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Characterization and Synthesis
of Duty Cycles for Battery Energy
Storage Used in Peak Shaving
Dispatch
Energy storage systems (ESSs), such as lithium-ion batteries, are being used today in
renewable grid systems to provide the capacity, power, and quick response required for
operation in grid applications, including peak shaving, frequency regulation, back-up
power, and voltage support. Each application imposes a different duty cycle on the ESS.
This represents the charge/discharge profile associated with energy generation and
demand. Different duty cycle characteristics can have different effects on the performance,
life, and duration of ESSs. Within lithium-ion batteries, various chemistries exist that own
different features in terms of specific energy, power, and cycle life, that ultimately determine
their usability and performance. Therefore, the characterization of duty cycles is a key to
determine how to properly design lithium-ion battery systems for grid applications.
Given the usage-dependent degradation trajectories, this research task is a critical step
to study the unique aging behaviors of grid batteries. Significant energy and cost savings
can be achieved by the optimal application of lithium-ion batteries for grid-energy
storage, enabling greater utilization of renewable grid systems. In this paper, we
propose an approach, based on unsupervised learning and frequency domain techniques,
to characterize duty cycles for the grid-specific peak shaving applications. Finally, we
propose synthetic duty cycles to mimic grid-battery dynamic behaviors for use in laboratory
testing. [DOI: 10.1115/1.4050192]
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1 Introduction
In 2019, global renewable generation capacity reached 2179 GW

[1]. While hydropower remains the largest contributor to renewable
generation, the fastest-growing resources are photovoltaic and wind
power, accounting for 90% of all net renewable capacity additions
in 2019. These resources comprise a substantial amount of grid gen-
eration power. In California, for example, variable renewable gen-
eration (i.e., wind and solar power) constituted 29% of the total
generation in 2020 [2]. The introduction of these intermittent gen-
eration sources poses challenges to conventional methods for plan-
ning the daily operation of the electric grid. Additionally, the
diurnal availability of solar generation can aggravate ramping prob-
lems when loading increases as solar production decreases. This is
problematic in grids with high solar penetration; in the California
independent system operator (ISO), this has been termed the
“duck curve” [3]. Energy storage systems (ESSs) are considered
as a way to address the aforementioned drawbacks. Among many
other technologies for ESSs, electrochemical energy storage
devices are the main ones implemented and used today for grid ser-
vices, of which nearly 80% is provided by lithium-ion batteries
since 2003 [4,5].

1.1 Motivation. Lithium-ion batteries are prevalent in renew-
able grid systems since they can provide fast response time, modu-
larity, flexible installation, and short construction periods [6]. ESSs
in renewable grid systems participate in applications, such as peak
shaving, frequency regulation, voltage support, and back-up power,
supporting grid operations at various locations on the grid [7].
However, battery degradation resulting from participation in grid

applications is considered a major factor for profitable operation
[8]. The degradation trajectories of lithium-ion battery systems
depend both on the particular lithium-ion chemistry of the battery
and the usage within these grid applications. Current battery tech-
nology accounts for various lithium-ion chemistries, each with dif-
ferent characteristics that may be appropriate for different uses
within the grid needs. For example, a chemistry with high specific
energy but low cycle life may be appropriate for back-up power, as
this application only uses the battery during grid outages for
extended multi-hour duration [9]. Therefore, properly assessing
the most appropriate chemistry for a targeted application can max-
imize the performance, usability, and duration of entire grid
systems.
The usage within each grid application is characterized by duty

cycles. A duty cycle is a charge and discharge profile (given in
terms of power or current) representing the demands associated
with a specific grid application. Understanding degradation mecha-
nisms triggered by characteristic grid-specific duty cycles is a key to
developing predictive tools that can be integrated into cost/benefit
analyses to maximize revenue and minimize lost capacity. It is
well known that differences in duty cycles could significantly
impact the durability of ESSs [10]. As the duty cycles and operating
conditions can be vastly different for stationary grid-scale storage as
opposed to automotive energy storage devices, predictive ESS
models properly calibrated over grid-specific duty cycles are
missing in today’s literature. Moreover, understanding and predict-
ing the performance and durability of large grid-level batteries calls
for the study and analysis of actual duty cycles for each application.
In current practice, a plethora of work has been conducted on the

analysis and characterization of duty cycles for automotive batte-
ries. In Ref. [11], real driving cycles for hybrid electric vehicles
were analyzed by distribution histogram. In Ref. [12], a way of cre-
ating effective synthetic duty cycles was published based on pulse-
multisine design technique where a discrete Fourier transform
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(DFT) approach was adopted to show that the pulse power current
duty cycle was insufficient to characterize the amplitude and fre-
quency bandwidth of a real driving cycle. In Ref. [13], real
battery duty cycles were categorized by driving speed and style,
and an approach based on the power spectral density (PSD) was
applied to each category by differentiating discharge and charge
events. In addition, various characterization methods have been pro-
posed for different research purposes, using several analytical tech-
niques [14–16]. In Ref. [14], electric bus driving cycles were
analyzed using the cross-PSD, involving the DFT of both duty
cycles. In Ref. [15], high-performance multisine, random pulse,
and inverse cumulative distribution analysis were used to character-
ize duty cycles of large-format automotive lithium-ion pouch cells.
In Ref. [16], a signal design method was proposed to identify
battery model parameters using frequency range analysis of actual
driving cycles. Current studies in renewable grid applications
show the lack of a systematic approach to defining characteristic
grid-specific duty cycles. For example, Sandia National Laboratory
has previously created a methodology for testing the performance of
energy storage, using duty cycles under various grid applications,
including peak shaving, frequency regulation, PV smoothing, and
solar firming [17]. However, these duty cycles are generated
directly from existing data, with the minimal characterization of
the duty cycles under this existing data. For PV smoothing, ESS
duty cycles were generated from existing PV generation profiles,
without identification of characteristic duty cycles [18]. For fre-
quency regulation, PSD was used as an exploratory analysis of
the dispatch signal, but ultimately was not used in duty cycle con-
struction; “aggressive” and “average” days from the dispatch were
used instead [19].
In other studies, the performance and life of stationary battery

systems were investigated, including performance under frequency
regulation given different dispatch methodologies [20], and energy
arbitrage [8]. These studies adopted simplistic empirical models for
battery degradation and predicted performance, and simulated
battery degradation directly from the dispatch profiles, without
characterizing the dispatch.
In this paper, we first determine characteristic duty cycles using

k-means clustering for the grid application of peak shaving. We
then use the PSD to extract and analyze the frequency content of
the clustered duty cycles. The two points above are instrumental
for analyzing how grid batteries are operated under this application
and can be used to study the unique performance and aging behav-
iors of batteries in this modus operandi.
There are six sections in this paper: peak shaving, methodology,

data description, duty cycle analysis, synthetic duty cycles, and con-
clusions. In Sec. 2, we study and discuss themotivation for and oper-
ation of peak shaving, and how battery ESSs are used to support such
a grid application. In Sec. 3, we describe in detail fast Fourier trans-
form (FFT), PSD, and k-means clustering, and their relevance to duty
cycle analysis. In Sec. 4, we present the data used for the character-
ization and synthesis of duty cycles. In Sec. 5, we present a method
for duty cycle characterization and apply this process to different
peak shaving dispatches, and compare them to electric vehicle
duty cycles. In Sec. 6, we propose charge/discharge synthetic duty
cycles from the cluster centroids study. Concluding remarks are
found in the conclusion section. This paper extends upon the previ-
ously published work [21].

2 Peak Shaving
The electric utility supplies electricity from the grid to meet the

demand of an end user’s load, e.g., a house, office, or factory.
The facility is then billed monthly by the utility, as measured by
the utility meter. The bill charges are defined in a tariff rate deter-
mined by the utility and include several elements such as
time-of-use charges and demand charges, based on the amount of
electric energy and maximum (peak) power consumed from the
grid by the load.

Peak shaving is used to lower the monthly peak power consumed
by the facility from the grid (“shaving” the peak). Different strate-
gies for peak shaving exist, including reducing peak consumption of
facility loads, managing the charging of electric vehicles, and dis-
patching battery ESSs [22]. For battery ESSs, peak shaving is
accomplished by discharging when the load is large and charging
from the grid when electricity is cheap [23], as shown in Fig. 1.
Based on peak shaving, the potential market for residential
battery ESSs is approximately 5 million end-users in the United
States [24]. Real-time operation of a battery for peak shaving can
involve simple control loops to discharge or charge the battery
based on current power flow from the grid and state of energy
(SOE) of the battery [25] or include an optimization algorithm to
compute optimum battery dispatch given additional constraints,
such as the power flow through grid infrastructure.

3 Methodology
This section describes the methods and techniques used in this

paper to analyze grid application duty cycles.

3.1 Fast Fourier Transform. The DFT of a time-series
sequence is calculated by means of FFT method [26]. The DFT
takes as input a sequence of values x[n], n= 0, 1, 2, …, N− 1 of
length N, in time. This sequence is then decomposed into a
sequence of sinusoidal components X[q], q= 0, …, N− 1 of
length N for different frequencies nq/N.

X[q] =
∑N−1

n=0
x[n]e−(i2πnq/N), q = 0, . . . , N − 1 (1)

As described in Sec. 4, the dispatch profiles of the battery are
recorded as time-series sequences, so the FFT forms the basis for
the duty cycle analysis.

3.2 Mean Centering. The battery dispatches for charging and
discharging are strictly negative and strictly positive, respectively.
Separating the charge and discharge and directly taking the FFT
would yield a bias in the FFT periodogram, appearing as low-
frequency components not present in the original dispatch. In
order to remove this effect, mean centering is applied to ensure
that the resulting separated charge and discharge profiles have
zero mean, while preserving all frequency components in these pro-
files. Mean centering is applied to the entire dispatch profile using
the following procedure:

(1) Construct a new profile consisting of only non-negative
(non-positive) dispatch.

(2) Find each individual discharge (charge) instance within this
new profile, where a discharge (charge) instance is defined

Fig. 1 Peak shaving power flow diagram. Arrows indicate the
direction of power flow. The ESS charges and discharges to
offset the load, reducing the power flow as seen by the utility
meter, and reducing the utility bill.
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as the battery starting at 0 dispatch, positively (negatively)
dispatching, then returning to 0 dispatch.

(3) Construct a new mean-centered discharge (charge) profile by
concatenating each discharge (charge) instance with a copy
of reversed sign.

We address the stationarity of the mean-centered signals. Statio-
narity is defined as when statistical properties (e.g., mean, variance,
and covariance) of signals are independent of the time framework.
Spectral analysis techniques, such as PSD, assume that the time-
series signal is stationary, meaning that its properties do not
depend on time [27]. With mean centering, the signal has zero
mean, and therefore its mean does not depend on time. The autocor-
relation function (ACF) can be used to demonstrate stationarity
[28], which correlates a signal with a time-shifted copy. Typically,
a stationary signal exhibits low autocorrelation as the time shift
increases. In our analysis, the ACF implementation xcorr in
MATLAB was used to show that the ACF for the mean-centered dis-
charge and charge profiles decay to zero as the autocorrelation shift
increases. This shows that the profiles are stationary, and therefore,
the PSD can be appropriately calculated for these profiles.

3.3 Power Spectral Density. The PSD is the measure of a
signal’s power content as a function of its frequency. Our duty
cycle analysis uses Welch’s method for computing PSD [29]. It is
based on the periodogram of the signal, which in turn is based on
the DFT of the signal. Welch’s method is summarized as follows:
a sequence of values x[n]= 0, 1, 2, …, N− 1, of length N collected
at interval periods T, is partitioned into K segments of length M
where M<N− 1 [30]. These segments overlap by an amount S,
usually in the range 0.4M≤ S≤M.1

For each segment r= 1…R, represented as the subset x[m] of the
signal where m= (r− 1)S, …, M+ (r− 1)S− 1, a windowed DFT
Xr( f ) is computed at the frequency f with window function2 w.

Xr(f ) =
∑
m
x[m]w[m]e−i2πfm (2)

Then, each segment DFT is used to form the segment’s modified
periodogram value, Pr( f ) as follows:

Pr(f ) =
1

∑M
m=0 w

2[m]
|Xr(f )|2 (3)

Finally, the periodogram values are averaged to obtain Welch’s
estimate of the PSD.

Sx(f ) =
1
R

∑R

r=1

Pr(f ) (4)

We use the pwelch function in MATLAB for Welch’s method for
PSD, which uses a Hamming window as the default window func-
tion. In addition to the signal sequence, pwelch accepts as parame-
ters frequency f, segment lengthM, and overlap N′. For our analysis,
we choose the frequency to be that of the time-series sequence inter-
val ( f= 1/T ) and overlap N′ =M/2, both of which are within the
ranges suggested by [30]. Fixing these parameters leaves us with
M as the sole degree-of-freedom, allowing us to determine the
amount of smoothing and averaging in Welch’s method; as M
decreases for fixed N′ and f, more periodograms are calculated
across shorter segments. Throughout this paper, these parameters
are set at f= 1/3600 Hz, M= 48, and N′ =M/2= 24, chosen to
balance the tradeoff between smoothing and noise reduction.3

By averaging these modified (windowed) periodograms, Welch’s
method for PSD allows us to study the spectral characteristics of a
dataset, removing much of the signal noise retained in the FFT.
Figure 2 shows the periodogram of the FFT for the peak shaving
dispatch profile, separated by charge and discharge. The PSD for
the same dispatch profile is also shown in Fig. 13, displaying the
same characteristics as the FFT periodogram but with a smoother
profile.
As the degradation and health of the battery are dependent on dif-

ferent mechanisms for charging and discharging, separating these
two events in the PSD analysis could give useful insights into the
battery usage. For example, the Solid Electrolyte Interface (SEI)
layer growth has been regarded as one of the main causes of capac-
ity fade and impedance increase in the lithium-ion battery system.
The SEI layer will dominantly grow on the anode at every charging
event [31]. Lithium plating is also known to occur on the anode
when batteries are charged at high rates (or low temperatures).
Lithium plating not only causes capacity/power fade but also
poses a significant safety concern [32]. Recent works also indicate
that lithium plating can also occur at mild charging conditions after
extended cycling, leading to rapid aging of the cell [33].

3.4 k-means Clustering. Clustering is an unsupervised learn-
ing method to organize and partition data into “clusters.” Data
within each cluster share some features [34]. This class of
methods has been widely studied for characterizing time-series
data [35].
In k-means clustering, k clusters are constructed from n observa-

tions of data, where each observation is assigned a cluster by the
closest Euclidean distance to the cluster centroid, or the mean
value of all observations in the cluster. That is, given k desired clus-
ters, and dataset of observations x1…xn, k-means clustering deter-
mines k cluster centroids as a solution ϕ∗ = [c1 . . . ck]T that
minimizes the cost function J [36] as

ϕ∗ =min J (5)

J =
∑n

i=1

min
j=1...k

xi − c2j (6)

We use the k-means function in MATLAB to apply k-means cluster-
ing to the dispatch profiles. As the initialization of the cluster cen-
troids is important for clustering convergence, the k-means++
algorithm is used for this initialization [36]. Within the context of
electric power systems, k-means clustering has been applied to
solar and wind generation profiles [37,38], electricity load
demand profiles [39,40], and driving cycles for electric vehicles
[41]. This paper represents the first application of k-means cluster-
ing to grid storage battery dispatch profiles. The application of
k-means clustering to the dataset is as follows. We first choose

Fig. 2 Periodogram from FFT for peak shaving yearly dispatch
“LargeOfficeNew” profile. The FFT and its respective periodo-
gram are computed for the (a) discharge and (b) charge dispatch
profiles, separately.

1This rule of thumb for selecting overlap S is as presented in Ref. [30].
2The window function is used to take into account the fact that the segment may not

be an exact multiple of a given frequency. The windowing function is greatest in the
center of the segment and decreases towards zero at the ends, so that any discontinuities
between the beginning and end of the signal are minimized.

3The choice of M and N correspond to segments of 2 days and 1 day, respectively.
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each observation to represent 1 day, reshaping the time-series data
into an array where each row is the dispatch for 1 day, and each
column is the dispatch for 1 h within the day. Next, as some days
contain zero dispatch (i.e., no charging or discharging of the
battery), the corresponding rows of the array are removed. Days
with missing or corrupted values (e.g., NaN) are also removed.
The number of clusters, k, is then chosen, and k-means clustering
is applied to the remaining nonzero dispatch array.
The output of k-means clustering on the dispatch data is k “cluster

centroids,” representing the average daily dispatch within each
cluster, and cluster assignments for each nonzero dispatch day.

4 Data Description
The time-series dispatch profiles for the grid application are sum-

marized in Table 1. Peak shaving data were obtained from a pub-
licly available optimization and simulation tool for energy
storage: QuESt, developed by Sandia National Laboratories [42].
QuESt allows users to select facility load profiles, energy storage
parameters such as rated power and energy, as well as a tariff rate
structure. QuESt then uses this input data to simulate the energy
storage dispatch per month over 1 year, optimizing the dispatch
for bill reduction by peak shaving. This dispatch data is obtained
as an hourly dispatch (frequency 1/3600 Hz).
Figure 3 shows the QuESt-simulated dispatch of the 200 kW,

400 kWh battery using the “LargeOfficeNew” load over the year.
The histogram in Fig. 4(a) shows a bias toward high-power charg-
ing of the battery. The histogram in Fig. 4(b) also shows that when
the battery is at rest (i.e., neither charging nor discharging), the
majority of rest instances are less than 48 h in length, with most
rest instances between 10 and 20 h long. These rest instances are
periods of time when the battery is not actively used for peak
shaving and indicate opportunities to employ the batteries for
other grid applications during these periods.
Figure 5 shows the QuESt-simulated dispatch of the 200 kW,

400 kWh battery using the “SuperMarketNew” load over the
year. Figure 6 is the histogram of nonzero dispatch over the year
for the “SuperMarketNew” load, showing that there is both a

different distribution of charging and discharging, as well as more
frequent dispatch with shorter rest periods, compared to the
“LargeOfficeNew” load.

5 Duty Cycle Analysis
For a given grid storage application dispatch profile, we conduct

the following steps. First, we use k-means clustering to obtain dis-
tinct duty cycle clusters. The number of clusters is chosen to deter-
mine duty cycles that represent the range of charging and
discharging behavior within the dispatch profile under consider-
ation. Then, within each cluster, we compute the PSD of the
charge and discharge separately. This process is summarized in
Fig. 7.

Table 1 Grid application dispatch data sources

Application

System
rated power,

kw
System rated
energy, kwh Load name

Tariff
rate

Peak
Shaving

200 400 LargeOfficeNew PG&E
E19

SuperMarketNew PG&E
A10

Fig. 3 Yearly dispatch of a 200 kW, 400 kW grid storage battery
for peak shaving, “LargeOfficeNew” profile. The QuESt tool was
used to produce this dispatch, which QuESt simulated on an
hourly basis. Discharging is positive, while charging is negative.

Fig. 4 (a) Histogram of nonzero peak shaving dispatch,
“LargeOfficeNew.” Datapoints corresponding to zero dispatch
were excluded from this histogram. Histogram shows a bias
toward higher charging (negative) power. (b) Histogram of rest
periods during dispatch, “LargeOfficeNew.” The period of rest
is determined as the length of time between when a charge or
discharge ends, and the next charge or discharge begins.

Fig. 5 Yearly dispatch of a 200 kW, 400 kW grid storage battery
for peak shaving, “SuperMarketNew” profile. The QuESt tool was
used to produce this dispatch on hourly basis. Discharging is
positive, while charging is negative.

Fig. 6 (a) Histogram of nonzero peak shaving dispatch,
“SuperMarketNew.” Datapoints corresponding to dispatch of 0
were excluded from this histogram. (b) Histogram of rest
periods during dispatch, “SuperMarketNew.” The period of rest
is determined as the length of time between when a charge or
discharge ends, and the next charge or discharge begins.
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5.2 LargeOfficeNew Load Peak Shaving Dispatch. This
section applies the analysis described in Fig. 7 to the peak
shaving dispatch profile simulated by QuESt for the “LargeOffice-
New” facility load.

5.2.1 Selection of Number of Clusters. Previous studies of resi-
dential facility load have revealed the differences in load between
seasons [40]. As peak shaving dispatch is dependent on facility
load, we conduct a seasonal analysis of the peak shaving dispatch
to choose the number of clusters, k. We divide this dispatch into
four seasonal events as follows:

(i) Spring: March, April, May
(ii) Summer: June, July, August
(iii) Fall: September, October, November
(iv) Winter: December, January, February

Figure 8 shows the histogram of peak shaving dispatch on the
“LargeOfficeNew” load for each season. We find that a majority
of dispatch occurs in the summer, with limited activity in the
winter and roughly equivalent dispatch distribution in the spring
and fall. We also evaluate the differences in charging across
seasons. This is shown in Fig. 9; there are only 19 charging
instances during the winter season, while all other seasons have at
least 80. Based on the seasonal analysis, there appears to be an
active dispatch segment of the year (summer), followed by a
section of the year of moderate dispatch activity (spring and fall),
and a section of mild dispatch (winter). We choose a value for

k = 2 for k-means clustering, to cluster the dispatch between the
active dispatch and the moderate/mild dispatch, and then character-
ize the duty cycle within each cluster.

5.1.2 Clustering Analysis. Using the methodology for k-means
described in Sec. 3.4 with k= 2, we obtain two clusters, Cluster 1
and Cluster 2. Figure 10 is the assignment of clusters for each
nonzero dispatch day throughout the year. Day assignments for
Cluster 1 fall mainly in the summer, and day assignments for
Cluster 2 fall mainly in the remainder of the year.
The two clusters have respective centroids, here interpreted as a

representative daily dispatch of the battery within each cluster.
Figure 11 shows the two cluster centroids, with Centroid 1 as the
centroid for cluster 1 and Centroid 2 as the centroid for cluster
2. It is from this figure that the underlying operating protocol for
peak shaving dispatch in QuESt can be seen: the dispatch charges
the battery immediately before the discharge required for peak

Fig. 7 Flow diagram for duty cycle analysis. The outputs of this
analysis are shown at right: the PSD computed for charging and
discharging within each dispatch cluster, for all k clusters.

Fig. 8 Histogram of nonzero peak shaving dispatch by season,
“LargeOfficeNew”

Fig. 9 Charging instances by season, “LargeOfficeNew”

Fig. 10 Cluster assignments for each day of yearly dispatch.
“LargeOfficeNew.” Days without charge or discharge (zero-
dispatch days) are not assigned a cluster.

Fig. 11 Cluster centroids of yearly dispatch, “LargeOfficeNew.”
Cluster centroids as determined by k-means clustering on the
yearly dispatch, cluster length 1 d=24 h.
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shaving. As Centroid 1 requires a longer discharge than Centroid 2,
the charging beforehand is at much higher power to fill the battery,
in anticipation of a higher energy discharge.
We now compute the PSD for charge and discharge separately of

the two clusters, with mean centering applied as described in Sec.
3.3. Figure 12 shows the PSD computed for charging and discharg-
ing for each cluster. The PSD computed for Cluster 1 charging
exhibits a strong peak at 4.123e−05 Hz, while the PSD as computed
for Cluster 2 charging shows a much smaller peak at 2.279e−05 Hz.
For discharging, the PSD computed for Cluster 1 and Cluster 2
exhibits peaks of similar size, at 2.279e−05 Hz and 2.496e
−05 Hz, respectively, showing that the frequency content of the dis-
charge between clusters is comparable.

5.1.3 Comparison to Power Spectral Density Computed Over
Entire Dispatch. We compute now the PSD over the entire year
without k-means clustering. This is presented in Fig. 13. The
PSD computed for charging contains a strong peak at 4.015e
−5 Hz, and in the PSD computed for discharging, a peak at
2.387e−5 Hz. These are closer in value to those of Cluster 1, than
those of Cluster 2. The PSD computed over the entire year is dom-
inated by the charging profile in Cluster 1. However, Cluster 1 only
represents 27% of the total nonzero dispatch days. Characterizing
the peak-shaving dispatch duty cycle based on the yearly PSD
would obscure the characteristic duty cycling of Cluster 2.

5.2 SuperMarketNew Load Peak Shaving Dispatch. This
section applies the analysis described in Fig. 7 to the peak
shaving dispatch profile simulated by QuESt for the “SuperMarket-
New” facility load, and compares the results of this analysis to that
of the “LargeOfficeNew” facility load.

5.2.1 Selection of Number of Clusters. For the “SuperMarket-
New” load, Fig. 14 is the histogram for peak shaving dispatch
profile on that load within each season, and Fig. 15 is the instances
of charging occurrences by season, displaying more consistent dis-
patch across seasons than for the “LargeOfficeNew” dispatch
profile. Unlike with the “LargeOfficeNew” dispatch profile, we
cannot rely on seasonal differences in a dispatch to inform the selec-
tion of a number of clusters for the “SuperMarketNew” dispatch
profile.
We instead choose the number of clusters so that applying

k-means clustering to the dispatch profile yields clusters of compa-
rable sizes to avoid over-generalizing the dispatch and clustering the
majority of daily dispatch into a given cluster. For this dispatch
profile, using k= 2 yields one cluster with 344 days and one
cluster with only 15 days. Using k= 3 yields three clusters of
sizes 145, 113, and 101 days. We adopt this choice.

5.2.2 Clustering Analysis. Using the methodology for k-means
described in Sec. 3.4 with k= 3, we obtain three clusters, Cluster 1,
Cluster 2, and Cluster 3. Figure 16 is the assignment of clusters for
each nonzero dispatch day throughout the year. As expected from
our seasonal analysis on this dispatch profile, clusters do not
appear to correspond to any seasonal dispatch.
The three clusters have respective centroids, here interpreted as a

representative daily dispatch of the battery within each cluster.
Figure 17 shows the three cluster centroids, with Centroid 1 as
the centroid for cluster 1, Centroid 2 as the centroid for cluster 2,
and Centroid 3 as the centroid for cluster 3. There are three distinct
dispatch profiles: Centroid 1 represents days with a medium charge

Fig. 12 Power spectral density of peak shaving dispatch,
“LargeOfficeNew,” by Cluster. PSD was conducted on clusters
within the yearly dispatch, as assigned in Fig. 10.

Fig. 13 Power spectral density of peak shaving yearly dispatch,
“LargeOfficeNew.” The charging PSD exhibits a strong peak at
4.015e−5 Hz, while the discharging PSD exhibits a peak at
2.387e−5 Hz.

Fig. 14 Histogram of nonzero peak shaving dispatch by season,
“SuperMarketNew”

Fig. 15 Charging instances by season, “SuperMarketNew”
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power and low discharge power; Centroid 2 represents days with a
low charge and discharge power; and Centroid 3 represents days
with a medium charge and high discharge power.
The PSD for charge and discharge of the three clusters is com-

puted, with mean centering applied as in Sec. 3.3. Figure 18 shows
the PSD computed for charging and discharging for each cluster.
Cluster 1 shows a strong peak in the PSD computed for charging,
at 2.713e−5 Hz. Cluster 2 shows no discernable peaks in the PSD
computed for charging and discharging. Cluster 3 shows peaks in
the PSD computed for charging at 2.713e−5 Hz, the same as in
Cluster 1, and a large peak in the PSD computed for discharging at
1.378e−4 Hz, representing the high-power, short-duration discharge
observed within that cluster, as seen in Centroid 3.

5.2.3 Comparison to Power Spectral Density Computed Over
Entire Dispatch. As in Sec. 5.1.3, we also compute the PSD over
the entire year, without k-means clustering, for the “SuperMarket-
New” dispatch profile. This is shown in Fig. 19. The PSD computed
for charging shows a peak at 2.604e−5 Hz, and no discernable peak
for discharging. In this case, many of the duty cycling features
present in the “SuperMarketNew” clusters are missing, including
the large peak in the PSD computed for Cluster 3 discharging,
which are important to characterize the calendar cycling during
this dispatch.

5.3 Comparison to Electric Vehicle Duty Cycles. Table 2
compares the frequency corresponding to the peak value of the
PSD for peak shaving to those obtained by Liu et al. in Ref. [13],
which evaluated simulated 48 V “mild-hybrid” vehicle battery dis-
patch using PSD. These values are also compared to the same
values obtained for the simulated dispatch of a Tesla Model S
“fully-electric” vehicle battery, on the US06 and WLTP driving

cycles. The “LargeOfficeNew” and “SuperMarketNew” yearly dis-
patches are chosen as representatives for peak shaving.
With the exception of the mild-hybrid vehicle discharge, the peak

frequency of the PSD for peak shaving is at least two orders of mag-
nitude smaller than that of the PSD for the batteries in automotive
applications. Batteries for grid applications are excited across a dif-
ferent frequency range, and therefore exhibit different impedances,
than in automotive applications. This difference could have implica-
tions on the design of battery management systems (BMS) for grid
batteries in comparison to electric automotive batteries.
This difference also has implications on the operation of second-

life batteries (i.e., post-automotive-usage) for grid applications. As a

Fig. 16 Cluster assignments for each day of yearly dispatch,
“SuperMarketNew.” Days without charge and discharge (zero-
dispatch days) are not assigned a cluster.

Fig. 17 Clustercentroidsofyearlydispatch,“SuperMarketNew.”
Cluster centroids as determined by k-means clustering on the
yearly dispatch, cluster length 1 d=24 h.

Fig. 18 Power spectral density of peak shaving dispatch,
“LargeOfficeNew,” by Cluster. PSD was conducted on clusters
within the yearly dispatch, as assigned in Fig. 16.

Fig. 19 Power spectral density of peak shaving yearly dispatch,
“SuperMarketNew.” The charging PSD exhibits a strong peak at
2.604e−5 Hz, while there is no discernable peak in discharge.

Table 2 PSD peak frequencies by application

Application
Discharge PSD

peak frequency, Hz
Charge PSD peak
frequency, Hz

Peak Shaving, “LargeOfficeNew” 2.39e−5 4.02e−5
Peak Shaving,
“SuperMarketNew”

2.60e−5 1.38e−4

Mild-Hybrid Vehicle [13] 4e−4–1.17e−2 3.52e−2–4.69e−2
Fully-Electric Vehicle, US06 7.81e−3 4.69e−2
Fully-Electric Vehicle, WLTP 1.56e−2 1.95e−2
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second-life battery is excited across a different frequency range, its
degradation within grid application operation will be different than
in its “first-life” in electric vehicle operation. Therefore, models to
estimate degradation and capacity fade for the electric vehicle oper-
ation will likely not be accurate for the grid application operation,
and new tuning could be necessary for the new grid operation mode.

6 Synthetic Duty Cycles
Accurately estimating capacity fade of the battery system is a key

element to maximize its usability and lifetime in stationary grid
applications. Battery aging can be categorized into two types:
cycling and calendar aging [43]. Batteries undergo cycling aging
when they are charged or discharged. The cycling aging is mainly
affected by the charging/discharging pattern characteristics. In
lithium-ion batteries, capacity fade caused by cycling occurs due
to unwanted side reactions, such as SEI layer formation, lithium
plating at the negative electrode, and intercalation-induced stresses
[44]. Calendar aging is independent of charge–discharge cycling; it
occurs when the batteries are at rest. Calendar aging is an important
factor in grid applications when the resting period is substantial or
not negligible, compared to charging/discharging events [43].
The cluster centroids are used as the basis for synthetic represen-

tations of the yearly duty cycle. Figure 20(a) shows the proposed
synthetic duty cycle for the “LargeOfficeNew” dispatch. The syn-
thetic duty cycle is created based on Centroid 1, thereby removing
the redundant dispatch information in the two cluster centroids in
Fig. 11. Given its high-power charge, it covers the full range of
power of the dispatch duty cycling and characterizes the worst-case
scenario.
The synthetic duty cycle includes the high-power charge cycle

and then two lower-power discharge cycles derived from Centroid
1 dispatch. It then includes a small, low-power discharge in order to
ensure that the duty cycle is energy-neutral (i.e., the battery starts
and ends at the same SOE). This is shown in Fig. 20(b) for a starting
SOE of 0.2. The SOE reaches a maximum of 0.875 during the syn-
thetic duty cycle, then returns to 0.2 after completing the synthetic
duty cycle.
The synthetic duty cycle is confirmed to shorten the yearlong dis-

patch profile (a total of 8760 h) to 18 h. A rest period of zero-power
dispatch can be appended to the synthetic duty cycle to account for
calendar aging as well, at the expense of extending the length of the
duty cycle.

7 Conclusions
A process for characterizing the duty cycle of grid applications

for energy storage was presented, using k-means clustering and
PSD for stationary battery under peak shaving applications. The
combination of k-means clustering and PSD analysis captures

features within each cluster that would otherwise be lost in a PSD
analysis conducted over the entire dispatch profile. This process
also characterizes the variation in duty cycle within a peak
shaving dispatch profile. This allows for direct comparison
between peak shaving dispatch profiles, as well as to other applica-
tions, such as batteries in mild-hybrid and fully-electric vehicle
applications.
The proposed method leads to the design of lab-prone synthetic

duty cycles. The developed duty cycles can be used to cycle differ-
ent chemistries (e.g., Lithium–Iron–Phosphate, Nickel–Manga-
nese–Cobalt, Nickel–Cobalt–Aluminum) to collect degradation
data that can be used for long term grid-energy storage analysis.
The characterization method can also be applied to analyze other
grid storage applications such as frequency regulation, back-up
power, and voltage support.
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