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A B S T R A C T

Three way catalysts (TWCs) are installed downstream of internal combustion engines to mitigate the engine out
pollutants generated from combustion. Accurate engine control systems are needed to achieve high conversion
efficiency during vehicle operation and optimize TWC inputs. Accounting for TWC internal dynamics within
the exhaust emission control design is key to enable improved engine and catalyst performance.

However, since internal TWC dynamics cannot be directly measured, modeling and estimation of the
converter’s dynamics are essential for the development of high performing exhaust emission control strategies.
In this paper, a Dual Extended Kalman Filter (dEKF) is designed and experimentally validated for the estimation
of both the TWC oxygen storage level, 𝜙, and age-dependent oxygen storage capacity, 𝑂𝑆𝐶. The estimator
design is based on an experimentally validated physics-based TWC model developed by the authors in a
previous work. Observer validation and performance evaluation are conducted over transient drive cycles in
a chassis dynamometer. Moreover, observability properties and related estimation performance are analyzed
using different sensor technologies. It is found out that using switch-type oxygen sensors in place of wideband
oxygen sensors leads to a loss of observability within the model, preventing real-time OSC determination and,
therefore, aging estimation. A Fisher information quantity study is developed and presented that provides
quantitative guidelines for the optimization of TWC sensor design. Finally, the observer is tested on real
hardware via rapid control prototyping.
. Introduction

Economic and population growth along with the rapid suburban-
zation experienced in the second half of the last century have led to

transport system that heavy relies on personal vehicles for trans-
ortation, (EPA - History of Reducing Air Pollution from Transporta-
ion in the United States (U.S.), 2020). Despite the efforts from reg-
latory agencies, like the European Environment Agency (EEA) and
he Environmental Protection Agency (EPA), to impose environmen-
al policies focused on reducing pollutant emissions from vehicles
see, for instance, Fig. 1), carbon dioxide (CO2) emissions, the main
reenhouse gas produced by the transportation sector, have steadily
ncreased (IPPC, 2014).

Three way catalytic converters are exhaust emission control de-
ices aimed at reducing tail-pipe emissions by catalyzing a redox
oxidation and reduction) reaction. In particular, it converts the engine
ut pollutants like nitrogen oxides NO𝑥, carbon monoxide, CO, and
ydrocarbons, HC, into CO2, N2 and water. Catalytic converters can

✩ The authors conducted the research documented in this paper while they were at Clemson University.
∗ Corresponding author.
E-mail addresses: gelmini@mit.edu (S. Gelmini), mhoffman@auburn.edu (M.A. Hoffmann), sonori@stanford.edu (S. Onori).

reach up to 100% efficiency when the normalized airfuel ratio is near
stoichiometry. Normalized air fuel ratio (𝜆) is defined as the ratio
between the actual air to fuel ratio (𝐴∕𝐹 )𝑎𝑐𝑡𝑢𝑎𝑙 and the stoichiometric
air fuel ratio (𝐴∕𝐹 )𝑠𝑡𝑜𝑖𝑐ℎ,

𝜆 =
(𝐴∕𝐹 )𝑎𝑐𝑡𝑢𝑎𝑙
(𝐴∕𝐹 )𝑠𝑡𝑜𝑖𝑐ℎ

, (1)

where (𝐴∕𝐹 )𝑎𝑐𝑡𝑢𝑎𝑙 = 𝑚𝑎𝑖𝑟∕𝑚𝑓𝑢𝑒𝑙 and (𝐴∕𝐹 )𝑠𝑡𝑜𝑖𝑐ℎ = 14.7 for gasoline
engines. When the (𝐴∕𝐹 )𝑎𝑐𝑡𝑢𝑎𝑙 is less than stoichiometry (𝜆 < 1), the
combustion is referred to as rich, whereas when lambda is greater
than stoichiometry (𝜆 > 1), engine operation is referred to as lean.
Ceria-based compounds have been used since the 1980s (Gandhi, Piken,
Shelef, & Delosh, 1976) to enlarge the ‘‘operating window’’ of the con-
verter, improving TWC conversion efficiency during transient engine
operations by allowing the catalyst to store oxygen when operating
lean, and release oxygen during rich operation (Kim, 1982).

Because the catalyst oxygen storage level cannot be measured di-
rectly, real-time estimation from available sensor measurements (such
ttps://doi.org/10.1016/j.conengprac.2021.104805
eceived 23 October 2020; Received in revised form 16 March 2021; Accepted 18
vailable online xxxx
967-0661/© 2021 Elsevier Ltd. All rights reserved.
March 2021

https://doi.org/10.1016/j.conengprac.2021.104805
http://www.elsevier.com/locate/conengprac
http://www.elsevier.com/locate/conengprac
http://crossmark.crossref.org/dialog/?doi=10.1016/j.conengprac.2021.104805&domain=pdf
mailto:gelmini@mit.edu
mailto:mhoffman@auburn.edu
mailto:sonori@stanford.edu
https://doi.org/10.1016/j.conengprac.2021.104805


S. Gelmini, M.A. Hoffmann and S. Onori Control Engineering Practice 112 (2021) 104805
Nomenclature

𝑚𝑎𝑖𝑟 Mass of air
𝑚𝑓𝑢𝑒𝑙 Mass of fuel
𝜆 Normalized air fuel ratio
𝑡 Time ([s])
𝑧 Axial dimension ([m])
𝑇𝑔 Gas temperature ([K])
�̇�𝑒𝑥ℎ Exhaust gas mass flow rate (

[

kg
s

]

)
𝐴𝑐𝑠 TWC cross sectional area (

[

m2])
𝑇𝑐𝑎𝑡 TWC solid phase temperature ([K])
𝑇𝑒𝑥ℎ Exhaust gas temperature ([K])
𝑅𝑙 Reaction rate for the 𝑙th reaction (

[

mol
m3⋅𝑠

]

)

𝑐0 Total exhaust gas concentration (
[

mol
m3

]

)

𝑘𝑓𝑗 Forward reaction rate (𝑗 = 1, 2)
𝑘𝑏𝑗 Backward reaction rate (𝑗 = 1, 2)
𝑃 Exhaust gas pressure ([Pa])
𝑅 Universal gas constant (𝑅 = 8.314) (

[

J
kg⋅K

]

)
𝐴𝑗 Arrhenius pre-exponential factor
𝐸𝑗 Activation energy ([J])
𝐾𝑗 Chemical equilibrium constant
𝑢 Space velocity (

[

m
s

]

)

𝑀𝑒𝑥ℎ Average molar mass of composition (
[

kg
mol

]

)

𝑂𝑆𝐶 Oxygen storage capacity (
[

mol
m3

]

)
𝜙 Oxygen storage level ([0 − 1])
𝑡𝑠 Sampling time ([s])
𝑗 Reaction index
𝑖 Discrete cell index
𝑐 Chemical species index
[] Gas specie  concentration (

[

mol
m3

]

)
𝑓 Forward
𝑏 Backward
𝐴𝑇 Matrix A transposition
𝐹 (𝜃𝑜) Fisher information quantity
𝑉 𝑎𝑟

(

𝜃
)

Variance of identified parameter 𝜃

as pre- and post-catalyst exhaust gas oxygen sensors) is key for the
enhancement of the TWC operation (Balenovic, Backx, & Hoebink,
2001). In this paper, the level of oxygen in the TWC at any given
time is indicated by 𝜙(𝑡), Sabatini et al. (2015). Modern AFR control
strategies are likely to operate directly on a real-time oxygen storage
estimate to increase conversion of the harmful exhaust species in the
TWC. As the TWC performance degrades overtime, the oxygen storage
capacity, 𝑂𝑆𝐶, lumps together multiple aging effects, such as thermal
and chemical aging mechanisms (Cooper, 1983; González-Velasco
et al., 2000; Matam et al., 2012; Moldovan, Rauch, Morrison, Gomez,
& Antonia Palacios, 2003; Sabatini et al., 2016) (see Figs. 2 and 3).

Accurate estimation strategies for oxygen storage level and storage
capacity in addition to sophisticated control policies to regulate the
oxygen storage level at a desired value are key for ensuring the mitiga-
tion of harmful emissions species. Since the introduction of TWC (Oh
& Cavendish, 1982), various mathematical models have been proposed
ranging from high fidelity physics-based models (Depcik & Assanis,
2005; Montenegro & Onorati, 2009; Shamim, Shen, Sengupta, Son,
& Adamczyk, 2002) to empirical models (Balenovic, 2002; Brandt,
Wang, & Grizzle, 2000; Jones, Roberts, Bernard, & Jackson, 2000).
High fidelity models accurately describe the chemical and thermal

reactions involved in the converter. These models are unsuitable for

2

Fig. 1. History of tailpipe emission standards for the European Union and the United
States (Nesbit et al., 2016). Emission targets have become more stringent over the span
of the past quarter-century.

Fig. 2. Schematic of a two-brick three way catalytic device.

Fig. 3. Layout of a typical direct injection gasoline engine aftertreatment system. The
overall architecture is composed of a three way catalytic converter, a particulate filter,
and a muffler to decrease the amount of noise emitted by the exhaust of an internal
combustion engine (Dieselnet website, 2020).

on-board control applications due to their high computational bur-
den. Empirical models, on the other hand, sacrifice accuracy to gain
computational efficiency. The development of emission control strate-
gies has been widely based on empirical models (Balenovic, Backx, &
de Bie, 2002; Schallock, Muske, & Jones, 2009; Tomforde, Drewelow,
Duenow, Lampe, & Schultalbers, 2013), owing to their simplicity and
low computational requirements. However, empirical models are heav-
ily dependent on ad hoc calibration effort and large experimental data
set. Moreover, when resorting to empirical models, TWC operation is
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poorly predicted outside the range of operating conditions used in the
calibration phase.

Reduced order modeling tools from physics-based models are de-
signed to retain as much physics as possible while providing a computa-
tional platform compatible with the on-board requirements. In Kiwitz,
Onder, and Guzzella (2012), Sabatini, Gelmini, Hoffman, and Onori
(2017), model order reduction is performed by means of finite differ-
ence method (FDM) where the number of discretization nodes – each
corresponding to an ordinary differential equation (ODE) – is com-
puted by trading off computational burden and accuracy. In Godi and
Onori (2017), a reduced order model for TWC temperature dynamics
was developed and experimentally validated using Proper Orthogonal
Decomposition (POD), and in Dettu and Onori (2021) a Galerkin-
based reduction method was applied to the thermal and oxygen storage
dynamics for both fresh and aged catalysts. In Santillo, Magner, Uhrich,
and Jankovic (2015), by means of several simplifications applied to a
complex partial-differential-equation (PDE)-based TWC model, a simple
control-oriented TWC model that retained the physics of interest and
was capable of real-time operation was proposed.

Reduced order models from PDE physics-based approaches are ca-
pable of capturing both the highly transient TWC dynamic behaviors
of interest and their spatial characteristics. For accurate prediction
and estimation of oxygen storage level and oxygen storage capacity –
which are crucial for on-board diagnostics (OBD) purposes – empirical
models fail to provide such a level of detail. Examples of model-
based estimators using empirical models are as follows. In Ngo, Koenig,
Sename, and Béchart (2013), 𝜙 is estimated online with a recursive
least squares whereas in Muske and Jones (2004) the estimates are
obtained combining the non-linear least squares with a moving-horizon
estimation approach. In a recent work, Kumar, Makki, and Filev (2014),
a supervised learning technique based on Support Vector Machine is
used with a simple TWC dynamic model to design a diagnostic mon-
itoring algorithm capable of distinguishing between differently aged
catalysts. Meanwhile, the use of TWC physics-based models for oxygen
storage estimation is found in the following contributions. In Aucken-
thaler, Onder, and Geering (2004), an Extended Kalman Filter (EKF)
is designed to estimate 𝜙 and OSC using a switch-type lambda sensor
ownstream of the converter. However, in this work, the estimated
xygen storage is only related to the last discretization cell and not
o the entire catalyst, owing to observability issues on the first cells.
n EKF based on an adaptive backstepping control approach is used

n Utz, Fleck, Frauhammer, Seiler-Thull, and Kugi (2014) to monitor
utilizing measured TWC substrate and the inlet gas temperatures in

ddition to lambda switch-type sensors. However, the use of a TWC
ubstrate temperature sensor is not a commercially viable technology.
inally, in Gelmini, Sabatini, Hoffman, and Onori (2017) a dual EKF
as proposed based off post catalyst measurements from wide range

ambda sensors.

bservability for nonlinear systems

In this paper, the question of whether the oxygen storage capacity,
𝑆𝐶, is observable, i.e. reconstructable, from available measurements

s investigated. 𝑂𝑆𝐶 decreases as the TWC ages. From a modeling
tandpoint, this can be seen as a model parameter that lumps the
WC degradation effects whose value should be tracked for diagnostics
urposes. The ability to estimate 𝑂𝑆𝐶 in real-time allows for a robust
BD capable of detecting a non-functioning TWC. In this paper, we

nvestigate what type of measurements, i.e. sensor technology, would
llow for on-line monitoring of TWC degradation.

In today’s vehicles, the currently utilized on-board measurements
ithin the exhaust aftertretament system are oxygen concentration and
xhaust gas temperature sensors. For nonlinear TWC control dynamics,
ike the ones obtained in Sabatini et al. (2017) and Kiwitz et al. (2012),
bservability is an input-dependent property of the system (Anguelova,

007; Hermann & Krener, 1977). If the initial system states can be

3

Table 1
Catalyst aging specifications.
Catalyst Aging process Distance

[1000 miles]

Green – 0
Mid-life Engine dyno 50
OBD OBD aged > 150

uniquely determined from any measurable bounded input, then the
system is said to hold the property of uniform observability. Since
the estimation of the fast (oxygen storage level) and slow (oxygen
storage capacity) TWC dynamics is required during vehicle operation,
the observability analysis is extended to a given set of inputs and
measurements.

In this paper, the focus is on investigating whether or not the
on-board sensor readings are informative enough for closed-loop es-
timation and control of fast and slow dynamics. Generally, when the
system dynamics are not properly excited or the measurement accuracy
is limited, model parameters may be identifiable only under certain
input magnitudes or frequencies, or not identifiable at all. Identifia-
bility analysis deals with the problem of parameter uniqueness when
fitting a model to a set of observations. Identifiability can be exploited
thanks to rigorous mathematical methods. For linear, time-invariant,
differential equations, several verifiable, sufficient and necessary con-
ditions exist (Bellman & Åström, 1970; Norton, 2009). In this paper, a
Fisher information based approach is employed (Schmidt, Bitzer, Imre,
& Guzzella, 2010; Sharma & Fathy, 2014; Vajda, Rabitz, Walter, &
Lecourtier, 1989).

The Fisher information quantity provides a rigorous metric for
assessing local parameter identifiability properties based on the likeli-
hood function, which measures the evidence-based statistics to realize
a statistical process, given in the form of measured outputs. By virtue of
the Cramér–Rao’s theorem, the inverse of the Fisher information quan-
tity provides the best achievable parameter estimation covariance error,
the statistical boundaries of which delimit the estimated parameter.

In this work, 𝜙 and 𝑂𝑆𝐶 are estimated for differently aged catalysts
with a dual EKF (dEKF), and 𝑂𝑆𝐶 identifiability property is inves-
tigated using different sensor layouts. This research aims to provide
guidance for future TWC sensor selection for robust on-board diagnostic
designs.

The remainder of the paper is organized as follows. Details on the
catalysts used during tests and sensor layouts are provided in Section 2.
Section 3 introduces the TWC temperature and oxygen storage models
and the lambda sensor technologies. Section 4 introduces Fisher infor-
mation analysis used to study oxygen storage capacity identifiability
properties. Section 5 describes the dEKF design and simulation results
are presented in Section 6. In Section 7 results from rapid control
prototyping are shown and conclusions are discussed in Section 8.

2. Problem statement and experimental set-up

The two main oxygen sensor technologies employed in the af-
tertreatment system are wideband and switch type lambda sensors.
The goal of this work is to analyze the sensor characteristics from an
observability standpoint, allowing the design of an age-dependent TWC
observer and consequently, developing insights on the sensor selection
aimed to monitor TWC age over its life. The capability of the two
sensor technologies to retain the information needed for quantitative
age estimation is quantitatively assessed.

This study utilizes TWCs of three disparate ages, namely, a Green
catalyst, a Mid-Life catalyst and an OBD aged catalyst, as summarized
in Table 1, Sabatini et al. (2016). The TWCs used in this work consist
of a single 68 mm long monolith of 0.597 l volume.

The converters are instrumented with the following sensors:
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Fig. 4. A schematic of the TWC and the sensor layout used in this work. In red are
the thermocouples for the exhaust inlet temperature, 𝑇𝑒𝑥ℎ, and the mid-location catalyst
emperature, 𝑇𝑐𝑎𝑡. Wideband lambda sensors 𝜆𝑝𝑟𝑒wb and 𝜆𝑚𝑖𝑑wb are denoted in blue, while
he switch-type sensor 𝜆𝑚𝑖𝑑sw is in green. (For interpretation of the references to color
n this figure legend, the reader is referred to the web version of this article.)

• two thermocouples, one mounted upstream of the catalyst to
measure the exhaust temperature, 𝑇𝑒𝑥ℎ, and a second installed 1.5
inches from the front face of the brick and penetrating 2 inches
into the flow centerline to measure the substrate temperatures,
𝑇𝑐𝑎𝑡;

• two wideband lambda sensors (Bosch LSU 4.9 with ECM F/A
1000 model controllers), located one upstream (𝜆𝑝𝑟𝑒wb ) and one
downstream (𝜆𝑚𝑖𝑑wb ) of the catalyst;

• one switch-type lambda sensor,1 𝜆𝑚𝑖𝑑sw , mounted downstream of
the catalyst.

Additionally, the exhaust mass flow rate, �̇�𝑒𝑥ℎ, used for the estimator
design is obtained from the engine control unit (ECU) reading. The
sensor layout schematic is shown in Fig. 4.

3. Three way catalytic converter model

A TWC is a flow-through converter that allows the exhaust gas
to flow with negligible resistance and where oxidization of carbon
monoxide, CO, and hydrocarbons, HC into carbon dioxide, CO2, and
water, and reduction of nitrogen oxides, NO𝑥, into nitrogen, take
place simultaneously. Ceria and precious metals (like palladium and
rhodium) are added to the surface of the cordierite substrate channels
to enhance the reaction kinetics.

The conversion efficiency is dependent upon the quantity of oxy-
gen stored in the catalyst during transient deviations of the air/fuel
ratio from the stoichiometry. Oxygen storage dynamics are driven
by two main reactions related to absorption/desorption of the ceria
oxide, Ce2O3, (Bekiaris-Liberis, Jankovic, & Krstic, 2012; Sabatini et al.,
2017), namely:

O2 + 2 ⋅ Ce2O3 ⟷ 2 ⋅ Ce2O4 (2a)

CO + Ce2O4 ⟷ CO2 + Ce2O3, (2b)

where Ce2O3 represents a non-oxidized ceria location, and Ce2O4 is an
oxidized ceria site. The first reaction accounts for the oxygen adsorption
on the catalyst surface whereas the second considers CO oxidation
with the oxygen previously adsorbed. The rates of the two reactions
described in (2a) and (2b) are:

𝑅1 = 𝑘𝑓1 ⋅ [Ce2O3]2 ⋅ [O2] − 𝑘𝑏1 ⋅ [Ce2O4]2 ⋅ 𝑐0 (3a)

𝑅2 = 𝑘𝑓2 ⋅ [Ce2O4] ⋅ [CO] − 𝑘𝑏2 ⋅ [Ce2O3] ⋅ [CO2], (3b)

where [] is the concentration of the chemical species  , in 𝑚𝑜𝑙
𝑚3 , with

= O2, CO, CO2, Ce2O3, Ce2O4. The total exhaust gas density is
epresented by 𝑐0 =

𝑃
𝑅⋅𝑇𝑔

.

1 MOPAR part 05149180AA with range 0.998 − 1.002.
4

Inlet gas composition is computed from the exhaust gas density as
follows (Kiwitz et al., 2012):

• for stoichiometric conditions:

–
[

O2
]∗ = 0.01 ⋅ 𝑐0;

– [CO]∗ = 0.02 ⋅ 𝑐0;
–

[

CO2
]

= 12% ⋅ 𝑐0.

• for conditions outside of stoichiometry:

– [CO] = max

(

[CO]∗ , [O2]∗+(1−𝜆)⋅[CO2]∗
𝜆− 1

2

)

;

–
[

O2
]

= max

(

[

O2
]∗ ,

(

𝜆 − 1
2

)

⋅ [CO]∗ + (𝜆 − 1) ⋅
[

CO2
]∗
)

.

The forward reaction rate 𝑘𝑓𝑗 (with 𝑗 = 1, 2) is a formulation of
he temperature dependent Arrhenius equation, expressed as 𝑘𝑓𝑗 =

𝑗 ⋅ 𝑒−
𝐸𝑗

𝑅⋅𝑇𝑐𝑎𝑡 . The backward reaction constant 𝑘𝑏𝑗 (with 𝑗 = 1, 2) is
valuated as the ratio between the forward reaction rate constant and
he chemical equilibrium constant 𝐾𝑗 , thus 𝑘𝑏𝑗 =

𝑘𝑓𝑗
𝐾𝑗

. Further details
about the two reaction rates can be found in Sabatini et al. (2017).

From Shamim et al. (2002) upon simplifications made in Sabatini
et al. (2017), the species concentration dynamics can be described by
the following three differential equations:

�̇�𝑒𝑥ℎ
𝑐0 ⋅𝑀𝑒𝑥ℎ ⋅ 𝐴𝑐𝑠

⋅
𝜕[O2]
𝜕𝑧

= −𝑅1

�̇�𝑒𝑥ℎ
𝑐0 ⋅𝑀𝑒𝑥ℎ ⋅ 𝐴𝑐𝑠

⋅
𝜕[CO]
𝜕𝑧

= −𝑅2

�̇�𝑒𝑥ℎ
𝑐0 ⋅𝑀𝑒𝑥ℎ ⋅ 𝐴𝑐𝑠

⋅
𝜕[CO2]
𝜕𝑧

= 𝑅2,

(4)

where the space velocity is approximated to be a function of the mass
flow rate �̇�𝑒𝑥ℎ.

The oxygen storage capacity, 𝑂𝑆𝐶, indicates the overall amount of
oxygen that can be stored in the converter, and it is defined as the
amount of oxidized and empty ceria sites in the converter:

𝑂𝑆𝐶 = [Ce2O3] + [Ce2O4]. (5)

The oxygen storage dynamics are described as the rate of change of
𝜙 with respect to time, Kiwitz et al. (2012):
𝜕𝜙
𝜕𝑡

= 1
𝑂𝑆𝐶

⋅
(

2 ⋅ 𝑅1 − 𝑅2
)

. (6)

The overall TWC oxygen storage model was identified and validated
over standard driving cycles in previous works by the authors (Sabatini
et al., 2017, 2015, 2016).

A control oriented model of the TWC – in the form of Ordinary
Differential Equations (ODEs) – is obtained from the PDE model via
finite difference method (FDM) that divides the converter into three
cells (Sabatini et al., 2017)
𝑑𝜙1
𝑑𝑡

= 1
𝑂𝑆𝐶

⋅
(

2 ⋅ 𝑅1
1 − 𝑅1

2
)

𝑑𝜙2
𝑑𝑡

= 1
𝑂𝑆𝐶

⋅
(

2 ⋅ 𝑅2
1 − 𝑅2

2
)

𝑑𝜙3
𝑑𝑡

= 1
𝑂𝑆𝐶

⋅
(

2 ⋅ 𝑅3
1 − 𝑅3

2
)

,

(7)

in which the reaction rates’ superscript denote the discretization cell.
The input vector is composed of the measured air/fuel ratio up-

stream of the catalyst 𝜆𝑝𝑟𝑒wb , the exhaust mass flow rate, �̇�𝑒𝑥ℎ, and the
catalyst internal temperature, 𝑇𝑐𝑎𝑡:

𝑢 =
⎡

⎢

⎢

⎣

�̇�𝑒𝑥ℎ
𝑇𝑐𝑎𝑡
𝜆𝑝𝑟𝑒wb

⎤

⎥

⎥

⎦

, (8)

where 𝑇𝑐𝑎𝑡 is predicted by the physics-based thermal model developed
in Sabatini et al. (2015).
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The output vector is defined in the next section upon the introduc-
tion of the two sensor technologies used for oxygen level sensing.

3.1. Lambda sensor technologies

During engine operation, the air/fuel ratio is controlled close to
stoichiometry through the use of exhaust system feedback sensors (Hey-
wood, 1988). The oxygen absorption/desorption from the ceria sites
allows the TWC to compensate for small variations of the air-fuel ratio
away from stoichiometry. Post-catalyst sensors provide quantitative
information about the oxygen level to the engine to prevent either the
depletion or saturation of the device.

Two different lambda sensor technologies are used today: wide band
and switch-type. The wide band O2 sensors (also known as Univer-
sal Exhaust Gas Oxygen (or UEGO) Sensors) measure the amount of
oxygen in the exhaust stream, whereas the switch-type sensors – or
narrow-band or Heated Exhaust Gas Oxygen (HEGO) sensors – only
discriminate between rich and lean engine operation. As the system
experiences an abrupt change in the oxygen content, the sensor reading
is characterized by a switching behavior in the stoichiometry region.

The wide band sensor, 𝜆𝑤𝑖𝑑𝑒, is a function of the gas concentrations
and it is modeled as follows (Kiwitz et al., 2012):

𝜆𝑤𝑖𝑑𝑒 =
2 ⋅

([

O2
]

+
[

CO2
])

+ [CO]

2 ⋅
(

[CO] +
[

CO2
]) . (9)

On the other hand, the switch-type sensor 𝜆𝑠𝑤𝑖𝑡𝑐ℎ is obtained from
oltage measurements using the sensor look-up table mapping the
easured voltage to air/fuel ratio, 𝑈𝜆sw = 𝑔(𝜆𝑠𝑤𝑖𝑡𝑐ℎ) as shown in

ig. 5(b).
Complex models were proposed in Auckenthaler (2005) to map, in a

onlinear fashion, the actual air-fuel ratio with the measured voltage.
or control and estimation purposes, a commonly accepted model of
he sensor is given by:

𝑈𝜆sw =𝐸𝐴,𝜆𝑒
−

𝐸𝐸,𝜆
𝑅𝑇𝑒𝑥ℎ log10

(

1 + 𝐵𝜆[CO]
)

− 𝐹𝜆 log10
(

1 +𝐷𝜆[O2]
)

+ 𝐴𝜆,
(10)

where 𝑈𝜆sw is the measured sensor voltage (shown in Fig. 5(a)), 𝐴𝜆 is
he sensor bias, 𝑇𝑒𝑥ℎ is the exhaust gas temperature, [CO], [O2] are the
ole fractions of CO, O2, and 𝐵𝜆, 𝐷𝜆, 𝐸𝐴,𝜆, 𝐸𝐸,𝜆, 𝐹𝜆 are the sensor
odel parameters.

Fig. 6 shows a typical air/fuel ratio signal recorded downstream
f the catalyst as measured from wide band (a) and switch-type (b)
ambda sensors. As shown, the signal from the switch-type is limited to
small range of values between 𝐥𝐨𝐰𝐭𝐡𝐫𝐞𝐬𝐡𝐨𝐥𝐝 and 𝐡𝐢𝐠𝐡𝐭𝐡𝐫𝐞𝐬𝐡𝐨𝐥𝐝 whose nu-
erical values vary according to the specific sensor technology/brand
sed. Typical values for the 𝐥𝐨𝐰𝐭𝐡𝐫𝐞𝐬𝐡𝐨𝐥𝐝 and 𝐡𝐢𝐠𝐡𝐭𝐡𝐫𝐞𝐬𝐡𝐨𝐥𝐝 are shown in
able 2. On the other hand, the wide band sensor captures significant
ariations of the signal around stoichiometry.

It is worth noting that ultimately both 𝜆𝑤𝑖𝑑𝑒 and 𝜆𝑠𝑤𝑖𝑡𝑐ℎ are a
unction of gas concentrations, which are in turn functions of 𝑂𝑆𝐶
hen the sensors are located after the TWC. In fact, both sensor models
epend on the concentrations of gases that, through the reaction rate
qs. (3) and (4) depend on the absorption and desorption of ceria
xides, which ultimately constitute the oxygen storage capacity relation
5). Such dependencies make it possible to use lambda sensors for the
stimation of the aging parameter.

Although switch-type sensors are used in the post-catalyst location
n commercial aftertreatment layouts, a growing interest in the use of
ide band post-catalyst sensors has been seen thanks to their linear
utput relationship over a broader range of O2 concentrations and
ower calibration drift as a function of sensor age. These characteristics
ave the potential to facilitate robust control design, either via tra-
itional proportional–integral–derivative (PID) controllers or through
ore sophisticated model-predictive control strategies (DE Solutions &
ecogen, 2011).
5

Fig. 5. (a) Wide band sensor map (Bosch, 2021) and (b) Switch-type sensor
map (Mopar Part 05149180 AA datasheet, 2020) used in this work.

4. Fisher Information quantity analysis

The aim of this session is to quantitatively assess the differences
between wide band and switch-type lambda sensors as it pertains to
the estimation of 𝑂𝑆𝐶. As they carry different information about the
oxygen content in the exhaust gas, the overall observability of the aging
parameter 𝑂𝑆𝐶 = 𝜃 from their respective outputs, 𝜆𝑤𝑖𝑑𝑒 and 𝜆𝑠𝑤𝑖𝑡𝑐ℎ𝑘 , is
affected. In this study, the performance of wide band versus switch-type
sensors is evaluated. Additionally, how switch-type sensors, in terms
of their specific threshold values, are investigated for the impact of
those thresholds on the state estimates. In particular, four switch-type
sensors, described in Table 2, are evaluated in this study via Fisher
information to construct hypothesis tests and confidence intervals using
maximum likelihood estimators.

In parameter estimation theory, the Fisher information quantity
is used to statistically compute the amount of information that an
observable random variable carries about an unknown parameter. Over
the past decade, the Fisher information quantity has been extensively
used in the domain of electrochemical battery model identification as
a method to select a small number of relevant experiments (or input)
which are deemed sufficient to fully parametrize a model (Schmidt
et al., 2010) and to estimate the accuracy of identifiable parame-
ters (Fathy & Sharma, 2014).

In the problem under study, the output vector is defined as 𝑦 = R5,1;
it is also assumed measurements from 𝜆𝑚𝑖𝑑𝑠𝑤 and 𝜆𝑚𝑖𝑑𝑤𝑏

to be stochastic,
and modeled as
𝑦𝑖 = 𝜆𝑚𝑖𝑑sw = 𝜆𝑠𝑤𝑖𝑡𝑐ℎ𝑖 +𝑤sw, 𝑖 = 1,… , 4

𝑦5 = 𝜆𝑚𝑖𝑑wb = 𝜆𝑤𝑖𝑑𝑒 +𝑤wb.
(11)

The deterministic component of the signals (i.e., 𝜆𝑤𝑖𝑑𝑒 and 𝜆𝑠𝑤𝑖𝑡𝑐ℎ)

is from the model and that corresponds to the output expected value,
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Fig. 6. Post-catalyst (a) wideband lambda sensor 𝜆𝑚𝑖𝑑wb , and (b) switch-type lambda sensor reading, 𝜆𝑚𝑖𝑑sw (within the 0.998–1.002 range — as zoomed in the time interval 30−100 s)
ecorded simultaneously during the FTP driving cycle.
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Table 2
Resolution of switch-type sensors depend on the low and high threshold val-
ues around stochiometry. In this work four different switch-type variants are
considered.

𝐿𝑜𝑤𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝐻𝑖𝑔ℎ𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

Switch1 0.998 1.002
Switch2 0.99 1.01
Switch3 0.95 1.05
Switch4 0.9 1.1

whereas the superimposed noise (i.e., 𝑤wb and 𝑤wb) is modeled through
zero-mean Gaussian random variable. More specifically, 𝜆𝑠𝑤𝑖𝑡𝑐ℎ𝑘 , with
= 1,… , 4 are switch-type lambda signals characterized by different

𝐨𝐰𝐭𝐡𝐫𝐞𝐬𝐡𝐨𝐥𝐝 and 𝐡𝐢𝐠𝐡𝐭𝐡𝐫𝐞𝐬𝐡𝐨𝐥𝐝 values as shown in Table 2.
Therefore, the likelihood-function is defined as the probability den-

ity function of a Gaussian distribution that is a function of the mea-
ured output 𝑦𝑖 and the parameter 𝜃:

(𝑦𝑖, 𝜃) =
1

√

2 ⋅ 𝜋𝜎2𝑖

𝑒
− 𝛿𝑖 (𝜃)

2𝜎2𝑖 , (12)

where 𝛿𝑖(𝜃) = 𝑦𝑖 − 𝜇i(𝜃) is the difference between the lambda sensor
measurements 𝑦𝑖 as in (11), whereas 𝜇i(𝜃) = E

[

𝑦𝑖
]

is the expected value
of sensor 𝑦𝑖 and is computed through the model knowing the value
of 𝜃, the unknown parameter to be estimated (i.e., 𝑂𝑆𝐶). The Fisher
nformation quantity is defined as the expected value of the derivative
f the squared log-likelihood function with respect to the parameter 𝜃
iven its optimum value

(𝜃𝑜) = E
[

𝜕 log𝐿(𝜃)2

𝜕𝜃
|

|

|

|𝜃=𝜃𝑜

]

. (13)

Expressing (13) in explicit form could be difficult as the model is
nonlinear. However, (13) can be easily computed through numerical
differentiation, given the optimal value of 𝑂𝑆𝐶 for each catalyst.

The Fisher quantity is a powerful statistical tool because it pro-
ides the lower variance bound of the estimated parameter 𝜃 in the

maximum-likelihood estimation (MLE) sense through the Cramér–Rao
inequality

𝑉 𝑎𝑟(𝜃) ≥ 𝐹 (𝜃𝑜)−1 . (14)

In this study, the Fisher information quantity is used to assess how
accurate the unknown parameter estimation is from the measurement
of a stochastic output variable. Further details about the Fisher in-
formation quantity and, more in general, MLE can be found in Ljung
(1998).

Fisher information quantity is evaluated for both the wide band
lambda sensor and the four switch-type lambda sensors over different
6

driving cycles (Federal Test Procedure (FTP), US06 and Japanese cycle
JAP 15 (Dynamometer Drive Schedules, 2020), for all the available
catalysts. Results of this investigation are summarized in Table 3, where
the minimum variance 𝑉 𝑎𝑟(𝑂𝑆𝐶𝑀𝐿) of the MLE problem is obtained
according to (14). Moreover, to quantify the loss of information in each
of the four switch-type sensors relative to the wideband, the ratio of
the Fisher information quantity evaluated with the wide band sensor
over the different switch-type sensors is evaluated. As shown, for all the
catalysts and for all the driving cycles, the wideband signal is orders of
magnitude more informative than any switching sensor. This difference
decreases as the admissible range of the switch-type sensors increases.
This is also consistent with the results presented in Auckenthaler et al.
(2004), Utz et al. (2014).

Why is this important? Employing less informative sensors in an
stimation scheme leads to larger estimation uncertainties, which may
ot be deemed acceptable for diagnostic purposes. This is the case when
etection catalyst age. In fact, a significant drop in the information
ontained in the sensor output introduces identifiability issues. The
ack of information in the sensor signal can render it difficult (or even
mpossible) to obtain a reliable estimation of the unknown parameters
rom the available measurements. In particular, using a switch-type
ersus wide band lambda sensor leads to an output identifiability
ssue given that the available measurements used in the identification
rocess are not informative enough to discern or unequivocally identify
ifferent parameter values in the system, i.e catalyst age.

The results of the Fisher analysis prove that the aging parameter,
𝑆𝐶, would be estimated with limited uncertainty when the estimation
rocess is conducted using a wide band lambda sensor at the TWC brick
utlet. On the other hand, when using a switch-type lambda sensor
lack of identifiability from the output is assessed, leading to higher

ncertainties in the parameter identification process.

. Dual extended kalman filter

In this section, a dEKF is presented with the goal of estimating
oth 𝜙 and 𝑂𝑆𝐶 in real-time for robust OBD emission control design
hroughout the catalyst life (Fig. 7). Preliminary results of such a design
ere presented in Gelmini et al. (2017).

For the sake of developing a combined oxygen level and oxygen
torage capacity estimator, a wide band lambda sensor is used and
odeled as

𝑚𝑖𝑑wb = 𝜆𝑤𝑖𝑑𝑒 +𝑤wb, (15)

here 𝑤wb is the sensor noise assumed to be Gaussian with zero
ean and variance 𝑅 = 𝜎2wb. Its value has been estimated computing

he variance of the mismatch between the measured 𝜆𝑚𝑖𝑑wb and its
predicted counterpart (Fig. 8(b)).



S. Gelmini, M.A. Hoffmann and S. Onori Control Engineering Practice 112 (2021) 104805
Table 3
Different 𝜆𝑚𝑖𝑑sw sensor ranges tested for the Green, Mid-Life, and OBD catalysts.

Catalyst Driving cycle 𝜆𝑚𝑖𝑑 Fisher quantity Minimum Fisher quantity ratio
𝐹 (𝑂𝑆𝐶𝑜) 𝑉 𝑎𝑟

(

𝑂𝑆𝐶
)

𝑠𝑤𝑖𝑡𝑐ℎ
𝑤𝑖𝑑𝑒𝑏𝑎𝑛𝑑

Green

FTP

Wideband 4.541663 ⋅ 10−11 2.201836 ⋅ 1010

Switch1 2.870692 ⋅ 10−20 3.483480 ⋅ 1019 1.582080 ⋅ 109

Switch2 5.553848 ⋅ 10−18 1.800553 ⋅ 1017 8.177507 ⋅ 106

Switch3 1.427847 ⋅ 10−15 7.003551 ⋅ 1014 3.180777 ⋅ 104

Switch4 1.863747 ⋅ 10−14 5.365535 ⋅ 1013 2.436845 ⋅ 103

US 06

Wide band 3.601178 ⋅ 10−12 2.776869 ⋅ 1011

Switch1 2.785205 ⋅ 10−20 3.590400 ⋅ 1019 1.292967 ⋅ 108

Switch2 4.741963 ⋅ 10−18 2.108831 ⋅ 1017 7.594278 ⋅ 105

Switch3 1.546872 ⋅ 10−15 6.464660 ⋅ 1014 2.328039 ⋅ 103

Switch4 2.493222 ⋅ 10−14 4.010874 ⋅ 1013 1.444387 ⋅ 102

JAP 15

Wideband 5.669884 ⋅ 10−12 1.763705 ⋅ 1011

Switch1 2.814805 ⋅ 10−20 3.552644 ⋅ 1019 2.014308 ⋅ 108

Switch2 3.996371 ⋅ 10−18 2.502270 ⋅ 1017 1.418758 ⋅ 106

Switch3 1.195225 ⋅ 10−15 8.366628 ⋅ 1014 4.743781 ⋅ 103

Switch4 1.397710 ⋅ 10−14 7.154562 ⋅ 1013 4.056554 ⋅ 102

Mid-life

FTP

Wide band 1.889842 ⋅ 10−13 5.291448 ⋅ 1012

Switch1 9.176624 ⋅ 10−20 1.089725 ⋅ 1019 2.059409 ⋅ 106

Switch2 1.144978 ⋅ 10−17 8.733789 ⋅ 1016 1.650548 ⋅ 104

Switch3 3.059139 ⋅ 10−15 3.268894 ⋅ 1014 61.77692
Switch4 2.636902 ⋅ 10−14 3.792330 ⋅ 1013 7.166903

US 06

Wide band 6.462354 ⋅ 10−13 1.547424 ⋅ 1012

Switch1 7.685398 ⋅ 10−20 1.301169 ⋅ 1019 8.408614 ⋅ 106

Switch2 8.995193 ⋅ 10−18 1.111705 ⋅ 1017 7.184231 ⋅ 104

Switch3 4.175131 ⋅ 10−15 2.395134 ⋅ 1014 1.547821 ⋅ 102

Switch4 5.600013 ⋅ 10−14 2.472844 ⋅ 1012 11.53989

JAP 15

Wide band 4.043927 ⋅ 10−13 2.472844 ⋅ 1012

Switch1 8.151243 ⋅ 10−20 1.226807 ⋅ 1019 4.961117 ⋅ 106

Switch2 7.091344 ⋅ 10−18 1.410170 ⋅ 1017 5.702624 ⋅ 104

Switch3 2.587070 ⋅ 10−15 3.865377 ⋅ 1014 1.563130 ⋅ 102

Switch4 2.891357 ⋅ 10−14 3.458584 ⋅ 1013 13.98626

OBD

FTP

Wide band 1.406348 ⋅ 10−13 7.110614 ⋅ 1012

Switch1 3.450058 ⋅ 10−19 2.898502 ⋅ 1018 4.076303 ⋅ 105

Switch2 3.395396 ⋅ 10−17 2.945164 ⋅ 1016 4.141927 ⋅ 103

Switch3 5.424528 ⋅ 10−15 1.843478 ⋅ 1014 25.92573
Switch4 3.220330 ⋅ 10−14 3.105272 ⋅ 1013 4.367094

US 06

Wide band 4.052825 ⋅ 10−13 2.467415 ⋅ 1012

Switch1 1.531317 ⋅ 10−19 6.530327 ⋅ 1018 2.646627 ⋅ 106

Switch2 2.546612 ⋅ 10−17 3.926785 ⋅ 1016 1.591457 ⋅ 104

Switch3 6.763305 ⋅ 10−15 1.478567 ⋅ 1014 59.92373
Switch4 6.225784 ⋅ 10−14 1.606223 ⋅ 1013 6.509742

JAP 15

Wide band 1.279241 ⋅ 10−13 7.817138 ⋅ 1012

Switch1 1.457711 ⋅ 10−19 6.860068 ⋅ 1018 8.775678 ⋅ 105

Switch2 3.553523 ⋅ 10−17 2.814109 ⋅ 1016 3.599922 ⋅ 103

Switch3 4.511971 ⋅ 10−15 2.216326 ⋅ 1014 28.35215
Switch4 2.367598 ⋅ 10−14 4.223691 ⋅ 1013 5.403117
s
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Fig. 7. Control scheme of the dEKF designed for TWC (Auto Accessories Garage, 2020).
The TWC thermal model used to estimate the catalyst temperature is implemented as
discussed in Sabatini et al. (2015).

The proposed dEKF is built upon a TWC model with four states.
The first three states, as shown in (7), are 𝑥 = 𝜙 , 𝑥 = 𝜙 and
1 1 2 2 f

7

𝑥3 = 𝜙3 and represent the level of oxygen storage in three different
patial locations of the TWC, whereas the fourth state is the oxygen
torage capacity, 𝑥4 = 𝑂𝑆𝐶. The overall TWC dynamics are written
n a nonlinear form and discretized in the time domain using forward
uler method (Sabatini et al., 2017).

The nonlinear equations describing the 𝜙 dynamics are obtained
rom (6), whereas the rate of change of the aging state 𝑂𝑆𝐶 is assumed
o be nominally zero and subject to noise (i.e., 𝑂𝑆𝐶 is assumed to be
lowly-changing variable). Model equations in the discrete time domain
re therefore expressed as:

𝑥𝑖(𝑘 + 1) = 𝑥𝑖(𝑘) + 𝑇𝑠 ⋅ 𝑓𝑖 (𝑥(𝑡), 𝑢(𝑡)) + 𝑣𝑖,

= 𝑥𝑖(𝑘)+𝑇 𝑠 ⋅
(

1
𝑥4(𝑘)

⋅
(

2 ⋅ 𝑅𝑖
1(𝑘) − 𝑅𝑖

2(𝑘)
)

)

+ 𝑣𝑖

𝑥4(𝑘 + 1) = 𝑥4(𝑘) + 𝑣4

(16)

in which 𝑖 = 1,… , 3, and 𝑇𝑠 is the sampling time, which is set to 0.01 s
n this work. Instead, the predicted air/fuel ratio 𝜆𝑚𝑖𝑑wb is evaluated
rom the gas species concentrations from (9), and its discretized form
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F
b

becomes:
𝑦(𝑘) = 𝜆𝑚𝑖𝑑wb (𝑘) = 𝜆𝑤𝑖𝑑𝑒(𝑘) +𝑤wb

=
2 ⋅

([

O2
]

(𝑘) +
[

CO2
]

(𝑘)
)

+ [CO] (𝑘)

2 ⋅
(

[CO] (𝑘) +
[

CO2
]

(𝑘)
) +𝑤wb.

(17)

The innovation term used in the calculation of the state estimation
in the EKF formulation is:

𝐾(𝑘) ⋅
(

𝜆𝑚𝑖𝑑wb (𝑘) − 𝜆𝑤𝑖𝑑𝑒(𝑘|𝑘 − 1)
)

,

where 𝐾(𝑘) is the Kalman gain at step 𝑘 [33], 𝜆𝑚𝑖𝑑wb (𝑘) is the measured
air-fuel ratio, sampled at 100 Hz, and 𝜆𝑤𝑖𝑑𝑒(𝑘|𝑘−1) is the predicted air-
fuel ratio at time 𝑘 computed using the states from (16) at the previous
time step 𝑘 − 1.

The state-update uncertainty vector 𝑣 ∈ R𝑛𝑥 is a stochastic vector
modeled as a zero mean white Gaussian noise with semi-definitive
positive covariance matrix 𝑄 given as:

𝑄 = 𝑑𝑖𝑎𝑔
(

𝑄1 … 𝑄4
)

=

⎛

⎜

⎜

⎜

⎜

⎝

𝑄1 0 … 0
0 𝑄2 ⋮
⋮ 𝑄3 0
0 … 0 𝑄4

⎞

⎟

⎟

⎟

⎟

⎠

,
(18)

It is common practice to treat the elements of the covariance matrix
as calibration parameters. In this case, to reduce the calibration effort,
the covariance elements 𝑄1, 𝑄2, 𝑄3 are calculated from the mismatch
generated by the high fidelity PDE TWC model (implemented with 15
cells) and the three cell model (7). In particular, 𝑥1, 𝑥2 and 𝑥3 were
compared from (16) with the values of oxygen storage components for
cells 5, 10 and 15 in the PDE model (Sabatini et al., 2017). Fig. 8(a)
shows that the process noise distributions related to the first three states
of (16) is zero mean and normally distributed. The variances of such
distributions are used for 𝑄1, 𝑄2, 𝑄3. The covariance term 𝑄4, related
to 𝑂𝑆𝐶, is used as a degree of freedom for the observer calibration.

The dEKF is an extension of the Kalman filter for nonlinear sys-
tems (Grewal, 2020; Ljung, 1998; Magni & Scattolini, 2014) where the
state correction and update is performed by linearizing of the nonlinear
TWC dynamics at each time step. The linearization is performed numer-
ically using the small perturbation method. For details on the observed
equations, the reader is redirected to Gelmini et al. (2017).

6. Results

The objective of this work is to develop a dEKF for estimating 𝜙 and
𝑂𝑆𝐶 that can be used to design a real time TWC control strategy for
fuel saving and TWC health monitoring. The performance evaluation of
the observer is conducted on the FTP drive cycle.

6.1. Simulation results

The performance of the dEKF is evaluated by comparing the esti-
mated output �̂� with the measured 𝜆𝑚𝑖𝑑𝑤𝑑

. Estimated 𝜙 and 𝑂𝑆𝐶 are
shown for all the three catalysts. The estimate of 𝜙 is taken as the
average across the three cell state variables 𝜙𝑖 (with 𝑖 = 1, 2, 3).
Additionally, 𝑂𝑆𝐶 estimates are normalized with respect to the value
of green catalyst OSC value.

Fig. 9 shows the results of the observer design for the Green catalyst.
In this case, the estimated 𝑂𝑆𝐶 reaches its steady state value only
after 1400 s. Simulations were conducted by initializing 𝑂𝑆𝐶 to a
value greater than the real one showing recovery from inaccurate
initialization. The predicted output better tracks the measured 𝜆𝑚𝑖𝑑wb
as 𝑂𝑆𝐶 converges to the correct value.

The simulation performed with the Mid-Life catalyst (Fig. 10) shows
a faster convergence, within 600 s, to the correct 𝑂𝑆𝐶 value. More
frequent deviations from stoichiometry are expected with increasing
TWC age and reduced OSC. Accordingly, the estimated 𝜙 exhibits
quicker variations relative to the Green catalyst.
8

Fig. 8. In (a), the process noise distributions 𝑣𝑖, with 𝑖 = 1, 2, 3, evaluated over the
TP drive cycle for the Green catalyst, are shown. In (b), the output noise distribution
etween the real measurements 𝜆𝑚𝑖𝑑wb and the model output 𝜆𝑤𝑖𝑑𝑒 is depicted.

Similar results are achieved for the OBD aged catalyst, as shown
in Fig. 11. In this case, convergence is slower – within 1000 s – when
compared to the Mid-Life device. Given that the initial 𝑂𝑆𝐶 value
is the farthest from the actual OBD value, the estimator is forced to
cover the entire OSC range prior to convergence. The reduced oxygen
storage buffer in the catalyst is reflected with a highly dynamic 𝜆𝑚𝑖𝑑𝑤𝑑
downstream of the catalyst, resulting in pronounced 𝜙 variations.

The performance of the dEKF for the different catalysts is quantita-
tively measured in terms of output prediction accuracy via root mean
square error (RMSE), defined as

𝑅𝑀𝑆𝐸 =

√

√

√

√

√

1
𝑁𝑠𝑎𝑚𝑝𝑙𝑒

𝑁𝑠𝑎𝑚𝑝𝑙𝑒
∑

𝑘=1

(

𝜆𝑚𝑖𝑑wb (𝑘) − 𝜆𝑚𝑖𝑑wb (𝑘)
)2 (19)

where 𝑁𝑠𝑎𝑚𝑝𝑙𝑒 is the number of samples over which the RMSE is eval-
uated. The RMSE has been computed for each catalyst in two different
time windows: the first window spans from 0 to 500 s, where the effects
of the intentionally erroneous initialization are more evident, whereas
the second window spans from 1500 s to the end of the driving cycle
where the 𝑂𝑆𝐶 estimate is converging to its steady-state value. Results
are listed in Table 4. It can also be noted that the RMSE decreases
with increasing catalyst age. This result can be explained in terms of
signal excitation: as the catalyst degrades, the oxygen buffer is reduced
and variations of the normalized exhaust air/fuel ratio are no longer
fully attenuated by the catalyst oxygen adsorption/desorption process.
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Fig. 9. Simulation results of the estimated and measured 𝜆𝑚𝑖𝑑wb , �̂� is the average value
of oxygen level from all the three spatially discretized cells and 𝑂𝑆𝐶 is the estimate
of oxygen storage capacity (normalized with respect to the 𝑂𝑆𝐶 of a fresh catalyst)
for the Green catalyst.

Fig. 10. Simulation results of the estimated and measured 𝜆𝑚𝑖𝑑wb , �̂� is the average value
of oxygen level from all the three spatially discretized cells and 𝑂𝑆𝐶 is the estimate
of oxygen storage capacity (normalized with respect to the 𝑂𝑆𝐶 of a fresh catalyst)
for the Mid-Life catalyst.

Thus, from a system dynamics perspective, the air/fuel ratio located
downstream of the catalyst inevitably contains more high-frequency
harmonics. As a consequence of a more excited measurement signal,
the dEKF improves its estimate and the 𝑂𝑆𝐶 rate of convergence
increases.

In the previous section, the covariance term 𝑄4 has been used as
tuning parameter and its final value will affect the filter performance.
Fig. 12(a) shows the OSC estimated trajectories as a function of 𝑄 .
4

9

Fig. 11. Simulation results of the estimated and measured 𝜆𝑚𝑖𝑑wb , �̂� is the average value
of oxygen level from all the three spatial discretization cells and 𝑂𝑆𝐶 is the estimate
of oxygen storage capacity (normalized with respect to the 𝑂𝑆𝐶 of a fresh catalyst)
for the OBD catalyst.

Table 4
Post TWC lambda RMSE values evaluated for the aged catalysts. The RMSE has
been evaluated in two different time windows in order to quantify the dEKF
performance with respect to time. In the first time window, up to 500 s, the
catalyst is more influenced by a wrong initial guess of the aging parameter; in
the second, after 1500 s, the estimates have settled to their reference values. For
all the three aged devices, a good estimate of the aging parameter results in at
least 50% improvement in the output tracking performance.
Catalyst 𝑅𝑀𝑆𝐸 (𝑇 𝑖𝑚𝑒 < 500 𝑠) [%] 𝑅𝑀𝑆𝐸 (𝑇 𝑖𝑚𝑒 > 1500 𝑠) [%]

Green 3.4075 1.5696
Mid-life 4.6733 2.002
OBD 4.8827 1.3932

Large 𝑄4 values produce expedient convergence, but promote noise
at steady state. Low 𝑄4 values produce less steady state estimate
variations but exhibit a slower rate of convergence. A good trade off
between acceptable chattering and convergence settling time is found
in the range of values 10−5 ≤ 𝑄4 ≤ 10−4.

In Fig. 12(b) the convergence settling time and standard deviation
of the steady state estimation have been evaluated for different values
of 𝑄4. For values above 𝑄4 = 4 ⋅ 10−5 it is possible to obtain a fast
OSC convergence, at the price of a larger standard deviation that may
not be acceptable for the purposes of the application under study. On
the other hand, as 𝑂𝑆𝐶 is a slow varying variable, a slow settling
time is deemed acceptable. For these reasons, a slower solution with
less chattering is preferred here. As shown, good performance can be
achieved using 𝑄4 = 0.2 ⋅ 10−5. For the OBD catalyst, this tuning value
requires approximately 1000 s for the estimate to settle.

A study of the 𝑂𝑆𝐶 estimation with respect to different initial OSC
values is finally shown in Fig. 13.

6.2. Observability analysis

The dEKF estimation results are strictly constrained upon having ob-
servable model states from measured outputs. Due to the complexity of
the system dynamics, this work checks observability on the linearized
system. If observability is granted for the linearized case, then the



S. Gelmini, M.A. Hoffmann and S. Onori Control Engineering Practice 112 (2021) 104805

n
l

𝑂

w

a
M

7

o
b
d
m
t
a
v
T

Fig. 12. Figure (a): estimation of 𝑂𝑆𝐶 – normalized with respect to 𝑂𝑆𝐶 value from fresh catalyst – for different values of the dEKF tuning parameter 𝑄4. Figure (b): trade-off
comparison of convergence settling time and the estimated OSC’s standard deviation at steady-state for a range of 𝑄4 values.
v
i

Fig. 13. Estimation of 𝑂𝑆𝐶 – normalized with respect to the fresh catalyst 𝑂𝑆𝐶 value
– for different initialization values of the observer. The proposed observer exhibits to
be robust behavior against different initial conditions, with an initial transient of 700 s.

onlinear system is locally observable in the neighborhood near the
inearization (Vidyasagar, 2002).

The observability matrix is defined for the linearized system as:

(𝑘) =

⎡

⎢

⎢

⎢

⎢

⎣

�̂�(𝑘)
�̂�(𝑘) ⋅ �̂�(𝑘)

⋮
�̂�(𝑘) ⋅ �̂�𝑛−1(𝑘)

⎤

⎥

⎥

⎥

⎥

⎦

. (20)

here 𝑛 is equal to 4 and matrices �̂� and �̂� were defined in Section 5.
The numerical observability matrix ranks for the three aged TWCs

re shown in Fig. 14. Except for the initial time instants, for the
ID-Life and OBD aged catalysts the matrix rank is always full.

. Rapid control prototyping

The control strategy to estimate the oxygen storage level and the
xygen storage capacity through the dEKF presented in this work has
een validated on a passenger vehicle operating on a four-wheel chassis
ynamometer at the Clemson University International Center for Auto-
otive Research. The dEKF was modeled in Simulink and interfaced to

he engine control unit (ECU) via an ETAS ES910, providing real-time
ccess to ECU parameters. The exhaust mass flow rate is read out of the
ehicle ECU through the GPEC2 port. Simultaneously, pre- and post-
WC temperature and lambda signals were integrated with the model
10
Fig. 14. Rank evaluation of the observability matrix for differently aged catalysts on
the FTP driving cycle. Both the Mid-Life and OBD aged catalysts have instances with
lack of observability at the beginning of the test. Yet, the performance of the algorithm
have proved not to be influenced by those ‘isolated’ unobservable states.

Fig. 15. Rapid test prototyping setup.

ia an ETAS ES 930 Multi I/O module. The rapid prototyping scheme
mplemented in this work is shown in Fig. 15.

For real-time hardware validation, a catalyst with 𝑂𝑆𝐶𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑
equal to 0.7 was installed on the vehicle. The in-vehicle validation was
conducted over the FTP and JAP 15 driving cycles. The initial OSC
value was set to that of a green catalyst, representing a full parameter
reset during vehicle repair, and to a higher value, to prove convergence
as in simulation (see Fig. 16).
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Fig. 16. In-vehicle testing to assess the feasibility and performance of the proposed
stimator.

Fig. 17. (top) Experimentally estimated �̂� (top) - calculated as the average value of
oxygen level from the three spatially discretized cells; (mid) experimentally estimated
and measured 𝜆𝑚𝑖𝑑wb ; (bottom) experimentally estimated 𝑂𝑆𝐶 (normalized with respect
to fresh catalyst 𝑂𝑆𝐶) for the Mid-Life catalyst. This test was conducted following the
AP 15 driving cycle.

Table 5
Summary of the RMSE values computed from the JAP 15 and FTP cycles
over Mid-Life catalyst used in the rapid control prototyping experiments.
Catalyst Driving cycle RMSE [%]

Mid-life JAP 15 1.69
Mid-life FTP 1.55
Mid-life FTP 1.27

As shown in Fig. 17, convergence in parameter estimation is reached
n the case of FTP, whereas the shorter duration of JAP 15 hinders the
onvergence.

To prove the robustness, a different FTP run was performed with
ifferent driver (Fig. 18) and different initial conditions for the OSC
alue (Fig. 19).

Table 5 reports the RMSE values obtained from the rapid control
rototyping experiments.
11
Fig. 18. (top) Experimentally estimated �̂� (top) - calculated as the average value of
oxygen level from the three spatially discretized cells; (mid) experimentally estimated
and measured 𝜆𝑚𝑖𝑑wb ; (bottom) experimentally estimated 𝑂𝑆𝐶 (normalized with respect
to fresh catalyst 𝑂𝑆𝐶) for the Mid-Life catalyst. This test was conducted following the
FTP driving cycle.

Fig. 19. (top) Experimentally estimated �̂� (top) - calculated as the average value of
oxygen level from the three spatially discretized cells; (mid) experimentally estimated
and measured 𝜆𝑚𝑖𝑑wb ; (bottom) experimentally estimated 𝑂𝑆𝐶 (normalized with respect
to fresh catalyst 𝑂𝑆𝐶) for the Mid-Life catalyst. This test was conducted following the
FTP driving cycle.

8. Conclusions

In this work, we first assessed how different TWC lambda sensor
technologies can affect the ability to monitor the TWC health, and then
we designed a dEKF for the purpose of estimating the actual oxygen
storage and oxygen capacity during vehicle operation.
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Using a PDE model of the TWC, the performance of a wide band
lambda sensor was compared against different switch-type sensors –
used downstream of the TWC – in their ability to facilitate 𝑂𝑆𝐶
estimation. A Fisher information analysis was employed to quantify the
uncertainty of the estimated 𝑂𝑆𝐶 for the various lambda sensors. it is
shown that a wide band lambda sensor leads to limited uncertainty in
the 𝑂𝑆𝐶 estimation as opposed to switch-type lambda sensors, which
instead produce measurements that do not contain enough information
for the aging parameter to be identified.

Wide band lambda sensors are then used in the development of
dEKF. The observer was developed from a physics-based 1-D TWC
model derived in previous works by the authors. The dEKF was de-
signed to estimate, in real-time, the catalyst oxygen storage level,
𝜙, and the age dependent oxygen storage capacity 𝑂𝑆𝐶. Simulation
results, validated against transient experimental measurements, proved
the ability of the observer to estimate the aging parameter, 𝑂𝑆𝐶, for
different catalysts. The accurate online 𝑂𝑆𝐶 estimation reduces the
RMSE of predicted post TWC lambda signal response, aiding any con-
trol design which utilizes disparities between measured and predicted
post TWC lambda for air-to-fuel ratio alterations.
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