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Online Capacity Estimation for Lithium-Ion Battery
Cells via an Electrochemical Model-Based Adaptive

Interconnected Observer
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Abstract— Battery aging is a natural process that contributes
to capacity and power fade, resulting in a gradual performance
degradation over time and usage. State-of-charge (SOC) and
state-of-health (SOH) monitoring of an aging battery poses
a challenging task to the battery management system (BMS)
due to the lack of direct measurements. Estimation algorithms
based on an electrochemical model that considers the impact
of aging on physical battery parameters can provide accurate
information on lithium concentration and cell capacity over a bat-
tery’s usable lifespan. A temperature-dependent electrochemical
model, the enhanced single particle model (ESPM), forms the
basis for the synthesis of an adaptive interconnected observer
that exploits the relationship between capacity and power fade,
due to the growth of solid electrolyte interphase layer (SEI),
to enable combined estimation of states (lithium concentration
in both electrodes and cell capacity) and aging-sensitive transport
parameters (anode diffusion coefficient and SEI layer ionic
conductivity). The practical stability conditions for the adaptive
observer are derived using Lyapunov’s theory. Validation results
against experimental data show a bounded capacity estimation
error within 2% of its true value. Furthermore, the effectiveness
of capacity estimation is tested for two cells at different stages
of aging. Robustness of capacity estimates under measurement
noise and sensor bias is studied.

Index Terms— Adaptive observer, capacity estimation,
enhanced single particle model (ESPM), lithium-ion battery,
Lyapunov stability.

NOMENCLATURE

A Cell cross-sectional area [m2].
De Electrolyte phase diffusion [m2/s].
Deff

e Effective electrolyte phase diffusion [m2/s].
Ds, j Solid phase diffusion [m2/s].
Ds, j,re f Reference solid-phase diffusion [m2/s].
Ea Activation energy.
F Faraday’s constant [C/mol].
L j Domain thickness [m].
Lsei SEI layer thickness [m].
Msei Molar mass of SEI layer [kg/mol].
Rg Universal gas constant [J/mol-K].
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R j Particle radius [m].
Rl Lumped resistance [�].
Rsei SEI layer resistance [�].
Tref Reference temperature [oC].
U j Open-circuit potential [V].
as, j Specific interfacial surface area [m−1].
ce Concentration in electrolyte phase [mol/m3].
ce,0 Average electrolyte phase concentration

[mol/m3].
cs, j Concentration in solid phase [mol/m3].
cs, j,bulk Bulk concentration [mol/m3].
cs, j,surf Surface concentration [mol/m3].
cs, j,max Maximum solid phase concentration [mol/m3].
is Side reaction current density [A/m2].
k j Reaction rate constant [m2.5/s-mol0.5].
l Cartesian coordinate along the cell’s thickness.
r Radial coordinate.
t+
0 Transference number.
φe Electrolyte potential [V].
� j Active volume fraction of solid phase.
�e, j Porosity.
� j, f Active volume fraction of filler/binder.
κ Electrolyte conductivity [S/m].
κsei SEI layer ionic conductivity [S/m].
κeff Effective electrolyte conductivity [S/m].
η j Overpotential [V].
θ j,100% Reference stoichiometry ratio at 100% SOC.
θ j,0% Reference stoichiometry ratio at 0% SOC.
ρsei SEI layer density.
Subscript j Anode, separator, or cathode.
Subscript ol Open loop.

I. INTRODUCTION

AGING contributes to the diminishing performance in
batteries, resulting in reliability and safety issues. It man-

ifests in the form of energy and power fade, characterized
by loss in cell capacity and increased internal impedance,
respectively. With respect to automotive applications, energy
and power fade of a lithium-ion battery relates to a reduced
driving range and limited acceleration performance at the
vehicle level. The outcome of the work presented in this
article contributes toward accurate electrochemical model-
based estimation of lithium concentration and cell capacity
that holds the potential to enable the practical realization
of advanced battery health-based control algorithms in the
future.
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A. Background and Related Work
There are various complex chemical and physical aging

mechanisms affecting the anode and cathode in a battery [1].
It is neither feasible to mathematically model the underlying
dynamics of every aging mechanism or their respective non-
linear interaction, with current technology and understanding,
nor is it computationally viable to implement them in a
control-oriented fashion. Most of the literature focuses on the
solid electrolyte interphase (SEI) layer growth and considers
it to be the dominant aging mechanism in lithium-ion bat-
teries [2], [3]. The SEI layer is a thin film formed around
the active material in the negative electrode due to electrolyte
decomposition that consumes cyclable lithium ions. With
usage, the SEI layer grows gradually, not only causing capacity
fade but also resulting in power fade due to increased thickness
of the layer, and the adverse effects of modified porosity on
the effective transport properties in the electrolyte phase [3].

Model-based estimation of battery state of charge (SOC)
and state of health (SOH) is a well-researched topic. Since
aging affects the physical battery parameters, it is impor-
tant to be aware that utilizing a fixed-parameter model for
estimation purposes will yield estimates that will slowly
diverge over time and usage. One way to counter this is
to use dynamic aging models to keep track of the battery
SOH. Physics-based aging models are not a viable option for
real-time implementation due to the complexity that results
from the lack of comprehensive knowledge of the various
electrochemical aging mechanisms and their slow time-scale
behavior. On the other hand, semiempirical aging models
in combination with a battery equivalent circuit model offer
lower complexity at the cost of accuracy. However, such
models also require extensive data for calibration and the
accuracy of the model is not guaranteed as battery ages,
unless the order of the model is increased significantly [4].
This has been the motivation to develop adaptive observers
that update the parameters dynamically with aging. Adaptive
observers based on equivalent circuit models [5], [6] operate
by adapting the circuit parameters (resistors and capacitors)
as aging progresses. On the other hand, an electrochemical
model, such as the single particle model (SPM), captures the
concentration states and its parameters represent actual phys-
ical properties. The SPM is a reduced-order electrochemical
model that approximates each electrode by a spherical particle
and neglects lithium concentration and migration dynamics in
the electrolyte phase, making it suitable for control-oriented
applications. Electrochemical model-based adaptive estimation
has provided promising results [7], [8]. In these algorithms,
the lithium concentration states are estimated along with
aging-sensitive parameters, such as cyclable lithium ions,
diffusion coefficient, and internal resistance. However, there
has been no attempt at relating the results of the parameter
estimates to the actual cell capacity. This is because the estima-
tion algorithms do not incorporate the aging mechanisms into
the modeling framework or relate the aging mechanisms to the
changes observed in aging-sensitive parameters. Furthermore,
these adaptive estimation algorithms validate their function-
ality over a fresh cell and do not present any results against
experimental data sets for an aged cell. In summary, the main

contributions of this article are motivated from the following
shortcomings in the literature: 1) semiempirical aging models
require large experimental data sets and are limited to the
operating conditions they have been characterized for and
2) model-based adaptive estimation algorithms, both equiva-
lent circuit and electrochemical model-based, do not relate the
estimated aging-sensitive parameters to the exact cell capacity
or SOH. Clearly, there is a need for a framework that unites
the strengths of adaptive estimation theory with physics-based
modeling insights of degradation mechanisms, without relying
on extensive experimental data for aging characterization or
causing additional computational burden, and yet be able to
predict battery capacity (SOH) in real time. Furthermore,
the framework must be general enough to be extended to
varied battery chemistry and also allow other degradation
mechanisms to be incorporated, if necessary.

B. Contributions and Article Outline

The main contribution of this article lies in exploiting the
physicochemical effects of the SEI layer growth on capacity
and power fade and combining it with the adaptive estimation
theory in order to estimate the total cell capacity, lithium
concentration, and aging-sensitive parameters in real time.
An aging-dependent voltage loss term that reflects the SEI
layer-induced degradation is incorporated to enable the model
to be used as the cell ages. Furthermore, a practically stable
adaptive observer is implemented in a novel interconnected
sliding mode observer structure in the presence of bounded
modeling uncertainties and validated against experimental
data. Taking the practical limitations into considerations, such
as inherent bounded uncertainties in the model, observability
issues, and moderate sensitivities of the parameters to mea-
sured output variables, the trajectories of state and parame-
ter estimates may not converge asymptotically to the true
values. Hence, the notion of practical stability is explored
for the proposed adaptive observer. The remainder of this
article is organized as follows. Section II details the notations
and definitions used in this article. Section III describes
the enhanced single particle model (ESPM) and derives the
coupling between capacity and power fade due to SEI layer
growth. The state-space representation of the ESPM (with
aging-induced effects) is formulated. The relationship between
capacity and power fade motivates the design of an SPM-based
adaptive interconnected sliding mode observer for the esti-
mation of lithium concentration in electrodes, aging-sensitive
parameters, and cell capacity in Section IV. The practical
stability of the estimation error dynamics is rigorously proved
using Lyapunov’s theory. Section V validates the proposed
SPM-based adaptive observer against experimentally measured
data, and Section VI summarizes the conclusions.

II. PRELIMINARIES

The following notations and symbols are used in this article.
1) ||·|| is the Euclidean norm.
2) R+ = {z ∈ R : z > 0}; R− = {z ∈ R : z < 0}.
3) Matrix C ∈ R

1×n is the output distribution vector
defined as C = [0 0, . . . , 1].
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TABLE I

GOVERNING EQUATIONS OF A TEMPERATURE-DEPENDENT ESPM [11], [12]

4) B||�|| is the ball of radius ||�|| centered at the origin.
5) In is the identity matrix of order n.
6) Subscript j denotes the domain in the lithium-ion bat-

tery. In the solid phase, it denotes the negative and
positive electrode, j ∈ [n, p], whereas, in the electrolyte
phase, it represents the negative electrode, separator, and
positive electrode, j ∈ [n, s, p].

Definition 1: [9] A function w : R+ �→ R
n is persistently

exciting if there exist T, δ1, δ2 > 0 such that

δ1 In ≤
∫ t+T

t
w(τ)wT (τ )dτ ≤ δ2 In

holds for all t ≥ 0.
Definition 2: A function f (z, t) : R ×R → R is said to be

globally Lipschitz in z and uniformly in t if, for some constant
L ∈ R+, || f (z + δz, t)− f (z, t)|| ≤ L||δz|| holds true.

Definition 3: [10] A dynamic system ż = f (t, z) with
initial condition z(t0) = z0 is practically stable if ∃ a, b with
0 < a < b such that ||z0|| < a and ||z(t)|| < b, where t ≥ t0
for some t0 ∈ R+.

Definition 4: An input u(t) is bounded if ∃ m ∈ R+ that
satisfies ||u(t)|| ≤ m, ∀t ≥ 0.

Definition 5: The uncertainty in model states �x(t), and
the output �y(t) is bounded if ∃ δm, δn ∈ R+ that satisfies
supt≥0 ||�x(t)|| ≤ δm and supt≥0 ||�y(t)|| ≤ δn .

Property 1: ∀ a, b ∈ R if sgn(a) = − sgn(b) always holds
true, then sgn(a − b) = sgn(a) = − sgn(b).

Property 2: ∀ a ∈ R, a = sgn(a)|a|.
III. ELECTROCHEMICAL BATTERY MODEL: ESPM

GOVERNING EQUATIONS

In this work, a temperature-dependent ESPM, published in
the literature [11], has been used to simulate the transport of
lithium ions in the solid and electrolyte phases and predict
the battery voltage response. The ESPM governing equations
describing the mass and charge transport, with a radial domain
of r ∈ [0, R j ] and Cartesian domain of l ∈ [0, L] (where
L = Ln + Ls + L p), are spelled out in Table I.

The terminal voltage predicted by the ESPM battery model
is the potential difference between cathode and anode, which
is given by

V (t) = [
Up

(
cs,p,surf, T

) + ηp
(
cs,p,surf, T, Ibatt

)]
−[

Un
(
cs,n,surf, T

) + ηn
(
cs,n,surf, T, Ibatt

)]
+2RgT

(
1 − t+

0

)
ν(T )

F
ln

ce(L)

ce(0)
−Ibatt(t)Re,0 − Ibatt(t)Rl (1)

TABLE II

TEMPERATURE-DEPENDENT ESPM PARAMETERS [11]

Fig. 1. OCP of NMC cathode and graphite anode cell at 25 ◦C.

where Re,0 is the electrolyte resistance expressed as [13]

Re,0 = 1

2A

(
Ln

κeff
n (ce, T )

+ 2Ls

κeff
s (ce, T )

+ L p

κeff
p (ce, T )

)
(2)

where the effective transport parameters in the electrolyte
phase take tortuosity into account through a Bruggeman’s
relationship, to give κeff

j (ce, T ) = κ(ce, T )�1.5
e, j . Similar rela-

tionship holds true for the effective diffusion in electrolyte
phase, appearing in Table I as Deff

e, j (ce, T ) = De(ce, T )�1.5
e, j .

Furthermore, the open-circuit potential (OCP) of each elec-
trode, shown in Fig. 1 [11], is a function of the stoichiometry
ratio, θ j , of the respective electrode, which is related to
the surface concentration as θ j = cs, j,surf/cs, j,max, and the
electroactive surface area of each electrode is defined as
as, j = 3� j/R j .

Moreover, the dependence of the model parameters on
temperature T is collated in Table II.
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A. SEI Layer: Capacity and Power Fade Relationship

The electrochemical instability of the electrolyte at lower
potentials, typically observed at the anode, results in elec-
trolyte decomposition forming a passive film layer on the
anode, known as the SEI layer [1]. The SEI layer continues
to grow, with time and usage, resulting in capacity fade and
power fade of the battery. The SEI layer dynamics depends
on the side reaction current density and is described as [12]

dLsei

dt
= − is Msei

2Fρsei
(3)

with initial value of Lsei(0) = Lsei,0 as the nominal SEI layer
thickness at the beginning of life (BOL) of the cell after few
cycles.

Capacity Fade: It is defined as the decrease in the discharge
capacity of the battery over time. In this work, any decrease in
capacity is due to the loss of cyclable lithium ions consumed
by the SEI layer. This allows to relate the capacity loss of the
battery to the side reaction current density and, also, from (3),
relates capacity loss to the rate of SEI layer growth as [3]

dQ

dt
= isas,n ALn

3600
(4)

dQ

dt
= −dLsei

dt

2Fρseias,n ALn

3600Msei
(5)

with initial value of Q(0) = Q0, expressed in Ah, as the
nominal cell capacity at the BOL.

Power fade: It is defined as an increase in internal resistance
of the battery that results in a decrease in the power that
can be delivered to the load. Under the assumption that SEI
layer growth is the dominant aging mechanism, power fade
is characterized through a combinatorial increase in the SEI
layer resistance Rsei and electrolyte resistance Re [3]. If Rpf

denotes the resistance increase that represents power fade, any
change in Rpf is due to Rsei and Re given by

dRpf

dt
= dRsei

dt
+ dRe

dt
(6)

with the initial value of Rpf (0) = 0�, which increases as
battery ages. Integrating (6) with respect to time gives

Rpf(t) = Rsei(t)− Rsei(0)+ Re(t)− Re(0) (7)

where Re(0) is the electrolyte resistance at BOL given in (2),
hence Re,0 = Re(0). As the SEI layer grows in thickness,
the change in SEI layer resistance is related to loss in capacity
using (5) as given by [3]

dRsei(t)

dt
= dLsei(t)

dt

1

as,n ALnκsei
(8)

= −dQ(t)

dt

3600Msei

2Fρsei A2a2
s,n L2

nκsei
. (9)

Integrating (8) and (9) with respect to time gives

Rsei(t)− Rsei(0) = −3600(Q(t) − Q0)Msei

2Fρsei A2a2
s,n L2

nκsei
. (10)

Moreover, as SEI layer continues to grow, it begins to penetrate
the pores of the negative electrode restricting the accessible
electroactive surface area of the electrode [14]. This results in

a modified negative electrode porosity that varies with aging
given by [3]

�e,n(t) = 1 − �n

(
1 + 3Lsei(t)

Rn

)
− �n, f . (11)

The decreasing porosity affects the averaged transport prop-
erties (ionic conductivity and diffusion coefficient) in the
electrolyte phase. The reduced effective ionic conductivity
increases the resistance offered to lithium transport in the
electrolyte phase. Integrating (5) from time 0 to t , with
initial conditions Lsei,0, Q0, substituting the result in (2),
and updating it with the modified porosity from (11) give
the expression in (12), as shown at the bottom of the next
page. Substituting (10) and (12) in (7) relates the power fade
resistance Rpf at any time t to capacity Q(t), as shown in (13),
bottom of the next page, The novelty of deriving Rpf this
way is in establishing a tangible dependence between power
fade resistance Rpf and capacity fade Q − Q0. The main
characteristics of this derived relationship are to supplement
the conventional ESPM by including an aging-dependent term
to reflect the SEI induced degradation in the form of voltage
loss (the term in red box) in the cell terminal voltage equation
as given in the following:

V = [
Up

(
cs,p,surf, T

) + ηp
(
cs,p,surf, T, Ibatt

)]
−[

Un
(
cs,n,surf, T

) + ηn
(
cs,n,surf, T, Ibatt

)]
+2RgT

(
1 − t+

0

)
ν(T )

F
ln

ce(L)

ce(0)
− Ibatt(t)Re,0

−Ibatt(t)Rl − Ibatt(t)Rpf (t) (14)

and to formulate the ESPM voltage equation, as in (14), in a
fashion that lends itself for the estimation of available cell
capacity (Q) by being able to monitor the voltage loss or the
parameter representing the power fade resistance (Rpf ).

B. State-Space Representation

The partial differential equations (PDEs) describing the
mass transport in solid and electrolyte phases, given in
Table I, are spatially discretized using the finite-difference
method (FDM) to obtain a system of coupled ordinary differ-
ential equations (ODEs) that can be cast into a state-space for-
mulation. Moreover, the slowly varying battery capacity Q(t),
over its entire lifetime, is considered as a dynamic state and
augmented to the state vector in order to formulate a state
estimation problem. Since the capacity is a slowly varying
variable, the dynamics of cell capacity in real time is approxi-
mated as Q̇ = 0. The system of ODEs and the aging-enhanced
nonlinear terminal voltage equation in (14) are formulated
into a general state-space form. Let x = [x1, x2, x3, x4]T ∈
R
(2N+M−1)×1 be the state vector, u = Ibatt be the input current,

and y = V be the output voltage of the model. The state
variables represent lithium concentration in cathode, anode,
cell capacity, and lithium concentration in electrolyte, x1 =
[cs,p,1, cs,p,2, . . . , cs,p,N ]T , x2 = [cs,n,1, cs,n,2, . . . , cs,n,N ]T ,
x3 = Q, and x4 = [ce,1, ce,2, . . . , ce,M−2]T . Moreover,
the surface concentration in both electrodes is given as
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cs, j,surf = Ccs, j , respectively, where C is the output distrib-
ution vector. Then, the state-space formulation of ESPM is
given by

ẋ1(t) = A11(T )x1(t)+ B1u(t)

ẋ2(t) = θ1(T ) Ā22x2(t)+ B2u(t)

ẋ3(t) = 0

ẋ4(t) = fe(x4, T, u)

y(t) = h1(x1,N , T, u)− h2(x2,N , T, u)− h3(x3)u

+h4(x4, T, u)− Rlu + (x3 − Q0)θ2u (15)

where nonlinearities in the terminal voltage equation and
parameters are

h1(x1,N , T, u) = [
Up

(
cs,p,surf, T

) + ηp
(
cs,p,surf, T, Ibatt

)]
h2(x2,N , T, u) = [

Un
(
cs,n,surf, T

) + ηn
(
cs,n,surf, T, Ibatt

)]
h3(x3) = Re(t)

h4(x4, u) = 2Rg T
(
1 − t+

0

)
ν(T )

F
ln

ce(L)

ce(0)
θ1(T ) = Ds,n(T )

θ2 = 3600Msei

2F A2ρseia2
s,n L2

nκsei

and square matrices A11(T ), Ā22 ∈ R
N×N are the coeffi-

cients of the concentration states in (15), and column vectors
B1, B2 ∈ R

N×1 are coefficients of input current in (15),
described as follows:

A11(T ) = Ds,p(T )

�2
r

⎡
⎢⎢⎢⎣

−2 2 0 · · · 0 0
1/2 − 2 3/2 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 2 − 2

⎤
⎥⎥⎥⎦

B1 = 2

�r Fas,p AL p

⎡
⎢⎢⎢⎢⎣

0
0
...

N + 1

N

⎤
⎥⎥⎥⎥⎦

Ā22 = 1

�2
r

⎡
⎢⎢⎢⎣

−2 2 0 · · · 0 0
1/2 − 2 3/2 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 2 − 2

⎤
⎥⎥⎥⎦

B2 = −2

�r Fas,n ALn

⎡
⎢⎢⎢⎢⎣

0
0
...

N + 1

N

⎤
⎥⎥⎥⎥⎦. (16)

The procedure used to identify the ESPM parameters and val-
idate it against experimental data is outlined in the Appendix.

IV. ADAPTIVE INTERCONNECTED OBSERVER

Accurate knowledge of battery SOC/SOH using the
state-space model described in (15) is attainable by estimat-
ing the following state variables: 1) lithium concentration
in cathode; 2) lithium concentration in anode; and 3) total
cell capacity. However, it is important to note that accurate
model-based state estimation over the entire lifespan of a
battery is contingent on how well the model predicts the
battery response as it ages. Naturally, when model parame-
ters vary with usage and time, state estimates of capacity
and lithium concentration will diverge from their respective
true values. Studies have shown that transport parameters,
such as diffusion and conductivity, change with aging [12].
This motivates the need for an adaptive scheme that updates
the time-varying aging-sensitive parameters in real time to
ensure that the model-based estimation of capacity and lithium
concentration remains accurate over time. For this purpose,
an adaptive observer capable of combined estimation of states
and parameters is considered. A sliding mode interconnected
observer structure [15] is preferred for the implementation
of the adaptive observer, primarily because it allows for
the concurrent estimation of concentration in both electrodes
and, by extension, estimation of electrode-specific geometrical
and transport parameters, despite any inaccurate initialization
in either electrode. The observability issues associated with
estimating states from both electrodes are circumvented by
having an observer for each electrode with an open-loop
model of the other electrode that is constantly updated with
the correct estimates. More importantly, the sliding mode
structure features robustness to modeling uncertainties and
easier real-time onboard implementation. In this work, the SEI
layer growth is considered to be the major degradation mech-
anism, and hence, anode diffusion coefficient (Ds,n) and SEI
layer ionic conductivity (κsei) are chosen as the parameters
of interest that are assumed to change with degradation. The
changes in anode diffusion due to the SEI layer are well
documented [12], and the lowering of ionic conductivity in the

Re(t) = 1

2A

[
Ln

κn

(
1 − �n

(
1 + 3

Rs,n

(
Lsei,0 − 3600(Q(t)− Q0)MSei

2F ALnas,nρsei

))
− �n, f

)1.5 + 2Ls

κeff
s

+ L p

κeff
p

]
. (12)

Rpf (t) = 1

2A

[
Ln

κn

(
1 − �n

(
1 + 3

Rs,n

(
Lsei,0 − 3600(Q(t)− Q0)MSei

2F ALnas,nρsei

))
− �n, f

)1.5 + 2Ls

κeff
s

+ L p

κeff
p

]
− Re,0

−3600(Q(t)− Q0)Msei

2Fρsei A2a2
s,n L2

nκsei
. (13)
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Fig. 2. Interconnected adaptive observer structure for the estimation of
lithium concentration states (x̂1 and x̂2), total cell capacity (x̂3), anode
diffusion coefficient (θ̂1), and the SEI layer ionic conductivity (θ̂2).

SEI layer is interpreted from the growing SEI layer thickness
and subsequent increasing SEI layer resistance offered to the
transport of lithium ions. Both parameters are studied to be
moderately sensitive to the output voltage and hence can be
estimated with a reasonable level of accuracy. It is worth
pointing out that the interconnected framework can be easily
extended to incorporate different degradation mechanisms that
affect other parameters at either electrode since there is a
dedicated observer running for each electrode.

The state (x) and parameter (θ ) vectors to be estimated are
x = [x1, x2, x3]T ∈ R

(2N+1)×1 and θ = [θ1, θ2]T ∈ R
2×1. The

structure of the proposed adaptive interconnected observer is
shown in Fig. 2. The observer is fed with measured current
and voltage of the battery. The cathode observer estimates
the lithium concentration in the cathode (x1), the cell capac-
ity (x3), and the SEI layer ionic conductivity κsei(θ2), whereas
the anode observer estimates the lithium concentration in the
anode (x2) and the anode diffusion coefficient Ds,n(θ1). Recall
that the parameter (κsei) enters the state-space model in (15)
through the term θ2. Only the term (κsei) is unknown in θ2.
Hence, estimating θ2 and using the values of the remaining
known parameters gives κsei. The estimated state variables and
parameters from one observer are fed to the other, at every
step, through a bidirectional interconnection, guaranteeing
each observer to converge despite incorrect initialization in
states and parameters. While the convergence of the sliding
mode interconnected observer for state estimation with fixed
battery model parameters is proved for a fresh cell [15],
the convergence for a cell whose aging-sensitive transport
parameters vary slowly over time is proposed in this article,
which, to the best of the authors’ knowledge, has never been
investigated.

Remark 1: For observer design, the ESPM is simplified by
assuming uniform concentration in the electrolyte phase. The
concentration state in the electrolyte phase (x4) is consid-
ered to have a constant value of 1200 mol/m3 [11], hence
ẋ4 = 0. Effectively, the M − 2 ODEs representing the
electrolyte phase are eliminated and the term (2 RgT (1 −
t+
0 )ν(T )/F) ln(ce(L)/ce(0)) in the output voltage equation

is taken to be zero. This gives an approximated SPM that
is a reduced-order model suitable for observer design. This
also allows comparison of the SPM-based observer estimates
with the higher order ESPM. Finally, the combined uncertain
state-space representation of the SPM is given as⎡
⎣ ẋ1

ẋ2

ẋ3

⎤
⎦ =

⎡
⎣A11(T ) 0N×N 0N×1

0N×N θ1(T ) Ā22 0N×1

01×N 01×N 0

⎤
⎦

⎡
⎣ x1

x2

x3

⎤
⎦ +

⎡
⎣ B1

B2

0

⎤
⎦u

+
⎡
⎣ IN 0N×N 0N×1

0N×N IN 0N×1

01×N 01×N 0

⎤
⎦

⎡
⎣�x1

�x2

0

⎤
⎦

[
θ̇1

θ̇2

]
=

[
0
0

]
y = h1(x1,N , T, u)− h2(x2,N , T, u)− Rlu

−h3(x3)u + (x3 − Q0)θ2u +�y (17)

where �x1 , �x2 ∈ R
N×1, and �y ∈ R are the modeling

uncertainties introduced in the states and output due to
neglecting the concentration dynamics in the electrolyte
phase. Henceforth, the dependence on cell temperature T
is dropped only in the notations, for the ease of presen-
tation. The cell temperature information is assumed to be
known via temperature sensors, and the model states and
output are updated accordingly based on the temperature
value.

Theorem 1: For the dynamical state-space representation
of SPM with known and bounded uncertainties in states
(�x1 and �x2 ) and output (�y), given in (17), if the following
holds.

1) There exists functions h1
(
x1,N , u

)
, h2

(
x2,N , u

) : R ×
R × R → R which are Lipschitz in x1,N and x2,N ,
respectively, and uniformly in u.

2) There exists a function h3(x3) : R → R Lipschitz
in x3.

3) The input u is bounded and satisfies the property of
persistence of excitation as per Definition 1.

4) The output uncertainty �y is related to the error in
capacity estimate, through ψ ∈ R, as follows:

�y = ψe3u. (18)

5) The parameters are adapted, with tuning parameters
k1, k2, according to⎧⎪⎪⎨

⎪⎪⎩
˙̂θ1 = C Ā22 x̂2 sgn

(
ey2

)|h̃2|
γn,2k1

˙̂θ2 = CG1(x3 − Q0)u sgn(ey1)|h̃1 − h̃2|
k2γp,2

(19)

then the adaptive interconnected observer, consisting of a
cathode observer formulated as

˙̂x1 = A11 x̂1 + B1u + G1(y − ŷ1)+ Gv1 sgn(y − ŷ1)

˙̂x2,ol = θ̂1 Ā22 x̂2 + B2u
˙̂x3 = G3(y − ŷ1)u

ŷ1 = h1
(
x̂1,N , u

) − h2
(
x̂2,N,ol, u

) − Rl u

−h3(x̂3)u + (x̂3 − Q0)θ̂2u (20)
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and an anode observer formulated as

˙̂x1,ol = A11 x̂1 + B1u
˙̂x2 = θ̂1 Ā22 x̂2 + B2u + G2(y − ŷ2)+ Gv2 sgn(y − ŷ2)

ŷ2 = h1
(
x̂1,N,ol, u

) − h2
(
x̂2,N , u

) − Rlu

−h3(x̂3)u + (x̂3 − Q0)θ̂2u (21)

is practically stable, i.e., the state and parameter estimates
converge to a bounded error ball as t → ∞.

Remark 2: In (20) and (21), the subscript ol stands for
open-loop model state variables, G1 ∈ R

N×1− ,G2 ∈ R
N×1+ ,

G3 ∈ R are constant linear observer gains, Gv1,Gv2 ∈ R
N×1

are variable structure gains, introduced to improve robust-
ness against uncertainties, with discontinuous injection terms
defined as

sgn(y − ŷi) =

⎧⎪⎨
⎪⎩

1, if y − ŷi > 0

0, if y − ŷi = 0

−1, if y − ŷi < 0

i = 1, 2.

Remark 3: The error in the surface concentration of cathode
(e1,N ) is related to the entire error vector of cathode concen-
tration via the output distribution vector as

e1,N = Ce1. (22)

The same holds true for anode: e2,N = Ce2.
Remark 4: During battery operation, it is important to

understand that the lithium cycling between the two electrodes
results in the concentration in one electrode to increase,
whereas the concentration in the other electrode decreases.
This understanding is exploited in the observer formula-
tion and initialization. Consider the stoichiometric window
of anode to be θn,100% and θn,0% corresponding to fully
charged (100% SOC) and fully discharged (0% SOC) cell
and, likewise, the cathode stoichiometric window as θp,100%

and θp,0% corresponding to fully charged and fully discharged
cell. If we discharge the cell from a fully charged status,
the stoichiometry of anode will start from θn,100% and move
toward θn,0%, where θn,100% > θn,0%. On the other hand,
the stoichiometry of cathode will start from θp,100% and move
toward θp,0%, where θp,100% < θp,0%. This is because the
concentration in anode will deplete as the concentration in
cathode increases. For instance if the true SOC is 100% and
the cell is initialized with an error of 10% (i.e., SOC = 90%;
note that SOC = 110% is not a feasible initialization because it
is not physically possible), then this error is introduced into the
concentration state variables of the observer in terms of initial
stoichiometry values of anode and cathode as θn,initial and
θp,initial, respectively. From the above understanding, we are
aware that these initial values will always have to lie within
the stoichiometric windows of the respective electrode for
feasibility. This leads to{

θn,100% > θn,initial > θn,0%

θp,100% < θp,initial < θp,0%.
(23)

Physically, there cannot be a value of θp,initial > θp,100% that
can satisfy or correspond to SOC = 90%. Hence, we can write

Fig. 3. Function h3 plotted against x3 with nominal parameter values.

that the sign of the error at the anode stoichiometry is opposite
to that at the cathode stoichiometry, which is given as

sgn(θn,100% − θn,initial) = − sgn(θp,100% = θp,initial). (24)

This relation holds true for the surface stoichiometry or
the surface concentration of the respective electrodes, which
gives

sgn
(
x1,N − x̂1,N

) = − sgn
(
x2,N − x̂2,N

)
. (25)

Remark 5: Functions h1(x1,N , u) and h2(x2,N , u) as shown
in Fig. 1 and h3(x3) as shown in Fig. 3 are Lipschitz in
x1,N , x2,N , and x3, respectively. Moreover, the functions are
strictly monotonically decreasing functions, and their gradients
are bounded as follows:⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

−γp,1 ≤ ∂h1

∂x1,N
≤ −γp,2

−γn,1 ≤ ∂h2

∂x2,N
≤ −γn,2

−αQ,1 ≤ ∂h3

∂x3
≤ −αQ,2

(26)

where γp,1, γp,2, γn,1, γn,2, αQ,1, αQ,2 ∈ R+.
Lemma 1: The inequalities{

−eT
1 G1h̃1 ≤ eT

1 G1γp,2Ce1

−eT
2 G2h̃2 ≤ eT

2 G2γn,2Ce2
(27)

hold true regardless of the sign of the errors e1 and e2,
respectively.

Rewriting the first expression from Remark 5 in (26) as

−γp,1 ≤ h1(x1,N )− h1(x̂1,N )

x1,N − x̂1,N
≤ −γp,2. (28)

Using Remark 3, and considering the scenario where e1 < 0,
which implicitly means e1,N < 0, multiplying by e1,N on both
sides of (28) causes the inequalities to change giving

−γp,1e1,N ≥ h1(x1,N )− h1(x̂1,N ) ≥ −γp,2e1,N

−γp,1Ce1 ≥ h̃1 ≥ −γp,2Ce1. (29)

Since G1 ∈ R
N×1
− , the product −eT

1 G1 will always be negative
(−eT

1 G1 < 0). Multiplying −eT
1 G1on both sides of (29) causes

the inequality sign to change leading to

eT
1 G1γp,1Ce1 ≤ −eT

1 G1h̃1 ≤ eT
1 G1γp,2Ce1. (30)
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Furthermore, consider the scenario where e1 > 0, which
implicitly means e1,N > 0, and multiplying by e1,N on both
sides of (28) gives

−γp,1e1,N ≤ h1(x1,N )− h1(x̂1,N ) ≤ −γp,2e1,N

−γp,1Ce1 ≤ h̃1 ≤ −γp,2Ce1. (31)

In this case, the product −eT
1 G1 will always be positive

(−eT
1 G1 > 0). Multiplying −eT

1 G1on both sides of (31) gives

eT
1 G1γp,1Ce1 ≤ −eT

1 G1h̃1 ≤ eT
1 G1γp,2Ce1. (32)

From (30) and (32), it is clear that the following inequality:

−eT
1 G1h̃1 ≤ eT

1 G1γp,2Ce1 (33)

always hold true, irrespective of the sign of the estimation
error e1. Likewise, −eT

2 G2h̃2 ≤ eT
2 G2γn,2Ce2 for the second

expression in (26).
Proof: Define the errors for the cathode observer as⎧⎪⎪⎪⎨

⎪⎪⎪⎩
e1 = x1 − x̂1

e2,ol = x2 − x̂2,ol

e3 = x3 − x̂3

eθ2 = θ2 − θ̂2

(34)

and for the anode observer as⎧⎪⎨
⎪⎩

e1,ol = x1 − x̂1,ol

e2 = x2 − x̂2

eθ1 = θ1 − θ̂1.

(35)

From (20) and (21), the error dynamics for the state estimation
are written as⎧⎪⎪⎪⎨

⎪⎪⎪⎩
ė1 = A11e1 − G1(y − ŷ1)− Gv1 sgn(y − ŷ1)+�x1

ė2 = θ1 Ā22e2 + eθ1 Ā22 x̂2 − G2(y − ŷ2)−
Gv2 sgn(y − ŷ2)+�x2

ė3 = −G3(y − ŷ1)u.

For parameters that are slowly varying, the following assump-
tion is made: θ̇1 = θ̇2 = 0, and hence, the error dynamics for
parameter estimation are given by{

ėθ1 = θ̇1 − ˙̂θ1 = − ˙̂θ1

ėθ2 = θ̇2 − ˙̂θ2 = − ˙̂θ2.
(36)

Furthermore, the output error of the cathode and anode
observer is defined as

ey1 = y − ŷ1 = [
h1

(
x1,N , u

) − h1
(
x̂1,N , u

)]
−[

h2
(
x2,N , u

) − h2
(
x̂2,N,ol, u

)]
−[h3(x3)u − h3(x̂3)u]

+[
(x3 − Q0)θ2u − (x̂3 − Q0)θ̂2u

] +�y.

Defining h̃1 = h1(x1,N , u) − h1(x̂1,N , u), h̃2 = h2(x2,N , u) −
h2(x̂2,N , u), and h̃3 = h3(x3)− h3(x̂3) gives

ey1 = h̃1−h̃2,ol−h̃3u+θ2e3u+(x̂3−Q0)eθ2u+�y (37)

and similarly, the anode output error is described as

ey2 = y − ŷ2 = h̃1,ol − h̃2 − h̃3u + θ2e3u

+(x̂3 − Q0)eθ2u +�y. (38)

Let VO be the composite Lyapunov function for the intercon-
nected observers given by

VO(t) = V1(t)+ V2(t) (39)

where V1(t) and V2(t) are the candidate Lyapunov functions
for the cathode and anode observer. It is worth mentioning
that the stability of individual cathode and anode observers
may not guarantee the stability of the overall interconnected
observer. To that end, the bidirectional information exchange
between the two individual observers is considered to pro-
vide the conditions for practical stability for the whole
interconnected observer.

The Lyapunov functions for the cathode and anode observer
are defined as

V1(t) = 1

2
eT

1 e1 + 1

2
e2

3 + 1

2
k2e2

θ2
(40)

and

V2(t) = 1

2
eT

2 e2 + 1

2
k1e2

θ1
. (41)

The candidate functions in (40) and (41) are analyzed sep-
arately, one at a time, albeit considering the information
exchange (state variable update) from the adjacent connected
observer. Taking the derivative of (40) with respect to time,
and substituting ey,1 = y − ŷ1 from (37) yields

V̇1 = eT
1 ė1 + e3ė3 + k2eθ2 ėθ2

= eT
1 A11e1 − eT

1 G1h̃1 + eT
1 G1h̃2,ol + eT

1 G1h̃3u

−eT
1 G1θ2e3u − eT

1 G1(x̂3 − Q0)eθ2 u − eT
1 G1�y

+eT
1 �x1 − eT

1 Gv1 sgn(y − ŷ1)− e3G3ey1u

−k2eθ2
˙̂θ2. (42)

Likewise, for the anode observer, taking derivative of (41)
with respect to time, and substituting ey,2 = y − ŷ2 from (38)
yields

V̇2 = eT
2 θ1 Ā22e2 + eT

2 eθ1 Ā22 x̂2 − eT
2 G2h̃1,ol

+eT
2 G2h̃2 + eT

2 G2h̃3u − eT
2 G2θ2e3u

−eT
2 G2(x̂3 − Q0)eθ2 u − eT

2 G2�y + eT
2 �x2

−eT
2 Gv2 sgn(y − ŷ2)− k1eθ1

˙̂θ1. (43)

Combining (42) and (43) and then grouping related terms gives

V̇O = eT
1 A11e1 − eT

1 G1h̃1 + eT
1 G1h̃2,ol

−eT
1 Gv1 sgn(y − ŷ1)+ eT

1 �x1

+eT
2 θ1 Ā22e2 − eT

2 G2h̃1,ol + eT
2 G2h̃2

−eT
2 Gv2 sgn(y − ŷ2)+ eT

2 �x2

+eT
1 G1h̃3u − eT

1 G1θ2e3u − eT
1 G1�y − e3G3ey1u

+eT
2 G2h̃3u − eT

2 G2θ2e3u − eT
2 G2�y

−eT
1 G1(x̂3 − Q0)eθ2u − k2eθ2

˙̂θ2

−eT
2 G2(x̂3 − Q0)eθ2 u

+eT
2 eθ1 Ā22 x̂2 − k1eθ1

˙̂θ1. (44)

In (44), the terms are grouped as per the state or parameter
error they are related to and denoted as follows.

1) V̇c : The first five terms are related to the cathode
concentration estimation error.
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2) V̇a : The next five terms are related to anode concentra-
tion estimation error.

3) V̇q : Followed by seven terms related to capacity esti-
mation error.

4) V̇κ : The next three terms are related to the SEI layer
ionic conductivity estimation error.

5) V̇Ds : The final two terms are related to the anode
diffusion coefficient error.

Consider the terms denoting cathode concentration estima-
tion error V̇c

V̇c = V̇c,1 + V̇c,2 (45)

where{
V̇c,1 = eT

1 A11e1 − eT
1 G1h̃1,

V̇c,2 = eT
1 G1h̃2 − eT

1 Gv,1 sgn(y1 − ŷ1)+ eT
1 �x1 .

(46)

Consider V̇c,1, and using Lemma 1 gives

V̇c,1 ≤ eT
1 A11e1 + eT

1 G1γp,2Ce1.

V̇c,1 ≤ eT
1

(
A11 + eT G1Cγp,2

)
e1. (47)

Since the lithium concentration of a single electrode is observ-
able from the voltage equation [16], there exists a gain G1 ∈
R

N×1
− that places all the eigenvalues of A11 + G1γp,2C in the

left half-plane, making V̇c,1 negative definite.
Now, consider V̇c,2

V̇c,2 = eT
1 G1h̃2,ol − eT

1 Gv,1 sgn(y1 − ŷ1)+ eT
1 �x1 . (48)

Note that in a lithium-ion battery cell, the lithium ions are
transported from one electrode to another. Hence, as the
lithium concentration in anode increases, the concentration in
cathode decreases and vice versa.

From Remark 5, the nonlinear functions h1(x1,N ) and
h2(x2,N ) are strictly monotonically decreasing functions in
x1,N and x2,N , respectively. Furthermore, using Remark 4,
it can be inferred that⎧⎪⎨

⎪⎩
sgn

(
x1,N − x̂1,N

) = − sgn
(
x2,N − x̂2,N

)
,

sgn
(
h1(x1,N )− h1(x̂1,N )

) = − sgn
(
x1,N − x̂1,N

)
sgn

(
h2(x2,N )− h2(x̂2,N )

) = − sgn
(
x2,N − x̂2,N

)
.

(49)

It follows that:⎧⎪⎨
⎪⎩

sgn(e1,N ) = sgn(e1) = sgn(h̃2)

sgn(e2,N ) = sgn(e2) = sgn(h̃1)

sgn(h̃1) = − sgn(h̃2).

(50)

Consider the output voltage equation given in (37). Since h̃1

and h̃2,ol will always have opposing signs, from (50), the dif-
ference h̃1 − h̃2,ol will always add up in magnitude and have
the sign same as the sign of the first element in the difference,
which in this case is h̃1. Clearly, the magnitude and sign of the
cathode observer output voltage error will be dominated by the
difference h̃1 − h̃2,ol compared to the remaining aging-related
terms in (37), which are θ2e3u+(x̂3−Q0)eθ2 u+�y. Therefore,
it can be written that

sgn(ey1) = sgn(y1 − ŷ1) = sgn
(
h̃1 − h̃2,ol

)
(51)

= − sgn
(
h̃2,ol − h̃1

)
.

Fig. 4. Performance evaluation of the interconnected adaptive observer
for the US06 drive cycle of Cell # A. (a) Voltage estimation compared
with experimental data. (b)–(d) Bulk, surface concentration, and diffusion
coefficient estimation compared against ESPM values as the truth model,
respectively. (e) Estimation of conductivity in the SEI layer. (f) Capacity
estimation validated against the measured capacity. Error in capacity estimate
is less than 1%.

Again, due to the opposing signs of h̃1 and h̃2,ol, the sign of
the difference will be always same as the first element in the
difference from Property 1, giving

sgn(ey1) = sgn(y1 − ŷ1) = − sgn
(
h̃2,ol

)
. (52)

Using this knowledge in V̇c,2, choosing gain Gv1 be related to
gain G1 through a scalar relationship given by Gv1 = −β1G1

where β1 ∈ R+, and using Property 2 gives

V̇c,2 = eT
1 G1h̃2,ol − β1eT

1 G1 sgn
(
h̃2,ol

) + eT
1 �x1 (53)

= eT
1 G1h̃2,ol

(
1 − β1

|h̃2,ol|
)

+ eT
1 �x1 .

Since G1 is always negative, and sgn(e1) = sgn(h̃2,ol),
the following condition always holds true, irrespective of the
sign of the elements of e1:

sgn
(
eT

1 G1h̃2,ol
) = −1. (54)

The abovementioned relationship is rewritten as

eT
1 G1h̃2,ol = −|eT

1 G1h̃2,ol|. (55)
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Fig. 5. Performance evaluation of the interconnected adaptive observer for
the US06 drive cycle of Cell # B. (a) Voltage estimation compared with
experimental data. (b)–(e) Estimation of bulk, surface concentration, diffusion
coefficient, and conductivity in the SEI layer, respectively. (f) Capacity
estimation validated against the measured capacity. Error in capacity estimate
is less than 2%.

Substituting back in (53) gives

V̇c,2 = −|eT
1 G1h̃2,ol|

(
1 − β1

|h̃2,ol|
)

+ eT
1 �x1 . (56)

The following condition on β1 ensures V̇c,2 ≤ 0:

β1 ≤
( −eT

1 �x1

|eT
1 G1h̃2,ol| + 1

)
|h̃2,ol|. (57)

This ensures that both V̇c,1 and V̇c,2 are negative definite,
resulting in V̇c to decay to a bounded error ball whose radius
is determined by the modeling uncertainty �x1 .

Furthermore, the anode concentration error terms V̇a are

V̇a = eT
2 θ1 Ā22e2 − eT

2 G2h̃1,ol + eT
2 G2h̃2

×eT
2 Gv2 sgn(y − ŷ2)+ eT

2 �x2 . (58)

Likewise to the aforementioned proof for cathode terms in V̇c,
there exists a gain G2 ∈ R

N×1
+ that places all the eigenvalues

of θ1 Ā2 + G2γn,2C in the left half-plane, making it negative
definite. Moreover, gain Gv2 is chosen to be related to gain G2

through a scalar relationship given by Gv2 = −β2G2, where
β2 ∈ R+. Finally, if the following given condition for β2 is

Fig. 6. Performance evaluation of the interconnected adaptive observer for
the UDDS drive cycle of Cell # B. (a) Voltage estimation compared with
experimental data. (b)–(e) Estimation of bulk, surface concentration, diffusion
coefficient, and conductivity in the SEI layer, respectively. (f) Capacity
estimation validated against the measured capacity. Error in capacity estimate
is less than 2%.

satisfied (which is derived in a similar fashion as done above
for β1)

β2 ≤
( −eT

2 �x2

|eT
2 G2h̃1,ol| + 1

)
|h̃1,ol| (59)

then Va converges to a ball of radius bounded by �x2 .
A conservative approach is undertaken to tune the values for
β1 and β2, by selecting values for e1, e2, h̃1,ol, and h̃2,ol that
relate to acceptable initial errors.

Consider the capacity estimation error-related terms V̇q

V̇q = eT
1 G1h̃3u − eT

1 G1θ2e3u − eT
1 G1�y − e3G3ey1u

+eT
2 G2h̃3u − eT

2 G2θ2e3u − eT
2 G2�y. (60)

Since h3 is Lipschitz in x3, using Remark 5, it can be written
that h̃3 ≤ −αQ,2e3. Equation (60) is rewritten as

V̇q ≤ −eT
1 G1αQ,2e3u − eT

1 G1θ2e3u − eT
1 G1�y − e3G3ey1u

−eT
2 G2αQ,2e3u − eT

2 G2θ2e3u − eT
2 G2�y (61)

≤ −eT
1 G1

(
θ2 + αQ,2

)
e3u − eT

1 G1�y − e3G3ey1u

−eT
2 G2

(
θ2 + αQ,2

)
e3u − eT

2 G2�y

≤ −(
eT

1 G1 + eT
2 G2

)(
θ2 + αQ,2

)
e3u

−(
eT

1 G1 + eT
2 G2

)
�y − e3G3uey1 . (62)
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Fig. 7. Evaluation of the interconnected adaptive observer for the US06 drive
cycle of Cell # A with the measured current and voltage corrupted with
a zero-mean Gaussian noise of 100-mA and 25-mV standard deviation,
respectively. (a) Corrupted US06 current input profile. (b) Voltage estimation
compared with corrupted experimental data. (c)–(e) Estimation of bulk con-
centration, diffusion coefficient, and conductivity in the SEI layer, respectively.
(f) Capacity estimation validated against the measured capacity. Error in
capacity estimate is less than 2%.

Fig. 8. Evaluation of the interconnected adaptive observer for the US06 drive
cycle of Cell # A with the measured current and voltage corrupted with a
constant bias 10 mA and 10 mV, respectively. (a) Corrupted US06 current
input profile. (b) Voltage estimation compared with corrupted experimental
data. (c)–(e) Estimation of bulk concentration, diffusion coefficient, and
conductivity in the SEI layer, respectively. (f) Capacity estimation validated
against the measured capacity. Error in capacity estimate is less than 2%.

Assume that �y = ψe3u since any bounded modeling uncer-
tainty in the output will result in an error in the estimation of
capacity (e3), under any input u. In other words, if there is no

Fig. 9. Experimental setup for battery testing and specifications of cylindrical
18 650 2-Ah NMC lithium-ion cell used in the experiments.

uncertainty in the output, i.e., if �y = 0, then there would not
be an error in the capacity estimate. Rewriting (63) as given
next

V̇q ≤ −(
eT

1 G1 + eT
2 G2

)(
θ2 + αQ,2

)
e3u

−(
eT

1 G1 + eT
2 G2

)
ψe3u − e3G3uey1 . (63)

Upon rearranging (63), if gain G3 satisfies the following
relationship:

G3 ≥ ||(eT
1 G1 + eT

2 G2
)(
θ2 + αQ,2 + ψ

)||
||ey1||

(64)

then Vq converges to a ball of radius bounded by ψ and the
steady-state estimation errors of anode and cathode concentra-
tion states x1 and x2. Acceptable initial error values for e1, e2,
and ey,1 are chosen to tune the value of gain G3.

For the SEI layer ionic conductivity estimation error terms

V̇κ = −eT
1 G1(x̂3 − Q0)eθ2 u

−eT
2 G2(x̂3 − Q0)eθ2u − k2eθ2

˙̂θ2

= −eT
1 G1(x̂3 − Q0)eθ2 u − eT

2 G2(x̂3 − Q0)eθ2 u

−k2eθ2
˙̂θ2 sgn(ey1)

sgn(ey1)
. (65)

The estimation of SEI layer ionic conductivity is intended
to begin after the lithium concentration estimates for both
electrodes converge to the error ball so that the SEI layer ionic
conductivity does not show transients due to the initial error in
electrode lithium concentration. This enables the assumption
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that h̃2,ol = h̃2, which means that the open-loop model of
anode in the cathode observer has been corrected and it gives
the same estimate as that of the closed-loop model of anode in
the anode observer. It follows that sgn(ey1) = sgn(h̃1 − h̃2,ol),
and using Property 2 and Remark 5

sgn(h̃1 − h̃2) = h̃1 − h̃2

|h̃1 − h̃2| (66)

= h̃1

|h̃1 − h̃2| − h̃2

|h̃1 − h̃2| (67)

≤ − γp,2Ce1

|h̃1 − h̃2| + γn,2Ce2

|h̃1 − h̃2| . (68)

This leads to

V̇κ ≤ −eT
1 G1(x̂3 − Q0)eθ2 u − eT

2 G2(x̂3 − Q0)eθ2 u

+ k2eθ2
˙̂θ2γp,2Ce1

sgn(ey1)|h̃1 − h̃2| − k2eθ2
˙̂θ2γn,2Ce2

sgn(ey1)|h̃1 − h̃2| . (69)

Rearranging the terms, and with the knowledge that for any
scalar, Ce1 = eT

1 CT and Ce2 = eT
2 CT , we have

V̇κ ≤
(

− eT
1 G1(x̂3 − Q0)u + eT

1 CT k2γp,2
˙̂θ2

sgn(ey1)|h̃1 − h̃2|
)

eθ2

−
(

eT
2 G2(x̂3 − Q0)eθ2 u + eT

1 CT k2γn,2
˙̂θ2

sgn(ey2)|h̃1 − h̃2|
)

eθ2 . (70)

The terms inside the parentheses can be set to 0, if the
following two adaptation laws hold true:⎧⎪⎪⎨

⎪⎪⎩
˙̂θ2 = CG1(x̂3 − Q0)u sgn(ey1)|h̃1 − h̃2|

k2γp,2

˙̂θ2 = −CG2(x̂3 − Q0)u sgn(ey1)|h̃1 − h̃2|
k2γn,2

(71)

which is only possible if the gains of the cathode and anode
observers are chosen to satisfy the following relationship:

G1

γp,2
= − G2

γn,2
. (72)

Note that |h̃1 − h̃2| in (71) is unknown in real time, and
hence, a tolerable value is chosen. This leads to a conservative
solution but ensures that Vκ only decays to a bounded region
characterized by the steady-state errors in the estimation of
x1, x2, and x3 since estimation of x1, x2, and x3 only converges
to their respective error balls. Furthermore, the adaptation law
for θ2 requires the input current u to satisfy the persistence of
excitation condition.

Finally, for the error terms related to the anode diffusion
coefficient estimation

V̇Ds = eT
2 Ā22eθ1 x̂2 − k1eθ1

˙̂θ1 (73)

=
(

eT
2 Ā22 x̂2 − k1

˙̂θ1 sgn
(
ey2

)
sgn

(
ey2

)
)

eθ1 .

Using Properties 1 and 2, sgn(ey2) = − sgn(h̃2) = (−h̃2/|h̃2|),
and knowing h̃2 ≤ −γn,2Ce2 and Ce2 = eT

2 CT gives

V̇Ds ≤
(

eT
2 Ā22 x̂2 − eT

2 CT γn,2k1
˙̂θ1

sgn
(
ey2

)|h̃2|

)
eθ1 .

TABLE III

SUMMARY OF CAPACITY ESTIMATION RESULTS FOR FRESH AND AGED
CELLS FOR A CHARGE-SUSTAINING DRIVE CYCLE (US06)

Choosing the following adaptation law:
˙̂θ1 = C Ā22 x̂2 sgn

(
ey2

)|h̃2|
γn,2k1

(74)

ensures that VDs decays and lies within a bounded region
defined by the steady-state error in estimation of x2. Note
that h̃2 in (74) is unknown in real time, and hence, a tolerable
value is chosen resulting in a conservative approach.

Combining the results from V̇c, V̇a, V̇q, V̇κ , and V̇Ds yields

V̇O ≤ V̇c + V̇a + V̇q + V̇κ + V̇Ds ≤ 0. (75)

Since Vc, Va, Vq , Vκ, and VDs converge only to a ball that
is bounded by their respective modeling uncertainties and
steady-state errors, VO is practically stable as per Definition 3.
Furthermore, the radius of the error balls can be reduced by
tuning the gains β1, β2,G3, k1, and k2.

V. RESULTS AND DISCUSSION

Two lithium-ion nickel–manganese–cobalt (NMC) cells
(Cells # A and B) at different stages of health with distinct
measured capacity values as shown in Table III are chosen to
test the performance of the proposed interconnected observer.
Notably, cell # A is a fresh cell with a higher capacity
value, whereas cell # B has been aged under the protocol
discussed in [17]. The experimentally measured current and
voltage data of these cells, subjected to any particular drive
cycle, are used as the input to the proposed interconnected
adaptive observer. The estimated capacity is compared against
the measured capacity of each cell. The estimation error in
capacity is computed as Qerr = ((Q̂−Q)/Q) × 100%, also
tabulated in the last column of Table III. On the other hand,
the estimated bulk and surface concentration in both electrodes
and the aging-sensitive parameters are validated against the
higher order model, ESPM, described in Section III.

A. Observer Gains Tuning Process

Tolerable values of errors and variables are assumed to tune
the gains of the adaptive interconnected observer such that the
conditions derived in Section IV are satisfied. The following
steps can be undertaken to tune the observer gains. First,
gains G1 and G2 are adjusted to ensure that the trajectory
of the concentration estimates from an incorrect initialized
value approaches the true/reference value. In the absence of
information on the bounds on the gradients as given in (72),
the gains are selected by fixing G1 and then tuning G2 that
leads to a minimum steady-state error in the estimation of
cathode and anode concentration. Next, tuning parameter k1

is calibrated to make sure that the diffusion estimate converges
to the identified diffusion coefficient of the ESPM. A tolerable
value of the error |h̃2| in (74) is chosen by assuming the
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Fig. 10. Ranked sensitivity comparison for EPSM parameters with single-objective and multiobjective optimization functions.

Fig. 11. Correlation analysis for ESPM parameters for (a) single-objective function and (b) multiobjective function. The times symbol (×) represents the
values of C̄i, j > 0.8 and, hence, indicates that parameters are correlated.

maximum error that can exist in the initial condition of
solid-phase concentration. In this work, the maximum initial
error in the lithium concentration in both electrodes is assumed
to be 45% (which can be selected based on the application;
for instance, in a hybrid electric vehicle that has a charge sus-
taining operation, the SOC window of operation is small, and
hence, the initial error chosen is low, as opposed to an electric
vehicle application where the initial error can be high) and,
hence, the corresponding error in |h̃2| is considered. Finally,
the gain G3 and the tuning parameter k2 are then adjusted
such that the capacity and SEI layer conductivity estimates
satisfy the practical stability condition in (64) and (71). Again,
the unknown tolerable error values in real-time are chosen
by assuming the maximum initial error in the concentration
of both electrodes, based on the application. Note that the
estimation of capacity and SEI layer ionic conductivity begins
after the lithium concentration estimates for both electrodes
converge within their respective error ball. This is carried out
to ensure that the capacity estimate does not show transients
due to the high initial solid-phase concentration error. Further-
more, the capacity estimate is passed through a low-pass filter
to smooth out any remaining transients.

B. Capacity Estimation for Cells at Different
Stages of Health

Cell # A is subjected to a US06 drive cycle derived from a
hybrid electric vehicle simulator and scaled for a single cell.

The measured voltage and current data of Cell # A are fed as
input to the interconnected adaptive observer. The lithium con-
centration states in both electrodes are initialized with an error
of 45%. The capacity of the observer is initialized to 2.1 Ah,
which is an error of 7.6% with respect to the true measured
value of 1.95 Ah. The diffusion coefficient is initialized as
D̂s,n,ref = 0.1 · Ds,n,ref. The estimation performance is shown
in Fig. 4. The estimated capacity is 1.94 Ah, which is well
within 1% of its measured value. Since the actual value of SEI
layer ionic conductivity is unknown, the convergence of the
capacity estimate is taken as an indication of its convergence.
For the charge-sustaining US06 drive cycle, the measured
voltage and current data of Cell # B are fed as input to the
interconnected adaptive observer. The aged cell # B has lost
approximately 6% of its capacity, as shown in the measured
capacity column in Table III. The initialization error in states
and parameters of the observer is the same as the case of cell
# A. The estimation performances for Cell # A and Cell # B
are shown in Fig. 5. The estimation performance is shown
in Fig. 6. Since the cell is aged, it is not possible to validate
the nonmeasurable states and parameters, such as bulk, surface
concentration, and the anode diffusion coefficient against the
ESPM in Section III which is for a fresh cell with nominal
parameters. In this case, the estimation performance of voltage
and capacity against experimentally measured values is taken
as an indicator of the convergence of the internal states and
parameters. The estimated capacity is 1.82 Ah, which is
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within 2% of its measured value. Next, a charge-depleting
drive cycle (UDDSx2) derived for an electric vehicle and
scaled to a single cell [7] is input to the aged cell # B. The
initialization errors introduced in states and parameters of the
observer are the same as used in the previous case for the
US06 profile. The estimation performance is shown in Fig. 6.
The estimated cell capacity is again observed to be within 2%
of its measured value.

C. Estimation With Measurement Noise and Sensor Bias

The measured current (US06 drive cycle) and voltage of
Cell # A is corrupted with a zero-mean Gaussian noise of
100-mA and 25-mV standard deviation, respectively. This
is to mimic measurement noises introduced due to error in
sensors or error in data transmission from the sensors. The
adaptive observer is fed with the corrupted current and the
corrupted voltage data to verify its robustness in capacity
estimation. The estimation results as shown in Fig. 7 are well
within 2% of its measured value. Furthermore, the measured
current and voltage data for Cell # B are corrupted by adding
a constant bias of 10 mA and 10 mV to simulate a faulty
uncalibrated sensor. The bias-induced current and voltage data
from the experiment are supplied to the proposed adaptive
observer. The capacity estimation, in this scenario, is also
bounded within 2% of its real value, as shown in Fig. 8,
indicating that the interconnected observer provides robust
capacity estimates against sensor biases.

VI. CONCLUSION

This article addresses the issue of combined estimation
of nonmeasurable critical battery variables such as lithium
concentration and total cell capacity through an electrochem-
ical model-based adaptive interconnected observer. Under the
assumption that the SEI layer growth is the dominant aging
mechanism, an adaptive interconnected observer is formulated
by exploiting the dynamic relationship between capacity and
power fade. A model-based adaptive interconnected observer
is proposed for combined estimation of lithium concentration
in both electrodes, cell capacity, and aging-sensitive parame-
ters such as anode diffusion coefficient and ionic conductivity
in the SEI layer in real time. Implementation results on
different lithium-ion cells operating at varying stages of health
show that the capacity estimates are bounded within 2% of
their respective true value. Capacity estimates are found to be
robust to measurement noise and sensor bias.

APPENDIX

PARAMETER IDENTIFICATION AND VALIDATION

The ESPM parameters in (15) are identified from the experi-
mental data collected over a cylindrical 2-Ah NMC lithium-ion
cell. The experimental setup shown in Fig. 9 includes two
Arbin battery testing systems—capable of applying diverse
current profiles to cells—and a thermal chamber. The ESPM
detailed in (15) is characterized by a vector λ with 18 para-
meters to be identified

λ = [
cs,n,max, cs,p,max, Ds,n, Ds,p, Rn, Rp,

A, Ln, L p, �n, �p, kn, k p, Rl , Ls , �e,s , �n, f , �p, f
]T
.

The identification of the parameter vector λ is achieved by
fitting the ESPM output voltage to the measured voltage
data. However, it is well understood that electrochemical
models, such as ESPM, are nonlinear in parameters and all the
parameters may not be uniquely identifiable from the output
voltage [18]. The need for identifying 18 parameters leads to
overparameterization, especially when a small subset of para-
meters are sufficient to predict the behavior of the model. Thus,
the conventional parameter identification technique involving
only a solitary objective function of minimizing error between
simulated output and measured output voltage reveals parame-
ter identifiability issues. In this work, an attempt is made to
enhance the existing identification technique by incorporating
virtual measurements into the objective function. The virtual
measurement is in the form of SOC computed using the
Coulomb counting method from the measured current data.
For an off-line parameter identification study conducted under
perfectly controlled laboratory conditions, it is safe to assume
that the initial SOC and temperature are known and that
the current measured by the Arbin is highly accurate. The
identifiability of ESPM parameters is maximized by solving a
multiobjective optimization problem that minimizes the com-
bination of following objectives: 1) J1 : error between mea-
sured and simulated voltage, 2) J2 : error between Coulomb
counting SOC and cathode bulk SOC computed from volume
averaging of cathode concentration, and 3) J3 : error between
Coulomb counting SOC and anode bulk SOC computed from
volume averaging of anode concentration.1 The advantages
of the aforementioned multiobjective optimization are verified
by analyzing the identifiability of the ESPM parameters with
respect to the measured output voltage and virtually measured
bulk SOC of both electrodes. In this work, the identifiability
analysis is performed in two steps: 1) local sensitivity analysis
and 2) correlation analysis.

Sensitivity Analysis: The response of the ESPM outputs
(voltage and bulk SOC) to changes in each parameter in λ
quantifies the sensitivity of the model output to the specific
parameter. The nominal values for the parameters in λ are
taken from [11]. The sensitivity is computed as

S =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂y1

∂λ1
(t1) . . .

∂y1

∂λ j
(t1)

... . . .
...

∂y1

∂λ1
(tk) . . .

∂y1

∂λ j
(tk)

∂y2

∂λ1
(t1) . . .

∂y2

∂λ j
(t1)

... . . .
...

∂ym

∂λ1
(tk) . . .

∂ym

∂λ j
(tk)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(76)

where m is the number of outputs (cell voltage and bulk
SOC of both electrodes, m = 3), k is the number of
total samples available, j is the number of parameters,
and S ∈ R

(k×m)× j . In order to compare the sensitivities
of all parameters, the Euclidean norm of every column of the

1Note that the bulk SOC of both electrodes is assumed to be the same
because the cell is fresh and the assumption of conservation of lithium moles
between both electrodes is valid.
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sensitivity matrix corresponding to each parameter (||S:, j ||)
is computed. The parameters sorted as per their sensitivi-
ties (||S:, j ||) with respect to multioutput (voltage and bulk
SOC) and single output (voltage) is compared on a log scale
in Fig 10. From Fig. 10, it is verified that incorporating another
output in the form of SOC, indeed, improves the sensitivity
of the parameters.

Correlation Analysis: Despite the improved sensitivity of
some parameters (see Fig. 10), it is important to verify whether
they can be uniquely identified from the available outputs.
Correlation analysis is performed where the linear dependence
of the sensitivity matrix columns is computed as

C̄ =

⎡
⎢⎢⎢⎣

C̄1,1 C̄1,2 . . . C̄1, j

C̄2,1 C̄2,2 . . . C̄2, j
...

... . . .
...

C̄ j,1 C̄ j,2 . . . C̄ j, j

⎤
⎥⎥⎥⎦ (77)

where each element in the correlation matrix C̄ is computed
as

C̄i, j = �S:,i , S:, j �
||S:,i ||||S:, j || . (78)

Essentially, if changes in different parameters result in the
same response in the outputs, their respective sensitivity
columns will be similar or linearly dependent. Hence, the val-
ues of C̄i, j close to 1 or −1 indicate linear dependence
between parameters and they cannot be identified uniquely
from the outputs. In this work, the threshold value for C̄i, j

to indicate correlation is taken to be 0.8. The correlation
analysis for parameter identification with a solitary objective
function is shown in Fig. 11(a), and the correlation analysis
for parameter identification with multiobjective function is
shown in Fig. 11(b). The results from identifiability analysis
show that although including SOC as a virtual measurement
improves sensitivity and reduces correlation between para-
meters, there is still not a single parameter that is uniquely
identifiable. Hence, a subset of parameters is selected based
on the ranked sensitivity list and the correlation analysis table
that can sufficiently characterize the ESPM without leading
to overparameterization. The vector consisting of parameters
that can be uniquely identified from the outputs is denoted
by λ∗. Each parameter with a sensitivity value higher than a
threshold value of ||S:, j || > 0.2 is considered for the parameter
subset selection procedure. First, the most sensitive parameter,
the cell cross-sectional area A, is automatically selected in the
subset parameter vector λ∗. Next, the second ranked sensitive
parameter is checked for correlation with A. If it is correlated,
then the parameter is fixed at its nominal value, taken from the
literature [11]. If the parameter is not correlated with A, then
it enters the subset parameter vector λ∗ as a parameter that
can be uniquely identified. The process continues until every
parameter is checked. Based on the subset selection procedure,
the set of parameters that can be uniquely identified is given as
λ∗ = [

A, �n, Rn, Ds,n, Rl , Rp, Ds,p
]T

. Note that this analysis
is specific to the input current profile used. The identifiability
analysis procedure reduces the number of parameters that need
to be identified from 18 to 7, thereby reducing overparame-
terization. The multiobjective optimization problem is then

Fig. 12. Comparison of ESPM output voltage with measured cell voltage
for 1C, 2C, and 5C constant current discharge cycles at 23 ◦C.

formulated as follows:
argmin

λ∗
min<λ

∗<λ∗
max

J1 + J2 + J3

subject to: ẋ1,k = A11
(
λ∗)x1,k + B1

(
λ∗)uk

ẋ2,k = λ∗
4 Ā22

(
λ∗)x2,k + B2

(
λ∗)uk

ẋ3 = 0

ẋ4,k = fe
(
x4, u, λ∗)

yk = h1(x1,N,k, u)− h2(x2,N,k, u)−
h4(x4,k, u)− λ∗

5uk −
h3(x3,k)uk + (

x3,k − Q0
)
θ2uk

Q0 = F L p�pcs,p,max
(
θp,100% − θp,0%

)
λ∗

1

3600

where λ∗ is the vector containing the parameters to be identi-
fied and uk is the experimentally measured input. Recall that
the identification procedure is carried out for a fresh cell, and
hence, the terms due to aging h3(x3,k)uk + (x3,k − Q0)θ2uk

are 0 because x3 = Q0.2 The multiobjective constrained
optimization problem is solved using genetic algorithm over
the experimentally collected voltage and current data. The rms
error in voltage prediction by ESPM (see Fig. 12) is as follows:
rms = 17 mV at 1C (identification), rms = 30.4 mV at 2C
and rms = 69.1 mV at 5C (validation).
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differential equation observer for battery state-of-charge/state-of-health
estimation via an electrochemical model,” J. Dyn. Syst., Meas., Control,
vol. 136, no. 1, Jan. 2014, Art. no. 011015.

[8] B. Jenkins, A. Krupadanam, and A. M. Annaswamy, “Fast adaptive
observers for battery management systems,” IEEE Trans. Control Syst.
Technol., vol. 28, no. 3, pp. 776–789, May 2020.

[9] P. A. Ioannou and J. Sun, Robust Adaptive Control. Upper Saddle River,
NJ, USA: Prentice-Hall, 1996.

[10] V. Lakshmikantham, S. Leela, and A Martynyuk, Practical Stability of
Nonlinear Systems. Singapore: World Scientific, 1990.

[11] T. R. Tanim, C. D. Rahn, and C.-Y. Wang, “A temperature dependent,
single particle, lithium ion cell model including electrolyte diffusion,”
J. Dyn. Syst., Meas., Control, vol. 137, no. 1, Jan. 2015, Art. no. 011005.

[12] P. Ramadass, B. Haran, P. M. Gomadam, R. White, and B. N. Popov,
“Development of first principles capacity fade model for Li-ion cells,”
J. Electrochem. Soc., vol. 151, no. 2, p. A196, 2004.

[13] D. Di Domenico, A. Stefanopoulou, and G. Fiengo, “Lithium-ion
battery state of charge and critical surface charge estimation using an
electrochemical model-based extended Kalman filter,” J. Dyn. Syst.,
Meas., Control, vol. 132, no. 6, Nov. 2010, Art. no. 061302.

[14] G. Sikha, B. N. Popov, and R. E. White, “Effect of porosity on the
capacity fade of a lithium-ion battery,” J. Electrochem. Soc., vol. 151,
no. 7, p. A1104, 2004.

[15] A. Allam and S. Onori, “An interconnected observer for concurrent
estimation of bulk and surface concentration in the cathode and anode
of a lithium-ion battery,” IEEE Trans. Ind. Electron., vol. 65, no. 9,
pp. 7311–7321, Sep. 2018.

[16] A. Bartlett, J. Marcicki, S. Onori, G. Rizzoni, X. G. Yang, and T. Miller,
“Electrochemical model-based state of charge and capacity estimation
for a composite electrode lithium-ion battery,” IEEE Trans. Control Syst.
Technol., vol. 24, no. 2, pp. 384–399, Mar. 2015.

[17] Z. Liu, S. Onori, and A. Ivanco, “Synthesis and experimental validation
of battery aging test profiles based on real-world duty cycles for 48-
V mild hybrid vehicles,” IEEE Trans. Veh. Technol., vol. 66, no. 10,
pp. 8702–8709, Oct. 2017.

[18] J. C. Forman, S. J. Moura, J. L. Stein, and H. K. Fathy, “Genetic identi-
fication and Fisher identifiability analysis of the Doyle–Fuller–Newman
model from experimental cycling of a LiFePO4 cell,” J. Power Sources,
vol. 210, pp. 263–275, Jul. 2012.

Anirudh Allam (Graduate Student Member, IEEE)
received the B.E. degree in electronics and telecom-
munication engineering from the University of Pune,
Pune, India, in 2010, and the M.S. degree in
automotive engineering from Clemson University,
Clemson, SC, USA, in 2015. He is currently pur-
suing the Ph.D. degree with the Department of
Energy Resources Engineering, Stanford University,
Stanford, CA, USA.

His research interests include estimation, control,
and degradation modeling of electrochemical energy
storage systems.

Simona Onori (Senior Member, IEEE) received the
Laurea degree in computer science and engineering
from the University of Rome “Tor Vergata,” Rome,
Italy, in 2003, the M.S. degree in electronics and
communications engineering from The University of
New Mexico, Albuquerque, NM, USA, in 2005, and
the Ph.D. degree in control engineering from the
University of Rome “Tor Vergata,” in 2007.

She is currently an Assistant Professor with the
Energy Resources Engineering Department, Stan-
ford University, Stanford, CA, USA. Her research

focuses on modeling and control in sustainable transportation, clean energy,
and secondary life battery areas.

Dr. Onori was a recipient of the 2019 Board of Trustees Award for
Excellence, Clemson University, the 2018 Global Innovation Contest Award
from LG Chem, the 2018 SAE Ralph R. Teetor Educational Award, and the
2017 NSF CAREER Award. She has been serving as the Editor-in-Chief for
the SAE International Journal of Electrified Vehicles since 2020. She is a
Distinguished Lecturer of the IEEE Vehicular Technology Society.

Authorized licensed use limited to: Stanford University. Downloaded on July 18,2022 at 18:31:10 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Black & White)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /AdobeArabic-Bold
    /AdobeArabic-BoldItalic
    /AdobeArabic-Italic
    /AdobeArabic-Regular
    /AdobeHebrew-Bold
    /AdobeHebrew-BoldItalic
    /AdobeHebrew-Italic
    /AdobeHebrew-Regular
    /AdobeHeitiStd-Regular
    /AdobeMingStd-Light
    /AdobeMyungjoStd-Medium
    /AdobePiStd
    /AdobeSansMM
    /AdobeSerifMM
    /AdobeSongStd-Light
    /AdobeThai-Bold
    /AdobeThai-BoldItalic
    /AdobeThai-Italic
    /AdobeThai-Regular
    /ArborText
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /BellGothicStd-Black
    /BellGothicStd-Bold
    /BellGothicStd-Light
    /ComicSansMS
    /ComicSansMS-Bold
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Courier-Oblique
    /CourierStd
    /CourierStd-Bold
    /CourierStd-BoldOblique
    /CourierStd-Oblique
    /EstrangeloEdessa
    /EuroSig
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Impact
    /KozGoPr6N-Medium
    /KozGoProVI-Medium
    /KozMinPr6N-Regular
    /KozMinProVI-Regular
    /Latha
    /LetterGothicStd
    /LetterGothicStd-Bold
    /LetterGothicStd-BoldSlanted
    /LetterGothicStd-Slanted
    /LucidaConsole
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MinionPro-Bold
    /MinionPro-BoldIt
    /MinionPro-It
    /MinionPro-Regular
    /MinionPro-Semibold
    /MinionPro-SemiboldIt
    /MVBoli
    /MyriadPro-Black
    /MyriadPro-BlackIt
    /MyriadPro-Bold
    /MyriadPro-BoldIt
    /MyriadPro-It
    /MyriadPro-Light
    /MyriadPro-LightIt
    /MyriadPro-Regular
    /MyriadPro-Semibold
    /MyriadPro-SemiboldIt
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /Symbol
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Webdings
    /Wingdings-Regular
    /ZapfDingbats
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 300
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 900
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.33333
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


