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Abstract: This paper covers the design and implementation of a rule-based 
energy management strategy for a medium duty hybrid truck. In this paper, a 
procedure for the design of a near-optimal energy management strategy is 
presented. The procedure utilises the dynamic programming (DP) algorithm to 
find the optimal control strategy that minimises the fuel consumption over a 
given driving mission. Through the analysis of the behaviour of DP control 
actions, near-optimal rules are extracted and tuned to design a rule-based 
strategy for charge sustaining operation which, unlike DP control signals, is 
implementable on-board of the vehicle. Drivability metrics such as frequent 
clutching and engine on/off behaviour are also included in the control design 
based on the implementation of the DP under different drivability scenarios. 
 The performance of the proposed energy management control strategy is 
studied by using a proposed longitudinal vehicle model of a pre-transmission 
parallel medium duty hybrid truck with a clutch. The proposed near-optimal 
rule-based strategy, benchmarked against the optimal DP solution, shows 
performance within 3% of the global optimal one. 

Keywords: hybrid truck; hybrid electric vehicle; HEV; dynamic programming; 
powertrain modelling; rule-based control strategy. 
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1 Introduction 

With the demand for greener cars and the reduction of fuel consumption optimal use of 
the available sources of energy in a vehicle is required. This translates in complex 
powertrains and vehicle architectures and control strategies that must be implemented to 
remain competitive in the market. Hybrid electric vehicles (HEVs) represent a powerful 
means to save fuel and reduce CO2 emissions. Their performance strongly depends on the 
energy management strategy onboard of the vehicle. The HEV control problem involves 
the determination of the optimal power flow, namely, the power split between the internal 
combustion engine (ICE) and the electric motors (EMs) (Salman et al., 2000; Sciarretta 
and Guzzella, 2007). Finding the sequence of optimal power split at each instant to 
minimise the fuel consumption over a driving cycle is the aim of the energy management 
control for HEVs. In general, the energy management control is implemented in the 
vehicle-level control system that can coordinate the overall hybrid powertrain to satisfy 
certain performance target such as fuel economy, emission reduction, etc. Its commands 
become then the set-points for the servo-loop control systems, which operate at a much 
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higher frequency. The servo-loop control systems can be designed for different goals, 
such as improved drivability, while ensuring the set-points commanded by the main loop 
controller are achieved reliably. 

Several strategies have been proposed in literature to solve the HEV energy 
management problem (see, for example, the overview in Sciarretta and Guzzella, 2007). 
The methods are classified into two main groups: optimal control-based methods and 
heuristics strategies. 

1 Optimal control-based methods. In this group we find both global optimisation and 
instantaneous optimisation methods based on the optimal control tools (Lewis and 
Syrmos, 1995). Both classes of methods can guarantee global optimal solutions 
assuming the knowledge of the entire driving cycle. The DP (Brahma et al., 2000), 
the Pontryagin’s minimum principle (PMP) (Cipollone and Sciarretta, 2006) and 
equivalent consumption minimisation strategy (ECMS) (Paganelli et al., 2001; 
Serrao et al., 2011), belong to this class of methods as well as other numerical search 
methods such as, e.g., genetic algorithms (Piccolo et al., 2001). The main limitation 
of these methods is in their impossibility of being implementable in real time as their 
solutions rely on future unknown information. 

2 Heuristic methods. These methods do not involve explicit optimisation; instead, the 
energy management is implemented through heuristic rules. Rule-based control  
(Ayalew and Molla, 2011; Jalil et al., 1997) and fuzzy logic (Salman et al., 2000) 
belong to this category. These strategies are computationally efficient, requiring 
lower computational load than optimal control-based methods. However, they may 
fail to fully exploit the potential of the hybrid electric architecture due to the lack of 
formal optimisation. 

In this paper, we apply the DP technique to solve the optimal energy management 
problem for a hybrid electric truck. The optimal power management solution over a 
driving cycle is obtained by minimising a defined cost function in terms of overall fuel 
consumption. Although the DP control actions are not implementable they are, on the 
other hand, a good design tool to analyse, assess, and adjust other control strategies.  
The behaviour of the DP is studied to extract implementable rules and to design a  
rule-based strategy whose performance are shown, in simulation, to be very close to the 
DP solution. 

The paper is organised as follows: in Section 2 the powertrain architecture of a 
medium duty hybrid truck is introduced and the role of the hybrid controller in HEV is 
discussed; in Section 3 the energy management problem for charge sustaining HEVs is 
introduced and the mathematical model of the hybrid electric truck is described in 
Section 4. Section 5 describes the dynamic programming (DP) algorithm and the 
different scenarios the DP was solved in this study. Section 6 reports on simulation 
results obtained from the different scenarios defined in Section 5. In Section 7 the  
rule-based control strategy is designed by extracting rules from the DP solutions. 
Moreover, the calibration procedure for tuning the RB control law and simulation results 
are presented. Finally, conclusions are presented in Section 8. 
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2 The role of hybrid controller in HEV 

The energy management problem is solved in this paper for the pre-transmission parallel 
architecture represented in Figure 1. The power flow between the different components 
(the arrowheads denote the positive power sign convention) is illustrated. The main 
specifications of the powertrain components are reported in Table 1. 

Figure 1 Parallel architecture and power flow diagram (see online version for colours) 

 

Table 1 Medium duty hybrid truck specifications 

Frontal area 8 m2 
Diesel engine 6.7 L; 194 kW 

100 kW (continuous)  Electric motor 
200 kW (peak) 

Cell capacity: 6 Ah 
175 series cells 
2 par modules 

Battery pack capacity: 12 Ah 

Battery 

Max power : 200 kW 
Mechanical accessory 4 kW 
Electrical accessory 7 kW 

The ICE and the EM supply the requested power at the wheel allowing the possibility to 
recharge or deplete the battery, within a fixed range of state-of-charge (SOC). A clutch 
can be disengaged to disconnect the ICE from the powertrain: in this configuration the 
electric motor provides all the power during traction while the ICE can be turned off if 
requested. 

The energy management problem is cast into an optimisation problem where the mass 
of fuel is being minimised over a driving mission subject to the following constraints. 
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• charge-sustainability: the battery SOC at the beginning and the end of the trip should 
be equal 

• drivability constraints: at each instant, the total torque output of the powertrain 
should be equal to the driver’s demand 

• actuator limitations: at each instant, the output of each machine in the powertrain 
(engine and motor) cannot exceed its maximum torque/power rating; similarly, the 
total battery power must remain within the acceptable limits in both charge and 
discharge operations. 

The general structure of hybrid controller is shown in Figure 2. The supervisory module 
decides upon the available modes the powertrain should operate (EV or parallel), whereas 
the energy management module determines the optimal power split between the on-board 
energy sources. 

Figure 2 Two layer hybrid control structure 

 
Supervisory controller module 

Energy management module 

Speed control (driver) 

Powertrain 
(with component-level controllers) 

Vehicle 

SOC, ωice, ωmc 

Tdmd 

Tmc, C, E, Tice, Tbrake 

V 

Twh 

C, E

 

In the vehicle architecture we distinguish discrete and continuous variables. The status of 
the clutch (locked or unlocked) and the status of the engine (on or off) are discrete control 
variables that determine the operating mode of the powertrain, whereas the torque of the 
electric machine is a continuous control variable which determines, at each sampling 
instant, how the power request is shared between the actuators. 

Thus, the control vector is given by: 

{ }, , ,mcu T C E=  

where Tmc is the motor torque, C is the clutch status (C = 1 for clutch closed, C = 0 for 
clutch open), and E is the engine status (E = 1 when the engine is on, E = 0 when it is 
off). The value of the variables C and E is determined at the supervisory controller level, 
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while Tmc is determined at the energy management level, meeting the constraints during 
vehicle operation. 

The transmission gear index is chosen by the transmission controller, which is 
assumed to be external to the energy management and supervisory controller; therefore, 
the gear index is treated as known external input in this context. The vehicle velocity, the 
rotational speed of the ICE and the electric machine and the driver torque demand are 
also external inputs of the two-layer hybrid control and they determine the gear index. 

The aim of this paper is to develop a rule-based strategy according to the two-layer 
structure of Figure 2. To achieve this goal we follow the approach proposed in Bianchi  
et al. (2011) which relies on first finding the global optimal solution of the optimisation 
problem by means of the DP solution (as in Lin et al., 2003) and then, from this, 
extracting static rules to be implemented in a two-layer controller to reproduce the 
optimal behaviour. 

3 Energy management problem for HEV 

The optimal energy management problem consists in finding the control function u(t) that 
leads to the minimisation of the performance index, defined as: 

( ) ( )
0

( ) ( ) ,
ft

f
t

J u t m u t dt= ∫  

where t is time, u(t) is the control action, tf – t0, is the optimisation horizon, ( ( ))fm u t  is 
the instantaneous cost function, i.e., the fuel consumption rate. 

With a quasi-static engine model, the fuel consumption is only a function of the 
engine torque, Tice(t) and the speed ωice(t). The dependence of these variables on the 
driver’s torque demand Tdmd(t), the control Tmc(t), and the vehicle speed V(t), allows us to 
express the fuel consumption as ( ( ), ( ), ( )).f mc dmdm T t T t V t  

The vehicle speed and the torque demand are considered as external inputs; the 
dynamics of the powertrain components are neglected [as being much faster than the 
SOC dynamics and not affecting the vehicle energy balance significantly (Sendur et al., 
2003)]. The constraints to which the optimisation is subject to are listed below: 

a System dynamics. In HEVs, the system dynamics are represented by the evolution of 
the state-of-charge according to: 

( )( )
batt

I tSOC t
Q

= −  

where I(t) is the current in and out of the battery (positive during discharge). 

b Initial state value. The system state at the beginning of the optimisation horizon 
assumes the initial value SOC0 =SOC(0) = 0.68. 

c Terminal state value. The terminal value of the state must satisfy the constraint  
SOCf = SOC(tf) = 0.68. 

Note: Conditions b and c define the charge-sustaining constraint assumed in this 
work. 
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d Instantaneous state limitations. At each time t ∈ [t0, tf], the state of charge must 
remain within lower and upper bounds: 

0.5 ( ) 0.8SOC t≤ ≤  

e Instantaneous control limitations. At each time, the control variable u(t) must be in 
the set of given admissible controls. The definition of the admissible control set is 
specific to each architecture: The general guidelines are that the controls must be 
such that the torque or power delivered by each machine does not exceed their 
intrinsic limitations, while at the same time, the total torque or power demand at the 
wheel is satisfied (to the highest degree possible). 

At this point, the optimal control problem is completely defined. The following sections 
show how the optimisation problem can be solved by means of DP to obtain the optimal 
global solution, once the driving cycle is known. In Section 5, results from the DP 
algorithm are analysed and studied to extract meaningful characteristic of the optimal 
solution that can be reproduced and synthesise within a rule-based strategy framework. 

4 Medium duty hybrid truck model 

In this paper a backward simulator (Musardo et al., 2005) of the medium duty hybrid 
truck is developed to first find the global solution from the DP algorithm, and then to 
implement the rule-based strategy derived from it. The net tractive force is calculated 
given the velocity, payload, and grade profile, along with the vehicle characteristics. A 
large number of combinations of actuators power (i.e., motor, engine, brake system) can 
satisfy the driver demand, but only one combination at each time gives the optimal 
control; the fuel consumption is evaluated as a consequence of the decision made by the 
optimal controller. 

The backward simulator is a quasi-static model: all the dynamics are neglected and 
each component is represented through stationary maps experimentally measured; in 
particular, the clutch and the engine cranking transients are neglected. 

4.1 Powertrain model 

Starting from the driving cycle inputs, the traction force at the wheel that the powertrain 
(including the brake system) has to generate in order to satisfy the dynamic constraints is 
given by: 

.w i r a gF F F F F= + + +  (1) 

Each term in the above equation is computed as follows: 

• Rolling resistance: 

cos .r rF c Mg α=  (2) 

where g is the gravity acceleration, α is the road slope, M is the vehicle mass and cr 
is the rolling resistance coefficient which, in principle, is a function of vehicle speed, 
tire pressure, external temperature, etc. In most cases, cr is assumed to be a cubic 
polynomial function of the speed V: 
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2 3
0 1 2 3 .rc c c V c V c V= + + +  (3) 

• Aerodynamic resistance: 

21 ,
2 air dF AC Vα ρ=  (4) 

where ρair is the air density, A the vehicle frontal area, Cd the aerodynamic drag 
coefficient. 

• Road slope: 

sin ,gF Mg α=  (5) 
where α is the slope angle of the road. 

• Inertia: 

,i eq
dVF M
dt

=  (6) 

where Meq is the equivalent mass that takes in account all the inertia of the driveline 
component and can be expressed as: 

2 2

2 2
1 ,gb d

eq w iceM M J J
R R

τ τ
= + +  (7) 

where M is the vehicle mass, Jw is the overall inertia of the four wheels (which 
includes tires, brake discs, half shafts), Jice is the engine inertia, R is wheel radius, τgb 
is the transmission gear ratio and τdτ is the final drive gear ratio. 

Neglecting for this instance the wheel inertia, equation (8) considers the wheel 
equilibrium to evaluate the gearbox input torque, Tgb: 

( ) ( ) ,gb gbsign T sign T
w gb gb d bgb dF R T Tη η τ τ= −  (8) 

where Tb is the total braking torque applied by the friction braking system, ηgb and ηd are 
the efficiencies of the gearbox and the final drive, respectively. 

All the vehicle parameters used in the previous equations are supposed to be known 
by the control strategy; the driver’s wheel torque demand (determined by the accelerator 
pedal position) is the request that the hybrid propulsion system must satisfy through the 
application of an adequate Tgb and the braking torque Tbrake. The way this is done depends 
on the operating mode of the vehicle, as explained below. 

• EV mode engine off: the mechanical accessories, which are belted to the engine shaft, 
are not powered. The vehicle is then powered only by the motor, which is electrically 
connected to the battery. 

In this case there are no degrees of freedom and the EM torque is given by: 

,    0.gb mc iceT T T= =  (9) 

The engine speed is zero and the motor speed is the gearbox speed. 
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,   0.mc gb iceω ω ω= =  (10) 

• EV mode engine on: the engine is on at idle speed; mechanical accessories are belted 
to the engine shaft are powered by the engine. The vehicle is driven only by the 
motor, which is powered by the battery alone. In this case there are no degrees of 
freedom and the EM torque is given by the gearbox torque, while the engine torque 
is required for the mechanical accessories: 

,    .accmech
gb mc ice

ice

P
T T T

ω
= =  (11) 

The engine speed is the idle speed, while the motor is coupled with the gearbox. 

,   .mc gb ice idlω ω ω ω= =  (12) 

• Parallel mode: if the system is in the parallel configuration the clutch is engaged and 
both the engine and the EM are connected to the powertrain. In this configuration the 
sum of the EM and engine torques is equal to the total demanded torque, thus the 
torque at the gearbox is given by: 

gb mc eng accmechT T T T= + −  (13) 

Taccmech is the torque absorbed by the mechanical accessories and can be calculated as 
follow: 

accmech
accmech

eng

P
T

ω
=  (14) 

The engine speed and the motor speed are equal since devices are coupled by the 
clutch before at input of the gearbox: 

eng mc gbω ω ω= =  (15) 

The battery power Pbatt is a function of the electrical accessory power Paccelec and EM 
power Pem. 

( )
,

battsign P
batt mc e accelecbattP P Pη = +  (16) 

The braking torque is considered only if the negative torques coming from the engine 
and the EM are not enough to satisfy the requested torque. 

( ) ( )

if         then

otherwise    0

gb gb

gb accmech mc,min ice,min

sign T sign T
b ice,min mc,min accmech gear fd wheelgb fd

b

T T T T

T T T T T

T

η η τ τ

+ ≤ +

⎛= + − −⎜
⎝

=

 (17) 

For the purpose of implementing an energy-based backward simulator, a 0th order 
model of the battery is used to compute the state of charge variation as a function of 
the power at the terminals and of the circuit parameters. 
The validation of the backward model was conducted against the PSAT detailed 
model1 of the pre-transmission parallel vehicle. A sampling time of 0.1 s was used to 
run both models. The cumulative errors on fuel consumption and on the final SOC 
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were 0.4% and 0.8%, respectively (Figure 3). A zoom on the dynamics of the engine 
torque and battery current is shown in Figure 4. 

Figure 3 Macro validation of the backward model (red) against PSAT model (blue):  
(starting from the top) driving cycle velocity; fuel consumed; SOC profile  
(see online version for colours) 

 

Figure 4 Transient dynamics validation of the backward model (red) against PSAT model 
(blue): (starting from the top) driving cycle velocity; engine torque; battery current  
(see online version for colours) 
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5 Dynamic programming 

DP generates a numerical solution to the optimal control problem defined in Section 3 
based on Bellman’s principle of optimality (Salman et al., 2000). In order to apply DP for 
the problem at hand, the system dynamics and the control domain are written in a 
discrete-time form. To implement the DP algorithm on described hybrid architecture, an 
open-source MATLAB code developed at ETH-Zurich (Sundström and Guzzella, 2009) 
was exploited. This function solves discrete-time optimal control problems using 
Bellman’s DP algorithm. The user has to provide the number of controls that need to be 
optimised, the states of the system that have to be monitored and the limits for each of 
them. Then the code pre-processes this information in order to arrange all the possible 
input values into multi-dimensional matrices. The sequence of control actions are 
applied, step-by-step, to a backward vehicle model that generates a grid of possible SOC 
values, each corresponding to a certain pattern of control inputs. 

In this work, the DP has been run under three different scenarios: 

1 standard with no drivability constraints 

2 incorporating drivability constraints by means of an energy cost associated to the 
engine on/off (to limit continuous engine on-off on operations) 

3 incorporating drivability constraints by means of an energy cost associated to with 
the clutch timing to limit continuous and repeated clutch on-off switching. 

The three scenarios are detailed below. 

5.1 DP with no constraints 

The DP algorithm was run to solve the standard optimisation problem, where the only 
state variable is the state of charge. In this scenario, continuous switches of the engine 
off-engine-on operation are observed as well as continuous engagement and 
disengagement of the clutch, which compromise the overall drivability. To address this 
issue, the DP code was modified in order to discourage the continuous engine-off/ 
engine-on transitions and to refrain the clutch to change continuously its status in the two 
next scenarios. 

5.2 DP with engine cost weight 

A cost associated to the engine on/off is considered in this scenario. In a real vehicle the 
battery provides to the starter the amount of electrical energy needed to speed up the 
engine to the idle speed. After this point the engine combustion becomes stable and fuel 
can be injected in the cylinder to maintain the engine rotating. 

The amount of energy consumed over an engine-off engine-on event, is given by 

,on batt batt onE I V T=  

It is estimated2 that, for the 6.7 L Diesel engine considered in our application, Eon ~ 10 kJ, 
which is equivalent to a battery state of charge variation of 
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10 kJ 0.37%.
27 MJ

on
on

batt

E
SOC

E
Δ = = ≈  

The DP algorithm was modified in order to account for the ‘cost’ associated to each 
engine-off engine-on which, in turn, increases the fuel economy by reducing the number 
of engine-on events. From a computational standpoint, the inclusion of a binary variable 
resulted in an increase of the execution time by a factor of two. 

5.3 DP with clutch counter 

To improve the drivability of the vehicle a clutch counter is implemented in the DP 
algorithm that reduces fast transients of the clutch. The timer was implemented in such a 
way the clutch is forced to stay in the same status (engaged or disengaged) for at least n 
seconds. 

Since DP solves the optimisation problem backward in time, the implementation of a 
‘n’ second timer requires ‘n’ additional binary state variables. The computational time of 
DP increases exponentially for each new state variable (e.g., ‘10’ s clutch timer increases 
the computational time by a factor of 210). The clutch timer has been implemented for 
two seconds and four seconds corresponding to an increase in simulation time by a factor 
4 and 16, respectively. 

Each of the scenarios was analysed along six different driving cycles: Manhattan, 
WVU-sub, WVU-inter, APTA, HTUF, UDDS-truck to test the DP for urban, highway 
and mixed driving cycles. The code developed by Sundström and Guzzella (2009) was 
used to implement the three scenarios. 

6 DP comparison under different driving scenarios 

The comparison between the DP results has been done for the following configurations: 
no constraints, engine cost (10 kJ, 100 kJ) and clutch timer (2 s, 4 s). A summary of the 
overall results are shown in Table 2. As it can be noted, the driving mode selection does 
not seem to be clearly affected by the particular DP execution. The amount of time spent 
in each driving mode is very similar in all cases. The only qualitative difference is that 
the EV mode with engine ON is only used when the engine cost is considered. If no 
engine cost is considered at the time when the engine turns on, then there is no reason to 
keep the engine running with the only goal of providing power for the mechanical 
accessories. 
Table 2 Driving mode selection statistics for different DP scenarios 

 No 
constraint

Engine cost
10 kJ) 

Engine cost
(10 kJ) 

Clutch timer
(2 s) 

Clutch timer 
(4 s) 

Parallel 43.63% 39.87% 42.42% 39.28% 39.24% 
EV engine off 56.37% 59.77% 54.26% 60.72% 60.76% 
EV engine on 0% 0.36% 3.31% 0% 0% 
ΔSOC = SOCend – SOCref 0.000% 0.046% 0.234% 0.009% 0.160% 
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6.1 Near optimal rule-based strategy 

The control based on a set of empirical rules is computationally efficient for an embedded 
CPU, but it can generate results which may be not optimal, if the vehicle is operating 
outside the domain where the rules were obtained. 

Table 3 shows the frequencies for which the clutch transients and the engine ON/OFF 
events occur. Highest frequencies are obviously reached for the DP configuration with no 
constraint. Using an engine cost, it is possible to reduce the number of clutch transients 
by a factor 2.2. This factor does not change in the case of a higher cost (100 kJ). The 
events in which the engine turns ON are drastically reduced by a factor 3 and 7 for the 
engine cost of 10 kJ and 100 kJ, respectively. Despite of the DP configuration choice, the 
equivalent fuel consumption values (which take into account for the SOC variation at the 
end of the driving cycle) are very similar to the base-line set to the case of DP 
configuration with no constraints. As expected, the worst scenario is represented by the 
configuration with an engine cost of 100 kJ (+1.2% in comparison with the baseline). 
Table 3 Average of clutch transients and engine on/off events along 6 different driving cycles; 

comparison of equivalent fuel consumption 

 No 
constraint

Engine cost
(10 kJ) 

Engine cost
(10 kJ) 

Clutch timer
(2 s) 

Clutch timer 
(4 s) 

Average number of 
clutch ON/OFF events in  
1 s 

0.085 s–1 0.037 s–1 0.038 s–1 0.058 s–1 0.040 s–1 

Average number of 
engine OFF/ON events in  
1 s 

0.085 s–1 0.029 s–1 0.012 s–1 0.058 s–1 0.040 s–1 

Equivalent fuel 
consumption 

100.0% 100.5% 101.2% 100.3% 100.5% 

In Figure 5 results from DP simulation with a clutch timer of 4 s are shown. The mode 
selection (Parallel and EV) information overlaps the velocity profile (composed by the 
concatenation of six different driving cycles). 

Figure 5 (a) Driving cycle with driving mode selection and (b) optimal SOC profile from  
the DP simulations with a clutch timer of four seconds, (c) detail of driving  
mission and corresponding mode selection between 2,200 and 3,800 seconds and  
(d) actuators torque distribution (see online version for colours) 

 
(a) 
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Figure 5 (a) driving cycle with driving mode selection and (b) optimal SOC profile from  
the DP simulations with a clutch timer of four seconds, (c) detail of driving  
mission and corresponding mode selection between 2,200 and 3,800 seconds and  
(d) actuators torque distribution (continued) (see online version for colours) 

 
(b) 

 
(c) 

 
(d) 

The constraint on the clutch switching makes the powertrain operating in a given mode 
ensuring better drivability. The SOC profile is shown at the bottom of Figure 5. The DP 
ensures an almost total usage of the SOC range by letting the SOC optimally vary within 
the admissible range (0.5–0.8). 
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7 Near optimal rule-based strategy 

The control based on a set of empirical rules is computationally efficient for an embedded 
CPU, but it can generate results which may be not optimal, if the vehicle is operating 
outside the domain where the rules were obtained. 

The calibration of a rule-based strategy, in addition, can also be not straightforward. 
The DP, on the other hand, provides the optimal solution on each driving cycle. In this 
section, the solution proposed by the DP (with an engine turn-on cost of 10 kJ) is 
analysed to extract rules that could reproduce the optimal behaviour. This approach, 
already known in literature, is applied in this work not only to determine the hybrid 
power split, but also to establish a ‘nearly-optimal’ powertrain mode of operation  
(some examples of this procedure are shown in Bianchi et al., 2011; Lin et al., 2003, 
2004; Kum et al., 2010). Moreover, the rule-base strategy proposed in this paper can 
handle situations that can arise during real vehicle driving but which are not considered 
for the DP solution. 

The starting point for deriving a rule-based strategy (RB) from DP is an extensive set 
of simulations in which the optimal driving strategy is found for several driving cycles 
and combinations of them, covering a wide range of urban and suburban driving 
conditions. The results are then studied and analysed in order to find common patterns 
and signal correlations, which are then replicated by suitable rules. 

As mentioned in Section 3, the hybrid controller is configured in such a way that two 
layers are defined: the supervisory control module, which decides the best operating 
mode of the powertrain, and the energy management module, which is responsible for 
splitting the torque among the machines in order to satisfy the overall torque demand. 
This calls for the analysis of the DP strategy on two levels: mode selection (engine and 
clutch status) and torque split. The extraction of rules for each of these two levels is 
described the following sections. 

Moreover, the design of the RB strategy is then completed and enriched with 
additional rules to account for situations that can arise in real vehicle operation. 

7.1 Supervisory control module 

The goal of the supervisory control module is to decide upon the powertrain 
configuration (clutch status and engine status) starting from the knowledge of the power 
requested by the driver, the gear number, the gearbox speed, the SOC and the 
temperatures of the powertrain components. 

In normal conditions, the driving mode is selected from the distribution mode map in 
the plane ‘total power demanded at the wheel vs. gearbox speed’ as identified by  
the DP solution shown in Figure 6. The parallel mode (green points) is mostly chosen at 
speed higher than a certain threshold and positive power request, while the EV mode 
(engine off) is used during braking and vehicle launching (blue points). 

In particular, in Figure 6 we can isolate three distinct areas in order to extract the 
following rules. 

 
 
 
 



   

 

   

   
 

   

   

 

   

    A near-optimal rule-based energy management strategy 247    
 

 

    
 
 

   

   
 

   

   

 

   

       
 

Area A for engine speeds greater than the engine idle speed and for positive gearbox 
power, only the parallel configuration is chosen. 

Area B this area gathers points related to a negative power request, with clutch open  
(C = 0) and engine OFF. 

Area C: at low speed and positive gearbox power, the powertrain works in pure electric 
(EV) mode, i.e., the clutch is open (C = 0) and the engine is OFF. 

Figure 6 Powertrain mode selection from the DP solution (standard case with no constraints) 
over combinations of driving cycles (see online version for colours) 

 

The design of the supervisory control module is performed starting from information in 
Figure 6 and completed by enforcing constraints on the clutch engaging/disengaging and 
engine on/off transitions to improve drivability. Moreover, the supervisory control 
module was implemented in order to address the ‘exceptional’3 situation of recharging 
the battery when the SOC is too low in case of vehicle at standstill. 

7.1.1 Drivability constraints 

To avoid repeated clutch and engine state variations, the RB strategy is implemented in 
such a way that a counter variable is introduced in the control algorithm which counts the 
seconds that the vehicle has spent in EV mode. The aim of the counter is both to improve 
the drivability by reducing transient of the clutch and to increase the fuel economy by 
reducing the number of engine ignition events. As seen in the DP simulations, a solution 
is to force the powertrain to be in EV mode for at least four seconds, unless the power 
requested is higher than the maximum electric power available and the gearbox speed is 
greater than the minimum speed of the engine. No constraints are considered to switch 
from parallel to EV mode, since for some kind of manoeuvres (e.g., fast start-stop) the 
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EV mode is required and the parallel mode cannot be maintained. In fact, the engine 
cannot run below a certain speed and it needs to be disconnected from the drivetrain 
when the vehicle approaches a stop. 

7.1.2 Exception handling in RB strategy 

When the vehicle is at standstill (ωwh = 0) and in EV mode, the electrical accessories are 
powered by the battery only. For the type of battery considered in our study it is 
estimated that the stored energy of the battery (starting form 0.65 SOC) can be depleted 
in less than 10 min, since: 

( )0.65 25  MJ  (0.65 0.5) 578  s 10 min
7 kW

batt min

accelec

E SOC
P

− −
= ≈ ≈  (18) 

For this reason, a parallel driving mode in neutral gear is needed when the vehicle is at 
standstill for a long time (e.g., long queue) in order to recharge the battery without 
transmitting torque to the wheels. In fact, the only way to recharge the battery is turning 
ON the engine and disconnecting it from the wheels with the gearbox on neutral. This 
way the engine can supply mechanical power to the motor which works as a generator. 

In reference to Figure 7, when the battery SOC reaches a threshold SOC1, a flag 
called Forcer is set to 1. At this point, if the vehicle is standstill, the parallel mode with 
neutral gear is selected by the supervisory control module over the EV mode. This allows 
the battery SOC to increase (yellow area). When the SOC reaches a second threshold 
SOC2, then Forcer is reset to 0. The SOC1 and SOC2 have been chosen equal to 0.60 and 
0.70, respectively. 

Figure 7 Qualitative representation of the ‘exception’ handled by the supervisory control 
module (see online version for colours) 
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The supervisory control module has been implemented in the simplified model according 
to flowchart of Figure 8. The supervisory control module outputs the modes in which the 
powertrain will operate, which are: 

• driving mode = 0 → electric mode 

• driving mode = 1 → parallel mode 

• driving mode = 2 → parallel mode with neutral gear. 

The logic flow is articulated in such a way that, starting from the torque requested, the 
motor temperature is first checked and compared to a temperature threshold4 (Temp1 is 
given by the motor manufacturer) to ensure the motor is working within its limits. 

Figure 8 Supervisory controller flowchart 
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Then, if the vehicle is in EV mode and the variable Counter is lower than five seconds, 
the EV mode is selected (driving mode = 0) unless the power request is higher than the 
maximum capability of the EM alone, which require the use of the engine and the 
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selection of the parallel mode (driving mode = 1). In case none of these two modes is 
selected, the supervisor control module enforces the parallel mode with neutral gear after 
checking that the vehicle is at standstill and the variable Forcer is set to 1 when the SOC 
is below a threshold SOC1 or if during the previous step the Forcer was already equal to 
1. The variable Forcer is reset to 0 once the SOC becomes higher than SOC2. The logic 
behind the variable Counter is needed to avoid frequent clutch engagements and 
disengagements; five seconds has been considered an appropriate value for the Counter 
threshold, in order to compromise the fuel consumption and the vehicle drivability. 

7.2 Energy management module 

The second layer of the hybrid controller is given by the energy management module, 
whose role is to choose the torque distribution between the EM, the engine and friction 
brakes based on the information provided by the supervisory control module and from the 
powertrain status. The information on driving mode, torque limitations and total torque 
demanded (from the supervisory control module) will enter the energy management 
module, in addition to the gearbox speed, the gear number, the SOC and the temperature 
of the motor (from the powertrain) according to the scheme in Figure 9. The energy 
management module processes this information and outputs the torque split. In the 
following, the strategy adopted for the torque split in the three modes is presented. 

Figure 9 Energy management module 

 

7.2.1 Torque distribution: EV mode 

When the vehicle is in EV mode all the requested torque is provided by the  
EM. The friction braking is blended in only if the braking torque exceeds the motor 
availability. 

7.2.2 Torque distribution: parallel mode with neutral gear 

When the vehicle is in parallel mode and neutral gear, the target is to increase the SOC 
while keeping the powertrain working at its maximum efficiency point: 
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( )
max batt mc ice accmech gb accelec

f lhv

T T P
m Q

η η ω⎛ ⎞− −
⎜ ⎟⎜ ⎟
⎝ ⎠

 (19) 

For the particular powertrain assumed in this study, the most efficient operating point 
occurs when (Tice, ωice) = (841 Nm, 175 rad/s), as shown in Figure 10. This situation 
allows also a quick recharge of the battery, since it also corresponds to a relatively high 
power operating point. 

Figure 10 Powertrain efficiency map and best operating point selected when the vehicle is in 
parallel mode with neutral gear (see online version for colours) 

 

7.2.3 Torque distribution: parallel mode 

When the vehicle is in parallel mode, the torque split between the EM and the engine is 
mostly a function of the total torque demanded. In fact, from the DP results shown in 
Figure 11, a linear function seems to well approximate the relation between TMC and Tgb. 
The linear function 

MC dmdT mT k= +  (20) 

is used next as a splitting rule in the energy management module in parallel mode. 

7.2.3.1 Calibration of torque distribution law in parallel mode 

The correlation and linear fitting in Figure 11 does not carry any dependence of the 
torque split on the actual SOC of operation. This information, on the other hand, is 
crucial in order to enforce and guarantee the operation within battery limitations. 

The intuitive idea is to promote the use of electric power for traction at high SOC 
values. On the other hand, the use of the EM as a generator is preferred when the SOC is 
low. This corresponds to shift up and down the torque split line as a function of SOC. 
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One way of doing so is by means of modifying equation (21) to include an extra term, a 
penalty function p, whose role is to account for SOC in the linear torque split: 

.MC dmdT mT kp= +  (21) 

A feedback from the SOC mechanism is implemented, through a penalty function,  
to monitor the behaviour of the SOC to avoid unexpected deviation from the  
charge-sustaining value (set to 0.68%). The penalty function will provide a small 
correction for small deviation from the SOC reference and more important corrections 
when the deviation becomes more pronounced. 

Figure 11 Linear fit of the torque split distribution in parallel mode (see online version  
for colours) 

 

The penalty function selected is: 

1,n
SOCp xμ= − ⋅ +  (22) 

where xSOC measures the distance of the SOC from a reference value SOCμ and it is 
defined as: 

2

SOC
max min

SOC SOC
x

SOC SOC
μ−

=
+

 (23) 

where 
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μ defines the gain of the penalty function depending on how far the SOC is from 
SOCμ, in particular μ will assume two distinct values corresponding to the two 
cases when SOC is higher or lower than SOCμ. 

n is the exponent of the penalty function which defines the degree of the 
polynomial function. The higher the value of n, the higher the correction when 
the SOC is deviating from SOCμ. The value chosen in this study is n = 3. 

SOCμ is the parameter that has to be tuned in order to have an acceptable SOC profile 
for given driving cycles, to avoid to discharge/recharge the battery over the limits 
and to minimise the equivalent fuel consumption. Intuitively, high values for 
SOCμ will tent to position the actual SOC at high value as well which can result 
in a limitation of the regenerative braking capability with a negative impact on 
fuel consumption. On the other hand, low values for SOCμ might result in 
frequent condition of low SOC: this may prevent from having enough electrical 
power available to perform an efficient torque split behaviour or either to satisfy 
the overall power request from the driver. 

The calibration of equations (22) and (23), in terms of selection of best values of μ is 
conducted considering two scenarios: when SOC = SOCmax and when SOC = SOCmin. 

When SOC = SOCmax and the torque demanded, Tdmd, is zero, the motor should not 
recharge the battery and should not provide a positive torque, i.e., Tmc = 0 (otherwise it 
should be braked by the ICE or by the friction brakes). Thus, from equation (21) we 
obtain: 

0,    for    dmd mc maxmT pk T p SOC SOC+ = → = =  (24) 

This implies that 

1 1
11 0 .n

SOC n
SOC

x
x

μ μ −
− = → =  (25) 

This means that when the SOC is higher than the SOCμ, the linear split gradually shifts up 
until the penalty function becomes zero, for SOC = SOCmax. 

When SOC = SOCmin, the EM has to at least provide the battery with enough power to 
sustain the electrical accessories. Thus, the maximum motor torque requested, at 
minimum gearbox speed is: 

( ),
, ,

130  Nm.accelec
accelec max

gb em gb thr accelec

P
T

Tω η ω
= =  (26) 

The maximum value of the demanded torque is then: 

, , , (841 130)  Nm 711 Nmdmd max ice max accelec maxT T T= − ≤ − =  (27) 

Hence, at SOC = SOCmin, equation (22) becomes: 

, , ,dmd mc dmd max accelec maxmT kp T mT kp T+ = → + = −  (28) 

which gives: 
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, ,

2

1 dmd max accelec max

n
SOC

mT T
k

x
μ

+
+

=  (29) 

When the SOC is lower than the SOCμ (Figure 12), the linear split gradually shifts down 
until the penalty function becomes: 

, ,accelec max dmd maxT T
p

k
+

= −  (30) 

The two values found for μ, i.e., μ1 and μ2, are then used to force the SOC to be remain 
close to the SOCμ. Closer the SOC value is to SOCmax. or SOCmin, stronger is the penalty 
function effect. The penalty function effect is null (p = 1) when SOC = SOCμ. 

Figure 12 Split function shift when the SOC is lower than SOCμ (see online version for colours) 

 

7.2.3.2 Calibration of SOCμ 

SOCμ is the second parameter to calibrate in equation (22). Moving SOCμ between the 
maximum and minimum acceptable values for SOC, i.e., 0.8 and 0.5, Has an effect on 
shape of the penalty function. In general, for low value of SOCμ the control strategy 
reacts stronger to value of SOC > SOCμ, while if SOCμ is high, the penalty weight is 
larger for SOC < SOCμ. 

Simulations are performed in order to test the behaviour of the RB strategy for six 
different driving cycles: Manhattan, APTA, WVU-sub, WVU-inter, HTUF and  
UDDS-Truck. Each driving cycle has also been also considered three consecutive times 
to test the steady state behaviour of the SOC profile. Moreover, the RB strategy was 
tested for five different values of the tuning parameter SOCμ (0.55, 0.60, 0.65, 0.70, and 
0.75) in order to select the suitable value of SOCμ. Values of μ1 and μ2 are reported in 
Table 4 for different choices of SOCμ. 
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Table 4 Calibrated μ1 and μ2 for different values of SOCμ 

SOCμ μ1 μ2 
0.55 0.074 9.83 
0.60 0.90 3.38 
0.65 1 0.26 
0.70 0.42 0.11 
0.75 0.22 0.058 

From Figures 13 and 14 the general trend is that for high SOCμ, the SOC profile tends to 
be more charge increasing, (in some cases the SOC can reach the maximum SOC 
threshold which then can limit the regenerative braking capability) while for low SOCμ, 
the battery SOC tends to be more charge depleting. 

The RB strategy has been applied to a model that considers an engine start cost of 10 
kJ; analogously, the results have are benchmarked against the DP solution that considers 
the same engine cost. Overall, the RB strategy satisfactorily mimics the DP behaviour. 
However, a noticeable difference is that the RB strategy does not have any constraint that 
forces the final value of SOC to be equal to the initial SOC value, which is why the 
difference between the final SOC from RB and from DP can be elevated, as shown in 
Figures 13 and 14. 

Figure 13 Comparison of SOC profiles generated from the DP and for the rule-based strategy 
along the UDDS-Truck driving cycle (see online version for colours) 
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Figure 14 Comparison of SOC profiles generated from the DP and for the rule-based strategy 
along the HTUF driving cycle (see online version for colours) 

 

However, the behaviour of the two profiles is very similar. The results on equivalent fuel 
consumption reported in Table 5 confirm this: the RB strategy is within 2% of increase of 
fuel consumed as compared with the optimal DP results. From the simulation study, we 
selected a value of 0.70 to calibrate SOCμ. This value ensures that: 

• the torque requested by the driver is satisfied for all the driving cycles 

• the equivalent fuel consumption is not significantly different in comparison with the 
other tuning choices. 

Table 5 Comparison of equivalent fuel consumption for different values of SOCμ generated 
six different driving cycles 

SOCμ TOTAL ΔFCeqv (%) 

SOCμ = 0.55 1.30 
SOCμ = 0.60 1.44 
SOCμ = 0.65 1.51 
SOCμ = 0.70 1.43 
SOCμ = 0.75 1.57 

An improvement in the overall drivability obtained with the RB design can be observed 
in Figure 15 when compared to Figure 5 as repeated engine on/off switching and clutch 
engagement/disengagement are now absent as they have been explicitly accounted for in 
the RB design. 
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Figure 15 (a) Driving cycle with driving mode selection and (b) SOC profile from the RB 
simulations with a clutch timer of four seconds; (c) detail of driving mission and 
corresponding mode selection between 2,200 and 3,800 seconds and  
(d) actuators torque distribution (see online version for colours) 

 
(a) 

 
(b) 

 
(c) 

 
(d) 
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8 Conclusions 

In this paper we have proposed the design of an energy management strategy for medium 
duty hybrid truck by extracting rules from the DP algorithm. The proposed rule-based 
strategy has the clear advantage of being near-optimal, easy to implement on-board of the 
vehicle, computationally cheap, with low calibration load and systematic. By analysing 
the DP results, the two-layer rule-based control strategy has been tuned to minimise the 
fuel consumption and ensure satisfactory drivability. 
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Notes 
1 Since 1999, Argonne national Laboratories undertook a collaborative effort to further develop 

the Powertrain System Analysis Toolkit © (PSAT) under the direction of and with 
contributions from Ford, General Motors, and DaimlerChrysler. Sponsored by the U.S. 
Department of Energy (DOE), the software has become widely accepted by industry and has 
been licensed to more than 130 companies, universities, and research laboratories worldwide 
with more than 750 users. 

2 The amount of energy requested to turn on the engine varies with the engine temperature. 
However, here a rough estimate of the amount of energy needed when the engine is already 
warmed up (turn on during driving) is given, based on the assumption that the amount of 
energy, Eon, required to turn on a 2.0 L diesel engine on a conventional car is approximately 
2.8 kJ (given a voltage of 14 V for the PbA and a current of about 200 A). 

3 This case was not modelled in the DP scenarios and because of this is called ‘exceptional’. 
4 Some of the powertrain components, such as the EMs and generators, may limit their 

powertrain capability when they exceed a given temperature. If this happens, then the control 
strategy has to limit the power or the torque that can be requested in order to avoid the 
component failure. 

List of symbols 

Variable Units Description 

A m2 Vehicle frontal area 

α rad Road slope 

C - Clutch status engaged/disengaged 
c0 - Constant term of the rolling resistance polynomial 
c1 s/m Linear term of the rolling resistance polynomial 
c2 s2/m2 Square term of the rolling resistance polynomial 
c3 s3/m3 Cubic term of the rolling resistance polynomial 
Cd - Coefficient of aerodynamic drag 
cr - Coefficient of rolling resistance 
E - Engine status ON/OFF 
Ebatt J Battery energy capacity 
Eon J Electrical energy needed to turn on the engine 

ηbatt - Battery efficiency 

ηd - Differential efficiency 

ηmc - Electric motor efficiency 

ηice - Engine efficiency 

ηgb - Transmission efficiency 
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List of symbols (continued) 

Variable Units Description 

Fa N Aerodynamic resistance 
Fg N Grade force 
Fr N Rolling resistance 
Fw N Tractive force produced at the wheels 
g m/s2 Acceleration of gravity 
I A Battery current 
Jice kg*m2 Engine rotational inertia 
Jw kg*m2 Wheel rotational inertia 
k N*m Constant term of the first order polynomial curve fit for the torque 

split of the rule-based strategy (without penalty function) 
M kg Vehicle mass 
m - Linear term of the first order polynomial curve fit for the torque split 

of the rule-based strategy 
Meq kg Equivalent vehicle mass including the equivalent drivetrain inertia 

elecm  kg/s Virtual instantaneous fuel consumption equivalent to the electrical 
energy used 

fm  kg/s Instantaneous fuel consumption 

μ - Penalty function gain for the torque split rule-based strategy 

μ1 - Penalty function gain for the torque split rule-based strategy This is 
adopted when SOC > SOCμ 

μ2 - Penalty function gain for the torque split rule-based strategy This is 
adopted when SOC < SOCμ 

n - Exponent value of the penalty function for the torque split rule-based 
strategy 

p - Penalty function for the torque split rule-based strategy 
Paccelec W Power request by the electrical auxiliary loads 
Paccmech W Power request by the mechanical auxiliary loads 
Pbatt W Battery power 
Pfuel W Chemical fuel power 
Pice W Engine mechanical output power 
Pmc,e W Electrical power absorbed by the electric motor 
Qbatt Ah Battery charge 
Qbatt,max Ah Maximum charge capacity of the battery 
Qlhv J/kg Fuel lower heating value 
R m Tire rolling radius 

ρair kg/m3 Air density 

SOC - Battery state of charge 

SOCμ - SOC reference value in the rule-based strategy 

τd - Differential gear ratio 
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List of symbols (continued) 

Variable Units Description 

τgb - Gearbox ratio 

t s Time 
Taccelec Nm Torque needed to provide enough power for the electrical accessories 

without discharging the battery 
Taccelec,max Nm Maximum torque needed to provide enough power for the electrical 

accessories without discharging the battery 
Taccmech Nm Torque absorbed by the mechanical accessories 
Tb Nm Friction brake torque 
Tdmd Nm Torque demand at the wheels 
Tdmd,max Nm Instantaneous maximum torque that can be demanded at the wheels, 

given the limitations of the components 
Tgb Nm Torque at the gearbox input shaft (produced by the powertrain) 
Tice Nm Engine torque 
Tice,min Nm Minimum engine torque for a given rotational speed 
Tmc Nm Electric motor torque 
Tmc,min Nm Minimum electric motor torque for a given rotational speed 
Tw Nm Torque at the wheel (produced by the powertrain 
V m/s Vehicle speed 
Vbatt V Battery voltage 

ωice rad/s Engine rotational speed 

ωidl rad/s Engine idle rotational speed 

ωgb rad/s Gearbox input shaft speed 

ωgb,thr rad/s Minimum engine shaft speed for the engine to be coupled with the 
gearbox input shaft 

ωmc rad/s Electric motor rotational speed 

ωw rad/s Wheel rotational speed 

xSOC - Measure of the SOC distance from a reference value SOCμ 
 


