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A B S T R A C T

Performance and safety of lithium-ion batteries depend on the ability to efficiently estimate their temperature
during charge/discharge operations. We propose a novel algorithm to infer temperature in cylindrical lithium-
ion battery cells from measurements of current and terminal voltage. Our approach employs a dual ensemble
Kalman filter, which incorporates the enhanced single-particle dynamics to relate terminal voltage to battery
temperature and Li-ion concentration. The numerical results and experimental validation from LGChem
LiNiMnCoO2 battery (INR21700 M50) cell data demonstrate the method’s ability to estimate temperature at
various charge/discharge C-rates.
1. Introduction

Lithium-ion battery (LIB) systems are widely used in modern elec-
tronic devices. Their reliability and safety are of crucial importance
for sustainable development and successful transition to carbon-neutral
energy economy. However, safety concerns, mainly due to thermal
runaway, hinder large-scale LIB utilization for these purposes. Limit-
ing temperature of LIBs to a restricted window of operation is also
important for their longevity and satisfactory performance [1]. Prac-
tical limitations preclude direct measurement of temperature of LIB
cells within a pack, and accurate temperature estimation from readily
available sensors (e.g., current and terminal voltage) remains elusive.

Electrochemical models of LIB systems rely on a number of sim-
plifying assumptions whose veracity is hard to ascertain a priori. For
example, the single-particle model (SPM) [2] ignores concentration
gradients in the electrolyte (a well-mixed assumption) and approx-
imates the solid phases in both electrodes by spherical particles; it
fails to accurately model the terminal voltage at high charge/discharge
C-rates. The enhanced SPM model (eSPM) accounts for electrolyte
dynamics, yielding improved performance at high C-rates [3,4]. More
complex models, e.g., [5–7], incorporate additional physics, but are
computationally prohibitive when used either for sampling-based pa-
rameter/state estimation or in micro-controllers of battery management
systems.

∗ Correspondence to: Beihang University, 37 Xueyuan Road, Beijing, 100191, China.
∗∗ Corresponding author.

To account for thermal phenomena in batteries, such electrochem-
ical models are supplemented with an energy conservation equation,
in which Li ion (Li+) concentration affects the rate of heat genera-
tion. Depending on whether the well-mixed assumption is invoked,
the resulting electrochemical–thermal models can be subdivided into
lumped (averaged in space) [1,8] and spatially distributed [9–11]. Such
electrochemical–thermal models have been used for state of charge and
temperature estimation in battery management systems. The experi-
mental validation of thermal models aimed at predicting core tempera-
ture is challenging and can pose safety hazards, as it requires a battery
to be drilled in order to insert a thermocouple into the cell, in the case
of cylindrical cells.

These practical considerations make the ability to estimate the
core temperature from existing sensor layouts an appealing objective,
which we tackle in this study. Prediction of a battery model, and its
use for indirect measurements of battery temperature, are inherently
uncertain due to a large number of unknown (fitting) parameters,
ambient operating conditions, and sparse sensing [12]. This uncertainty
is typically quantified probabilistically by treating uncertain model
inputs and outputs as random variables and random processes. The
probabilistic framework replaces the inference of a unique parameter
value and a unique model prediction with identification of their (joint)
probability density functions [13].
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Nomenclature

𝑗 Index, 𝑗 = 𝑛 for anode, 𝑗 = 𝑝 for cathode
𝐴 Cell cross-sectional area [m2]
𝑐max
s,j Maximum electrode concentration

[mol/m3]
𝐷e Electrolyte phase diffusion [m2/s]
𝐶 in
e,𝑖 Initial concentration in electrolyte

[mol/m3]
𝐷ref

s,j Reference solid phase diffusion [m2/s]
𝐸act
𝐷,j Activation energy for solid phase diffusion

in electrode 𝑗
𝐸act
𝑘,j Activation energy for reaction in electrode

𝑗
𝐹 Faraday’s constant [C/mol]
𝑘refj Electrode reaction rate constant [m2.5/s

mol0.5 ]
𝐿j Electrode thickness [m]
𝐿s Separator thickness [m]
𝑅 Lumped resistance [Ω]
𝑅g Universal gas constant [J/mol K]
𝑅j Electrode particle radius [m]
𝑡+0 Transference number
𝑇ref Reference temperature [◦C]
𝛼cell Electrode transfer coefficient
𝜀j Electrode active volume fraction of solid

phase
𝜃j,100% Reference stoichiometry ratio at 100% SOC
𝜃j,0% Reference stoichiometry ratio at 0% SOC
𝜔𝑖 Porosity of anode, cathode, and separator

(𝑖 = n, p,S)

When combined with sensor measurements, the latter task can
e accomplished via sampling-based approaches to data assimilation,
uch as extended Kalman filter [10]. The reliance on such generaliza-
ions of Kalman filter is necessary because the relationship between
emperature and the measurable quantities is highly nonlinear in the
attery models used and, hence, temperature is highly non-Gaussian.
lternatively, one could sacrifice model veracity by assuming a linear
elationship between temperature and the observables in order to use
tandard Kalman filter [14], but this – the use of an oversimplified
odel – might lead to erroneous predictions.

echnical contribution and novelty. Temperature has a significant im-
act on the performance, safety and cycle lifetime of LIBs. Accurate
stimation of available charge and energy during short- and long-
erm operation as well as detection of safety-hindering events are
ossible only through continuous battery temperature monitoring. Our
ontribution to the state-of-the-art in estimation of the temperature of
IBs is fourfold. First, our approach utilizes readily available on-board
easurements of terminal voltage and current to estimate the temper-

ture. Second, our reliance on a relatively high-fidelity electrochemical
odel, based on the experimentally validated eSPM, enables us to

stimate the battery cell temperature at a wide range of C-rates. Third,
e rely on dual ensemble Kalman filter to assimilate measurements
f terminal voltage into this complex nonlinear model. Finally, we
rovide validation of our model predictions by using experimental
attery data collected at a different temperature than that used for
odel calibration.

The remainder of this paper is organized as follows. In Section 2,
e formulate the problem and its mathematical conceptualization via
2

the eSPM. Section 3 contains both a description of our general method-
ology for indirect measurements of the temperature of LIBs and the
numerical algorithm for its implementation. In Section 4, we validate
our methodology by using experimental data for LGChem LiNiMnCoO2
battery (INR21700 M50). The key conclusions drawn from this study
are collated in Section 5.

2. Electrochemical model

LIB cells consist of five major parts: positive electrode (cathode),
negative electrode (anode), electrolyte, separator and current collectors
(Fig. 1). The two electrodes and the separator have a thickness of
𝐿p, 𝐿n, and 𝐿S, respectively. The cathode is typically a metal ox-
ide (LiMO2), whereas low-cost graphite (C6) is widely used as anode
material due to low electrode potential [15].

The electrolyte is a salt, generally hexafluorophosphate (LiPF6),
issolved in an organic solvent that acts as a transport medium allowing
igration of Li+ between the two electrodes. The electrochemical

reactions in a Li-ion cell involve Li+ moving in and out of the electrodes
via intercalation (insertion) and deintercalation (extraction) process,
while electrons travel through an external load producing work.

During discharge, an oxidation reaction at the anode produces
positively charged Li ions (Li+) and negatively charged electrons (e−).

his process is described by the anodic half-reaction,

i𝑦C6 ⟶ 𝑦Li+ + 𝑦e− + C6. (1a)

The Li+ ions are subsequently transported through the electrolyte and
the separator towards the cathode. The electrons pass through the
external circuit before reconnecting to the cathode, which undergoes
reduction, while the migrated Li+ ions are intercalated into the cathode.
This phenomenon is described by the cathodic half-reaction,

Li(1−𝑦)MO2 + 𝑦Li+ + 𝑦e− ⟶ LiMO2. (1b)

During charging, the cathode undergoes oxidation and the anode un-
dergoes reduction [16].

2.1. Enhanced single-particle model for Li+ concentration

We use the eSPM from [4] as a modeling platform to develop the
observer. The eSPM describes diffusion of Li+ in the cathode, anode
and electrolyte of a LIB. The eSPM represents the solid material in
each electrode as a spherical particle subjected to a uniform electrical
current. Inside of each electrode particle with radius 𝑅𝑗 (𝑗 = n and p),
the Li+ concentration, 𝑐s,𝑗 (𝑟, 𝑡) with 𝑗 = n and p, obeys Fick’s law of
diffusion [3],
𝜕𝑐s,𝑗
𝜕𝑡

=
𝐷s,𝑗

𝑟2
𝜕
𝜕𝑟

[

𝑟2
𝜕𝑐s,𝑗
𝜕𝑟

]

, 0 < 𝑟 < 𝑅𝑗 , 𝑡 > 0, 𝑗 = n, p; (2)

and boundary conditions at the sphere’s center (𝑟 = 0) and surface
(𝑟 = 𝑅𝑗),

𝜕𝑐s,𝑗
𝜕𝑟

(0, 𝑡) = 0, −𝐷s,𝑗
𝜕𝑐s,𝑗
𝜕𝑟

(𝑅𝑗 , 𝑡) =
𝐽𝑗
𝐹

= 𝐼
𝑎𝑗𝐴𝐿𝑗𝐹

. (3)

Here, 𝑡 [s] denotes time, 𝑟 [m] is the radial coordinate, 𝐹 is the Faraday
onstant, and 𝐽𝑗 [A m−2] is the intercalation current density at each
lectrode. The latter is defined as the input current 𝐼 [A] divided by
he specific interfacial surface area 𝑎𝑗 [m−1], the cross-sectional area

[m2] and the electrode thickness 𝐿𝑗 [m]. In our case, 𝑎𝑗 = 3𝜀𝑗∕𝑅𝑗 ,
here 𝜀𝑗 is the active volume fraction of solid phase [16, Section 3.3.2].
he solid-phase diffusion coefficients 𝐷s,𝑗 [m2 s−1] and reaction rate
onstants 𝑘s,𝑗 for each electrode have an Arrhenius-type dependence
n temperature 𝑇 [17],

s,𝑗 = 𝐷ref
s,𝑗 exp

[

𝐸act
𝐷,𝑗

(

1 − 1
)

]

, (4a)

𝑅g 𝑇ref 𝑇
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Fig. 1. A schematic diagram of the macroscopic (𝑙-direction) cell model with coupled microscopic (𝑟-direction) solid-diffusion model.
𝑘s,𝑗 = 𝑘refs,𝑗 exp

[

𝐸act
𝑘,𝑗

𝑅g

(

1
𝑇ref

− 1
𝑇

)

]

, (4b)

where 𝐷ref
s,𝑗 , 𝑘refs,𝑗 and 𝑇ref denote the reference values for the diffusion

coefficients, reaction rate constants and temperature, respectively; 𝐸act
𝐷,𝑗

and 𝐸act
𝑘,𝑗 are the activation energy; and 𝑅g is the universal gas constant.

The Li+ concentration in the electrolyte phase, 𝑐e,𝑖(𝑥, 𝑡), is governed
by the Planck–Nernst equations,

𝜔𝑖
𝜕𝑐e,𝑖
𝜕𝑡

= 𝜕
𝜕𝑥

(

𝐷eff
e,𝑖

𝜕𝑐e,𝑖
𝜕𝑥

)

+ (1 − 𝑡+0 )
𝑎𝑖𝐽𝑖
𝐹

, 𝑖 = n, p,S, (5)

where 𝑥 is the Cartesian coordinate along the thickness, 𝐿, of the cell;
𝜔𝑖 is porosity of the negative (𝑖 = n) and positive (𝑖 = p) electrodes
and the separator (𝑖 = S); 𝑡+0 is the transference number; the exchange
current density at the separator is 𝐽S(𝑡) = 0; and the effective diffusion
coefficients 𝐷eff

e,𝑖 are assumed to follow the concentration-dependent
Bruggeman relation [3],

𝐷eff
e,𝑖 ≈ (𝛼1𝑐e,𝑖+𝛼2)𝜔1.5

𝑖 with 𝛼1 = −1.17×10−13, 𝛼2 = 3.97×10−10. (6)

Eq. (5) are defined on the segments 𝑥 ∈ (0, 𝐿n), (𝐿n, 𝐿n + 𝐿S) and
(𝐿n + 𝐿S, 𝐿 = 𝐿n + 𝐿S + 𝐿p) representing, the anode, the separator
and the cathode, respectively. The external (impermeable) boundary
conditions,
𝜕𝑐e,n
𝜕𝑥

(0, 𝑡) =
𝜕𝑐e,p
𝜕𝑥

(𝐿, 𝑡) = 0, (7a)

are supplemented with continuity conditions at the anode–separator
interface, 𝑥 = 𝐿n,

𝑐e,n(𝐿n, 𝑡) = 𝑐e,S(𝐿n, 𝑡), 𝐷eff
e,n

𝜕𝑐e,n
𝜕𝑥

(𝐿n, 𝑡) = 𝐷eff
e,S

𝜕𝑐e,S
𝜕𝑥

(𝐿n, 𝑡), (7b)

and at the separator–cathode interface, 𝑥 = 𝐿n
S ≡ 𝐿n + 𝐿S,

𝑐e,S(𝐿n
S, 𝑡) = 𝑐e,p(𝐿n

S, 𝑡), 𝐷eff
e,S

𝜕𝑐e,S
𝜕𝑥

(𝐿n
S) = 𝐷eff

e,p

𝜕𝑐e,p
𝜕𝑥

(𝐿n
S). (7c)

Eqs. (2) and (5) are also subject to initial conditions 𝑐s,𝑗 (𝑟, 0) = 𝑐max
s,𝑗 ×

𝜃𝑗,100% with 𝑗 = n, p and 𝑐e,𝑖(𝑥, 0) = 𝐶 in
e,𝑖 with 𝑖 = n, p,S. Here, 𝜃j,100%

is the electrode stoichiometry ratio at 100% state of charge (SOC) and
𝐶 in
e,𝑖 is the initial concentration of Li+ in the electrolyte.

2.2. Terminal voltage

The terminal voltage, 𝑉 , is defined as [2]

𝑉 = 𝛥𝛷 + 𝛥𝑈 + 𝛥𝜂 − 𝐼𝑅, (8)
3

e oc
where 𝛥𝛷e ≡ 𝛷e(𝑥 = 𝐿) − 𝛷e(𝑥 = 0) is the potential difference
in the electrolyte phase, 𝛥𝑈oc is the open circuit potential difference
(positive minus negative) between the electrodes, and 𝛥𝜂 is the over-
potential difference between the electrodes, and 𝐼𝑅 is the voltage
drop caused by the lumped resistance. An approximate (linearized)
analytical solution of (5) gives an expression for the potential difference
in the electrolyte [18],

𝛥𝛷e = �̃�eff ln
𝑐e,p(𝐿, 𝑡)
𝑐e,n(0, 𝑡)

− 𝐼
2𝐴

(

𝐿n

𝜅eff
n

+
2𝐿s

𝜅eff
s

+
𝐿p

𝜅eff
p

)

. (9a)

Here, the effective ionic conductivities 𝜅eff
𝑖 are estimated empiri-

cally [17],

𝜅eff
𝑖 = 𝑐e,𝑖[(−10.5 + 0.074 𝑇 − 6.96 × 10−5𝑇 2) + 𝑐e,𝑖(0.668 − 0.0178 𝑇

−2.8 × 10−5 𝑇 2) + 𝑐2e,𝑖(0.494 − 8.86 × 10−4 𝑇 )]2, (9b)

as functions of temperature 𝑇 and the average Li+ concentrations at the
anode, cathode or separator 𝑐e,𝑖; and

�̃�eff =
2𝑅g𝑇 (1 − 𝑡+0 )(𝜅

eff
n + 𝜅eff

s + 𝜅eff
p )

3𝐹

{

0.601 − 0.24
√

𝑐e

+0.982 [1 − 0.0052(𝑇 − 293)] 𝑐1.5e
}

. (9c)

The open circuit potentials at the two electrodes, 𝑈p and 𝑈n, are
functions of temperature, 𝑇 , and stoichiometric ratios, 𝜃p and 𝜃n, at the
solid phase [2],

𝛥𝑈oc(𝑇 ) = 𝑈p(𝜃p, 𝑇 ) − 𝑈n(𝜃n, 𝑇 ), 𝜃𝑗 = 𝑐s,𝑗 (𝑅𝑗 , 𝑡)∕𝑐max
s,𝑗 , (10)

where 𝑐max
s,𝑗 is the theoretical maximum concentration. The difference

between the cathode and anode over-potentials is computed from
the Butler–Volmer kinetic equation [19], which describes the rate of
intercalation and deintercalation of Li+,

𝛥𝜂 = 𝜂p − 𝜂n =
2𝑅g𝑇
𝐹

[

sinh−1
( 𝐽p
2𝐽0,p

)

− sinh−1
(

𝐽n
2𝐽0,n

)]

, (11a)

where

𝐽0,𝑗 = 𝐹𝑘s,𝑗
√

𝑐e𝑐surfs,𝑗 (𝑐max
s,𝑗 − 𝑐surfs,𝑗 ), 𝑗 = n, p (11b)

is the exchange current density.
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3. Methodology for core temperature estimation

We start by describing a numerical scheme used to solve the eSPM
(Section 3.1) and then discuss its observability from measurements
(Section 3.2). Our approach to data assimilation and a detailed algo-
rithm for its implementation are outlined in Section 3.3.

3.1. Numerical solution of the eSPM

A finite-difference method is employed to approximate the spatial
derivatives in the eSPM [4]. The simulation domain 0 ≤ 𝑟 ≤ 𝑅𝑗 is
discretized with 𝑀s +1 nodes, and the boundary-value problem for the
Li+ concentration in the solid phase, (2) and (3), is discretized in space
as
d𝑐𝑚s,𝑗
d𝑡

=
𝐷s,𝑗𝑀2

s

𝑅2
𝑗

(𝑚 − 1
𝑚

𝑐𝑚−1s,𝑗 − 2𝑐𝑚s,𝑗 +
𝑚 + 1
𝑚

𝑐𝑚+1s,𝑗

)

, 𝑚 = 1,… ,𝑀 − 1;

and

𝑐0s,𝑗 = 𝑐1s,𝑗 and 𝑐𝑀s
s,𝑗 = 𝑐𝑀s−1

s,𝑗 −
𝑅𝑗𝐼

𝐷s,𝑗𝐹𝑀s𝑎𝑗𝐴𝐿𝑗
.

For the electrolyte phase, the simulation domains 0 ≤ 𝑥 ≤ 𝐿n,
𝐿n < 𝑥 ≤ 𝐿n+𝐿S and 𝐿n+𝐿S < 𝑥 ≤ 𝐿 are discretized, respectively, with
𝑀e,n, 𝑀e,S and 𝑀e,p nodes. To simplify the presentation, we assume
these nodes to be equally distant for all of these subdomains, such that
the distance between any two adjacent nodes in the whole simulation
domain 0 ≤ 𝑥 ≤ 𝐿 is 𝛥𝑥 = 𝐿∕𝑀e, where 𝑀e = 𝑀e,n +𝑀e,S +𝑀e,p. Then

finite-difference approximation of (5) on the domain 0 ≤ 𝑥 ≤ 𝐿 is

𝑖
d𝑐𝑘e
d𝑡

= 𝛼1
(𝑐𝑘−1e )2 − 𝑐𝑘−1e 𝑐𝑘e − (𝑐𝑘e )

2 + 𝑐𝑘e 𝑐
𝑘+1
e

(𝐿∕𝑀e)2

+ 𝛼2
𝑐𝑘−1e − 2𝑐𝑘e + 𝑐𝑘+1e

(𝐿∕𝑀e)2
+ (1 − 𝑡+0 )

𝑎𝑖𝐽𝑖
𝐹

, 𝑘 = 1,… ,𝑀e − 1;

ith the boundary and interfacial conditions (7a)–(7c) taking the form
0
e = 𝑐1e , 𝑐𝑀e

e = 𝑐𝑀e−1
e ,

1.5
n

𝑐𝑀e,n
e − 𝑐

𝑀e,p−1
e

𝐿∕𝑀e
= 𝜔1.5

S
𝑐𝑀e,n+1
e − 𝑐𝑀e,n

e
𝐿∕𝑀e

,

1.5
S

𝑐
𝑀e,p+𝑀e,s
e − 𝑐

𝑀e,p+𝑀e,s−1
e

𝐿∕𝑀e
= 𝜔1.5

p
𝑐
𝑀e,p+𝑀e,s+1
e − 𝑐

𝑀e,p+𝑀e,s
e

𝐿∕𝑀e
.

.2. Observability of Li+ concentration from terminal voltage

Our goal is to estimate the battery temperature, 𝑇 (𝑡), from the
erminal output voltage 𝑉 (𝑡) and input current 𝐼(𝑡). Let us define the

state vector 𝐜 = (𝑐0s,n,… , 𝑐𝑀s
s,n , 𝑐0s,p,… , 𝑐𝑀s

s,p , 𝑐0e ,… , 𝑐𝑀e
e )⊤ ∈ R2𝑀s+𝑀e+3

omprising the Li+ concentration in the anode, cathode and electrolyte.
hen, the eSPM and terminal voltage is rewritten as
d𝐜
d𝑡

= 𝑓m[𝐜, 𝑇 , 𝐼], 𝑉 = 𝑔m[𝐜, 𝑇 , 𝐼], (12)

where 𝑓m[⋅] is the eSPM (forward) model that predicts the temporal
evolution of the system state 𝐜(𝑡), and 𝑔m[⋅] is the nonlinear oper-
ator that calculates 𝑉 from the concentrations and temperature in
accordance with (8).

System observability refers to the ability to estimate 𝐜 and 𝑇 from
measurements of the input 𝐼 and output 𝑉 . Since the eSPM is highly
nonlinear, we investigate local observability by assuming that 𝑇 (𝑡)
varies slightly within a small time window, such that d𝑇 ∕d𝑡 = 0 locally.
This assumption is justified by our experimental observations depicted
in Fig. 2.

Consider the vector 𝐰 = (𝐜⊤, 𝑇 )⊤ ∈ R2𝑀𝑠+𝑀𝑒+4, then, the eSPM in
(12) is reformulated as
d𝐰 = 𝐅[𝐰, 𝐼]. (13)
4

d𝑡 𝑇
Fig. 2. Experimental data showing the temperature behavior from 1-C rate discharge
for the LGChem INR21700 battery cell.

Consider a differentiable manifold 𝑀 and let 𝑋 be a differentiable
vector field on 𝑀 . Given a function 𝑓 ∶ 𝑀 → R and a set 𝑥 ∈ 𝑀 , the
Lie derivative is defined as 𝐿𝑋 [𝑓 ] = 𝜕𝑥𝑓 (𝑥)𝑋(𝑥). With this definition,
he first 𝑙 = 2𝑀𝑠 +𝑀𝑒 +4−1 Lie derivatives of 𝑔m with respect to 𝐅 are

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝐿0
𝐅[𝑔m] ≡ 𝑔m

𝐿1
𝐅[𝑔m] ≡ ∇𝑔m ⋅ 𝐅

𝐿2
𝐅[𝑔m] ≡ ∇(𝐿1

𝐅[𝑔m]) ⋅ 𝐅
⋮
𝐿𝑙
𝐅[𝑔m] ≡ 𝐿𝐅

[

𝐿𝑙−1
𝐅 [𝑔m]

]

(14)

here

≡

(

𝜕
𝜕𝑐0s,n

, … , 𝜕
𝜕𝑐𝑀e

e

, 𝜕
𝜕𝑇

)

.

The local observability of this system, at a point (𝐰∗, 𝐼∗), depends on
the rank of the matrix [20]

𝐎(𝐰∗, 𝐼∗) =

⎡

⎢

⎢

⎢

⎢

⎣

∇(𝐿0
𝐹 [𝑔m])

∇(𝐿1
𝐹 [𝑔m])

⋮
∇(𝐿𝑙−1

𝐹 [𝑔m])

⎤

⎥

⎥

⎥

⎥

⎦

𝐰=𝐰∗ ,𝐼=𝐼∗

. (15)

pecifically, the system is locally observable if 𝚛𝚊𝚗𝚔(𝐎)|column = 2𝑀𝑠 +
𝑒 + 4. We verified numerically that this condition holds at different

perating points (𝐰∗, 𝐼∗) with 𝐼∗ ≠ 0. Therefore, for any unknown
nitial state, there exists a finite time-step 𝑡𝑘 > 0, for which the
nowledge of the input current 𝐼 and the output terminal voltage 𝑉
ver the time period [0, 𝑡𝑘] suffices to uniquely determine the initial
tate.

.3. Dual ensemble Kalman filter

Various flavors of Kalman filter, e.g., a joint filtering approach [21]
r a dual filtering structure [22], can be used to estimate the temper-
ture 𝑇 . Many of them require the knowledge of the state-parameter
atrix, which carries a significant computational cost proportional to

he dimensionality of the system. Instead, we deploy the dual ensemble
alman filter [23] because of its efficiency and ease of implementation.

A key feature of the proposed dual ensemble Kalman filter is the
ddition of a new equation to describe the quasi-constant change in
emperature over the sampling time window between the 𝑘th and
𝑘 + 1)st time steps,

𝑇

𝑘+1 = 𝑇𝑘 + 𝜖𝑘 . (16)
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Fig. 3. Experiments were carried out in the Stanford Energy Control laboratory at the Energy Resources Engineering Department, Stanford University.
Here 𝑇𝑘 and 𝑇𝑘+1 are the temperature values at the 𝑘th and (𝑘 + 1)st
time steps, respectively; and 𝜖𝑇𝑘 ∈ R is a small quantity capturing the
temporal change of the temperature over the time window 𝑘 and 𝑘+1.
We treat 𝜖𝑇𝑘 as a Gaussian random variable with zero mean and variance
𝜎2𝑇 ∈ R. By coupling (16) with (12), we obtain a new system for the thus
randomized state vector 𝐜.

Subsequent assimilation of measurements of current 𝐼 and terminal
voltage 𝑉 yields an estimate of battery temperature 𝑇 . Direct mea-
surements of 𝑉 can be noisy due to errors associated with numerical
roundoff and operating conditions. To account for this observation
error, we introduce a zero-mean Gaussian process in time, 𝜖d𝑘 ∈ R with
variance 𝜎2d ∈ R. Thus, the observed data are modeled as 𝑑𝑘 = 𝑉 obs

𝑘 +𝜖d𝑘.
With the model prediction, 𝐰(𝑡) = (𝐜⊤, 𝑇 )⊤, and observations, 𝑑(𝑡),

in place, we formulate the state-parameter estimation problem as a
filtering problem. Probability of the discrete system state at an arbitrary
time step 𝐾 ≥ 1 is given by Bayes’ theorem,

P(𝐰𝐾 |D𝐾 ) ∝ P(𝐰𝐾−1|D𝐾−1)P(𝑇𝐾 |𝑇𝐾−1)P(𝐜𝐾 |𝐰𝐾−1)P(𝑑𝐾 |𝐰𝐾 ), (17)

where D𝐾 = {𝑑𝑘}𝐾𝑘=1 is the data set of terminal voltage measurements
collected up to and including the 𝐾th time step. Filtering replaces
this computationally expensive Bayesian update with an optimization
problem

�̄�⋆
𝐾 = argmin

�̄�𝐾

{
[

𝑑𝐾 − 𝑔m(�̄�𝐾 , 𝐼𝐾 )
]2

𝜎2d
+

(�̄�𝐾 − �̂�𝐾 )2

�̂�𝐾
𝐜

+
(�̄�𝐾 − �̂�𝐾 )2

�̂�𝐾
𝑇

}

, (18)

where �̄�𝐾 = (�̄�⊤𝐾 , �̄�𝐾 )
⊤ are the posterior means of the system states at

the 𝐾th time step; and �̂�𝐾 = (�̂�⊤𝐾 , �̂�𝐾 )
⊤ and �̂�𝐾

𝐜 , �̂�𝐾
𝑇 are the prior means

and (co)variances predicted by the eSPM (13) at the 𝐾th time step. A
pseudo code of the dual ensemble Kalman filter is shown in Algorithm
1.

3.4. Identification of system parameters

The eSPM presented in Section 2 incorporates a large number of
parameters, whose values depend on both the battery type and factors
such as manufacturing process, duration of past discharge/charge, and
working environment. The parameters that have the largest impact on
the overall model output are arranged in the vector

𝛩 = (𝐷ref
s,p , 𝐷

ref
s,n , 𝜃n,100%, 𝜃p,100%, 𝐴,𝑅). (19)

These parameters are identified by minimizing the root mean square
error between the model-predicted terminal voltage 𝑉 (𝑡𝑘) and 𝑁obs
observations 𝑉obs(𝑡𝑘),

𝛩⋆ = argmin
6

𝑁obs
∑

|

|

𝑉obs(𝑡𝑘) − 𝑉 (𝐜𝑘, 𝑇𝑘, 𝛩, 𝑡𝑘)||
2 . (20)
5

𝛩∈R 𝑘=1
Algorithm 1 Dual state-parameter estimation with ensemble Kalman
filter

(i) Initialization, 𝑘 = 0

• Draw 𝑁 samples for the initial states of Li+ concentration
and temperature, 𝐜(𝑛)0 , 𝑇 (𝑛)

0 , (𝑛 = 1,… , 𝑁), which are taken
as uniformly distributed random variables:

𝐜0 ∼ U(𝐜min, 𝐜max), 𝑇0 ∼ U(𝑇min, 𝑇max).

(ii) For 𝑘 ≥ 1 and for all samples (𝑛 = 1,… , 𝑁),

(a) Forward prediction of system states:

• Predict temperature and terminal voltage from (12)
and (16):

�̂� (𝑛)
𝑘+1 = 𝑇 (𝑛)

𝑘 + 𝜖T (𝑛)
𝑘+1 ,

�̂�(𝑛)𝑘+1 = 𝑓m(𝐜
(𝑛)
𝑘 , �̂� (𝑛)

𝑘+1, 𝐼𝑘+1),

𝑉 (𝑛)
𝑘+1 = 𝑔m(�̂�

(𝑛)
𝑘+1, �̂�

(𝑛)
𝑘+1, 𝐼𝑘+1).

• Perturb the measurements of terminal voltage with
data noise:

𝑑(𝑛)𝑘+1 = 𝑉 obs
𝑘+1 + 𝜖d (𝑛)𝑘+1 .

• Compute Kalman gain for temperature, 𝐊tem
𝑘+1, and

update temperature:

𝐊tem
𝑘+1 = Cov(�̂�𝑘+1, 𝑉𝑘+1)[Cov(𝑉𝑘+1, 𝑉𝑘+1) + 𝜎2d ]

−1,

𝑇 (𝑛)
𝑘+1 = �̂� (𝑛)

𝑘+1 + (𝑑(𝑛)𝑘+1 − 𝑉 (𝑛)
𝑘+1)𝐊

tem
𝑘+1.

(b) Update terminal voltage and concentration states:

• Update terminal voltage with temperature

�̂�(𝑛)𝑘+1 = 𝑓m(𝐜
(𝑛)
𝑘 , 𝑇 (𝑛)

𝑘+1, 𝐼𝑘+1),

𝑉 (𝑛)
𝑘+1 = 𝑔m(�̂�

(𝑛)
𝑘+1, 𝑇

(𝑛)
𝑘+1, 𝐼𝑘+1).

• Compute Kalman gain matrix for concentration,
𝐊con

𝑘+1, and update concentration:

𝐊con
𝑘+1 = Cov(�̂�𝑘+1, 𝑉𝑘+1)[Cov(𝑉𝑘+1, 𝑉𝑘+1) + 𝜎2d ]

−1,

𝐜(𝑛)𝑘+1 = �̂�(𝑛)𝑘+1 + (𝑑(𝑛)𝑘+1 − 𝑉 (𝑛)
𝑘+1)𝐊

con
𝑘+1.
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Fig. 4. Left: 2 C-rate discharge profile from measurements (red line) and predicted terminal voltage using identified model parameters (blue dashed line). Right: The discrepancy
between the measurement and predicted terminal voltage.
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A set of constraints for this minimization problem comes from
geometric and physical considerations. The most obvious of these, 𝐴 >
, 𝑅 > 0 and 0 < 𝜃𝑗,100% < 1, are supplemented with a constraint
mposed by the long-time behavior of the Li+ concentrations in the
athode and anode, 𝑐s,𝑗 (𝑟, 𝑡) (𝑗 = n, p). Specifically, according to (2),
he diffusion time-scale (i.e., the time it takes to reach the equilibrium)
n each of the spherical particles is 𝑡′ = 𝑅2

𝑗∕(𝜋𝐷s,𝑗 ). Since the time (in
seconds) it takes to discharge a battery at 1 C-rate is 𝑡′ ∈ [1, 3600], this
places a constraint on the solid-phase diffusion coefficient at the two
electrodes, 𝐷s,𝑗 ≤ 𝑅2

𝑗∕(𝜋 𝑡′) (𝑗=n, p).
In summary, the identification of system parameters in (19) is cast

s a quadratic optimization problem (20) subject to the constraints

> 0, 𝑅 > 0, 0 < 𝜃𝑗,100% < 1, 0 < 𝐷s,𝑗 ≤
𝑅2
𝑗

𝜋𝑡′
for 𝑗 = n, p. (21)

4. Experimental setup, results and discussion

The experimental setup used for this work and shown in Fig. 3
includes two Arbin battery testing systems capable of applying diverse
current profiles to cells and modules and measure the load current, cell
voltage and surface temperature using highly accurate sensors. A ther-
mal chamber is used to conduct temperature controlled experiments
and Omega Type-T thermocouples are used to measure the battery
surface temperature. The measured current and voltage data from the
Arbin are used to identify the eSPM parameters.

Constant current discharge experiments are conducted on LGChem
INR21700 M50 cylindrical LIB cells whose chemical composition is
lithium nickel manganese cobalt oxide (LiNiMnCoO2 or NMC) for the
cathode and mixed graphite and silicon at the anode. The atomic ratio
of NMC used in LGChem INR21700 M50 is Ni:Mn:Co:Al =
82.9:5.1:10.6:1.4, and the anode has 90% graphite and 10% SiO0.64
in weight percentage [24]. The LIB has a nominal capacity of 4.85 A⋅ h
and operates at a nominal voltage 3.63 V with maximum and minimum
voltage of 4.20 V and 2.50 V, respectively. The cell was subjected to
three input discharged current at 1 C-rate, 2 C-rate and 3 C-rate at a
temperature of 25 ◦C. We measured the terminal voltage and the cell
surface temperature.

The finite-difference method described in Section 3.1 is imple-
mented on 𝑀s = 𝑀e = 31 nodes. The system of ordinary differential
Eqs. (12) is solved with the explicit fourth-order Runge–Kutta method
using the MATLAB® solver ode45. The vector of model parameters 𝛩
in (19) is obtained as a solution of the constrained optimization prob-
lem (Section 3.4) using the MATLAB® prediction error minimization
toolbox pem. Fig. 4 shows a close agreement between the terminal
voltage 𝑉 (𝑡) predicted with the model upon parameter identification
6

and its observations at the 2 C-rate discharge. The value of identified f
Table 1
Values of the model parameters. The horizontal line separates the fixed parameters
from those identified via model calibration at 2 C-rate discharge.

Parameters Anode Cathode Separator

𝐿𝑗 3.655 × 10−5 4 × 10−5 2.5 × 10−5

𝐷e 1.5 × 10−10 1.5 × 10−10 1.5 × 10−10

𝐶 in
e,𝑖 1200 1200 1200

𝜔𝑖 0.4 0.4 0.4
𝑐e,𝑖 1200 1200 1200
𝛼cell 0.5 0.5
𝑡+0 0.363 0.363
𝑐max
s,j 31080 51830
𝑅𝑗 5 × 10−6 5 × 10−6

𝜀𝑗 0.662 0.58
𝑘ref𝑗 1 × 10−10 1 × 10−10

𝐸act
𝐷,𝑗 4 × 104 2.5 × 104

𝐸act
𝑘,𝑗 3 × 104 3 × 104

𝑅g 8.314
𝐹 96487
𝑇ref 25

𝐷ref
s,j 3.825 × 10−14 3.196 × 10−14

𝜃𝑗,100% 0.836 0.375
𝐴 2.836 × 10−1

𝑅 4.967 × 10−2

parameter are reported in Table 1; the fixed parameters are taken
from [3,24].

We used the dual ensemble Kalman filter with 20 samples to es-
timate the LIB temperature, 𝑇 , from 3408, 1648 and 1027 direct mea-
surements of 𝑉 for 1, 2 and 3 C-rate discharge, respectively. The

easurement error variance is 𝜎2d = 1 × 10−6 V2, and the variance of
he temperature model error is 𝜎2𝑇 = 0.001 ◦C2. In Fig. 5, the temporal
volutions of temperature 𝑇 , reconstructed from direct measurements
nd estimated via the proposed ensemble Kalman filter at 1, 2 and
C-rate discharge are shown. In all regimes, the algorithm yields

veraged (smoothed) temperature profiles that are in close agreement
ith the observations. Moreover, in Fig. 5 the prediction errors, i.e., the
ifference between the observed and predicted values of voltage 𝑉 are
hown for the same C-rates. The maximum error at 2 C-rate discharge
eaches 2 ◦C, whereas its counterparts at the two other rates are merely
.6 ◦C. The temperature root mean square error (RMSE) at 1, 2 and 3
-rate discharge is 0.1085, 0.2550 and 0.3224, respectively.

The results shown demonstrate that the proposed method can ef-
ectively forecast the LIB temperature at a constant current. Moreover,
t is also applicable to high-rate currents, as discussed in Section 3.3
herein the current varies with time. Application of our method to
ischarge/charge cycles with varying ambient temperature is left for
uture studies. For example, a working cycle of an LIB in an electric
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Fig. 5. Left column: Temporal evolution of the LIB temperature 𝑇 (𝑡), predicted with dual ensemble Kalman filter (solid line) and observed experimentally (dashed line) at 1 C-rate
Top), 2 C-rate (Middle), 3 C-rate (Bottom). The predicted results are averages over 20 realizations. Right column: The corresponding voltage 𝑉 (𝑡), predicted with dual ensemble
alman filter (dashed lines) and observed experimentally (solid lines).
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ehicle consists of a sequence of charging (regenerative braking) and
ischarging of the battery. In addition, since the definition of 𝑓𝑚 and
𝑚 is general, our method can potentially work for other battery types
s long as the state propagation function model is accurate.

. Summary and conclusions

We proposed a novel algorithm to estimate the temperature of a
IB cell using the currently available on-board current and voltage
ensors by means of inversion of the electrochemical dynamics. It uses
he enhanced single-particle model to relate the current and terminal
oltage to the temperature, and a dual ensemble Kalman filter to
ssimilate direct measurements of the former into predictions of the
atter.
7

i

The proposed numerical framework provides accurate estimates of
attery temperature, terminal voltage and Li+ concentration in both
he solid phase and the electrolyte, over a wide range of C-rate dis-
harge. Results have been validated against experimental data collected
rom the LGChem NMC battery cells at the Stanford Energy Control
aboratory.

The proposed algorithm can be used in current battery management
ystems to enhance SOC/SOH estimation while guaranteeing battery
afety operation.
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