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On Rigorous Model-Order
Reduction of the Thermal and
Oxygen Storage Dynamics of
Three Way Catalytic Converters
We present a reduced-order model (ROM) for the temperature and oxygen storage
dynamics of three way catalysts (TWCs). The thermal and oxygen storage dynamics are
described using a set of coupled, nonlinear partial differential equations (PDEs) devel-
oped and experimentally validated in previous research. Advancements in on-board diag-
nostic (OBD) design are moving in the direction of using physics-based models that
would retain as much physical insights as possible. Retaining the one-dimensional (1D)
evolution of the internal storage dynamics along the device length is key for the develop-
ment of accurate emission control strategies. In this work, we adopt the numerical projec-
tion orthogonal approach combined with the analytical features of Galerkin reduction
method to define a set of ordinary differential equations (ODEs) to describe the oxygen
storage and temperature dynamics throughout the device life. Using experimental data
collected over three TWC devices, each of different age, and under the excitation of dif-
ferent real drive cycles, we validate the model and quantify the relation between the num-
ber of reduced-order states versus model accuracy for devices both new and at different
stages of life. The input dependent characteristics of the developed reduced-model model
is also investigated using a power spectral density (PSD) analysis. Finally, we show that
an initial tuning of the reduced model parameters for a fresh catalyst guarantees satisfac-
tory modeling performance throughout the device life, regardless of the driving scenario.
[DOI: 10.1115/1.4048359]

1 Introduction

Over the years, the need for more stringent emission regulations
has led to significant technological advancements in the automo-
tive industry [1]. While electric vehicles sales are growing every
year, consequently to the lowering price of lithium-ion batteries,
conventional, and hybrid vehicles still represent the biggest mar-
ket share. This is expected to continue for the next couple of deca-
des, with conventional, and hybrid vehicles sales accounting for
more then 50% of the total light-duty vehicles sales by 2040 (see
Ref. [2]). All those vehicles will necessitate the implementation of
an advanced after-treatment system to meet the ever stricter emis-
sion regulation targets [3]. In order to meet the strict emission
standards [4], mostly regarding harmful gases such as carbon
monoxide (CO), nitrogen oxides (NOx), and hydrocarbons (HC),
advances have been made toward developing sophisticated engine
and after-treatment systems.

Automotive manufacturers have moved their interests toward
gasoline direct injection (GDI) technology, that gives better fuel
economy and power out [5] than port fuel injection engines at the
cost of higher particulate output [6]. As the complexity in the
design of automotive engines has increased, GDI engine manufac-
turers have been challenged to develop efficient after-treatment
and software systems to monitor the operating conditions of vari-
ous components. One such development includes the thermal oxi-
dation of carbon monoxide and hydrocarbons, whereby air is
pumped into the exhaust system to allow for a complete combus-
tion of all gases [7]. Another technique used to improve the after-
treatment system efficiency is the exhaust gas recirculation (EGR)
technology in which the reduction of nitrogen oxides is aided by
re-introducing some of the exhaust gas back into the engine, and

mixing it with the fresh air–fuel mixture. This acts as a diluent in
the mixture, lowering the heat release and reducing the peak in-
cylinder temperature, thus reducing the rate of formation of the
dangerous NOx [8]. The most widely used emission mitigation
strategies involve the use of catalytic converters and gas particu-
late filters to reduce the emission of harmful gases and particulate
matter [9].

As stated in Ref. [10], the principle under which the internal
combustion engine operates is that the fuel needs to be oxidized in
order to create the pressure to drive the pistons. This pressure is
generated from the heat which is released after the chemical reac-
tion between the fuel and air. In an ideal combustion reaction,
oxygen (O2) reacts with the hydrocarbons (HC) to produce carbon
dioxide (CO2), water (H2O), and heat. However, the intake air is
not pure oxygen, as it contains nitrogen (N2). This might lead to
the formation of oxides of nitrogen (NOx). In ideal conditions
(complete combustion) the nitrogen should be a bypass product of
the combustion reaction, in reality the latter reacts with oxygen in
different ways leading to the formation of NOx. Moreover, when
the carbon is not completely oxidized in the reaction, it might gen-
erate CO (and soot). Similarly, an incomplete combustion of the
fuel might lead to presence of unburned hydrocarbons in the
exhaust gas.

In a three way catalyst (TWC), the redox (reduction-oxidation)
reactions convert harmful pollutants to less toxic emissions. It is
called a “three way” catalyst since it aids in the reduction of nitro-
gen oxides to less harmful nitrogen gas (N2), oxidation of carbon
monoxide (CO) to carbon dioxide (CO2), and oxidation of unburnt
hydrocarbons (HC) to carbon dioxide (CO2), and water (H2O).
These chemical reactions occur simultaneously inside the catalyst
and the efficiency with which the redox reactions occur depends
highly on the air–fuel ratio (AFR) and the temperature inside the
catalyst. The AFR is the ratio of the mass of air to fuel in the mix-
ture inside the internal combustion engine during ignition, and it
is more often expressed using its normalized measure, k, which is
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the ratio between the actual AFR and the AFR at stoichiometric
conditions (the exact air–fuel ratio needed to produce chemically
complete combustion). The AFR and k are computed as follows:

k ¼
AFRðactualÞ

AFRðstoichiometricÞ
¼ mair=mfuel

AFRðstoichiometricÞ
(1)

where

mair ¼ mass of air

mfuel ¼ mass of fuel
(2)

The stoichiometric AFR for a gasoline engine is [11]

AFRðstoichiometricÞ ¼ 14:7 (3)

If the AFR is within a narrow region around the stoichiometric
value the efficiency of the device is close to 1, i.e., the success of
complete reduction and oxidation reactions is higher. The effi-
ciency decreases when the AFR falls outside this range. When the
AFR is lower than the stoichiometric value, the combustion
occurs in rich conditions (k < 1). In this case, the oxygen is uti-
lized during fuel combustion and there is not sufficient amount
left to carry out the oxidation reactions inside the catalyst. When
the AFR is greater than the stoichiometric value, the engine oper-
ates under lean condition (k > 1), i.e., there is excess oxygen
available inside the catalyst and hence the reduction reaction does
not occur completely.

The catalytic conversion efficiency also depends on the temper-
ature inside the TWC. The chemical conversions take place with
an efficiency greater than the 50% when the temperature is greater
than the light-off temperature [12], which is in general different
for different catalysts. Therefore, the catalyst temperature dynam-
ics plays an important role in the control of harmful emissions,
and the ability to monitor and predict the catalyst temperature will
help design an efficient exhaust system. Since there are no sensors
that can be used to measure this quantity in real-time in commer-
cial vehicles, being able to accurately estimate it is crucial for on-
board diagnostics (OBD) design.

Common methods to model the TWC dynamics rely on two
types of approaches, physics-based, and empirical-based models,
respectively.

Physics-based models lead to a description of the system in the
form of partial differential equations (PDEs), starting from first
principles [13–17]. These works rely on energy and mass conser-
vation, and kinetic dynamics modeling, to obtain high accuracy in
the prediction of the undesired engine emission species within the
catalyst. These models are computationally intensive and require
the knowledge of the species concentration at the catalyst inlet,
which are nonavailable in production vehicles, and they are
mostly used as a tool for system design and analysis. As a result,
their real-time implementation for OBD purposes is not feasible.
Modeling the TWC as a one-dimensional (1D) adiabatic channel
where the internal dynamics are obtained from the mass transport
and the gas and solid energy balances between the gas phase and
the washcoat has shown to be a good compromise between accu-
racy and real-time computational needs [18–22]. In Ref. [18], a
1D control-oriented model for the temperature and oxygen storage
dynamics of the TWC is derived starting from first principle equa-
tions, and a semi-empirical approach is used to model the heat
generation resulting from the chemical conversion reactions and a
reduced number of chemical species is considered. The concentra-
tions of each species are lumped together, in that not distinction is
made between the concentration in the gas phase and in the solid
one. Similar assumptions are made in Refs. [19] and [22], while in
the latter the concentration of H2 is considered too, thus yielding a
more complex and accurate model.

In Ref. [20], the authors discretize the comprehensive physics-
based model presented in Ref. [17] along the axial direction of the

TWC, in order to obtain a model suitable for real-time estimation
via an extended Kalman filter. Empirical models make use of
maps and transfer functions and other approximations to model
TWC dynamics, therefore, a device-specific calibration is required
before their implementation. For instance, in Ref. [12], the authors
propose a model based on two different transfer functions for the
oxygen storage, and simplify the thermal dynamics through a non-
linear function. In Ref. [23], a control-oriented model based on
different nonlinear functions is proposed, each one for a different
operating region. However, the spatial and temperature depend-
ence of the oxygen storage level are neglected, since the only
model input considered is the AFR. Similarly, the temperature
dependence is also neglected in Ref. [24]. Moreover, map-based
models do not allow for the formulation of a state observer, which
is often needed in real-time scenarios, when the measurements are
affected by noise, and the parameters can change, for example,
due to the TWC aging.

A further step in the development of model-based OBD rou-
tines is from the adoption of reduced-order techniques that would
allow to create a control-oriented model from a physics-based one
[25–27].

In Ref. [28], the authors developed a reduced model starting
from Ref. [18] for the catalyst thermal dynamics, using a
Galerkin-proper orthogonal decomposition (POD) approach. Sim-
ilarly, in Ref. [29], a Galerkin-POD approach on the same thermal
model is proposed along with an artificial neural network model
to approximate the nonlinear reaction heat generation dynamics.
Both models do not consider the oxygen storage dynamics, which,
on the other hand, is key for the development of an air–fuel ratio
control strategy for emission mitigation.

This paper synthesizes a reduced-order control-oriented model
which accounts for the thermal and oxygen storage dynamics of a
TWC. The reduced model is developed starting from a set of non-
linear coupled PDEs describing the device internal dynamics
along the longitudinal direction. With respect to the PDE model
presented in Ref. [18], the thermal model does not neglect the
dynamics of the gas phase and the spatial derivatives in the PDEs.
An identification procedure is performed by means of the particle
swarm optimization (PSO) algorithm to find the parameters of the
thermal model using real data obtained from differently aged
TWCs. The physics-based model is then reduced via the Galerkin
projection method, a formal mathematical method which can be
used to transform a set of PDEs into a set of ordinary differential
equations (ODEs), thus removing the space-dependence from the
equations and make it prone for estimation design. The reduced
dynamics are approximated using a set of orthogonal basis func-
tions. The latter are chosen to be analytic harmonic functions for
the thermal model, while they are numerically obtained through
the POD algorithm for the oxygen storage model. The reduced
system parameters are fully determined once the number of basis
functions is selected. The Galerkin method allows to easily select
the model complexity by changing the number of basis functions.
As this number increases, the model prediction performance
improves, while more computational power is required. It is then
possible to adapt the model to the computational power of the
electronic control units (ECU), which can eventually improve
over the years, and obtain more accurate models. Moreover, the
reduced model is tested against data coming from differently aged
catalysts (three aged TWCs are considered), showing its effective-
ness. To the best of our knowledge, a rigorous TWC control-
oriented model design using formal reduction methods applied to
an experimentally validated physics-based and age-dependent
model had not been investigated.

This paper is structured as follows. In Sec. 2 the physics-based
model is presented. In Sec. 3 the parameters identification for the
proposed thermal model is shown. Then, in Secs. 4 and 5, respec-
tively, the reduced-order model (ROM) derivation is showed in
details, and its performance is compared to that of the PDE model,
for different driving cycles and catalyst aging processes. Finally,
final remarks are outlined in Sec. 6.

031002-2 / Vol. 143, MARCH 2021 Transactions of the ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/dynam

icsystem
s/article-pdf/143/3/031002/6578752/ds_143_03_031002.pdf by Stanford U

niversity user on 28 April 2021



2 Three Way Catalyst Model

The TWC model used in this work consists of the thermal and
oxygen storage dynamics. The dynamics are expressed as a set of
PDEs which are coupled and nonlinear in nature. The thermal
model describes the temperature profile of the exhaust gas and the
catalyst substrate, whereas the oxygen storage model predicts the
TWC oxygen storage level. The variations of those quantities are
described in time and space, along the flow direction. (A sche-
matic of the TWC is depicted in Fig. 1, where L ¼ 0:068 m is the
length of the device used in this study and z 2 ½0; L� is the spatial
coordinate along which the dynamics are considered with Dz the
step used for the longitudinal discretization. The model inputs are
the exhaust mass-flowrate _mexhðtÞ, the temperature TexhðtÞ, and the
normalized air–fuel ratio at the inlet kpreðtÞ. Those inputs are
available to the ECU. In particular, kpre is from an Universal
Exhaust-Gas Oxygen (UEGO) sensor, while _mexh is estimated
internally by the ECU. The model states are the gas temperature
Tgðz; tÞ, the catalyst temperature Tcatðz; tÞ and the species concen-
tration ½X�ðz; tÞ, where ½X� ¼ ½O2�; ½CO�; ½CO2�; ½Ce2O4�. Finally,
the model outputs are the TWC gas phase temperature at the outlet
Tg;outðtÞ ¼ TgðL; tÞ and the normalized air–fuel ratio at the outlet
(see Fig. 2) koutðtÞ. The latter is defined as [30]

kout ¼
2 O2½ � L; tð Þ þ CO½ � L; tð Þ þ 2 CO2½ � l; tð Þ

2 CO½ � l; tð Þ þ 2 CO2½ � l; tð Þ
(4)

The normalized AFR at the outlet is measured via an UEGO sen-
sor, and the catalyst temperature, Tcat;mid, is measured via the
insertion of a thermocouple in the center location of the device
[31]. These signals are used for model validation.

2.1 Thermal Dynamics. The thermal dynamics of the TWC
is defined by the following system of PDE coupled equations

qgecp;g
@Tg

@t
¼ ekg

@2Tg

@z2
� _mexh

Acs
cp;g

@Tg

@z

þhAgeo Tcat � Tgð Þ

qs 1� eð Þcp;s
@Tcat

@t
¼ 1� eð Þks

@2Tcat

@z2
�

�hAgeo Tcat � Tgð Þ þ Kreac _mexh

Tg z; 0ð Þ ¼ Tcat z; 0ð Þ ¼ Texh 0ð Þ

Tg 0; tð Þ ¼ Texh tð Þ; @Tg

@z

����
z¼L

¼ 0

@Tcat

@z

����
z¼0

¼ @Tcat

@z

����
z¼L

¼ 0

(5)

The physical meaning of the symbols in Eq. (5) is explained in the
Nomenclature table. It is assumed that the substrate temperature is
always greater than the catalyst light-off temperature,
Tcat > Tlight�off . This implies that the heat generated from the

reactions inside the TWC can be approximated as a linear function
of the mass flow rate of the exhaust gas, as showed in Ref. [31].
However, this approximation is accurate only as long as the cata-
lyst operates around stoichiometric conditions, where the hydro-
carbons and the CO are almost completely reduced. This is
usually a valid assumption as the after-treatment control algo-
rithms are tuned to maintain the stoichiometry operation. For the
purpose of model-order reduction development, and with the idea
in mind to have the least approximated physics-based model to
start with, to the equations used in Ref. [31], we added the gas
temperature storage term qgecp;gð@Tg=@tÞ, the conduction along
the substrate ð1� eÞð@2Tcat=@z2Þ and the conduction in the gas
phase ekgð@Tg=@z2Þ terms. For simplicity of notation, we rewrite
the thermal dynamics (5) as

@Tg

@t
¼ D1

@2Tg

@z2
�D2 _mexh

@Tg

@z
þD3 Tcat � Tgð Þ

@Tcat

@t
¼ D4

@2Tcat

@z2
þD5 _mexh �D6 Tcat � Tgð Þ

(6)

where the parameters D1; D2; …;D6 are defined as follows:

D1 ¼
kg

qgcp;g
; D2 ¼

1

qgeAcs

D3 ¼
hAgeo

qgecp;g
; D4 ¼

ks

qscp;s

D5 ¼
hAgeo

qs 1� eð Þcp;s
; D6 ¼

Kreac

qs 1� eð Þcp;s

(7)

Fig. 1 Schematic of the TWC considered in this work showing
the input and output sensor positions

Fig. 2 Example of the available inputs and outputs taken from
driving a FUDS driving cycle: (a) measured model inputs and
(b) measured model outputs
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For the numerical solution of the PDE thermal model, the pdepe
MATLAB function has been used [32]. The algorithm implemented
with this function discretizes the PDEs in space, and then integra-
tes them in time using the ode15 s MATLAB function. A maximum
step size of 0:1 � jtf � t0j is used in the integration, whereas t0 and
tf are the first and the last time instants of the simulation. The spa-
tial discretization is performed using the discretization step
Dztherm ¼ ðL=ZthermÞ given by dividing the catalyst length L by
Ztherm cells of the same length.

2.2 Oxygen Storage Dynamics. The model derived from
Ref. [18] is briefly described in this section. The simplified model
(in the sense that only two chemical reactions are considered, with
a reduced number of species) of the oxygen storage is given by
two reverse heterogeneous reactions

O2þ2 � Ce2O3 $ 2 � Ce2O4

COþ Ce2O4 $ CO2þCe2O3
(8)

where species O2; CO; CO2 correspond to the gas phase and spe-
cies Ce2O3 and Ce2O4 to the solid phase. The reaction rates R1

and R2 of the forward and backward reactions are defined as
follows:

R1 ¼ kf
1 � ðOSC� ½Ce2O4�Þ2 � ½O2� � kb

1 � ½Ce2O4�2 � c0

R2 ¼ kf
2 � ½Ce2O4� � ½CO� � kb

2 � ðOSC� ½Ce2O4�Þ � ½CO2�
(9)

where c0 ¼ ðP=RTgÞ is the total exhaust gas concentration defined
by the ideal gas law, and kf

1; kb
1; kf

2; kb
2 are the forward and back-

ward reaction coefficients for the two reactions, according to the
Arrhenius’s type equations

kf
1 ¼ A1e�

E1
RTcat ; kb

1 ¼ A1e�
E1þDG1

RTcat

kf
2 ¼ A2e�

E2
RTcat ; kb

2 ¼ A2e�
E2þDG2

RTcat

(10)

where E1; E2 are the activation energies, A1; A2 are the reaction
rate constants and DG1; DG2 are the Gibbs energy change. More-
over, in the backward reaction coefficients, according to [17]

DG1

RTcat

� 2 aCe2O4
þ bCe2O4ð Þ

Tcat þ cCe2O4

� aO2
Tcat þ bO2

Tcat þ cO2

DG2

RTcat

� aCe2O4
þ bCe2O4

Tcat þ cCe2O4

� aCO2
Tcat þ bCO2

Tcat þ cCO2

þ aCOTcat þ bCO

Tcat þ cCO

(11)

where the parameters aX, bX, cX (where the subscript X indicates
the chemical species involved in the reaction) can be identified
experimentally.

The concentration balance in the gas phase and in the washcoat
are lumped, and for the gas species we write the balance as an
advection–reaction equation, with the neglection of the storage
term, since the exhaust gas dynamics are much faster than the
oxygen storage dynamics (see Ref. [13]). From Ref. [18], the oxi-
dized and empty surface sites (½Ce2O4� and ½Ce2O3�) are governed
by the following relation, where OSC is constant

½Ce2O3�ðz; tÞ ¼ OSC� ½Ce2O4�ðz; tÞ (12)

Overall, the oxygen storage model reads

0 ¼ �u
@ O2½ �
@z
� R1

0 ¼ �u
@ CO½ �
@z
� R2

0 ¼ �u
@ CO2½ �
@z

þ R2

@ Ce2O4½ �
@t

¼ 2R1 � R2

(13)

where the spatial velocity u can be written as a function of the
exhaust gas mass flowrate, u ¼ _mexh=ðc0MexhAcsÞ, with Mexh

being the average molar mass of the exaust gas and Acs the TWC
cross-sectional area. Additionally, the normalized oxygen storage
level / is defined as ½Ce2O4� normalized by OSC, whose variation
with respect to time is given by

d/
dt
¼ 1

OSC
2R1 � R2ð Þ (14)

Boundary and initial conditions are defined in Eq. (15) and can be
obtained from kpre, for instance, following the procedure showed
in Ref. [33]

O2½ � z; 0ð Þ ¼ O2½ � 0; tð Þ ¼ O2½ �pre tð Þ
CO½ � z; 0ð Þ ¼ CO½ � 0; tð Þ ¼ CO½ �pre tð Þ

CO2½ � z; 0ð Þ ¼ CO2½ � 0; tð Þ ¼ CO2½ �pre tð Þ
@ CO½ �
@z

����
z¼L

¼ @ O2½ �
@z

����
z¼L

¼ @ CO2½ �
@z

����
z¼L

¼ 0

Ce2O4½ � z; 0ð Þ ¼ OSC

2
;
@ Ce2O4½ �

@z

����
z¼0;L

¼ 0

(15)

In Eq. (15), ½X�pre is the concentration for a specie ½X� at the TWC
inlet. Following the procedure adopted in Ref. [18], the PDE
model is discretized using a finite difference upwind scheme. Zstor

is the number of discretization cells, and the spatial resolution is
obtained as the catalyst length divided by the number of the cells,
namely, Dzstor ¼ L=Zstor. The set of discretized PDEs is written in
Eq. (16), where the conditions for the first cell have been defined
in Eq. (15), and l refers to the lth discretization cell. One should
note that, even if the first three equations were partial differential
algebraic equations (DAE) in Eq. (13), the concentration of the
species ½O2�; ½CO�; ½CO2� is obtained at each time-step through
simple algebraic computations, once ½Ce2O4� is known, without
the need for a DAE solver

Table 1 Summary of the aged catalysts used in this work

Aging process (equivalent mileage)

Green Fresh catalyst (0 miles)
Midlife Engine dyno (50 k miles)
OBD OBD aged (>150 k miles)

Table 2 Crosses indicate the availability of the experimental
data for the driving cycle and TWC age combination

AGE FTP FUDS US06 FHDS

Green X X X
Midlife X X
OBD X X

Table 3 Identified parameters for the combined FTP and FUDS
driving cycles and the different TWCs, by means of the PSO
algorithm

Parameter Green Midlife OBD

D1 4:391� 10�4 4:034� 10�4 0.0011
D2 7:844� 103 1:425� 104 1:984� 103

D3 1:431� 105 3:234� 104 4:100� 104

D4 6:117� 10�6 4:238� 10�6 1:6667� 10�6

D5 179.074 134.171 80.750
D6 2.283 0.444 1.773
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O2½ �l ¼
O2½ �l�1 þ kb

1 Ce2O4½ �l
� �2

� c0Dzstor

u

1þ kf
1 �

Dzstor

u
OSC� Ce2O4½ �l
� �2

CO½ �l ¼
CO½ �l�1

1þ kb
2

Dzstor

u
OSC� Ce2O4½ �l
� �� �

þ kb
2

Dzstor

u
CO2½ �l�1

OSC� Ce2O4½ �l
� �

kb
2

Dzstor

u
OSC� Ce2O4½ �l
� �

þ kf
2

Dzstor

u
þ 1

CO2½ �l ¼
CO2½ �l�1

1þ kf
2

Dzstor

u
Ce2O4½ �l

� �
þ kf

2

Dzstor

u
CO½ �l�1

Ce2O4½ �l

kb
2

Dzstor

u
OSC� Ce2O4½ �l
� �

þ kf
2

Dzstor

u
Ce2O4½ �l þ 1

d Ce2O4½ �l

dt
¼ 2Rl

1 � Rl
2

(16)

3 Parameters Identification

Since the storage model was borrowed from previous research
[18], we adopted the same parameters values whereas for the ther-
mal dynamics, we run a new identification [31]. The unknown
parameters are identified by comparing the thermal model predic-
tion to the available experimental data over TWCs of various
ages. Three different catalysts were used: a Green catalyst, a Mid-
Life catalyst, and an OBD aged catalyst. The catalysts aging proc-
esses are summarized in Table 1. The experimental data were col-
lected for various types of aged TWCs using different driving
cycles, according to Table 2. For each driving cycle and TWC
type, the experimental data include the mass flow rate _mexhðtÞ, the
exhaust gas temperature upstream of the TWC brick, TexhðtÞ, and
the temperature at the center of the TWC brick, Tcat;midðtÞ. The
signals are sampled with a sampling frequency of fs ¼ 200 Hz.
From now on, the index k will refer to a time-sampled signal: for
instance, the time sampled inlet mass flow rate, at a given time
instant t ¼ k � fs is written as _mexhðk � fsÞ. The problem character-
ized by six parameters to be identified, namely, htherm ¼
½D1; D2; D3; D4; D5; D6� has been tackled using the PSO algo-
rithm [34] with the MATLAB function particleswarm [35]. The ther-
mal model has been discretized using 20 cells for the
identification procedure. The cost function for the identification is
defined as the root-mean-square error (RMSE) between Tcat;mid

and the predicted temperature from the PDE model,Tpde
cat;mid

Jtherm ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XNs

k¼1

Tcat;mid kð Þ � Tpde
cat;mid k; hthermð Þ

� �2

Ns

vuuut (17)

where Ns is the number of time samples in the experiment, and the
index k represents the sampled time instant for a time-dependent
signal.

The parameters identified with PSO for the three differently aged
TWCs are reported in Table 3. For the Green and Midlife catalysts,
a combination of the FTP and the FUDS cycles have been used,
while for the OBD catalyst, FTP combined with FHDS was used.
The catalyst physical parameters can change under aging, especially
if high temperatures occur during the process for long period of
time (thermal aging) [36]. For the storage model, the identification
procedure is not repeated in this study. An example of the PDE
model performance (both thermal and storage) is shown in Fig. 3.

The list of the parameters that had been calibrated in the previ-
ous research is [18]

hstor ¼ ½A1 A2 E1 E2 aCe2O4
bCe2O4

OSC� (18)

4 Model-Order Reduction

In the following, the procedure for the reduction of the PDE
based model is shown. Two different approaches have been used
for the thermal and oxygen storage models, and they are described
in details in the following.

4.1 Reduction of the Thermal Dynamics. The reduction of
the thermal dynamics is performed using a Galerkin projection
algorithm. The algorithm takes the PDE model as an input, and
generates an ODE model, thus eliminating the spatial dependence
of the dynamics. The obtained model has the same inputs of the
original model. The first step of this procedure is the identification
of a trial solution for the model states, which results in having
each state decomposed as the finite sum of Nþ 1 time-varying
coefficients multiplied by spatially varying orthogonal basis func-
tions. However, since the left boundary condition (BC) for Tg is
time-varying and defined by TexhðtÞ, a change of state variable has

Fig. 3 Model prediction performance for the Green TWC over
the FTP driving cycle: (a) measured versus predicted Tcat;mid

and (b) measured versus predicted kout (upper plot) and pre-
dicted / (lower plot)
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to be performed in order to apply the Galerkin method. In fact,
typical orthogonal functions are usually time independent, and
without this preliminary step, a reduced model satisfying the
boundary conditions cannot be obtained. We define the following
change of variables:

Tgðz; tÞ ¼ T̂ gðz; tÞ þ f ðzÞ � TexhðtÞ (19)

where f ðzÞ ¼ 1� sinðpz=2LÞ. One can easily verify that the BCs
for the new state T̂ gðz; tÞ are

T̂ g 0; tð Þ ¼ 0;
@T̂ g

@z

����
z¼L

¼ 0 (20)

and the BCs are now time-independent. Let us now define the trial
solutions

T̂ gðz; tÞ ¼ f � xa

Tcatðz; tÞ ¼ u � xb

(21)

where the number of basis functions for the thermal model are

defined as ~N ¼ N þ 1; f ¼ ½f0ðzÞ; f1ðzÞ;…; fNðzÞ� 2 R1� ~N and

u ¼ ½u0ðzÞ;u1ðzÞ;…;uNðzÞ� 2 R1� ~N are the basis function

vectors, xa ¼ ½xa;0ðtÞ; xa;1ðtÞ;…; xa;NðtÞ�T 2 R
~N�1; xb ¼ ½xb;0ðtÞ;

xb;1ðtÞ; …; xb;NðtÞ�T 2 R
~N�1 are the time-varying coefficients vec-

tors, where the superscript T indicates the transpose operation.
The basis functions are defined as

uj zð Þ ¼

ffiffiffi
1

L

r
j ¼ 0ffiffiffi

2

L

r
cos pj

z

L

� �
j ¼ 1; …; N

8>>>><
>>>>:

fj zð Þ ¼
ffiffiffi
2

L

r
sin

p 2jþ 1ð Þ
2

z

L

� �
j ¼ 0;…;N

(22)

Figure 4 shows an example of five basis functions. We then sub-
stitute Eq. (21) in Eq. (6), and rewrite the equations as Eq. (23),
obtaining two quantities which we now define as the residuals r1

and r2. The residuals represent the error introduced by substituting
the trial solution into the original PDE. Next, we enforce the resid-
uals to be equal to zero by multiplying both equations by the cor-
responding test functions (f for Tg, u for Tcat) and integrating
from 0 to L

r1 z; tð Þ ¼
@ f xa þ f Texh

� 	
@t

�D1

@2 f xa þ f Texh

� 	
@z2

þD2 _mexh

@ f xa þ f Texh

� 	
@z

�D3 u xb � f xa � f Texh

� 	 ¼ 0

r2 z; tð Þ ¼
@ u xbð Þ
@t

�D4

@2 u xbð Þ
@z2

þD5 u xb � f xa � f Texh

� 	�D6 _mexh

(23)

ðL

0

fT r1ðz; tÞ dz

ðL

0

uTr2ðz; tÞ dz (24)

After some basic algebra, the following system of 2 ~N ODEs is
obtained, where the parameters resulting from the spatial integra-
tion of the residuals are defined as

_xa

_xb

" #
¼
D1K2 �D3I ~N D3K4

D5KT
4 D4K5 �D5I ~N

" #
xa

xb

" #

þ
�V3 �D3V3 þD1V1 �D2V2 � _mexh �D2K3 � xa

0 D5V4 D6V5

" #

_T exh

Texh

_mexh

2
664

3
775

(25)

K1 ¼
ðL

0

fTf dz; K2 ¼
ðL

0

fT
@2f

@z2
dz

K3 ¼
ðL

0

fT
@f

@z
dz; K4 ¼

ðL

0

fTu dz

K5 ¼
ðL

0

uT
@2u

@z2
dz; V1 ¼

ðL

0

fT @
2f

@z2
dz

V2 ¼
ðL

0

fT @f

@z
dz; V3 ¼

ðL

0

fTfdz

V4 ¼
ðL

0

uTfdz; V5 ¼
ðL

0

uTdz

(26)

with Kp 2 R
~N� ~N for p ¼ 1;…; 5 and Vq 2 R

~N�1 for q ¼ 1;…; 5.

The initial conditions xa 0ð Þ; xb 0ð Þ are obtained by substituting

t¼ 0 in Eq. (21), and recalling Eqs. (5) and (19). The obtained
model is composed of ODEs, and its complexity depends on the
number of modes. Compared to other control-oriented thermal
models, such as the one presented in Ref. [12], the obtained model
is easy-to-tune, it was rigorously developed starting from first
laws, and written in a state-space form suitable for state-
estimation and control.

4.2 Reduction of the Oxygen Storage Dynamics. Regarding
the oxygen storage model, the model reduction using analytical
basis, such as the ones used for the thermal model, proved to be
inaccurate and led to numerical instabilities. This is possibly due
to the stiffness of the input kpre and the complex nonlinearities
governing the storage dynamics (see Ref. [37]). In a future work,
a specific implementation of the Galerkin approach for stiff sys-
tem could be used, such as the one proposed in Ref. [38]. Instead,
a solution using numerical bases, obtained through the POD
approach, is here presented. The obtained bases are then used to
reduce the model order with the Galerkin projection. While the
reduction using analytical functions may yield to a nonclosed
form integral and thus be impractical for real-time implementa-
tion, POD allows to numerically approximate the nonlinearFig. 4 The first 5 fj (z) modes, along the TWC axis
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functions. As anticipated in Sec. 2.2, only the dynamics corre-
sponding to the time evolution of the oxygen storage level / (or
equivalenty ½Ce2O4�), has been reduced, whereas the three alge-
braic equations in Eq. (13) are solved in closed form, once / is
known. Similar considerations have been done in Ref. [27], for
the derivation of a Galerkin-POD-based ROM for Waste Heat
Recovery Systems.

4.3 Proper Orthogonal Decomposition. The POD is a
numerical method that allows one to generate basis functions to
approximate the dynamics of a PDE model using simulation data
(see Ref. [39]). This algorithm takes as an input a snapshot matrix
S 2 RZstor�T

S ¼ S1; …; ST½ � (27)

where T is the number of time samples and the matrix rows are
spatial discretization points along the TWC z-axis, while the col-
umns are the discretized time instants. The matrix is used to
extract the system dynamics and to project them on a lower
dimensional subspace: it is therefore critical for the data stored in
the matrix to accurately represent the plant behavior, and for the
inputs to be as rich in frequencies as possible. A study regarding
the aforementioned input-dependent problem is shown in Sec. 5.2.
The snapshot matrix is generated simulating the system defined in
Sec. 2.2, with Zstor¼ 12 spatial discretization cells, and a sampling
frequency fs ¼ 200 Hz. It has been shown in Ref. [18] that no sig-
nificant improvements are obtained with more cells. Then, a struc-
tural value decomposition is performed on the matrix

S ¼ URVT (28)

where U 2 RZstor�Zstor ; V 2 RT �T ; R 2 RZstor�T and

U ¼ w1 � � � wZstor


 �
V ¼ v1 � � � vT


 �

R ¼

r1 0 � � � 0 0 � � � 0

0 r2 0 � � � �

� . .
.

0 � � �

0 � � � 0 rZstor
0 � � � 0

2
666664

3
777775

(29)

The matrix R stores the ri singular values of the snapshot matrix,
which are sorted in decreasing order, such that r1 >
r2 > � � � > rZstor

, while the spatial-dependent basis functions
w1; …; wZstor

are contained in U (an example of the first five basis
functions is shown in Fig. 5). The bases are mutually orthonormal,

and therefore, their inner product is equal to zero when it is com-
puted between two different bases, and equal to one when it is
computed for the same basis, i.e.,

wT
i � wj ¼

1 i ¼ j
0 i 6¼ j

�
(30)

As showed for the thermal model, the number of selected basis
functions corresponds to the order of the reduced model. Let us
call this number ~Z � Zstor. Given that the singular values are
sorted in a decreasing order in R, one can note that some of them
are predominant and almost completely describe the system
dynamics. The heuristic criterion defined for the selection of the
number of modes is based on the truncation degree inequality (for
instance, as in Ref. [34]) such that O ~Z � �M , with �M 2 0; 1ð � and

O ~Z ¼

P~Z
j¼1

r2
j

PZstor

j¼1

r2
j

(31)

The results of the procedure applied to the Ce2O4½ � concentration
profile are shown in Fig. 6. As one can observe, seven modes are
enough to reconstruct 90% of the original model, for both the FTP
and the FUDS cycles and Green catalyst. Finally, once the number
of modes to be used for the model-order reduction is selected, the
numerical bases are collected in the matrix

w ¼ w1 � � � w~Z


 �
2 R Zstor� ~Zð Þ (32)

4.4 Galerkin Projection of the Oxygen Storage Dynamics.
Similarly to what was done for the thermal dynamics, the first step
consists in selecting a trial solution for the approximed states of
the ROM. This consists in multiplying the basis function vector w

(32) by a suitable vector xc 2 R
~Z�1ð Þ

, whose components are time

varying coefficients xc;1; …; xc; ~Z½ �T

Ce2O4½ � z; tð Þ ¼ w � xc (33)

The residual is then written substituting (33) into the last equation
of Eq. (13), following the approach showed in Eq. (4.1)

r3 z; tð Þ ¼ w � _xc � 2 kf
1 � OSC� w � xc

� 	2 � O2½ � � kb
1 w � xc

� 	2
� �

þ kf
2w � xc � CO½ � � �kb

2 � OSC� w � xc

� 	 � CO2½ �
(34)

Fig. 5 The first 5 wj (z) modes, along the TWC length under the
FTP driving cycle

Fig. 6 Truncation degree plot for ½Ce2O4�, for the FTP cycle
(upper figure) and the FUDS cycle
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Then, both sizes of Eq. (34) are multiplied by the basis function
vector w, chosen as a test function. The reduced order model, i.e.,

the components of the vector xc, is obtained by solving the follow-
ing equation, enforcing the minimization of the error between the
reduced model and the original model:

ðL

0

wTr3 z; tð Þ dz ¼ 0 (35)

Upon using the orthonormality condition (30), the reduced model
dynamics is obtained

_xc ¼ wT � 2~R1 � ~R2

� 	
(36)

where ~R1 and ~R2 are obtained substituting Eq. (33) in the reaction
rates (9). In this way, the original Zstor-th order discretized model
has been reduced to a ~Z-th order model. The initial conditions
xc 0ð Þ for Eq. (36) can be obtained by substituting t¼ 0 in Eq. (33)
and recalling Eq. (15).

5 Simulation Results

In this section, the ROM performance is compared to the one of
the PDE model, for differently aged catalysts and different driving
cycles. The RMSE between two time-dependent sampled signals
s1 kð Þ and s2 kð Þ, over Ns time samples is defined as

RMSE s1; s2ð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPNs

k¼1

s1 kð Þ � s2 kð Þð Þ2

Ns

vuuut
(37)

5.1 Thermal Dynamics. The results of the reduction of the
thermal dynamics are compared to the PDE model, discretized
using Ztherm¼ 20 cells, for different driving cycles and aged cata-
lysts, to verify the effectiveness of the method. A summary of the
RMSE between the ROM and the original model is showed in
Table 4. Figure 7 shows the performance of the model applied to
the Green catalyst, along with the error between the ROM and the
original model (the same error metric is repeated in all the plots in
this section). As one can note, the ROM prediction correctly
reconstructs the original PDE solution, even with a low-order
model. The solution obtained with one mode is however inaccu-
rate, and this effectively shows that the thermal dynamics cannot
be modeled correctly by assuming a lumped model with one sin-
gle time-dependent state. The one-state thermal model has been
frequently used in the literature for the design of control-oriented
models. Figures 8 and 9 show instead the model prediction for the
aged catalysts. Let us note that the error is smaller for the latter

with respect to the fresh one, for the same number of modes: this
could suggest that the temperature variability with respect to the
z-axis is less significant as the catalyst ages, and less modes are
enough to correctly reconstruct the thermal dynamics. For the
FUDS cycle and the Green catalyst, the computational time for a
five mode-ROM is approximately, 9:3160:36 s.f1

5.2 Driving Cycle Characterization. As previously stated,
the empirical bases obtained through POD are, in general, inputs
dependent. An analysis in the domain of frequencies is performed
to characterize the variability and dependence of the number of
basis functions for different driving cycles.

First, the model inputs _mexh, kpre, and Texh are high-pass filtered
at 0:01 Hz. This step is necessary in order to detrend the variables
and capture only the information regarding the frequency
variations.

Then, the power spectral density (PSD) is computed for the dif-
ferent signals, and the obtained points are normalized with respect
to the maximum power in the frequency spectrum: in this way dif-
ferent cycles can be compared. From Fig. 10, one can note that
the frequency content for _mexh is similar for different driving
cycles. This means that the dynamics are excited in similar ways

Table 4 RMSEs between the predictions of Tcat;mid from the
PDE and ROM

Catalyst age

Driving cycle Number of modes Green Midlife OBD
FTP 1 84.2473 K 61.7595 K 54.8733 K

5 13.2188 K 7.7448 K 7.9112 K
10 7.8902 K 4.2562 K 3.4428 K

FUDS 1 110.4783 K 91.8352 K X
5 13.5471 K 9.8802 K X
10 8.0104 K 5.1521 K X

US06 1 77.6580 K X X
5 12.3576 K X X
10 7.2444 K X X

FHDS 1 X X 41.5512 K
5 X X 5.5718 K
10 X X 2.4973 K

Fig. 7 Comparison between predicted Tcat;mid from the PDE
model and the Galerkin model, for the Green catalyst and the
FTP, FUDS, US06 driving cycles (upper, middle, and lower plots)

Fig. 8 Comparison between predicted Tcat;mid from the PDE
model and the Galerkin model, for the Midlife catalyst and the
FTP and FUDS driving cycles (upper and lower plots)

1This is obtained from simulating the ROM 20 times on a 4 GHz Intel i7
processor, 8 GB RAM PC using MATLAB 2019a.

031002-8 / Vol. 143, MARCH 2021 Transactions of the ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/dynam

icsystem
s/article-pdf/143/3/031002/6578752/ds_143_03_031002.pdf by Stanford U

niversity user on 28 April 2021



in the three different cycles, and the POD should yield similar
results in terms of basis functions. Similar considerations can be
done for Texh, with the only difference being the richer low-

frequency content. The same can be observed for kpre (Fig. 11)
even if for the FUDS cycle a richer low-frequency content can be
noted. Figures 12–15 show the results of the analysis for the aged
catalyst, where similar considerations can be drawn.

Fig. 11 PSD for kpre, for the Green catalyst and the FTP, FUDS
and US06 driving cycles

Fig. 9 Comparison between predicted Tcat;mid from the PDE
model and the Galerkin model, for the OBD catalyst and the
FTP and FHDS driving cycles (upper and lower plots)

Fig. 10 PSD for _mexh, for the Green catalyst and the FTP, FUDS
and US06 driving cycles

Fig. 12 PSD for _mexh, for the Midlife catalyst and the FTP and
FUDS driving cycles

Fig. 13 PSD for kpre, for the Midlife catalyst and the FTP and
FUDS driving cycles

Fig. 14 PSD for _mexh, for the OBD catalyst and the FTP and
FHDS driving cycles
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5.3 Oxygen Storage Dynamics. The results of the reduction
of the oxygen storage dynamics are compared to the PDE model,
for different driving cycles and catalyst aging processes, to verify
the effectiveness of the method.

In the following results, the basis functions have been obtained
from the FTP cycle. The prediction of / for the Green catalyst
and the FTP and FUDS driving cycles is shown in Fig. 16. As one
can note, the overall prediction with six and eight modes is good
and the PDE model results are well approximated by the ROM.
The one mode simulations were also performed, corresponding to
a one-state ROM, and results are shown in Fig. 16 as well. Predic-
tions obtained using one-state model do not provide a reliable esti-
mate of the oxygen storage level, as it was also observed for the
thermal dynamics. It is worth mentioning that that single-state
control-oriented models have been widely used in previous studies
[12,23].

Figures 17 and 18 show the ROM versus PDE comparison for
the midlife and OBD catalysts. The RMSEs between the reduced
model prediction and the PDE prediction are showed in Table 5.

Fig. 16 Comparison between predicted / from the PDE model and the POD-Galerkin model, for the Green catalyst and the
FTP, FUDS, US06 driving cycles (upper, middle, and lower plots)

Fig. 17 Comparison between predicted / from the PDE model and the POD-Galerkin model, for the midlife catalyst and the
FTP and FUDS driving cycles (upper and lower plots)

Fig. 15 PSD for kpre, for the OBD catalyst and the FTP and
FHDS driving cycles
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Similarly to the thermal dynamics, the prediction error is smaller
for the aged catalysts, for the same number of selected modes (see
Table 5). This can be explained resorting to the fact that aging
yield less variability along the z-axis, therefore less modes are
required to approximate the PDE dynamics correctly. These
results allow to design a ROM by just looking at the performance
for a fresh catalyst. For the FUDS cycle and the Green catalyst,
the computational time for a six-mode ROM is approximately
2:1660:27 s.2 Finally, one should note that even if the set of basis
functions was extracted through POD from the Green catalyst,
their effectiveness is retained for different driving cycles and for
differently aged catalysts. This shows that this application does
not suffer from the input-dependence of the POD algorithm.

6 Conclusion

In this paper, a reduced-order model for the thermal and oxygen
storage dynamics of a TWC was developed, starting from a
physics-based PDE model. The physics-based model was partially
borrowed from previous research, and a few terms have been
added to the thermal dynamics of the catalyst in order to obtain a
more general formulation. The resulting model showed to be
effective in reproducing the behavior of the original model, and

has been exhaustively tested against real data coming from three
differently aged catalysts and various driving cycles. The devel-
oped model can be used to reduce the computational burden on
the ECU, in the framework of an emission minimization control
strategy. The effectiveness of the methodology proposed in this
study allows the design of a control-oriented model whose accu-
racy is directly quantifiable with respect to the real behavior of the
system. Moreover, such a control-oriented model has been
showed to have consistent performance throughout the device life.
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Nomenclature

Acs ¼ TWC cross-sectional area (m2)
Ageo ¼ TWC specific geometric area (m–1)

Ai ¼ pre-exponential factor for reaction i
cp;g ¼ exhaust gas specific heat (J kg–1 K–1)
cp;s ¼ TWC solid-phase specific heat (J kg–1 K–1)
c0 ¼ total exhaust gas concentration (N mol–2 J–1)
Ei ¼ activation energy for reaction i (J mol–1)
h ¼ convective heat transfer coefficient (W m–2 K–1)
i ¼ reaction index
j ¼ basis function index
k ¼ time sample index

Kreac ¼ proportional constant for the heat produced by reac-
tions (J kg–1 m–3)

kf
i ¼ forward reaction rate for reaction i

kb
i ¼ backward reaction rate for reaction i
l ¼ oxygen storage model spatial discretization index

L ¼ catalyst length (m)
Mexh ¼ average molar mass of the exhaust gas (kg mol–1)
_mexh ¼ mass rate of the exhaust gas at the TWC inlet (kg s–1)

~N ¼ number of basis functions for the reduced order
thermal model

OSC ¼ oxygen storage capacity (mol m–3)
P ¼ ambient pressure (N m–2)

Fig. 18 Comparison between predicted / from the PDE model and the POD-Galerkin model, for the OBD catalyst and the FTP
and FHDS driving cycles (upper and lower plots)

Table 5 RMSEs between the predictions of / from the PDE and
ROM

Catalyst age

Driving cycle Number of modes Green Midlife OBD
FTP 1 0.3329 0.3318 0.1881

6 0.0657 0.1024 0.0489
8 0.0162 0.0411 0.0045

FUDS 1 0.4729 0.3369 X
6 0.1024 0.0726 X
8 0.0349 0.0169 X

US06 1 0.3462 X X
6 0.0582 X X
8 0.0139 X X

FHDS 1 X X 0.1887
6 X X 0.0173
8 X X 0.0060

2This is obtained from simulating the ROM 20 times on a 4 GHz Intel i7
processor, 8 GB RAM PC using MATLAB 2019a.
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R ¼ universal gas constant (J mol–1 K–1)
Ri ¼ reaction rate for reaction i (mol m–3s–1)

t ¼ time (s)
Tcat ¼ TWC solid-phase temperature (K)

Tg ¼ TWC gas-phase temperature (K)
Texh ¼ temperature of the exhaust gas at the TWC inlet (K)

Tlight�off ¼ TWC light-off temperature (K)
TWC ¼ three-way catalyst

u ¼ flow speed (m s–1)
US06 ¼ US06 test protocol

X½ � ¼ concentration of species X (mol m–3)
z ¼ coordinate along catalyst length (m)
~Z ¼ number of basis functions for the reduced order

oxygen storage model
Zstor ¼ number of discretization cells for the PDE oxygen

storage model
Ztherm ¼ number of discretization cells for the PDE thermal

model
DGi ¼ Gibbs free energy variation for reaction i (J)

Dztherm ¼ discretization step for the thermal model (m)
Dzstor ¼ discretization step for the oxygen storage model (m)

� ¼ TWC open cross-sectional area
k ¼ normalized air–fuel ratio

kg ¼ exhaust gas conductivity (W m–1 K–1)
ks ¼ TWC solid-phase conductivity (W m–1 K–1)
qg ¼ exhaust gas density (kg m–3)
qs ¼ TWC solid-phase density (kg m–3)
uj ¼ j-th basis function for the catalyst temperature, in the

reduced order thermal model (m–1)
fj ¼ j-th basis function for the exhaust gas temperature, in

the reduced order thermal model (m–1)
wj ¼ j-th basis function for the reduced order oxygen

storage model (m–1)
/ ¼ normalized oxygen storage level
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