio
correction U�(k) over the prediction horizon of N

samples starting at time step k. The cost function to be
minimized is given by:

J= ½
XN�1
i=0

(x(k+ i)� �xref) � �Q

� (x(k+ i)� �xref)
T + p � (u(k+ i� 1)� �l(k+ i� 1))2�

ð23Þ

where, i=0, 1, :::,N� 1, �Q 2 R
333
. 0 , p 2 R. 0.

The nonlinear optimization problem can be formu-
lated as follows:

U�(k)= argmin
Du(k), ...Du(k+N�1)

J

subject to,

x(k+1)=Ad � x(k)+BdDu(k)+Bnn

xmin4x(k)4xmax

Dumin4Du(k)4Dumax

ð24Þ

where x(k)= ½f1(k) f2(k) f3(k)�T 2 R
3
½0, 1� is the

vector of estimated oxygen storage level in each cell
from EKF at time step k, and xref=
½f1, ref f2, ref f3, ref�T 2 R

3
½0, 1� is the reference oxygen

storage level vector.
In (24), u(k)= lpre(k) and the operating point cho-

sen for linearization at time step k is �l(k)= uo(k).
Assuming that �l(k), dictated by the ECU, is constant
over the prediction horizon, the normalized air-fuel
ratio correction Du(k+ i), at each sampling time k+ i
is defined as follows:

Du(k+ i)= lpre(k+ i)� �l(k) ð25Þ

where, i varies from 0 to N� 1. In (24), �Q is a 333
diagonal matrix and p is a scalar coefficent used to

Figure 7. Comparison between the nonlinear and linearized
model predictions of air-fuel ratio at the mid location with a
sampling time of 0.05 s and prediction horizon containing 10
time steps in the future.

Figure 8. A comparison between the nonlinear and linearized
model predictions of average oxygen storage level with sampling
time of 0.05 s and prediction horizon containing 10 time steps in
the future.
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change the relative weight of the two terms in the opti-
mization objective.

To simplify the LMPC formulation, the disturbance
term in (21) is discarded from the state dynamics and
used to offset the state reference. Therefore, given the
state x at time step k, the linearized state transitions
into the future up to N� 1 time steps, without the dis-
turbance term, is defined as follows:

x(k+1jk)=Ad � x(k)+BdDu(k)

x(k+2jk)=Ad � x(k+1jk)+BdDu(k+1)

=Ad
2 � x(k)+AdBdDu(k)+BdDu(k+1)

. . .

x(k+Njk)=Ad
N � x(k)+Ad

N�1BdDu(k)+ . . .

+BdDu(k+N� 1)

ð26Þ

where, x(k+ ijk) with i=1, :::,N represents the
response of the linearized model at time step k+ i
given the vector of state at time step k. Combining the
state transition and input vector over the prediction
horizon into a state vector, X(k), and input vector,
U(k), the following expressions are obtained:

X(k)= ½x(k+1jk) x(k+2jk) . . . x(k+Njk)�T

U(k)= ½Du(k) Du(k+1) . . . Du(k+N� 1)�T

where,

X(k) 2 R
3N31
½0, 1� , U(k) 2 R

N

ð27Þ

From (26) and (27), the discrete state transition at each
sampling time within the prediction horizon, X(k), can
be expressed as a function of the state at the beginning
of the prediction horizon, x(k), and the input (normal-
ized air-fuel ratio correction) at each sampling time,
U(k). The combined linearized state dynamics over a
prediction horizon is then defined as follows:

X(k)=F � x(k)+E �U(k) ð28Þ

where F and E are matrices composed of the Ad and Bd

matrices and defined as:

F= ½Ad Ad
2 Ad

3 . . .Ad
N�T

E=

Bd 0 0 . . . 0

AdBd Bd 0 . . . 0

Ad
2Bd AdBd Bd . . . 0

..

. ..
. ..

. . .
. ..

.

Ad
N�1Bd Ad

N�2Bd Ad
N�3Bd . . . Bd

2
66666664

3
77777775

where, F 2 R
3N33, E 2 R

3N3N

ð29Þ

The linearized model in (28) is derived upon lineari-
zation of the nonlinear model around an equilibrium
point, xo, for which _xo = f(xo, uo)=0. However, in this
work, the MPC linearizes the nonlinear TWC model at

any state xo and input uo. This nominal condition may
not be an equilibrium point of the system, therefore,
_xo = f(xo, uo) may not be equal to zero. The nonzero
nominal value of the system is incorporated into the
state-space model through vector V as follows:

Xn(k)=F � x(k)+E �U(k)+En � V ð30Þ

where, V is a column vector of disturbances for N sam-
ples (V= ½n . . . n�T 2 R

N) and En 2 R
3N3N is generated

similar to E by replacing Bd with Bn. Since the distur-
bance is constant over the prediction horizon, the line-
arized state dynamics in (28) can be used in the MPC
framework if the reference at each sampling time is off-
set by the amount of the disturbance. Over the predic-
tion horizon, the reference oxygen storage level is
defined by �Xref as follows:

�Xref = ½�xref �xref . . . �xref�T 2 R
3N31
½0, 1� ð31Þ

Offsetting the reference by the disturbance vector, the
following state reference is obtained:

�Xref, n = �Xref � En � V ð32Þ

where, �Xref, n 2 R
3N31. With the above simplifications,

the original nonlinear optimization problem in (24) is
transformed into a quadratic programming (QP) prob-
lem, as shown in (33). The QP problem is solved at each
sampling time k to obtain the optimal control sequence
U�(k) over the prediction horizon, as

U�(k)= argmin
Du(k), ...Du(k+N�1)

(½X(k)� �Xref, n� � ~Q � ½X(k)� �Xref, n�T

+UT(k) � P �U(k)))

subject to,

X(k)=F � x(k)+E �U(k)

Xmin4X(k)4Xmax

Umin4U(k)4Umax

ð33Þ

where

~Q=

�Q . . . 0

..

. . .
.

0

0 0 �Q

2
664

3
775 2 R

3N33N
. 0

P=

p . . . 0

..

. . .
.

0

0 0 p

2
664

3
775 2 R

N3N
. 0

where, for the problem solved in this paper, Xmin=0,
Xmax=1, Umin= � 0:2, and Umax=0:2.

Implementation of linear MPC

The goal of LMPC is to regulate oxygen storage levels
in three discrete TWC cells to thier respective reference
values by controlling the air-fuel ratio command given
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to the engine. The LMPC utilizes the state estimate
from EKF, developed in Gelmini et al.31 which takes
into account the uncertainties in model accuracy and
sensor measurements. The EKF has the ability to esti-
mate both the dynamic oxygen storage level and the
oxygen storage capacity (OSC).32 In this work, it is
assumed that the OSC is constant during the testing
duration for the given catalyst. The constant OSC is
preemptively identified using the identification proce-
dure outlined in Section 3.

In this paper, an offline simulation framework is
developed to investigate the tracking performance of
LMPC. Figure 9 presents a block diagram of the offline
LMPC simulation utilizing the exhaust gas temperature
Texh, and mass flow rate _mexh, obtained during vehicle
operation over a US06 drive cycle, shown in Figure 4.

These inputs are used to estimate the oxygen storage
levels, f̂, calculate brick temperature, Tcat, and normal-
ized air-fuel ratio at the mid location, lmid. These quan-
tities, along with the desired normalized air-fuel ratio
obtained from the ECU, �l, are used for real-time linear-
ization of the nonlinear TWC oxygen storage dynamics.
The linearized TWC model is used to solve the QP
problem defined in (33) to find the normalized air-fuel
ratio correction, Dl(k), such that the desired normal-
ized air-fuel ratio signal generated by the vehicle ECU
is a constant value of stoichiometry, that is, �l=1. In
the offline simulation, the same desired air-fuel ratio is
used upon which MPC makes the correction to track
the reference oxygen storage level. The reference oxygen
storage level vector, fref, and the disturbance vector, n,
from (21) are used in the LMPC framework to calculate
�Xref, n from (32). Engine dynamics are not considered in
the LMPC formulation of this study. Therefore, the
pre-catalyst normalized air-fuel ratio can be expressed

as a sum of the desired air-fuel ratio and the correction
made by MPC, such that, lpre(k)= �l(k)+Dl(k).

Figure 10 shows the simulation results for LMPC
implementation where the goal is to track a spatially
discretized reference oxygen storage level vector,
fref= ½0:5 0:5 0:5�. A bound on Dl is imposed
(�0:24Dl40:2) in accordance with the physical sys-
tem’s ability to respond to a given command. In the
top plot of Figure 10, the oxygen storage level at cell 1
is higher than the other two cells. Cell 1 is closest to
the inlet, therefore, it responds quickly to any change
in the air-fuel ratio command compared to other cells.
Since the oxygen storage level of the cells are dependent

Figure 9. Block diagram for offline simulation of linear MPC for tracking a reference oxygen storage level in TWC. Since engine
dynamics are not modeled in the offline simulation, the demanded specific air-fuel ratio from LMPC, ldemand is assumed to be the
same as the pre catalyst specific air-fuel ratio, lpre.

Figure 10. Offline performance of the linear MPC oxygen
storage level tracking with fref = ½0:5 0:5 0:5� using US06
drive cycle data.
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on one another, it is not possible to achieve the same
tracking performance for each cell by controlling the
input air-fuel ratio correction command, Dl(k). As a
result, the oxygen storage level of cell 2 and cell 3
remains below the reference setpoint and overall, the
average oxygen storage level is close to the desired ref-
erence. Note that, the experimentally validated TWC
model assumes an oxygen concentration of 1% at the
stoichiometric value of lpre. Therefore, to maintain a
constant oxygen storage level, the corrected pre-
catalyst normalized air-fuel ratio signal, lpre operates
just below the stoichiometric value of 1. Figure 11
shows similar tracking performance when the reference

is changed to fref= ½0:7 0:7 0:7�. In both cases, the
initial tracking error can be attributed to the uncer-
tainty of the initial state estimation given to the EKF.
Figure 18 shows the controller tracking capability to a
reference fref= ½0:7 0:6 0:5�.

Since the LMPC is required to track the oxygen
storage levels of three discrete blocks by controlling
only the air-fuel ratio command, it is necessary to
understand the controllability of the linearized system.
Controllability is the ability to transfer the system state
from an initial condition to any final state in a finite
time. The controllability of the linearized TWC system
is assessed by generating a controllability matrix of the
discrete linearized system given in (21) and calculating
the rank of the controllability matrix at every sampling
time. Figure 13 shows that the rank of the controllabil-
ity matrix is 3 at each time instant while tracking
fref= ½0:5 0:5 0:5� over the US06 drive cycle.
Figure 13 also shows that the time varying disturbance,
n, is significant at the inlet and diminishes along the
length of the TWC. Therefore, the oxygen storage level
at the inlet is more sensitive to the disturbance inputs,
that is, mass flow rate and exhaust temperature than
the oxygen storage level at downstream of the TWC.

In Figure 14, the simulated normalized air-fuel ratio
at the mid TWC location utilizing the LMPC control-
ler, lmid,mpc is compared with the measured normalized
air-fuel ratio at the mid TWC location, lmid,meas (from
Figure 7). For the purpose of comparison, the emission
control strategy installed in the vehicle by the vehicle
manufacturer is denoted as the ‘‘baseline strategy’’ and
the quantity lmid,meas is used here to evaluate the con-
trol performance of the ‘‘baseline strategy.’’ The simu-
lated lmid,mpc has fewer and less severe excursions
compared to lmid,meas. The average oxygen storage level
estimated for the experimental data, favg, baseline are then
compared with the average oxygen storage level,
favg,mpc obtained after linear MPC implementation for

Figure 11. Offline performance of the linear MPC oxygen
storage level tracking with fref = ½0:7 0:7 0:7� using US06
drive cycle data.

Figure 12. Offline performance of the linear MPC oxygen
storage level tracking with fref = ½0:7 0:6 0:5� using US06
drive cycle data[AQ: 1].

Figure 13. Rank of the controllability matrix of the linearized
TWC model (top), and the disturbance term, n from equation
(21) (bottom).
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tracking fref= ½0:5 0:5 0:5�. The estimated average
oxygen storage level from LMPC is steadier than the
baseline oxygen storage level estimated and confirms
the effectiveness of the proposed LMPC approach for
improved emission control.

Another comparison is made between the offline
LMPC controller and stock ECU air-fuel ratio control-
ler, where the pre-TWC air-fuel ratio, lpre, measured
during the US06 drive cycle test (Figure 4) is assumed
as �l in the LMPC controller. In that case, Dl correc-
tions are made by the LMPC at each time step to track
the desired oxygen storage level, such that, the

commanded normalized air-fuel ratio becomes,
lpre,mpc(t)= lpre,meas(t)+Dl(t). The comparison in
Figure 15 shows that the LMPC implementation still
results in fewer fluctuations of average oxygen storage
level and smaller excursions of lmid compared to the
baseline vehicle controller. Thus, implementation of
LMPC of TWC oxygen storage level presents an
opportunity for the automotive industry to develop a
TWC design that is smaller in size, saving capital cost.

The developed LMPC algorithm is also fast enough
for real time control. As outlined in the next section,
the LMPC controller is implemented and

Figure 14. Comparison between the offline linear MPC, tracking fref = ½0:5 0:5 0:5�, and the baseline strategy in terms of favg

and lmid using US06 drive cycle data when �l in MPC is a constant of 1.

Figure 15. Comparison between the offline linear MPC, tracking fref = ½0:5 0:5 0:5�, and the baseline strategy in terms of favg

and lmid using US06 drive cycle data when �l in MPC is the same as the lpre from the baseline.
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communicated to the vehicle ECU using an ETAS
INCA software platform. The time that the ETAS sys-
tem takes to execute the LMPC code, can be a limiting
factor for LMPC implementaiton in real time. A com-
putational time analysis of ETAS system in Figure 16
shows that the execution time of the developed LMPC
algorithm is about 3.8ms which is much smaller than
the system sampling time of 50ms. Here, the sampling
time is the time used to discretize the MPC strategy as
given in Table 2.

Additionally, the efficient, low calibration effort of
the LMPC emission control algorithm can significantly
reduce the total aftertreatment system development cost.
Figure 15 also shows that excessive richness of the com-
manded air-fuel ratio mixture can be avoided through
implementation of the proposed LMPC control design,
which exhibits smaller rewetting enrichment drops in
lpre,meas after fuel cutoff events. Reducing these rich air-
fuel ratio excursions has the potential to improve the
vehicle fuel economy during real world operation.

Future work

Online implementation of the proposed LMPC in a
vehicle is a topic of future research by the authors.
Figure 17 shows a block diagram explaining how
LMPC will be implemented in a vehicle to track refer-
ence oxygen storage levels at different longitudinal
locations within the TWC. First, the exhaust gas tem-
perature, Texh, obtained from a thermocouple and _mexh

obtained from the ECU will be used in the TWC tem-
perature model to calculate the brick temperature, Tcat.
Based on the measured and calculated signals: Texh,
Tcat, _mexh, lpre, and lmid, the TWC oxygen storage lev-
els will be estimated from the EKF. The desired nor-
malized air-fuel ratio signal, �l in the ECU will be
modified by the LMPC based on the difference between
estimated state f̂ and reference state fref. The corrected
air-fuel ratio command, lref will be given to the engine.
After the air-fuel ratio command is executed in the
engine, the pre-catalyst normalized air fuel ratio, lpre

Figure 16. Distribution of sampling time of the ETAS system (left), and distribution of the execution time of LMPC (right).

Figure 17. Block diagram for real-time tracking of reference oxygen storage level in a TWC using linear MPC.
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will be measured and the entire procedure will be
repeated at the next time step.

The modern gasoline engine is a complex dynamic
system where the speed and magnitude of the response
depend on numerous mechanical, thermal, and chemi-
cal factors. In the air-fuel ratio control literature, engine
dynamics are often captured using empirical response
models,18,33 of the intake manifold, fueling, combus-
tion, and crankshaft dynamics,34 or neural network-
based models.10 The real-time implementation of the
developed LMPC algorithm requires a reasonably accu-
rate engine model. Modeling the engine dynamics and
including an engine model within the LMPC frame-
work to capture the dynamic delay behavior is the sub-
ject of ongoing research. However, it is important to
understand delay’s dependence on factors such as,
engine RPM, load, frequency of the input signal, etc. In
this paper, the following tests are performed to under-
stand the type and time scale of the delay:

� A step lref is dictated to the engine and lpre

upstream of the catalyst is measured.
� A sinosoidal lref signal is dictated at different

speeds and loads, and lpre upstream of the catalyst
is measured.

� A sinosoidal lref signal with varying frequency is
dictated and lpre upstream of the catalyst is
measured.

The above tests are performed in the same vehicle in
which the drive cycle data are obtained for TWC model
parameter identification in Section 2. Communication
to the vehicle ECU is established through ETAS INCA
(v7.1.10) software. The ECU parameters are transferred
to INCA via an ETAS ES910.3 communication unit
and measurements from the wide-band lambda sensor
are transferred via ETAS ES930.1 supplemental com-
munication unit. The test profiles are converted from
MATLAB/Simulink environment to the INTECRIO
Real-time Target (IRT) format. The IRT build file is
then compiled in ETAS INTECRIO (v4.5.0) software
to communicate with the ECU via the INCA platform.
Figure 18(a) shows the ports of the communication
boxes to connect to the ECU and the sensors, and
Figure 18(b) presents an information flow diagram for
engine delay testing.

It is known from the literature that there are multiple
factors contributing to the engine delay.20 In order to
understand the dynamics between lref (input) and lpre

(output), step tests were carried out experimentally, and

(a)

(b)

Figure 18. (a) Communication boxes to obtain signals from the ECU and sensors and (b) information flow diagram for engine delay
characterization test in the vehicle.
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presented in Figure 19. A transport delay at the begin-
ning of a step change and a subsequent dynamic delay
are observed. The step change command also shows a
higher magnitude reduction in the lean region than the
rich region.

To understand these effects, a sinusoidal lref signal
with constant amplitude (0.2) and frequency (1Hz) is
applied when the engine RPM is kept constant around
700, 1500, and 2500RPM. The vehicle load is then
altered while keeping the RPM constant by running the
chassis-dyno in the speed mode. Results in Figure 20
show that the delay changes with the engine RPM. The
delay does not change significantly with load but
changes from ‘‘no load’’ condition to ‘‘loaded’’ condi-
tion. The engine transients are faster at higher RPM
and torque, therefore, the engine responds quickly to
the given fueling signal resulting a shorter delay.

To understand how the engine responds to different
frequency A/F commands, a sinosoidal lref command
(Figure 21) with frequency varying from 0.001 to 20Hz

Figure 19. Engine response in terms of lpre due to a step lref command given to the engine.

Figure 20. Phase delay between commanded lref and
measured lpre when a sinosoidal lref with constant frequency
and amplitude is given to the engine as input.

Figure 21. Phase delay between commanded lref and
measured lpre when a sinosoidal lref with constant frequency
and amplitude is given to the engine as input.
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with a fixed amplitude is applied while running the
engine in neutral, at 1500RPM, and 2500RPM with
zero load. The measured lpre response in Figure 21
shows significant amplitude decay with increased fre-
quency. A shift toward the lean region is also visible in
the lpre response. After around 10Hz at 1500RPM,
and around 15Hz at 2500RPM, the engine stops
responding to the lref command. This might be the
result of anti-noise safety features programmed within
the vehicle.

To better understand the frequency and phase shift,
the time domain input and output signals are converted
into the frequency domain by fast fourier transforma-
tion (FFT). The difference in magnitude and phase of

the commanded lref FFT and the measured lpre FFT
are presented in Figure 22. From the top plot, it is clear
that at ;700RPM, the amplitude of the sine wave
drops by an order of magnitude (220dB) at approxi-
mately 1.5Hz. The phase lag also reaches around 70�
at 1.5Hz. Since the MPC updates information at a fre-
quency of 20Hz (0.05 s), the relatively slow engine
dynamics must be included in the MPC for it to accu-
rately predict the future response. At higher engine
speeds, the magnitude and phase plot exhibit a similar
behavior. However, due to the faster engine dynamics,
the magnitude decay occurs at a higher frequency
(approximately 5Hz for 1500RPM, and 6.5Hz for
2500RPM). Thus, without the inclusion of an engine
model in the LMPC, the LMPC needs to operate on a
time scale of 1.5Hz, that is, a sampling time of 0.6 s, to
prevent the lambda response magnitude reduction from
failing more than an order of magnitude for engine
speeds greater than 700RPM. Such a large sampling
time will induce substantial error in the linearized
model response. Therefore, inclusion of a suitable
engine model is essential for the LMPC to work in
real-time.

An RPM dependent delay model, engine map-based
empirical model, and physics-based model are choices
under consideration for future implementation.

Conclusion

This paper develops a linear model predictive control
framework using a linearized, physics-based TWC
model to track a desired oxygen storage level in the cat-
alyst. A nonlinear TWC temperature and oxygen stor-
age model is identified through optimization using a
PSO. The identified nonlinear oxygen storage model is
linearized, and the accuracy of the linearized model has
reasonable accuracy over a range of sampling times
and prediction time horizons. Using the linearized
model, an LMPC framework is developed to track a
reference oxygen storage level in the TWC by control-
ling the normalized air-fuel ratio command. Simulation
results confirm that the LMPC can successfully track
desired oxygen storage levels at different longitudinal
locations in a TWC. The proposed framework can also
allows track a time varying trajectory of desired oxygen
storage levels. This capability provides greater flexibil-
ity in controlling harmful emissions that depend on the
TWC oxygen content.

The proposed controller shows less excursions of
post-catalyst air fuel ratio and steadier oxygen storage
levels than the baseline vehicle controller. Potential fuel
economy benefits could be inferred from an air-fuel
ratio command with fewer and less severe excursions in
the rich region, especially after fuel cutoff events.

Successful implementation of the proposed LMPC
framework in real-time is constrained by the engine
delay dynamics. The delay dynamics shows dependence
on RPM, load, and frequency variation of the

Figure 22. Phase delay between commanded lref and
measured lpre when a sinosoidal lref with varying frequency and
constant amplitude is given to the engine as an input.
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commanded normalized air-fuel ratio signal. The delay
analysis herein provides confidence that the proposed
LMPC framework can be successfully implemented in
real-time if engine delay dynamics are configured within
the MPC design either empirically or through an engine
model.
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