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Abstract
The Bruggeman model is routinely employed to determine transport parameters in macro-
scale electrochemical models. Yet, it relies on both a simplified representation of the pore-
scale structure and specific hypotheses on the transport dynamics at the pore scale. Further-
more, its inherent scalar nature prevents it from capturing the impact that pore-structure 
anisotropy has on transport. As a result, the complex topology of electrochemical storage 
devices, combined with the broad range of conditions in which batteries operate, renders 
the Bruggeman relationship approximate, at best. We propose a self-consistent multiscale 
framework, based on homogenization theory, which a priori allows one to calculate effec-
tive parameters of battery electrodes for a range of transport regimes while accounting for 
full topological information at the pore scale. The method is based on the solution of a 
closure problem on a translationally periodic unit cell and generalized to handle locally 
non-periodic structures. We compare the Bruggeman and the closure-problem predictions 
of the effective diffusivity for a set of 18,000 synthetically generated images and propose a 
data-driven polynomial function correlating porosity and effective diffusivity, as calculated 
from a solution of the closure problem. We test its predictive capability against measured 
diffusivity values in a LiCoO

2
 cathode and a Ni-YSZ anode.

Keywords Lithium-ion battery · Electrochemical modeling · Homogenization · Closure 
variable resolution · Scanning electron microscopy · Bruggeman effective medium theory

1 Introduction

Lithium-ion rechargeable batteries are the most promising energy storage technology today 
and their application spans from consumer electronics to electrified propulsion systems 
(Sbarufatti et al. 2017). Yet, growth of the global electric vehicle market has been slower 
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than initially predicted in the beginning of this decade (Choi and Aurbach 2016). From a 
materials perspective, lithium-ion technology has matured significantly and has begun to 
reach its theoretical energy limits (Fotouhi et al. 2016). Ongoing electrochemical research 
in the transportation industry is focused on enhancing battery life cycle, safety, and other 
performance characteristics to enhance its market penetration. This is possible through the 
development of an effective battery management system (BMS), for which advanced elec-
trochemical battery modeling and estimation techniques are vital to push batteries to oper-
ate at their physically permissible limits (Zheng et al. 2016). Prediction of the capabilities 
of batteries during design or utilization is dependent on the accurate modeling of Li-ion 
transport at relevant scales. In this context, the pinnacle of model prediction capability is 
determined by the accuracy of (1) the models employed and (2) the estimation or measure-
ment of model parameters.

The battery research community, for long, has considered the Doyle–Fuller–Newman 
(DFN) macroscale model (Doyle et al. 1993; Doyle and Newman 1995), and its subsequent 
generalizations, as the benchmark. Since the inception of the DFN model, the effective 
transport coefficients Ψeff of battery electrodes needed for its parameterization have been 
determined from their intrinsic (pore scale) counterparts Ψ (Vijayaraghavan et al. 2012) as

where � is the porosity and � is the tortuosity. The latter is defined as the ratio between an 
effective path length �eff to the Euclidean length (straight-line length) of a control volume. 
Although routinely employed, (1) it requires the knowledge of the pore scale structure, his-
torically unavailable until the advent of X-ray tomography (XCT) and scanning electron 
microscopy (SEM), and (2) it is ambiguous since �eff depends on the transport process 
occurring in the microstructure and may not be able to be consistently defined when mul-
tiple transport processes are occurring at the same time (Sharratt and Mann 1987; Valdés-
Parada et al. 2011). The general difficulty in estimating tortuosity led to the widespread use 
of the classical Bruggeman relationship

between tortuosity � and porosity � , the latter being a quantity much easier to measure. 
In (2), � is the Bruggeman exponent, equal to 0.5 for perfectly spherical particles. While 
the use of the relationship has allowed one to seemingly circumvent the often problematic 
definition of tortuosity, it has introduced a number of additional complications. For exam-
ple, the Bruggeman equation, in its original formulation, neglects the influence of the par-
ticle morphology and orientation and it cannot capture the impact of anisotropic effective 
parameters, due to its intrinsic scalar formulation.

The main advantage of (2) that has led to its popularity lies in its simplicity, ease of 
use, and its underlying conceptualization that averaged topological descriptors of the 
microstructure (i.e., porosity and tortuosity) can be related to properties controlling the 
dynamical response of the system at a larger scale. Yet, experimental investigations have 
revealed that the topology and geometry of electrode constituents play a significant role in 
battery dynamical response (Shearing et al. 2010; Wilson et al. 2011): On the one hand, 
electrodes with the same volume fraction can have significantly disparate performance 
due to differences in pore-space topology, and on the other, electrode particles topology 
and geometrical configuration vary over battery life due to volume changes, cracks, and 
stress–strain effects that result from cyclic charge and discharge. As a result, the validity 

(1)Ψeff =
�

�
Ψ,

(2)� = �−� ,
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of the Bruggeman relationship has lately come under close scrutiny in the battery com-
munity where both numerical (Chung et  al. 2013; Cooper et  al. 2014) and laboratory 
experiments (Abraham 1993; Stephenson et al. 2007; Djian et al. 2007) showed significant 
discrepancies between the measured and predicted tortuosity through the classical Brugge-
man model. For example, DuBeshter et  al. (2014) conducted experiments to character-
ize the electrode MacMullin number for commercial battery electrodes. The results show 
substantially higher tortuosity values than the classical Bruggeman approach (Kehrwald 
et al. 2011), emphasizing the need for estimating electrode properties through experiments 
rather than empirical formulations. Malifarge et  al. (2017) synthesized symmetric coin 
cells and conducted impedance measurements between a frequency range of 1 MHz and 
1 mHz using a 5 mV perturbation amplitude. A transmission line model was used to fit 
the measured impedance spectra using nonlinear fitting to minimize the error between the 
experimental and model-predicted response. The tortuosities obtained using this approach 
were significantly higher than those reported using the classical Bruggeman relationship. 
Landesfeind et  al. (2016) conducted impedance measurements to estimate the tortuosity 
of commercial separator materials. Results indicate that the classical Bruggeman relation-
ship significantly under-predicts the tortuosity values across the porous separators. While 
direct experimental measurements of effective parameters (and/or tortuosity) are invalua-
ble, associated high cost limits their practical deployment as methods to routinely estimate 
effective model parameters.

The advent of techniques such as XCT (and SEM) has enabled one to directly estimate 
model parameters (e.g., tortuosity, effective diffusivity) on realistic high-resolution images 
of electrode microstructures (Terborg et al. 2013; Stiaszny et al. 2014a, b; Grützke et al. 
2015), while validating various modeling approximations through computer simulations at 
a fraction of the cost (see review on computational methods by Grazioli et al. (2016), and 
references therein). A number of studies on non-spherical active particle electrodes have 
reported significant deviation between measured tortuosity and that estimated from the 
Bruggeman approach (García-García and García 2016; Stephenson et al. 2007; DuBeshter 
et al. 2014). Extensive research, both analytical and numerical, has ensued on the wake of 
improving estimates of tortuosity and effective coefficients associated with lithium trans-
port between electrodes. Vijayaraghavan et al. (2012) derived analytical expressions for tor-
tuosity in low and high porosity electrodes by incorporating filler materials (carbon black) 
in the porous matrix. Ebner and Wood (2015) developed a software tool, BruggemanEs-
timator, to estimate in-plane and out-of-plane Bruggeman exponents based on the differ-
ential effective medium approximation using microscopic images of the top and the cross 
section of battery electrodes. Bucci et  al. (2017) used random walk analysis to estimate 
the impact of microcracks on the effective conductivity of composite electrodes. Chung 
et al. (2013) used a finite element model to analyze the tortuosities of 3-D reconstructions 
of experimentally fabricated porous electrodes. These investigations revealed that inho-
mogeneities in particle packing and polydispersity result in an increase in the overall tor-
tuosity. Cooper et  al. (2013) compared five approaches to quantify the tortuosity factor: 
While three of the methods showed strong correlations, they provided consistently differ-
ent values. Thorat et al. (2009) proposed a generalized Bruggeman relation, � = A�−B to 
improve predictions of the measured tortuosities. A similar approach was later proposed by 
Vijayaraghavan et al. (2012) with a Bruggeman relationship in the form � = ��1−� , where 
the coefficients � and � are determined by fitting the tortuosity values obtained through 
numerical simulations across a range of electrode porosities.

Despite a general awareness that tortuosity–porosity relationships are, at best, simplistic 
representations of a more complex topology, a recent review by Tjaden et al. (2016) on the 
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derivation of Bruggeman relationship in its most popular form warns on its limitations, 
which “are not widely appreciated” (Tjaden et al. 2016). For example, the relatively small 
sensitivity of the tortuosity factor to large variations of porosity (0.3-0.7) may lead to mis-
interpreting any accidental agreement between predicted and measured tortuosity for an 
experimental validation of the Bruggeman correlation (Tjaden et  al. 2016). In addition, 
the authors highlight that the approximations in the Bruggeman relationship do not entail 
exclusively topological simplifications (e.g., assuming that the obstructions are spherical 
or cylindrical), but also assumptions on the transport dynamics. The latter problem has 
seeped through almost undetected, since the majority of the works in the electrochemical 
community have primarily focused on the impact of the spherical particle hypothesis. As 
emphasized by Tjaden et al. (2016), the Bruggeman model is derived for diffusion-dom-
inated transport. This critical observation directly connects with the large body of work 
acknowledging the challenge of properly defining tortuosity in different transport regimes.

The lack of uniqueness in the definition of tortuosity, including its dependence on pore-
scale transport processes, has been long known in the fields of civil engineering and geo-
sciences (Darcy 1856; Bear 1972): The review of several definitions of tortuosity can be 
found in Dullien (1992), Clennel (1997), which include the concepts of geometrical (Adler 
1992), hydraulic (Kozeny 1927; Carman 1937), diffusive (Penman 1940; Petersen 1958), 
dispersive (Bear 1969; Greenkorn 1983), and electrical tortuosities (Archie 1942).

A review on the different definitions of tortuosity is provided by Ghanbarian et  al. 
(2012). Valdés-Parada et  al. (2011) showed the impact that different transport regimes 
(diffusive, advective, and reactive) have on tortuosity calculations and discussed the 
appropriateness of introducing the concept of tortuosity in different transport scenarios. 
Importantly, they discuss the challenges of consistently defining the concept of tortuosity 
when more than one transport process is taking place. For example, Sharratt et al. (1987, 
Fig. 18), who studied reactive mass transport in catalytic particles, found that tortuosity is 
function of the reaction rate and may have values smaller than one. Similar conclusions 
were reached by Edwards et al. (1993) in the context of dispersion and reaction in porous 
media.

While a number of works have focused on relaxing the spherical/cylindrical grain 
hypothesis by constructing generalizations of the Bruggeman relationship for non-spheri-
cal and polydisperse media (Chung et al. 2013; Stephenson et al. 2007; Ebner et al. 2014), 
the purely diffusive-transport hypothesis probably remains the most stringent assumption 
when applying such a model to batteries, which are, more often than not, characterized by 
diffusion-limited regions due to both active material and pore-space polydispersity or both 
(Garcia et al. 2005; Chung et al. 2014; Yu et al. 2016), and operating conditions (e.g., high 
C-rates) (Garcia and Chiang 2007; Jiang and Peng 2016), or dispersive effects as in flow 
batteries.

Upscaling methods (Battiato et  al. 2009; Battiato and Tartakovsky 2011; Boso 
and Battiato 2013; Arunachalam et  al. 2015; Korneev and Battiato 2016) provide 
both a mathematical framework to connect pore-scale processes to effective medium 
(upscaled) equations as well as rigorous definitions, under different dynamic condi-
tions, of their effective transport parameters whose dependence on local pore-scale 
topology can be explicitly accounted for. This is achieved, as described in Korneev 
and Battiato (2016), Arunachalam et  al. (2017), Zhang and Tartakovsky (2017a), by 
directly solving a boundary value problem, or closure problem, on a representative 
microstructure without the need of introducing topological intermediaries, such as tor-
tuosity. Zhang et  al. (2017); Zhang and Tartakovsky (2017b) employed homogeniza-
tion theory in the context of microscale materials design to maximize energy/power 
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density performance in electrochemical devices. Arunachalam et  al. (2017) showed 
that even a minor degree of polydispersity in an idealized microstructure of spheri-
cal particles can lead to approximately 20% difference between the effective transport 
parameters determined by Bruggeman relationship and through rigorous upscaling. In 
Arunachalam and Onori (2019), it was shown that the solution of the pore-scale clo-
sure problem to calculate the effective diffusion and conductivity parameters of NMC 
cathode batteries leads to more accurate prediction capability when compared to DFN 
model under diverse battery operating conditions.

In this work, we aim at determining effective coefficients from microstructural 
images of lithium-ion battery electrodes in the context of homogenization theory. 
Unlike other works, the approach proposed allows one to either directly bypass the, 
often ambiguous, concept of tortuosity, or rigorously generalize it in the context of 
homogenization theory, i.e., in a way mathematically consistent with the macroscopic 
equations to be parameterized. We do so by expressing tortuosity (or any macroscale 
effective parameter) in terms of a closure variable, a tensorial quantity derived by solv-
ing a boundary value problem (BVP) on a representative volume of the electrode. The 
approach has two primary advantages: (1) The tensorial nature of the closure vari-
able allows one to account for anisotropy on cells of arbitrary structures without any 
postulation about the nature of anisotropy and (2) the direct solution of the BVP on a 
representative volume of the electrode allows one to account for the topological and 
morphological complexity of particles shape. Importantly, the so-defined tortuosity is 
self-consistent with the upscaled equation it parameterizes through a regime-specific 
BVP, i.e., different upscaled equations (which may account for different dynamics) will 
lead to BVP of different form and different values of tortuosity for the same struc-
ture. We then apply the method to a set of synthetically generated statistically isotropic 
pore-scale structures to improve upon Bruggeman relation, while retaining the benefits 
of its simple structure.

The paper is structured as follows. Section 2 summarizes the mass and charge trans-
port equations at the pore- and continuum scale in the electrolyte in the context of 
homogenization theory. We also introduce the definition of effective parameters as 
the spatial averages of a closure variable, which is the solution of a properly defined 
boundary value problem in a representative domain at the pore scale. In Sect.  3, the 
validity of the classical Bruggeman relationship is assessed against the closure vari-
able approach, and a data-driven modified polynomial expression is proposed to 
improve the fitting of the dispersion–porosity relationship, when computational cost is 
a major concern. Section 4 presents the evaluation of the dispersion tensor components 
for realistic microstructures obtained through SEM images available in the literature. 
Section 5 summarizes the conclusions of this work.

2  Lithium‑Ion Transport Model from Pore to Continuum Scale

In this section, we report, for completeness, the set of equations governing charge and 
Li-ion mass transport in the electrolyte at both the pore scale and continuum scale. We 
emphasize that the continuum-scale equations are those derived within the homogeni-
zation framework by multiple-scale expansion of Arunachalam et al. (2015). A similar 
set of equations for the electrode can be found in Arunachalam et al. (2015).
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2.1  Pore‑ and Continuum‑Scale Equations

The pore-scale mass and charge transport of lithium ions in the electrodes and the elec-
trolyte are governed by the Poisson–Nernst–Planck (PNP) equations of material balance 
and electroneutrality (Less et  al. 2012). Based on the homogenization approach, the 
porous electrode is assumed to be composed of spatially periodic unit cells of charac-
teristic dimension � . Each unit cell may consist of multiple active electrode particles 
of arbitrary shape and configuration that are surrounded by the electrolyte phase B and 
separated by an interface Γ . We define the scale separation parameter

where L is the characteristic size of the macroscopic domain, e.g., the entire electrode, and 
� can be interpreted as the dimensionless size of a repeating unit cell, see Fig. 1. The union 
of all unit cells forms a connected pore-space B� . The union of all the solid–liquid inter-
faces in B� is defined as Γ�.

The dimensionless concentration of lithium and electric potential in the electrolyte, 
ce
�
 and �e

�
 , at location � ∈ B

� and time t, defined as ce
𝜀
∶= ĉe

𝜀
∕ĉs

max
 and 𝜙e

𝜀
∶= �̂�e

𝜀
F∕(2RT) 

with ĉe
𝜀
 and �̂�e

𝜀
 being the dimensional concentration and electric potential, satisfy the 

mass and charge transport equations (Arunachalam et al. 2015) 

(3)𝜀 =
�

L
≪ 1,

Fig. 1  Conceptualization of the homogenization process on a periodic structure (adapted from Battiato 
et al. 2019). Although depicted as an array of repeating unit cells containing one spherical particle, the unit 
cell structure can be arbitrarily complex
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 subject to 

 on Γ� , respectively. In (4) and (5), all temporal and spatial scales are rescaled by the mac-
roscopic length L and the diffusion time in the electrolyte phase t̂De

 , respectively, i.e., 
� = �̂∕L and te = t̂∕t̂De

 ; also, �e = �̂e∕De and �e = �̂e∕Ke are the dimensionless interdif-
fusion coefficient and the electric conductivity in the electrolyte, while the hatted quan-
tities are their dimensional counterparts with De = O(�̂e) and Ke = O(�̂e) . Also, ĉs

max
 is 

the maximum concentration of lithium that can be stored in the active particle. The But-
ler–Volmer equation, which controls ion transport across the electrode–electrolyte bounda-
ries, is

where U = FÛ∕(2RT) is the dimensionless open-circuit potential, cs
𝜀
∶= ĉs

𝜀
∕ĉs

max
 and ĉs

𝜀
 are 

the dimensionless and dimensional electrode particle concentration, respectively, and the 
dimensionless Damköhler and electric Péclet numbers are defined as follows

where k (VmΩ−1mol−1 ) is the electrochemical reaction rate constant that describes the 
kinetics of lithium-ion transfer on Γ� ; Û (V) is the open-circuit potential; t+ is the transfer-

ence number, 𝜆 ∶= 1 +
d ln f±

d ln(ĉe
𝜀
∕ĉs

max
)
 is treated as constant; and f± is the activity coeffi-

cient; �e is the outward unit normal vector to Γ� pointing from the electrolyte towards the 
active particle; F and R are the Faraday and the universal gas constants; and T is the tem-
perature. A detailed derivation of Equations (4), (5) and (6) from the dimensional Pois-
son–Nernst–Planck equations with Butler–Volmer dynamics can be found in Arunachalam 
et al. (2015, Eqs. (1) to (10)).

The method of homogenization by multiple-scale expansions is based on the ansatz that 
each (dimensionless) pore-scale quantity �� can be expanded in an infinite series in integer 
powers of � , i.e., for any microscale variable, a multiple-scale asymptotic expansion is an 
ansatz of the form,

wherein each function �m(�, �, t) in this series depends on two variables, � , the macro-
scopic (or slow) variable and � , the microscopic (or fast) variable defined as

(4a)
�ce

�

�t
= ∇ ⋅ [(�e + �t2

+
Pee�

e∕ce
�
)∇ce

�
+ 2Peet+�

e∇�e
�
], � ∈ B

�

(4b)0 = ∇ ⋅ [(�t+�
e∕ce

�
)∇ce

�
+ 2�e∇�e

�
], � ∈ B

�

(5a)�e⋅ [(�
e + �t2

+
Pee�

e∕ce
�
)∇ce

�
+ 2Pee t+�

e∇�e
�
] = Daef (c

e
�
, cs

�
,�s

�
,�e

�
),

(5b)�e⋅ [(Pee�t+�
e∕ce

�
)∇ce

�
+ 2Pee�

e∇�e
�
] = Daef (c

e
�
, cs

�
,�s

�
,�e

�
),

(6)f (ce
�
, cs

�
,�e

�
,�s

�
) = 2

√
ce
�
cs
�
(1 − cs

�
) sinh (�s

�
− �e

�
− U),

(7)Dae ∶=
Lk

FDe
and Pee ∶=

RTKj

F2Djĉs
max

,

(8)

𝜓𝜀(�̂, t) ∶= 𝜓(�, �, t) =

∞∑

m=0

𝜀m𝜓m(�, �, t) = 𝜓0(�, �, t) + 𝜀𝜓1(�, �, t) + 𝜀2𝜓2(�, �, t) +⋯
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and �m(�, �, t) , m = 0, 1,… , are Y-periodic in � . Then, the homogenized (or upscaled or 
macroscopic) equation for a pore-scale quantity �� is obtained by determining the follow-
ing limit,

where ⟨⋅⟩ is an average defined over the unit cell, see Fig. 1.
Under appropriate hypotheses (Arunachalam et  al. 2015), lithium transport in the 

electrolyte phase described by (4) and (5) can be homogenized, i.e., approximated up 
to errors of order �2 , by the following effective mass and charge transport equations

and

with

and

where A(�) is a pore-scale quantity, provided the following conditions are met: 

1. 𝜀 ≪ 1,
2. Dae < 1,
3. Pee < 1,
4. Dae∕Pee < 1,

Constraints  (1)–(4) ensure the separation of scales. While constraint  (1) is almost 
always met in practical applications since the pore size is generally much smaller that 
the electrode dimension, constraints (2)–(4) depend on the relative importance of the 
diffusion, electromigration, and reaction mechanisms, i.e., they impose constraints on 
the transport regimes that can be appropriately modeled by the continuum scale equa-
tions (11) and (12) within errors of order �2 . Details of the derivation can be found in 
“Appendix” of Arunachalam et al. (2015).

(9)� = �−1�,

(10)⟨�⟩ = ⟨lim
�→0

��⟩,

(11)
𝜂𝜕t⟨ce⟩B = ∇� ⋅ [(�

⋆ + 𝜀−𝛼𝜆t2
+
�⋆∕⟨ce⟩)∇�⟨ce⟩B + 2𝜀−𝛼t+�

⋆∇�⟨𝜙e⟩B]
+ 2𝜂𝜀−1K⋆

Daef (⟨ce⟩B, ⟨cs⟩s, ⟨𝜙e⟩B, ⟨𝜙s⟩s),

(12)
Pee∇� ⋅ [(𝜆t+�

⋆∕⟨ce⟩)∇�⟨ce⟩B + 2�⋆∇�⟨𝜙e⟩B]
= 2𝜂𝜀−1K⋆

Daef (⟨ce⟩B, ⟨cs⟩s, ⟨𝜙e⟩B, ⟨𝜙s⟩s),

(13)
f (⟨ce⟩B, ⟨cs⟩s, ⟨�e⟩B, ⟨�s⟩s) = 2

√
⟨ce⟩B⟨cs⟩s(1 − ⟨cs⟩s) sinh (⟨�s⟩s − ⟨�e⟩B − U),

(14)

⟨A⟩e ≡ 1

�Y� �
B(�)

Ad�, ⟨A⟩s ≡ 1

�Y� �
S(�)

Ad�,

⟨A⟩B ≡ 1

�B� �
B(�)

Ad�, ⟨A⟩S ≡ 1

�S� �
S(�)

Ad�,
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2.2  Effective Coefficients

The effective coefficients in (11) can be rigorously defined within the context of homogeni-
zation theory as follows. The dimensionless effective reaction rate constant in the electro-
lyte phase K⋆ is determined by the pore geometry as K⋆ = |Γ|∕|B| . The effective diffusion 
and electromigration tensors are given by

where the closure variable �(�) has zero mean, ⟨�⟩e = � , and is defined as a solution to the 
local problem in the unit cell Y

 with � the identity matrix (Arunachalam et al. 2015), i.e., once the geometry of the unit 
cell Y is known, first the BVP (16) is solved to determine the closure variable � , and then, 
the effective diffusion and conductivity coefficients are determined by calculating the spa-
tial average of � over Y through (15). A schematic of the process is provided in Fig. 2. We 
emphasize that although Eq. (16) is a Poisson equation, general closure problems can be 
arbitrarily complex and include not only diffusion, but also other processes such as advec-
tion (see, e.g., Battiato and Tartakovsky 2011).

The advantage of the closure variable approach over empirical approaches, such as 
the Bruggeman approximation, lies in its ability to rigorously link effective coefficients 

(15)
�⋆ = ⟨�e(� + ∇��)⟩e,
�⋆ = ⟨�e(� + ∇��)⟩e,

(16a)∇� ⋅ (∇�� + �) = 0, � ∈ B,

(16b)�e ⋅ (∇�� + �) = 0, � ∈ Γ,

Fig. 2  Schematic representation of the homogenization procedure. First (from the left-hand side), a periodic 
“unit” cell is determined; second, the closure problem is solved in the “unit” to find the effective properties, 
of the continuous model
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to different topological structures at the pore scale. The closure variable accounts for the 
impact of the microstructure and can be determined using offline calculations. As a result, 
the closure problem can be resolved as a preprocessing step and the effective parameter 
values can be directly incorporated in the homogenized model equations.

In the following, we provide a definition of tortuosity in the context of homogenization 
theory and propose a generalization of a Bruggeman-type relationship, which allows one to 
account for arbitrarily complex morphology of the electrode phase in the unit cell.

2.3  Closure Variable and Tortuosity

As previously emphasized, the primary advantage of the Bruggeman relation lies in its 
simplicity and ease of use. It is therefore convenient to recast (15) in the form of a Brugge-
man-type relationship, without the imposition of additional restrictions on the pore-scale 
topology. Equation (15) can be written as

with �eff equal to �⋆ or �⋆ , i.e., macroscopic coefficients depend on pore-scale geometry 
(not only on porosity) and they are tensors. Equation (1) should be interpreted as a defini-
tion of tortuosity, the latter being a quantity defined as inversely proportional to the dimen-
sionless effective coefficient, namely

In analogy with (18), while using (17) and indicial notation, one can then provide a more 
general definition of tortuosity in the context of homogenization theory, i.e.,

where �ii are the diagonal components of the tortuosity tensor � . It is worth emphasizing 
that off-diagonal components are zero since transport is only by diffusion. Using the defini-
tion for the averaging operator ⟨⋅⟩e (14), Eq. (19) can be written as,

consistent with definitions obtained from other upscaling methods (Sun et  al. 2013; 
Allen and Sun 2017). Similar results can be obtained with the method of volume averag-
ing (Valdés-Parada et  al. 2011) or any other upscaling method. It is worth emphasizing 
that although the concept of tortuosity could be entirely by-passed as the closure varia-
ble � , and not tortuosity, is the critical variable necessary to define effective parameters, 
two comments ensue: (1) The right-hand side of Eq. (17) may be different depending on 
the problem under consideration (e.g., it could include advective terms as well), i.e., the 
method allows one to clearly define the tortuosity (be it diffusive, hydraulic, electric, etc.) 
consistent with the problem being upscaled, and (2) a relationship between tortuosity and 
closure variable can be always rigorously defined, as shown above.

(17)�eff = ⟨� + ∇��⟩e,

(18)� ∶=
�

Ψeff

.

(19)
�ii =

�

Ψeff,ii

=
�⟨

Iii +
��i

�yi

⟩

e

(20)�ii = �|Y|
[

∫
B

(
Iii +

��i

�yi

)
d�

]−1
,
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In the following section, we use a set of synthetically generated images of two types 
of porous media (granular and fractured) to calculate their effective transport proper-
ties by using both the classical Bruggeman and the homogenization-based approach and 
show that the Bruggeman relationship cannot capture the correct functional dependence 
between porosity and effective properties, even for statistically isotropic media.

3  Validity of the Classical Bruggeman Relationship

To assess the ability of the classical Bruggeman relationship to determine the compo-
nents of the dispersion tensor using porosity only, 18,000 synthetic images of random 
porous media are generated and the dispersion coefficient is determined using both 
Bruggeman and solving numerically the closure problem in Eq.  (16). The synthetic 
medium is represented by a binary image of 360 × 360 pixel size, where the black 
regions correspond to the active material phase and the white regions correspond to 
the surrounding electrolyte phase. The set consists of two types of topologies of porous 
media. The first type is a granular porous medium (see Fig.  3), and the second is a 
low-porosity cracked porous medium (see Fig. 4). The porosity distribution of the set is 
close to a uniform distribution, where porosity is defined as the ratio between the area 
occupied by the electrolyte phase and the total area.

Fig. 3  Examples of the synthetic granular porous medium
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3.1  Image Generation Algorithm

Steps of the algorithm used to generate such images are represented in Fig. 5, and the code 
details are provided in “Appendix.” In the first step, a binary image is generated by ran-
domly placing filled parallelograms, see Fig. 5a. The number of parallelograms, their posi-
tion, orientation, and aspect ratio are all random numbers extracted from a uniform distri-
bution. In the next step, a Gaussian filter with a kernel of random width is applied to the 
binary image, see Fig. 5b. The third step involves the application of Otsu’s segmentation of 
the grayscale image (Otsu 1979), Fig. 5c, to generate a binary image with smooth contours. 
In the final step, the isolated void regions are filled, see Fig. 5d. In order to generate a low-
porosity cracked porous medium, the same approach is implemented; however, rectangles 
of random size are placed at fixed positions during the first step of the algorithm previously 
described.

3.2  Calculation of Effective Parameters

After the binary images have been generated, the dispersion coefficient and the dispersion 
tensor are determined for each image using the Bruggeman relationship

where D⋆
B
 is the Bruggeman estimate of the dimensionless effective diffusion coefficient, 

and by solving the closure problem (16), respectively. In the latter case, the void area in 
each image is triangulated and the closure problem solved using a finite element (FE) 
method of the first order.

Since the synthetic porous medium is randomly generated, the average characteristics of 
the medium are isotropic in nature, and it suffices to use the values of the dispersion tensor 
in one direction only. Figure 6 shows that the xx and yy components of the effective dis-
persion tensor �⋆ are statistically homogeneous. In Fig. 7, we show the scatter plot of the 
porosity and the xx-component of the dispersion tensor, i.e., 

{
𝜙i,D

⋆
i

}N

i=1
 , where �i and D⋆

i
 

represent the porosity and the xx component of dispersion tensor of the ith image, with N 
the total number of images and N = 18, 000 . The mean absolute error between the disper-
sion component obtained using the closure and Bruggeman approaches,

(21)D⋆
B
(𝜙) = 𝜙1.5,

Fig. 4  Examples of the synthetic low-porosity cracked porous medium
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is 0.09. Figure  7 indicates that the Bruggeman approximation has a very low accuracy, 
especially for dispersion values in the porosity interval of 0.4 to 0.8. Whenever computa-
tional costs are a concern, the data 

{
𝜙i,D

⋆
i

}N

i=1
 can be used to fit a third-order polynomial 

of the form

where a = 1.6 , b = −1.1 , c = 0.6 . The mean absolute error for the fitted model is 0.03, 
three times lower than the classical Bruggeman approximation.

(22)1

N

N∑

i=1

|||D
⋆
B

(
𝜙i

)
− D⋆

i

|||,

(23)D⋆
f
(𝜙) = a𝜙3 + b𝜙2 + c,

Fig. 5  Steps of the generation of the synthetic granular porous medium
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4  Effective Diffusivity Tensor for Realistic Images

In this section, we apply the previous analysis to real images. First, we extend the approach 
to images that lack periodicity and propose two methods to enforce it: one based on reflec-
tion and one on adding a thin buffer zone. We show that the methods provide comparable 
estimates of the effective diffusion values (Sect. 4.1). Then, we test the robustness of the 
fitted polynomial against measurements of the effective diffusion coefficient measured on 
real electrodes, whose values are available in the literature (Sect. 4.2).

Fig. 6  Scatter plot of the xx- and yy-components of the effective diffusion tensor. The solid black line repre-
sents the 1:1 line. The plot shows that the synthetically generated images are statistically isotropic

Fig. 7  Comparison of the numerical solution of the “closure problem” with the Bruggeman model (Eq. 21) 
and the fitting (Eq. 23). Blue dots show the porosity values of the generated images versus the dispersion 
tensor in X direction from the “closure problem.” The red dashed line shows the Bruggeman model, while 
the green line the polynomial fitting
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4.1  Generalization to Non‑periodic Images

The application of the closure variable approach for the estimation of effective proper-
ties of porous electrodes is based on a periodicity hypothesis. However, rarely realistic 
systems satisfy this condition. Figure  8 shows the SEM images for three lithium-ion 
battery electrodes, i.e., nickel manganese cobalt oxide (NMC) cathode (Zhang et  al. 
2015), graphite mesocarbon microbeads (MCMBs) anode (Rashid and Gupta 2017), 
and lithium manganese dioxide (LMO) cathode (Rashid and Gupta 2017). In order to 
post-process images that lack translational periodicity, we proceed as follows. First, the 
active material and electrolyte phases of the porous medium are manually identified 
for a given depth, and binary segmentation is performed using Otsu’s approach. The 
isolated electrolyte regions are manually filled, and a Gaussian filter is applied to the 
binary images to enhance the mesh. The results of the segmentation are shown in Fig. 9. 
In order to enforce periodicity, we use two methods. In the first method, the image is 
subjected to reflection with respect to, first, the Y- and, then, the X-axes as shown in 
Fig. 10. In the second method, the image is slightly enlarged by adding a thin electrolyte 
buffer zone. We proceed by solving the closure problem: The results of the distribution 
of the closure variable for the two methods of periodicity generation are presented in 
Fig. 11. Despite some differences in the distribution of the closure variable in the unit 
cell, the effective diffusion components calculated with the two methods agree reason-
ably well (see Table 1) except for the xx component of the effective diffusion tensor for 
image 3, although their average values match very well (columns 7 and 8 in Table 1). In 
Table  1, we also report the calculated effective diffusion coefficients determined both 

Fig. 8  SEM images of porous electrodes of lithium-ion batteries. The images represent the electrode micro-
structure of an NMC cathode (a), graphite (MCMB) anode (b), and LMO cathode (c). These images have 
been reproduced with the permission of the authors Zhang et al. (2015) and Rashid and Gupta (2017)

Fig. 9  Binary segmentation the images (Fig. 8) for a given depth. The black corresponds to the solid phase 
and white to the void phase. The order is the same as in Fig. 8



188 S. Korneev et al.

1 3

from the Bruggeman equation  (21) and the data-driven polynomial interpolation  (23). 
Results show that the proposed model estimates the dispersion tensor with better accu-
racy than the classical Bruggeman relationship.

Fig. 10  Enforcement of the image periodicity of Fig. 9a. a Binary periodic domain composed of reflections 
of Fig. 9a with respect to Y- and X-axes, b overlap of the periodic and the original images

Fig. 11  Distribution of the magnitude of the closure variable � for two types of the periodicity enforcement 
for the Image 1 of Fig. 9. a The magnitude of the “closure variable” using the buffer zone periodicity, b 
using the reflection with respect to Y- and X-axes

Table 1  Dispersion tensor calculated by the numerical solution of the “closure problem” for both types 
of periodicity enforcement for the three images, the porosity values, and the estimations of the dispersion 
using the Bruggeman approximation (Eq. 21) and the fitted model (Eq. 23)

� D
⋆

xx
 reflect  D⋆

yy
 reflect  D⋆

xx
 buffer  D⋆

yy
 buffer D

⋆

average
 

reflect
D

⋆

average
 

buffer
D⋆

B
(𝜙) D⋆

f
(𝜙)

Image 1 0.475 0.196 0.224 0.217 0.204 0.210 0.210 0.327 0.208
Image 2 0.432 0.140 0.194 0.137 0.197 0.167 0.167 0.283 0.183
Image 3 0.495 0.131 0.246 0.166 0.254 0.188 0.210 0.348 0.221
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4.2  Effective Diffusivity Predictions from SEM Images

Here, we assess the capability of Eq. (23) to predict effective properties of porous elec-
trodes. Figure 12 shows the SEM images of a LiCoO2 cathode and a Ni-YSZ anode, and 
their corresponding segmented images. Values of the effective diffusivity tensor have been 
determined by Hutzenlaub et al. (2013) and Iwai et al. (2010), respectively. In Table 2, we 
report the values of the dimensionless components of the dispersion tensor as measured by 
Hutzenlaub et al. (2013) and Iwai et al. (2010), which show that the images (and the mate-
rials) are only moderately anisotropic. In the same table, we provide a direct prediction of 
the average value of the effective diffusivity using both the Bruggeman relation and equa-
tion (23). Our results show that the proposed equation (23) significantly improves on the 
classical Bruggeman relationship.

Fig. 12  a SEM image of active particles in a LiCoO
2
 cathode (Hutzenlaub et al. 2013) (top) and segmented 

image (bottom); b SEM image of active particles in a Ni-YSZ anode (Iwai et al. 2010) (top) and segmented 
image (bottom). The bottom images are used for porosity calculations

Table 2  Values of the effective diffusivity as determined by Hutzenlaub et al. (2013) and Iwai et al. (2010) 
and predicted using Eq. (23) and the classical Bruggeman relationship

� D
⋆

xx
 measured D

⋆

yy
 measured D

⋆

average
D

⋆

f
D

⋆

B

LiCoO
2

0.337 0.166 0.103 0.134 0.138 0.196
Ni-YSZ 0.658 0.232 0.239 0.235 0.374 0.534
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5  Conclusions

Different analytical, experimental, and numerical approaches have been used to estimate 
the effective mass and charge transport parameters of electrochemical models for battery 
dynamic performance. The Bruggeman relationship is still the most popular approach 
due to its simplicity. However, the classical Bruggeman approach leads to large errors in 
its estimated values of effective transport coefficients. This is due to the strong approxi-
mations underlying its formulation, which range from hypotheses on the shape of the 
particles to their spatial arrangement, as well as hypotheses on the transport processes 
dominating at the pore scale. Its formulation is also based on the, often ambiguous, 
definition of tortuosity, which can be problematic when multiple physical phenomena 
concurrently occur. Generalizations to non-spherical particles, anisotropic materials, 
and transport dynamics that deviate from purely diffusive (like in flow batteries where 
advection plays a role) are often non-trivial and require ad hoc treatment.

Here, we propose a homogenization-based approach to determine effective param-
eters of upscaled electrochemical models, e.g., effective diffusivity. The method consists 
in the solution of a vectorial boundary value problem, also known as closure problem, 
for a closure variable in a representative domain of the electrode, e.g., a unit cell. Effec-
tive parameters can be then determined as spatial averages of the closure variable. The 
advantages of such a framework are disparate: (1) The closure problem is dynamic-spe-
cific, i.e., its formulation varies depending on what physical processes occur at the pore 
scale; (2) it is inherently tensorial, i.e., the effective properties can account for anisot-
ropy and arbitrary topology in the pore-scale structure; and (3) although not necessary, 
the closure variable can also be used to define tortuosity consistently with the upscaled 
equation whose coefficients are being determined.

Firstly, the validity of the classical Bruggeman relationship is assessed by generating 
a total of 18,000 synthetic images and determining the dispersion tensor components for 
each image by solving the closure problem. The data are then used to propose a more 
generalized polynomial relationship to improve the fitting analysis of the dispersion ten-
sor vs. porosity plot, when computational burden is of concern. The closure variable 
approach is then generalized to images that lack translational periodicity. The dispersion 
tensor is evaluated by generating 2-D reconstructions of realistic electrode microstruc-
tural images, obtained from the 3-D SEM imaging technique. Two different approaches, 
the reflection method and the buffer method, are presented to induce periodicity in the 
2-D reconstructed images to enable resolution of the closure problem. Comparison 
between the dispersion values obtained with the classical Bruggeman approach and the 
proposed relationship reveals that the former significantly overpredicts the tensor com-
ponent values (by at least 38%) for the three different electrode microstructures consid-
ered in this paper. The proposed polynomial relationship performs better in these sce-
narios and reveals better correlation with the yy component values of the dispersion 
tensor than the xx component values. Finally, the proposed polynomial relationship is 
used to make forward predictions of effective properties of realistic porous electrodes. 
The predictions match well with independent estimates of effective parameters for two 
electrode types: a LiCoO2 cathode and a Ni-YSZ anode.

This analysis suggests that data-driven approaches based on rigorous homogenization 
methods can be successfully employed to significantly improve the prediction of effec-
tive parameters while not sacrificing computational resources.
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Appendix

The Wolfram Mathematica script to generate black/white images of the random granular 
synthetic porous medium is listed below, 

where the image size is 360 × 360 pixels and the black corresponds to the solid phase. We 
also list the script to generate images of the random low-porosity cracked synthetic porous 
medium 
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