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SUMMARY

Accurate estimation of lithium-ion battery health will (a) improve the perfor-
mance and lifespan of battery packs in electric vehicles, spurring higher adoption
rates, (b) determine the actual extent of battery degradation during usage,
enabling a health-conscious control, and (c) assess the available battery life
upon retiring of the vehicle to re-purpose the batteries for ‘‘second-use’’ applica-
tions. In this paper, the real-time validation of an advanced battery health estima-
tion algorithm is demonstrated via electrochemistry, control theory, and battery-
in-the-loop (BIL) experiments. The algorithm is an adaptive interconnected sliding
mode observer, based on a battery electrochemical model, which simultaneously
estimates the critical variables such as the state of charge (SOC) and state of
health (SOH). The BIL experimental results demonstrate that the SOC/SOH esti-
mates from the observer converge to an error of 2% with respect to their true
values, in the face of incorrect initialization and sensor signal corruption.

INTRODUCTION

The expanding global electric vehicle market is an indication of a conscious effort by civilization to reduce

the reliance on fossil fuels and steadily replace it with a more environment-friendly energy storage and con-

version system. Lithium-ion batteries (LIBs) are electrochemical energy storage systems that have found

themselves to be the preferred choice for the electrification of the transportation sector and being consid-

ered as a storage solution in the renewable energy sector owing to their superior specific energy and power

density. Despite these benefits, LIBs are known to be susceptible to abuse (such as thermal runaway (Wang

et al., 2012)) due to complex degradation mechanisms, which may lead to safety and reliability issues. For

this reason, an LIB system is accompanied with a battery management system (BMS) with the main objec-

tive of ensuring its safety, performance, and reliability. The Battery Management System (BMS) is tasked

with the responsibility of monitoring the critical battery internal variables that represent the current state

of charge (SOC) and state of health (SOH) (Rahimi-Eichi et al., 2013) and uses that information for maintain-

ing conditions conducive for a longer battery lifespan. Typically, these critical variables are not available for

measurement via sensors, and hence, the BMS has to ‘‘estimate’’ these variables from available battery cur-

rent, voltage, and temperature data.
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Motivation

Model-based observers are widely researched in the literature for the combined estimation of SOC and

SOH. These model-based estimation algorithms can be broadly classified into two main groups, based

on the type of battery model they use: equivalent circuit model and electrochemical model. While the esti-

mation algorithms based on equivalent circuit models (Chen et al., 2014; Kim, 2006) are computationally

inexpensive and easy to implement, it needs to be pointed out that they do no offer physical insight

into battery’s internal dynamics, and a large amount of experimental effort goes into accurately calibrating

these lumped-parameter models for different operating conditions. On the other hand, electrochemical

models are characterized by lithium ion transport mechanisms, and hence, using such detailed physics-

based models for estimation lends itself well to accurately monitoring the internal battery variables such

as lithium concentration (Dey et al., 2015; Moura et al., 2017; Allam and Onori, 2018, 2020b) and by exten-

sion the SOC and SOH. Naturally, electrochemical model-based estimation is more powerful and can also

provide key physical insights to the BMS to take precise control decisions to improve safety and lifespan.

However, the bottleneck with this method is that it is computationally expensive since the model is

described by a system of partial differential equations (PDEs).
iScience 23, 101847, December 18, 2020 ª 2020 The Authors.
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Consequently, discussions on the real-time performance of these electrochemical model-based ob-

servers have been lacking in the literature. Further, there is no documented evidence of this method be-

ing implemented on real hardware. Therefore, one of the key steps in demonstrating the strength of the

class of electrochemical model-based observers is to show that they can be robust against challenges

introduced during real-time implementation, such as noisy signals and computational constraints. Hence,

it is imperative to test such an observer in real time on a physical hardware to gauge its performance

holistically.

To that end, this work aims to present a detailed experimental framework to enable the real-time validation

of a reduced-order electrochemical model-based observer via battery-in-the-loop (BIL) experiments by us-

ing state-of-the-art equipment.
Battery-in-the-Loop Experiments

Modern day electric vehicles are complex systems consisting of numerous electronic control units (ECUs),

such as the BMS ECU, that have specific functionalities, and they also interact with each other. Each ECU

may have high development cost and time associated with it. The primary objective of automotive manu-

facturers is to reduce development and testing time of ECUs, testing costs, and ensure safety while fault

testing and validating these subsystems. For that reason, the ECU development workflow involves different

simulation/testing stages such as

1. Model-in-the-loop (MIL): The MIL test is conducted at the initial stages of the V-model workflow,

wherein the plant model to be controlled and the controller (ECU) model are in a simulation environ-

ment, and no physical hardware components are involved.

2. Software-in-the-loop (SIL): The SIL stage involves the code generation of the controller (ECU) model,

which is tested with the plant model in a simulation environment with no physical hardware compo-

nents.

3. Hardware-in-the-loop (HIL): The HIL stage involves code generation of both, the plant and controller

models. The plant code is downloaded to a real physical hardware simulator and the controller code

is hosted on an embedded controller. Physical hardware components and connections such as sen-

sors, actuators, physical wiring interconnections are a part of this test.

Each of the above tests is conducted at different stages of the ECU development workflow to gain confi-

dence in the performance of the controller algorithm, both in simulation and hardware environment.

In the above described HIL setup, if the hardware simulating the plant dynamics is replaced with a real

physical system, which in the context of this paper is a lithium-ion battery, then it is referred to as the

BIL test. It follows that the code hosted on the embedded controller is that of the estimation algorithm.

BIL is a more powerful validation approach than the HIL, wherein the developed estimation algorithm

can be tested in real time over the actual battery cell rather than its model. This test results in reduced

development time and cost as it allows the algorithm to be tested on hardware in the early stages of devel-

opment. Further, this test enables an iterative process of improving and correcting the algorithm without

having to spend time waiting for the HIL test stage. Themain components of a BIL, as shown in Figure 1, are

as follows:

1. a lithium-ion battery,

2. a programmable direct current (DC) load to charge/discharge the battery according to a predeter-

mined input current cycle,

3. an embedded controller that hosts the estimation algorithm, and

4. a controller area network (CAN) bus to transmit the measured current, voltage, and temperature

data from the DC load to the controller. In this work, the lithium-ion battery is a cylindrical 2Ah

cell with a positive electrode of nickel managanese cobalt (NMC) oxide and a negative electrode

of graphite. The programmable DC Load is an Arbin LBT21024 for cycling battery systems, and

the embedded controller is a dSPACE MicroAutoBox-II.
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Figure 1. BIL Scheme

General schematic of a battery-in-the-loop (BIL) setup.
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Related Literature and Contributions

In the battery modeling and estimation literature, HIL and BIL testing has been limited to the use of battery

equivalent circuit models (Song et al., 2013; Kim et al., 2014a, 2014b; Zhang et al., 2018; Tara et al., 2013)

and estimation algorithms ranging from unscented Kalman filters (He et al., 2016), adaptive H-infinity filters

(Zhang et al., 2016), dual H-infinity filters (Chen et al., 2017) to adaptive extended Kalman filters (Zhang

et al., 2017). BIL experiments have been used, wherein a real physical battery system is connected to a

controller, to evaluate energy management strategy algorithms for plug-in hybrid and hybrid electric ve-

hicles (Kim et al., 2014a, 2014b; Zhang et al., 2018; Tara et al., 2013). Battery equivalent circuit models

hosted in an HIL platform are used for testing commercial BMS controllers (Barreras et al., 2016; Dai

et al., 2013). Moreover, for the validation of battery state estimation algorithms, a HIL experimental plat-

form has been used to estimate SOC (He et al., 2010, 2016; Zhang et al., 2016, 2017; Chen et al., 2017), ca-

pacity (SOH) (Chen et al., 2017), and state of energy (Zhang et al., 2016). The embedded controllers used in

the literature range from dSPACE simulators/Autobox (Song et al., 2013) (Barreras et al., 2016), real time

operating system (RTOS) mCOS-II platform (He et al., 2016), and xPC Target (Zhang et al., 2016) (Zhang

et al., 2017). It is to be noted that every implementation of a battery model in the HIL and BIL platforms

found in the open literature is based on a battery equivalent circuit model. However, with the need for

advanced BMS designs in the future, it is prudent to harness the strengths of rich physics-based modeling

and control theory tools by exploring the implementation of battery electrochemical models and other

types of model-based observers. To that end, the key contributions of the proposed work are as follows:

1. implementing a real-time validation approach for an electrochemical model-based adaptive inter-

connected observer for the combined estimation of SOC and SOH (Allam and Onori, 2020a,

2020b) showing that it is computationally feasible,

2. describing the steps to be undertaken to establish a BIL experimental setup with state-of-the-art

equipment, and

3. demonstrating the real-time performance of the estimation algorithm in terms of robustness, under

noisy input signals and over different drive cycles.
RESULTS AND DISCUSSION

Electrochemical Model

The lithium-ion battery electrochemical model is characterized by a system of partial differential algebraic

equations describing the transport of lithium in the solid and electrolyte phase via mass and charge con-

servation laws (Doyle et al., 1993). This model, popularly known as the pseudo-two-dimensional (P2D)

model, is a high-dimensional and high-fidelity electrochemical model, which was traditionally used for bat-

tery design and modeling purposes. However, in this work, a low-fidelity reduced-order electrochemical

model derived from the P2D model, referred to as the single particle model (SPM), is used with an aim

to lend itself to observer design for online state/parameter estimation and to minimize computational

effort, thereby enabling the model to be run on real-time embedded controllers that have limited power

capability and resources. The SPM assumes that each electrode can be abstracted by a single spherical par-

ticle (Santhanagopalan et al., 2006), as shown in Figure 2A. Further, a uniform current density is assumed in

each electrode, and dynamics in the electrolyte phase are neglected. These assumptions ensure that the

SPM has a lower computational burden compared to the full-order model (P2D) at the cost of accuracy. In
iScience 23, 101847, December 18, 2020 3



Figure 2. Components of an Electrochemical Model-based Adaptive Interconnected Observer

(A and B) (A) Representation of a lithium-ion cell and the schematic of a single particle model (See Table S1 in the

Supplemental Information for values of the SPM parameters), and (B) the interconnected adaptive observer structure for

the estimation of lithium concentration states (bx1;bx2), total cell capacity (bx3), anode diffusion coefficient (bq1), and the SEI

layer ionic conductivity (bq2).
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particular, due to neglecting the electrolyte dynamics, the model’s performance at higher C-rates (wherein

C-rate is defined as the rate of current in normalized form, C� rate = Ibatt=Qnom, where Ibatt is the applied

current and Qnom is the nominal battery capacity) is inaccurate.

The SPM predicts the voltage behavior of the battery when the cell is at the beginning of its life. However,

as the battery ages, this expression will fail to reproduce the exact degrading behavior of the cell. To that

end, this paper aims to incorporate terms that explicitly depend on degradation into the SPM formulation.

This work assumes that the solid electrolyte interphase (SEI) layer growth is the major degradation mech-

anism in lithium-ion batteries. The SEI layer growth is due to the electrolyte solvent reduction at the
4 iScience 23, 101847, December 18, 2020
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interface of the negative electrode and electrolyte, which consumes cyclable lithium ions, thereby reducing

the cell capacity and power capability (increased resistance). The relationship between capacity fade and

power fade due to SEI layer growth is exploited to derive terms that can be incorporated into the SPM.

Therefore, the voltage predicted by the newly formulated aging-enhanced SPM will replicate the waning

performance of the battery as it ages.

For the real-time implementation of the SPM, the PDEs describing the transport of lithium in the solid

phase are spatially discretized using the finite difference method to obtain a system of ordinary differential

equations (ODEs) for both electrodes. Subsequently, the ODEs and the algebraic equations are reformu-

lated into a state-space formulation, which is expounded in the Transparent Methods in the Supplemental

Information.
Model-Based Observer

In most physical systems, not all the internal state variables can be directly measured via sensors. In such

cases, model-based observers can be employed to use the system inputs and outputs, which are available

via sensor measurements, to estimate the non-measurable internal states of a system. This, however, is

contingent on the system’s observability, wherein observability is a fundamental property of the system

that guarantees that the internal states of a system can be inferred based on output sensor measurements.

It follows that if a system is observable, then the internal state variables can indeed be reconstructed using

the output measurements. Furthermore, state observers can be generally classified into two types: open-

loop observer and closed-loop observer. The open-loop observer estimates the internal states, from a

given set of initial conditions, by simulating the model without using the actual output sensor measure-

ments. The major issue with this approach is that the error between model output and the measurements

is never accounted for, and hence, any incorrect initial conditions will be propagated in time and not be

corrected, resulting in state estimates that diverge from the true values. On the other hand, the closed-

loop observer measures the error between the model output and sensor measurements and applies a

gain proportional to this error to correct the estimated states such that the measurement error is driven

to zero. This ensures that despite incorrect initialization of states, the inclusion of this feedback mechanism

forces the closed-loop observer to estimate the states accurately over time.

In the context of electrochemical model-based observers for battery state estimation, the internal non-

measurable states (such as lithium concentration in cathode and lithium concentration in anode) need to

be inferred from the cell output voltage measurements. The weak observability of the battery system while

simultaneously trying to estimate the lithium concentration in both electrodes is studied in the literature (Di

Domenico et al., 2010; Bartlett et al., 2016), and the different methods to overcome the observability issues

and their respective drawbacks are documented (Allam and Onori, 2018). One of the methods reports that

the system is observable from the cell voltage measurements under the assumption that the lithium con-

centration in one electrode is simulated in open-loop fashion while the lithium concentration in the other

electrode is estimated in closed-loop fashion (Bartlett et al., 2016). This, of course, assumes that the initial

conditions of the open-loop model are perfectly known, which eventually allows the closed-loop estimates

to converge to their true values. This approach will not work in realistic scenarios where the initial lithium

concentration in both electrodes is unknown, which will result in the state estimates from the single elec-

trode observer to diverge from the true values over time.

The idea of a single electrode observer is extended in this work by introducing dual observers, wherein a

single electrode observer is dedicated for each electrode, hereby referred to as a cathode observer and an

anode observer. In the cathode observer, the lithium concentration in the cathode is estimated in a closed-

loop fashion while the lithium concentration in the anode is estimated in an open-loop fashion. Thus, the

output error between the cathode observer’s output and the cell voltage measurements is accounted for

while estimating the cathode concentration states. Likewise, the structure of the anode observer is similar

except that the lithium concentration in the anode is estimated in closed-loop fashion while the lithium con-

centration in the cathode is estimated in an open-loop fashion. Clearly, the open-loop models of both ob-

servers are still susceptible to providing erroneous values under incorrect initial conditions, which will result

in faulty closed-loop estimates. This issue is overcome by realizing a bidirectional interconnection between

the two observers that can correct the open-loop models over time. The closed-loop estimate of cathode’s

lithium concentration from the cathode observer is fed to the anode observer to correct the open-loop

model of the cathode, whereas the closed-loop estimate of anode’s lithium concentration from the anode
iScience 23, 101847, December 18, 2020 5
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observer is fed to the cathode observer to correct the open-loop model of the anode. This bidirectional

interconnection ensures that despite incorrect initialization of the concentration states in both electrodes,

the open-loop models in both observers are updated and corrected, which ultimately ensures that the

closed-loop estimates will converge to their respective true values.

While the interconnected observer described above can concurrently estimate the lithium concentration in

the cathode and the anode (Allam and Onori, 2018) to provide information on SOC, it is not equipped to

estimate SOH indicators like the cell capacity (SOH). This is because as battery ages, some of the electro-

chemical model parameters identified at the beginning of life will change due to battery degradation

mechanisms. Using such a model for estimation purposes throughout the entire lifespan of the battery

will result in state estimates (SOC and SOH) to diverge since the model will no longer remain accurate

with aging. Hence, an adaptation mechanism is considered to ensure the aging-sensitive model parame-

ters are adapted as the battery degrades, resulting in an adaptive interconnected observer. This ensures

that the combined estimation of the states and parameters remain accurate despite aging.

To that end, an adaptive interconnected observer (Allam and Onori, 2020a, 2020b), as shown in Figure 2B, is

developed to concurrently estimate the lithium concentration in both electrodes, cell capacity, and aging-sen-

sitive model parameters, despite any incorrect initialization of states and parameters. An aging-enhanced SPM,

introduced earlier, is used as a basis to develop the observer, and the choice of observer structure is a sliding

mode observer, which is a class of robust observers that can handle model uncertainties via variable structure

gains. The sensor measurements of current and voltage of a lithium-ion cell act as an input to the adaptive in-

terconnected observer. The cathode observer estimates the lithium concentration in the cathode ðbx1Þ, cell ca-
pacity ðbx3Þ, and the SEI layer ionic conductivity ðbq2Þ. The anode observer estimates the lithium concentration in

the anode ðbx2Þ and the anode diffusion coefficient ðbq1Þ. Further, the practical stability of the adaptive intercon-

nected observer’s estimation error dynamics has been proved analytically (Allam and Onori, 2020b), which en-

sures that the estimated variables converge around the respective true values within a bounded error ball of

radius defined by the uncertainties in the aging-enhanced SPM.

It has to be pointed out that the continuous-time adaptive interconnected observer formulation (Allam and

Onori, 2020b) cannot be directly implemented on an embedded controller. Since the sensor measure-

ments in a real system are available at discrete sample times, the continuous-time system needs to be

sampled at particular time intervals to obtain a discrete-time system. The discrete-time formulation of

the adaptive interconnected observer (reported in the Transparent Methods in the Supplemental Informa-

tion) can be readily implemented on an embedded controller in real time for BIL experiments.
BIL Experimental Results

Experiments are conducted on a cylindrical lithium-ion cell with graphite at the negative electrode and

NMC at the positive electrode. The cell capacity measured using the manufacturer’s recommended

discharge current of 1C is 1.95Ah. The cell is introduced into the BIL setup as shown and described in

the Transparent Methods in the Supplemental Information (See Figures S1 and S2 for experimental setup

and connections, Tables S2 and S3 for specification of the cell and equipment). The cell is subjected to dy-

namic current profiles, such as the Urban Dynamometer Driving Schedule (UDDS) and the world harmo-

nized light-duty vehicles test procedure (WLTP), through MITS PRO software and the Arbin LBT21024

equipment. The Arbin system measures the current and voltage of the battery and transmits them via Ar-

bin’s CAN port every 0:1s, which is received by the CAN port of the dSPACE MicroAutoBox-II (see Figures

S3–S5, and Table S4 in Transparent Methods in the Supplemental Information for relevant CAN communi-

cation specifications). These received signals are fed as an input to the adaptive interconnected observer

running in real time hosted by the MicroAutoBox.

To demonstrate the robustness of the observer, the model is incorrectly initialized to verify if it can

converge to the true values despite the incorrect initialization and in the presence of sensor noises and cor-

rupted input signals. The estimated variables by the observer, which are the SOC and cell capacity (SOH),

are comparedwith the true SOC value from the battery computed using the coulomb countingmethod and

to the true measured capacity of the battery (1.95Ah), respectively. In addition, the estimated variables

from these BIL results are also compared to the MIL test results which are performed via offline simulation

with no computational constraints or input signal corruption. This comparison with measured true bench-

mark values allows the user to evaluate the performance of the real-time effectiveness of an observer.
6 iScience 23, 101847, December 18, 2020



Figure 3. Observer Input Signal Corruption and Correction

(A–E) (A) Signal comparison between measured current by the Arbin and the corrupted signal received at the dSPACE

MicroAutoBox via CAN bus, (B) zoomed-in version of the current comparison plot, (C) the RMSE plot for different window

sizes for the moving average filter, (D) the comparison of measured current by the Arbin and the filtered signal at the

dSPACE MicroAutoBox, and (E) the zoomed-in version of the measured current and filtered current plot.
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It is noted that the signals (current, voltage) transmitted over the CAN bus from the Arbin to the dSPACE

MicroAutoBox every 0:1s are corrupted with quantization errors. It is understood that due to the fast sam-

pling time of 0:1s, the signal received at the MicroAutoBox is highly corrupted, as shown in Figures 3A and

3B. As a result, a moving average filter is introduced in the MicroAutoBox to smooth out the signals before

feeding them as an input to the adaptive observer. The window size of the moving average filter is chosen

to be 10. This size is chosen after running the experiments for various window sizes and selecting the one

which outputs a filtered signal that is closest to the measured signals (the closeness to the measured signal

is verified by computing the RMS error), as shown in Figure 3C. The resulting filtered signal is well con-

structed and an approximate version of the actual measured current signal, as shown in Figures 3D and

3E, which is then fed to the observer algorithm hosted in the MicroAutoBox.

The results for the UDDS and the WLTP profiles are shown in Figures 4A and 4B, respectively. For both

cases, the lithium concentration (SOC) states are initialized with an error of 15%, and the capacity (SOH)

state is initialized with an error of 7%. The cell is fully charged before subjecting it to the UDDS profile,

whereas the cell is at 80% SOC before applying the WLTP profile. In Figures 4A and 4B, the legend MIL
iScience 23, 101847, December 18, 2020 7



Figure 4. Battery SOC/SOH Estimation Results

(A and B) SOC/SOH estimation results for the (A) UDDS and (B) WLTP input current profiles. The plot shows the input

current signal, voltage, SOC and capacity estimation results, and the estimation error plots for SOC and capacity.
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refers to the estimated states by the adaptive observer in an offline simulation environment, where the

input to the observer is fed from the measured experimental data and not the filtered input signals,

whereas BIL refers to the estimates from the real-time validation with the physical battery. Note that the

initial SOC estimation error is higher during the initial phase of the experiments because the observer is

incorrectly initialized. The cathode concentration state variables (which makes up the bulk SOC) are initial-

ized with an error of 15% at the beginning to verify if the observer can overcome this initial incorrect error

and still converge with the true value over time. As observed, the BIL estimation is comparable to the MIL

despite corrupted input signals. The results further validate the practical stability notion by showing that

the SOC and capacity estimates always stay bounded within the G2% error with respect to the refer-

ence/measured values.

Conclusions

In this work, the importance of real-time validation approaches for battery estimation algorithms is motivated

and a description of the BIL experimental setup is presented. The paper focuses on pushing the envelope in

battery estimation algorithms by implementing an electrochemical model-based observer in real time, thereby

bridging the gap between theory and real-time hardware validation without compromising on the performance.

Every component required to setup the BIL experiments is described in detail, and the steps to establish the

communication between a physical lithium-ion cell and the embedded controller that hosts the adaptive

observer are outlined. The BIL validation of the adaptive observer is performedover twodynamic driving profiles
8 iScience 23, 101847, December 18, 2020
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– UDDS andWLTP. The SOC and SOH estimation results from the BIL are always bounded withinG 2% of their

respective true values, despite the corruption of the input signal in real time. The validation demonstrates that an

advanced electrochemicalmodel-basedestimation algorithm can be run in real timewith good accuracy against

noises and errors induced due to real physical connections. The use of such algorithms in real-time applications

holds the key to improve battery lifespan, enable accurate diagnosis/prognosis, and identify cells of similar

health for the feasibility of using them in ‘‘second-use’’ applications upon retirement.

Limitations of the Study

The proposed adaptive interconnected observer estimates the cell capacity (SOH) by exploiting the relationship

between power fade and capacity fade due to the growth of the SEI layer at the anode. This observer assumes

that SEI layer growth is the primary degradation mechanism plaguing lithium-ion batteries. While this may be

true for certain applications, as cells continue to age and based on their usage, they may undergo different

degradation mechanisms such as lithium plating. It is worth understanding how effects of other degradation

mechanisms can be incorporated into the aging-enhanced SPM to more accurately estimate the cell capacity

in the presence of degradation caused due to mechanisms other than SEI layer growth.

Further, the work presented in this paper is for the SOC/SOH estimation of individual cells. Future work will

involve extending it to a battery pack that has been aged over multiple cycles, which is composed of mul-

tiple lithium-ion cells connected in series and/or parallel, to verify the effectiveness of the observer for

large-scale battery packs in real time.

Resource Availability
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Onori (sonori@stanford.edu).

Materials Availability
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All methods can be found in the accompanying Transparent Methods supplemental file.
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Transparent Methods

Experimental Procedure

Experiments were carried out at the Stanford Energy Control Laboratory,

in the Energy Resources Engineering Department, Stanford University. The

equipment components, labeled in Fig. S1A, include an host computer used

to program test profiles and real-time data monitoring through the MITS Pro

and Data Watcher software (label 1), the Arbin LBT21024 with a programmable

power supply (label 2), a battery cell positioned in a high-current cylindrical cell

holder (maximum current of 200A) manufactured by Arbin (label 3), the Arbin

measurement system (label 4), an embedded controller dSPACE MicroAutoBox-

II (label 5), and a dSPACE Control Desk software to supervise dSPACE sim-

ulator real-time data (label 6), which provides a platform to test in real-time

the design of control/estimation algorithms. The BIL architecture relies on a

CAN BUS connection between battery (Arbin system) and dSPACE controller

(ECU), represented in Fig. S1A.

Data communication between different equipment components is outlined in

Fig. S1B and described as follows. The input current profile is configured via

the MITS Pro software, which is transmitted through the TCP/IP connection

to the Arbin LBT21024, before being subjected to the cell under test. The

behavior of the cell in response to the current stimuli is measured by the Arbin

LBT21024 in the form of voltage response. The measured current and voltage

signals are sent by Arbin LBT21024 to the Arbin measurement system through

the TCP/IP connection, which are then transmitetd through the CAN bus to the

dSPACE MicroAutoBox-II controller. In order to access and monitor dSPACE

MicroAutoBox-II real-time data for processing, data are transmitted through

TCP/IP to the host computer equipped with dSPACE ControlDesk software.
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(A)

(B)

Figure S1: (A) Experimental setup at the Stanford Energy Control Laboratory. (B) Com-

munication signals between each laboratory equipment component. Related to the physi-

cal/experimental realization of Figure 1.
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Electrochemical Modeling

The conservation of mass in the solid phase governs the transport of lithium

in the solid phase of each electrode (j = [n, p], where n stands for negative

electrode and p is for positive electrode) described by the following PDE and

its respective boundary conditions
∂cs,j
∂t

= Ds,j

[
2

r

∂cs,j
∂r

+
∂2cs,j
∂r2

]
∂cs,j
∂r

∣∣∣
r=0

= 0;
∂cs,j
∂r

∣∣∣
r=Rj

=
±Ibatt

Fas,jDs,jALj
.

(1)

The overpotential of each electrode is obtained from the Butler-Volmer kinetic

equation that describes the rate of intercalation and de-intercalation of lithium

ions as

ηj =
RgT

0.5F
· sinh-1

(
Ibatt

2as,jALji0,j

)
(2)

where the exchange current density i0,j = Fkj
√
ce,0cs,j,surf (cs,j,max − cs,j,surf ).

By exploiting the relationship between capacity and power fade due to SEI layer

growth at the anode, an aging-enhanced expression for the cell terminal voltage

is derived as (Allam and Onori, 2020)

V = [Up (cs,p,surf ) + ηp (cs,p,surf , Ibatt)]− (3)

[Un (cs,n,surf , ) + ηn (cs,n,surf , Ibatt)]−

− Ibatt (t)Re,0 − Ibatt (t)Rl − Ibatt (t)Rpf (t) ,

where Uj is the open circuit potential of the electrode which is a function of

the stoichiometry ratio, θj that depends on the respective surface concentration

as θj = cs,j,surf/cs,j,max, and Re,0 is the initial electrolyte resistance at the

beginning of life expressed as (Di Domenico et al., 2010)

Re =
1

2A

(
Ln

κnε1.5e,n

+
2Ls

κsε1.5e,s

+
Lp

κpε1.5e,p

)
. (4)

For the real-time implementation of the aging-enhanced SPM, the Partial Dif-

ferential Equation (PDE) describing the transport of lithium in the solid phase,
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given in (1), is spatially discretized using the Finite Difference Method (FDM)

into N + 1 concentration nodes. The resulting system of Ordinary Differential

Equations (ODEs) for both electrodes of the dimension 2N is represented using

a state-space model for the ease of observer development and implementation.

The state vector is considered to be x = [x1, x2, x3, ]
T ∈ R(2N+1)×1, u = Ibatt is

the input current, and y = V is the cell terminal voltage. The state variables

represent lithium concentration in cathode x1 = [cs,p,1, cs,p,2, . . . , cs,p,N ]
T

, an-

ode x2 = [cs,n,1, cs,n,2, . . . , cs,n,N ]
T

, and cell capacity x3 = Q. It is to be noted

that cell capacity is not an actual state, but augmented to the state vector to

enable its estimation. The dynamics of capacity degradation are slowly varying,

hence the time derivative is considered zero for practical purposes Q̇ = 0. More-

over, the surface concentration in both electrodes is given as cs,j,surf = Ccs,j ,

respectively, where C is the output distribution vector given as C = [0 0 . . . 1].

Then the state space formulation of SPM is given by

ẋ1 (t) = A11x1 (t) +B1u (t)

ẋ2 (t) = θ1Ā22x2 (t) +B2u (t)

ẋ3 (t) = 0 (5)

y(t) = h1(x1,N , u)− h2(x2,N , u)− h3(x3)u−

−Rlu+ (x3 −Q0) θ2u,

where nonlinearities in the terminal voltage equation, and parameters are

h1(x1,N , u) = [Up (cs,p,surf ) + ηp (cs,p,surf , Ibatt)] ,

h2(x2,N , u) = [Un (cs,n,surf ) + ηn (cs,n,surf , Ibatt)] ,

h3(x3) = Re,

θ1 = Ds,n,

θ2 =
3600Msei

2FA2ρseia2s,nL
2
nκsei

,

and square matrices A11, Ā22 ∈ RN×N are the coefficients of the concentration

states in (5), and column vectors B1, B2 ∈ RN×1 are coefficients of input current
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in (5), as given below

A11 =
Ds,p

∆2
r


−2 2 0 · · · 0 0

1/2 −2 3/2 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 2 −2

 (6)

B1 =
−2

∆rFas,pALp


0

0
...

N + 1

N



Ā22 =
1

∆2
r


−2 2 0 · · · 0 0

1/2 −2 3/2 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 2 −2



B2 =
2

∆rFas,nALn


0

0
...

N + 1

N

 .

The procedure used to identify the model parameters, and validate it against

experimental data is outlined (Allam and Onori, 2020). Further, the identified

parameter values are listed in Table S1, and the rest of the geometrical and

aging parameters are borrowed. (Allam and Onori, 2018; Prada et al., 2013).

Further, note that the bulk SOC of the cell is limited by the cathode. Hence,

the bulk SOC of the cell is computed by volume-averaging the concentration

values at all discretization grid points in the cathode and normalizing it with

respect to the cathode’s maximum and minimum stoichiometry values, as given

5



Table S1: SPM Parameters. Related to Figure 2A.

Parameter Value

Ln [m] 60.6× 10−6

Lp [m] 52.5× 10−6

A [m2] 0.093

cs,n,max [mol m−3] 27920

cs,p,max [mol m−3] 45711

εn[−] 0.53

εp[−] 0.54

Ds,n,ref [m2 s−1] 1.74× 10−14

Ds,p,ref [m2 s−1] 2.98× 10−14

kn[m2.5 mol−0.5 s−1] 3.16× 10−10

kp [m2.5 mol−0.5 s−1] 5.96× 10−10

Rl [Ω] 0.026

Ls [m] 21× 10−6

εs[−] 0.58

below:

cs,p,bulk =
1

4
3πN

3

N∑
i=1

4πi2cs,p,i, (7)

SOC =

θp,0% −
cs,p,bulk
cs,p,max

θp,0% − θp,100%
(8)

For the numerical implementation of continuous-time systems in physical em-

bedded controllers such as the dSPACE MicroAutoBox-II, the continuous-time

systems are approximated in a discretized time fashion by selecting a sampling

time or time step (∆k). The discrete-time representation of the battery model

is given below:
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x1 [k + 1] = (I +A11∆k)x1 [k] +B1u [k] ∆k

x2 [k + 1] =
(
I + θ1Ā22∆k

)
x2 [k] +B2u [k] ∆k

x3 [k + 1] = x3 [k] (9)

y[k] = h1(x1,N [k], u)− h2(x2,N [k], u)−

h3(x3[k])u[k]−Rlu[k] + (x3[k]−Q0) θ2u[k], (10)

where I ∈ RN×N is the identity matrix, and k is the discrete sample time.

Observer Design

The adaptive interconnected sliding mode observer for combined estimation

of lithium concentration (SOC), capacity (SOH), and aging-sensitive parame-

ters consists of two parts: cathode observer and an anode observer. The two

aging-sensitive parameters that are adaptively estimated are the anode diffu-

sion coefficient (θ1) and SEI layer ionic conductivity (θ2), which are moderately

sensitive to the measured cell voltage (Ramadass et al., 2003; Edouard et al.,

2016). The parameter θ1 appears in the anode concentration dynamics and

hence it is estimated via the anode observer. On the other hand, the parameter

θ2 appears in the system output equation and hence can be estimated via ei-

ther observer, anode or cathode, as per the designer’s choice. In this work, the

cathode observer is used to estimate the parameter θ2, which also aids in sys-

tematically deriving the stability proof of the adaptive interconnected observer

as documented in (Allam and Onori, 2020). The discrete-time formulation of a

cathode observer is
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x̂1[k + 1] =(I +A11∆k)x̂1[k] +
(
B1u[k]+

G1 (y[k]− ŷ1[k]) +Gv1 sgn (y[k]− ŷ1[k])
)
∆k

x̂2,ol[k + 1] =
(
I + θ̂1[k]Ā22∆k

)
x̂2[k] +B2u[k]∆k

x̂3[k + 1] =x3[k] +G3 (y[k]− ŷ1[k])u[k]∆k

ŷ1[k] =h1 (x̂1,N [k], u[k])− h2 (x̂2,N,ol[k], u[k])−

Rlu[k]− h3(x̂3[k])u[k]+

(x̂3[k]−Q0) θ̂2[k]u[k], (11)

and anode observer is

x̂1,ol[k + 1] = (I +A11∆k) x̂1[k] +B1u[k]∆k

x̂2[k + 1] =
(
I + θ̂1[k]Ā22∆k

)
x̂2[k] +

(
B2u[k]+

G2 (y[k]− ŷ2[k]) +Gv2 sgn (y[k]− ŷ2[k])
)
∆k

ŷ2[k] =h1 (x̂1,N,ol[k], u[k])− h2 (x̂2,N [k], u[k])−

Rlu[k]− h3(x̂3[k])u[k]+

(x̂3[k]−Q0) θ̂2[k]u[k]. (12)

In (11) and (12), the subscript ol stands for open loop model state variables,

G1 ∈ RN×1
− , G2 ∈ RN×1

+ , G3 ∈ R are constant linear observer gains, Gv1, Gv2 ∈

RN×1 are variable structure gains, introduced to improve robustness against

uncertainties, with discontinuous injection terms defined as

sgn (y − ŷi) =


1, if y − ŷi > 0

0, if y − ŷi = 0

−1, if y − ŷi < 0.

i = 1, 2.

The estimation error dynamics of the aforementioned adaptive intercon-

nected sliding mode based observer is proved using Lyapunov’s stability the-

ory.(Allam and Onori, 2020)
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BIL Experimental Setup

For the BIL experiments, a cylindrical lithium-ion cell is investigated, whose

representation and manufacturer specifications are reported in Table S2. Fur-

ther, the technical specifications of the BIL components introduced in Section

are provided in Table S3.

Chemistry Composition LiNiMgCoO2/graphite

Manufacturer Sony

Manufacturer Model US18650VTC4

Diameter x Length [mm x mm] 18.35 x 65.2

Weight Mnom,cell [g] 45

Nominal Voltage Vnom [V] 3.7

Nominal Capacity Qnom [Ah] 2.1

Charging Voltage Vcharge [V] 4.2

Charging Current Icharge [A] 2

Cut-off Voltage Vcutoff [V] 2.5

Maximum Voltage Vmax [V] 4.2

Table S2: Manufacturer specifications for the cylindrical, fresh NMC cell used in this work.

Related to Figure 2A.

The key element is establishing the BIL is the CAN bus communication

between the battery testing system and the embedded controller, which is im-

plemented both in terms of hardware and software. The CAN is a serial com-

munication protocol used in automobiles for efficient and high speed transfer of

electrical signals between multiple ECUs. The information exchange between

ECUs is in the form of messages with a unique identifier (or ID) that contain

the values of physical variables. In this paper, CAN messages containing the

cell current and voltage information are transmitted from the Arbin battery

measurement system (CAN channel 1) to the dSPACE AutoMicroBox-II (CAN

9



Laboratory Equipment Manufacturer Technical Specifications

Arbin battery test system Manufacturer Arbin Instruments

Model LBT21024

Number of Channels 6

Voltage Range [V] 0− 5

Current Ranges [A] ±0.5, ±5, ±50 and ±250

Maximum Continuous Output Power [W] 1250

Measurement Resolution 24-bit

Simulation Control Current/Power Simulation

Auxiliaries Temperature Measurement

AC Power Input 3-Phase 50/60Hz 208VAC

Input Power: 17400VA

Arbin Measurement System Manufacturer Amerex Instrument

Model LBT21024

Voltage [V] 90− 264

Max. Current 220V 1.6A / 110V 3.2A

Max Power [VA] 350

Phase 1

dSPACE MicroAutoBox-II 1401/1513 Manufacturer dSPACE

Processor IBM PPC 750GL, 900 MHz

(incl. 1 MB level 2 cache)

Main Memory [MB] 16

Boot Time 1MB application, 160 ms

3MB application, 340 ms

CAN Interface 6 CAN channels

Input/output Resolution 32 16-bit ch./8 16-bit ch.

Input and output voltage range [V] -10,+10

Table S3: Technical specifications of the Arbin battery test system, Arbin measurement sys-

tem, dSPACE Scalexio simulator and dSPACE MicroAutoBox-II 1401/1513. Related to Fig-

ure 1.

channel 1).

The CAN hardware implementation via physical wiring is visualizd in Fig. S2.

On the Arbin battery measurement system side, a D-Sub connector (model 171-

009-113R911) is used to setup the electrical connection. The low and high volt-

age CAN pins of the D-Sub connector, CAN L and CAN H, respectively, are

connected to the high and low voltage CAN pins of the dSPACE AutoMicroBox-

II CAN channel 1.

10



Figure S2: CAN bus connection between the Arbin battery measurement system and the

dSPACE AutoMicroBox-II. The red wire (high voltage) is connected to the CAN H pin of the

D-Sub connector (Arbin battery measurement system side) and to the CAN 1 high on the

dSPACE AutoMicroBox-II side. In the same way, the black wire (low voltage) is connected

to the CAN L pin and to the CAN 1 low. Related to Figure 1.

The CAN software implementation involves configuring the CAN messages,

setting the baud rate, and finalizing the transmission and receiving frequency

of the messages. The necessary steps are outlined below:

1. CAN bus configuration with MITS Pro software: This step ad-

dresses the activation of the CAN communication channel on the Arbin

battery system. The MITS Pro Software, installed on the host computer

labeled by 1 in Fig. S1A, is used to adjust communication settings. The

current profile to be applied to the battery cell is configured in the Sched-

ule Files window of MITS Pro. The current profile is composed of a rest

period, wherein the cell is soaked in the desired ambient temperature of

23◦C during a one hour rest time period (input current set to 0), and a

dynamic current profile (UDDS or WLPT drive cycle). The CAN commu-

nication settings are established by opening the CANConfig Files window,

as shown in Fig. S3A, and setting the message properties and baud rate.

A new CAN configuration file, called CANconfig Arbin Dspace.can, is cre-

ated and the sub-windows of which are described as follows:

� CAN Global : the baud rate is set to 500K.

� Inbound CAN Signal Configuration: Meta-variables CAN MV RX1

and CAN MV RX2, voltage and current signals, respectively, are
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considered. They are transmitted through CAN message data, whose

structure is defined in Fig. S3A. Note that the CAN message struc-

ture must be consistent between the transmitter and receiver system

(in this paper, they correspond to the Arbin battery system and the

MicroAutoBox, respectively). The CAN Message ID is defined as

0x100 and the Byte Order is set to Little Endian. The current and

voltage signals are each 4 bytes, and hence the Start Byte Index, End

Byte Index, Start Bit Index and End Bit Index are set to 0, 0, 3, 7

for the voltage message and 4, 0, 7, 7 for the current message.

� IV Outbound CAN Message Broadcasting : The broadcasting CAN

message ID is again set to 0x100, and the desired CAN Message

Interval is set to 100 [ms] in Fig. S3B.

Lastly, the finalized CAN configuration file CANconfig Arbin Dspace.can

is assigned to the Arbin channel that is connected to the cell under test

in the Batch Files window of the MITS Pro. As shown in Fig. S4, the cell

under test is connected to Arbin channel 1 (Channel index 1), the corre-

sponding UDDS current Schedule file is assigned (US18650VTC4 T23 Arbin -

Dspace demo UDDS.sdu), the CANconfig Arbin Dspace.can file is assigned

to the BMS CAN Signal Configuration File, and the Battery Name is set

to US18650VTC4 (which refers to battery specifications related to the ell

under test reported in Table S2). The Launch Monitor Control window

in MITS Pro launches the experiment.

2. Real-time Interface (RTI): The dSPACE-Simulink RTI library allows

the interface between the discrete-time model-based observer implemen-

tation on Simulink with the physical input/output hardware ports of the

dSPACE MicroAutoBox-II. In order to properly receive and read the CAN

messages at the dSPACE AutoMicroBox-II end, which are transmitted by

the Arbin system, the RTI blockset is utilized. The proposed Simulink

block scheme, shown in Fig. S5, enables the embedded controller to re-
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(A)

(B)

Figure S3: Tabs included in the MITS Pro software CANConfig Files window: (A) Inbound

CAN Signal Configuration, describing how CAN messages are structured, and (B) IV Out-

bound CAN Message Broadcasting, which determines the broadcasting CAN message interval.

Related to Figure 1.

Figure S4: MITS Pro software Batch Files window used to assign the Arbin channel to the

scheduled profile, CAN signal configuration file and battery type. Related to Figure 1.

ceive the CAN messages from the Arbin battery system that contain the

real-time battery current and voltage measurements. The RTI blocks in

Fig. S5 are explained below

� The RTI Data block is a standard block used to define the dSPACE

RTI environment in Simulink.

� The CAN Controller Setup block is used to define the CAN controller

specifications. The block settings that need to be adjusted are in the

Unit tab: the Mudule is set to CAN Type 1, the Controller number

to 2, the GroupId to RTICAN2 and the Baudrate to 500 [kbit/s].

� the CAN Receive Message block determines the CAN message struc-

ture which needs to match the one previously defined for the Arbin

battery system in the MITS Pro software. In the Message tab, the

Message identifier is set to standard (STD), hexadecimal (hex) and

0x100, and the Message length is set to 8 bytes. The second tab called
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Message Composition describes the process by which the model can

recognize the current and voltage data within the CAN message. The

composition propoerties for both signals are shown in Table. S4. In

summary, using the RTI library, the properties of the CAN message

to be received are set by ssigning the CAN message length to 8 bytes,

corresponding to 64 bits, which is split in two parts: the first con-

taining cell’s voltage signal and the second part carrying the cell’s

current signal information.

Figure S5: RTI Simulink block scheme. Related to Figure 1.

Upon configuring the RTI CAN blocks and interfacing it with the estima-

tion algorithms, the code of the Simulink model is built and downloaded

into the target platform, which is the dSPACE AutoMicroBox-II. As soon

as the code is successfully flashed, the dSPACE AutoMicroBox-II light

turns green. Then Arbin system measurements (current and voltage) are

transmitted in real-time to the dSPACE AutoMicroBox-II through the

CAN bus. Furthermore, a system description file (*.sdf), which is used

in the ControlDesk software to control and visualize variables in real-time

(further described in the next step).
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Current signal Voltage signal

Signal name current voltage

Start bit 0 32

Signal length 32 32

Signal type Standard Standard

Data type float32(IEEE) float32(IEEE)

Byte layout Little endian Little endian

Factor 1 1

Factor 0 0

Physical unit A V

Table S4: Voltage and current signal message composition. Related to Figure 1.

3. Real-time data monitoring on dSPACE ControlDesk: The dSPACE

ControlDesk software is used to setup a Graphical User Interface (GUI)

that allows the real-time signals transmitted over the CAN bus and the es-

timated SOC/SOH signals to be monitored. The primary tasks associated

with setting up the GUI involves

� Add Platform/Device: Selecting the MABX ds1401 (corresponding

to the dSPACE AutoMicroBox-II processor).

� Select Variable Description: Assigning the previously generated *.sdf

file corresponding to the estimation algorithm.

The variables/parameters of the model in real-time are accessible from the

Variables Control bar in the ControlDesk software. The GUI is populated

with plotters to monitor the desired signals, such as the CAN signals

(cell voltage, current, CAN communication status), and the estimated

signals (SOC, SOH). When the application starts, the signals that are

being monitored on the plotters are recorded, which is easily importable
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to MATLAB and available for analysis.
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