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A B S T R A C T

This paper proposes and validates a stochastic prognostic model for capacity loss and remaining useful life
(RUL) in lithium-ion pouch cells with graphite anodes and NMC–LMO cathodes. The model was developed
using data from an experimental campaign which studied the effect of C-rate, minimum SOC, temperature,
and charge-depleting usage on aging in plug-in hybrid electric vehicle (PHEV) batteries. The proposed
algorithm estimates capacity loss and RUL as a function of resistance and operating conditions including charge
sustaining/depleting use and temperature, and its stochastic nature is able to capture the variability of the data.
The battery resistance is estimated using a particle filter developed for an experimentally validated equivalent
circuit battery model. The particle filter is designed to perform combined estimation of State of Charge and
internal resistance, which is used as an input to the stochastic capacity loss model. Finally, the stochastic model
predicts the capacity loss with a root mean square error (RMSE) of less than 1% and RUL with an RMSE of
1.6 kAh, and can be integrated into on-board battery management systems in PHEV to monitor the health of
lithium-ion batteries.
1. Introduction

Although the global market for hybrid and electric vehicles is
growing, a key improvement necessary to accelerate the adoption of
these vehicles is to optimize the efficiency with which they are used.
The battery pack is the most expensive component of the vehicle and it
is sometimes replaced too early or used inefficiently as there is no ac-
curate way to evaluate when it has reached its end of life. The industry
benchmark is that end of life occurs when the battery’s capacity is at
80% of its original value. Only by means of an in-laboratory capacity
test the battery capacity can be attained and assessed throughout its
life; direct on-board capacity measurements are not feasible. Due to
this challenge, on-board battery management systems (BMS) often use
a crude estimate of when a battery has reached end of life by simply
counting up to a pre-determined ampere-hour throughput or discharge
cycles. This method is an inaccurate reflection of capacity as it does
not factor in how drivers use their vehicles with differing frequency
and aggressiveness or exogenous environmental parameters such as the
climate or local driving conditions.
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A more accurate and versatile method to predict the remaining
useful life (RUL) in lithium-ion batteries could allow consumers to use
their batteries for several years longer (through ensuring that batteries
are only replaced when end of life has been reached) and also increase
understanding of what operating conditions affect the aging process the
most. Semi-empirical and empirical models for capacity loss are cur-
rently used in BMS applications [1–3]. Although operating conditions
such as state of charge (SOC) and C-rate are often used for empirical
models of capacity loss, no such models have been stochastic [4,5].
Notably, a stochastic model such as the one proposed in this paper
can offer a better and more useful estimate of capacity loss since it is
able to effectively capture the intrinsic aleatory nature of aging data.
In addition, a growing area of battery prognostics involves machine
learning techniques which often can predict capacity loss accurately
from battery operating conditions [6]. However, the black-box nature
of machine learning algorithms means that one cannot associate them
with underlying physics-based explanations. Moreover, due to their
mathematical complexity, such models are hard to implement in the
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limited hardware of automotive BMSs. On the other side of the spec-
trum, algorithms which have been tailored to be suitable for on-board
BMSs are often inaccurate and unable to predict remaining useful life
early on in the aging process [7].

This paper describes a novel, stochastic model that can estimate
capacity loss and remaining useful life from on-board measurements
and on-the-fly calculation of resistance with a given uncertainty. The
basis of the model is a square root relationship between capacity and
resistance. Previous studies using analytical models have often not
considered an expression for capacity as a function of resistance, and
even when they have, a square root relationship has never been seen
between these two variables [8,9]. Moreover, previous attempts have
not established a stochastic and analytical expression to identify a
correlation between capacity loss and resistance growth. [10].

Past studies using semi-empirical capacity fade models have demon-
strated the necessity for the simple onboard estimation of the model’s
parameters which can be accomplished without significant new com-
putational infrastructure [11]. Moreover, although probabilistic models
have been developed for end of life (EOL) calculation, these algorithms
are very computationally intensive and are limited to the scope of
EOL [12,13]. The authors do not find probabilistic capacity fade models
in the literature. However, there is a precedent for the success of
probabilistic aging models as well as models which require online
parameter calibration. In addition, Kalman and particle filters are the
most common and most effective tools for estimating dynamic battery
aging parameters such as SOC [14]. Particle filters, in particular, are
commonly used to estimate the change of resistance and capacity over
the life of a battery [15].

Further, battery state and parameter estimation algorithms such as
Kalman Filters [16–19], Sliding-mode observers [20,21], and particle
filters [22,23] have been employed in the literature. In this work,
a particle filter is developed for a battery equivalent circuit model
capable of combined estimation of SOC and internal resistance. This
is then used in the stochastic estimation algorithm of capacity loss.
The stochastic feature of the proposed model was developed by fitting
a Gaussian distribution to the error of the model and calculating the
mean and standard deviation, so a random variable could be stochasti-
cally selected from this distribution for every prediction. In this work,
the model is trained and validated on a limited experimental data set
as well as data generated from a previous model built on that data.

The paper is organized as follows. In Section 2, the experimental
campaign as well as the deterministic model which was previously built
from this data are presented. In Section 3, an outline of the entire pro-
posed model and its different components are given. In Sections 4 and
5 , the battery model and corresponding particle filter are presented. In
Sections 6 and 7, the development and validation of the capacity loss
model and the remaining useful life model are described, respectively.
Finally, in Section 8, the results of the full proposed model are shown
and the overall conclusions are presented in Section 9.

2. Experimental data

The experimental data used in this study was from an aging cam-
paign conducted on graphite–NMC–LMO pouch cells that mimicked the
behavior of PHEV batteries [1]. The design of experiments used in this
work is tabulated in Table 1 and the specific SOC profile and power
micro cycle are provided in Fig. 1. The purpose of the experiments
was to determine the effects of the following operating conditions on
battery aging: Ratio, minimum SOC (SOC min), charging C-rate, and
temperature. For a cell that has spent 𝑡𝐶𝐷 time in charge-depleting
mode (where the car is operating as an electric vehicle and does not
use the internal combustion engine) and 𝑡𝐶𝑆 time in charge-sustaining
mode (where the vehicle operates as a hybrid vehicle with a relatively
constant SOC), the Ratio of the cell is defined as

𝑅𝑎𝑡𝑖𝑜 =
𝑡𝐶𝐷

𝑡𝐶𝑆 + 𝑡𝐶𝐷
. (1)
2

w

Table 1
The operating conditions for each cell in the experimental campaign. A total of 11 cells
of experimental data used in the creation and validation of the model. The acronym
CD stands for Charge Depleting mode.

Cell # Operating mode Ratio 𝑆𝑂𝐶𝑚𝑖𝑛 [%] Charging C-rate Temp [degC]

2 CD 1 35 C/3 30
3 CD 1 25 C/3 30
4 CD 1 45 C/3 30
5 CD 1 35 3C/2 30
6 CD 1 25 3C/2 30
7 CD 1 45 3C/2 30
8 CD 1 35 5C 30
9 CD 1 25 5C 30
14 Mixed 1/2 35 3C/2 30
15 Mixed 1/4 35 3C/2 30
16 Mixed 1/2 35 3C/2 45

The experimental campaign mimics true PHEV battery usage in
several facets. First, the CD and CS operational modes are composed of
power micro cycles (as defined by the USABC) which represent actual
automotive battery usage [24]. In addition, the 𝑆𝑂𝐶𝑚𝑎𝑥 and 𝑆𝑂𝐶𝑚𝑖𝑛
escribe typical charging and discharge levels used in vehicles and the
wo experimental temperatures are well within the normal range of
peration.

From the experimental campaign, data of percent capacity loss and
ercent resistance increase as a function of charge throughput was
ollected. Capacity loss is defined as

𝑙𝑜𝑠𝑠 =
𝑄0 −𝑄(𝐴ℎ)

𝑄0
⋅ 100, (2)

where 𝑄0 is the nominal capacity and 𝑄(𝐴ℎ) is the capacity at the
given charge throughput value. 𝑄𝑒𝑥𝑝 refers to experimental data of
capacity loss, defined in the same manner as in (2). Similarly, resistance
is defined as

𝑅𝑖𝑛𝑐 =
𝑅(𝐴ℎ) − 𝑅0

𝑅0
⋅ 100, (3)

where 𝑅0 is the nominal battery resistance at the beginning of life and
𝑅(𝐴ℎ) is the resistance at the given charge throughput value.

In this study, the data from the experimental campaign was plotted
in the form of capacity loss against resistance increase. Visualizing
the capacity loss information in such a manner has the advantage of
relating a quantity that can be calculated on board (i.e. resistance)
with a health-related signal that is not either measurable or directly
computed on board. The capacity loss of a given cell as a function of
resistance is referred to as 𝑄𝑙𝑜𝑠𝑠(𝑅𝑖𝑛𝑐 ).

In [1], an aging model to predict capacity loss and resistance
increase from cell operating conditions was also proposed and experi-
mentally validated. The model is described by the systems of equations
in (4), where 𝑄𝑠𝑦𝑛(𝐴ℎ) is the prediction of capacity loss from the
semi-empirical model, 𝑎𝐶 (𝑆𝑂𝐶𝑚𝑖𝑛, 𝑅𝑎𝑡𝑖𝑜) is the capacity severity fac-
or function, 𝑅𝑖𝑛𝑐 (𝐴ℎ) is the prediction of resistance increase, and
𝑅(𝑆𝑂𝐶𝑚𝑖𝑛, 𝑅𝑎𝑡𝑖𝑜, 𝐶𝑅) is the resistance severity factor function. The
onstants for (4) were calibrated in [1] and displayed in Table 2 for
he convenience of the reader.
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𝑄𝑠𝑦𝑛(𝐴ℎ) = 𝑎𝐶 (𝑆𝑂𝐶𝑚𝑖𝑛, 𝑅𝑎𝑡𝑖𝑜) ⋅ 𝑒𝑥𝑝
( 𝐸𝑎𝑐
𝑅𝑔𝑇

)

⋅ 𝐴ℎ𝑧

𝑎𝐶 (∶, ∶) = 𝛼𝑐 + 𝛽𝑐 ⋅ 𝑅𝑎𝑡𝑖𝑜𝑏 + 𝛾𝑐 ⋅
(

𝑆𝑂𝐶𝑚𝑖𝑛 − 𝑆𝑂𝐶0
)𝑐

𝑅𝑠𝑦𝑛(𝐴ℎ) = 𝑎𝑅(𝑆𝑂𝐶𝑚𝑖𝑛, 𝑅𝑎𝑡𝑖𝑜, 𝐶𝑅) ⋅ 𝑒𝑥𝑝
( 𝐸𝑎𝑅
𝑅𝑔𝑇

)

⋅ 𝐴ℎ

𝑎𝑅(∶, ∶, ∶) = 𝛼𝑅 + 𝛽𝑅 ⋅
(

𝑆𝑂𝐶𝑚𝑖𝑛 − 𝑆𝑂𝐶0
)𝑐
𝑅 +

𝛾𝑅 ⋅ exp
[

𝑑 ⋅
(

𝐶𝑅0 − 𝐶𝑅𝑒𝑞
)

+ 𝑒 ⋅
(

𝑆𝑂𝐶𝑚𝑖𝑛 − 𝑆𝑂𝐶0
)]

𝐶𝑅𝑒𝑞(𝑅𝑎𝑡𝑖𝑜) =

{

0, 𝑅𝑎𝑡𝑖𝑜 = 0
1, 𝑅𝑎𝑡𝑖𝑜 > 0

(4)

In this study, to complement the actual experimental aging data,

e use the two models described in (4) to generate synthetic capacity
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Fig. 1. (a), (b) show the typical power and corresponding SOC profiles of Charge Depleting (CD) mode, where the 𝑆𝑂𝐶𝑚𝑎𝑥 is 95 and 𝑆𝑂𝐶𝑚𝑖𝑛 depends on the specific experiment and
can assume values of 25, 35, or 45. Figures are adapted from [1]. Further details regarding the aging profiles and conditions of the experiments may be found in the aforementioned
reference.
Table 2
Parameters in (4) as calibrated from experimental results so as to fit the resistance
increase and capacity loss data in [1].

Notation Value Description

𝛼𝑐 137 Dimensionless constant
𝛽𝑐 420 Dimensionless constant
𝛾𝑐 9610 Dimensionless constant
𝑐 0.34 Dimensionless constant
𝑐 3 Dimensionless constant
𝑧 0.48 Dimensionless constant
𝐸𝑎𝑐 22 406 [J mol−1] Activation energy of the capacity loss model
𝛼𝑅 3.2 × 105 Dimensionless constant
𝛽𝑅 1.3674 × 109 Dimensionless constant
𝛾𝑅 3.6342 × 103 Dimensionless constant
𝑐𝑅 5.45 Dimensionless constant
𝑑 0.9179 Dimensionless constant
𝑒 1.8277 Dimensionless constant
𝐶𝑅0 5 Dimensionless constant
𝑆𝑂𝐶0 0.25 Dimensionless constant
𝐸𝑎𝑅 51 800 [J mol−1] Activation energy of the resistance growth model
𝑅𝑔 8.314 [J K−1 mol−1] Universal gas constant

loss data 𝑄𝑠𝑦𝑛. Note that 𝑄𝑠𝑦𝑛 is a function of Ah, as previously defined
in the creation of the model in [1], while 𝑄𝑝𝑟𝑒𝑑 , the proposed model’s
prediction of capacity loss, is a function of 𝑅𝑖𝑛𝑐 . For convenience, the
nomenclature being used in the paper is given in Table 3.

The 𝑄𝑠𝑦𝑛 data (which is used to develop the model proposed in this
study) was generated under operating conditions either identical to or
within the range used in the previous experimental campaign. These
ranges are described below:

1. 𝑆𝑂𝐶𝑚𝑖𝑛 (either 25%, 35%, or 45%)
2. Ratio (either 1, 1∕2, or 1∕4)
3. Temperature (between 30–45 ◦C, with increments of 1 ◦C)
4. C-rate (between 0.4𝐶 and 5𝐶, with increments of 0.2𝐶)
5. Ampere-hour throughput (between 0–30,000 Ah, with incre-

ments of 500 Ah)

Note that C-rate is only used in (4) for calculating resistance,
as it plays no role in estimating capacity loss. Eq. (4) was used to
calculate the resistance increase and capacity loss at 500 Ah increments
of a hypothetical battery cell which had characteristics from the list
above. A total of 257,664 synthetic 𝑄𝑠𝑦𝑛 data points were generated for
each Ratio; this number is simply the amount of unique combinations
of the possible 𝑆𝑂𝐶𝑚𝑖𝑛, Ratio, temperature, C-rate, and Ampere-hour
throughput values defined previously. After generating this data, any
3

Table 3
Nomenclature.

Notation Description

𝑄𝑒𝑥𝑝 Capacity loss data from the experimental campaign, as a function of
resistance

𝑄𝑠𝑦𝑛 Generated capacity loss data from the model described by Eqs. (3)
– (8), as a function of resistance

𝑄𝑝𝑟𝑒𝑑 Capacity loss data as predicted by the model described by Eqs.
(10)–(13), as a function of resistance

data with resistance increase values greater than 25% was removed,
since the experimental campaign in [1] only tested cells up to this limit.
Therefore, any generated synthetic data past this limit may have been
less reliable.

3. Proposed methodology

The proposed methodology involves estimation of critical battery
variables such has SOC, internal resistance, battery capacity, and the
RUL and it is built upon a scheme that is a combination of a model-
based estimator and a stochastic health prediction model as shown in
Fig. 2a.

The model-based estimator is a particle filter. This was chosen due
to its superior performance for nonlinear and non-Gaussian systems.
The particle filter is tasked with the duties of estimating the SOC and
internal resistance of the battery. The internal resistance is a vital
variable that provides knowledge about the extent of degradation in
the voltage performance of the battery.

Further, the internal resistance estimated by the particle filter is
used by the stochastic health prediction models that are developed
using the experimental data described in Section 2. The health pre-
diction model consists of a capacity fade estimation model and a RUL
prediction model. Together, it provides capacity estimates at any given
instance with 95% confidence intervals, and the cycle life in terms of
Ampere-hour throughput remaining before the battery reaches its EOF.
This approach is different from the semi-empirical capacity fade model
proposed in [1] in several respects. First, both the capacity loss and RUL
algorithms in this work are stochastic, while the semi-empirical model
is deterministic and only estimates capacity loss. Second, the proposed
model is developed from a novel relationship between capacity and
resistance (see Section 6). This correlation is simple yet effective for
prediction, thus providing computational advantages over much more
complex state of health models such as the semi-empirical capacity fade

model.
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Fig. 2. (a) Combined SOH estimation and prognostic scheme, and (b) Schematic of a second-order Equivalent Circuit Model for a lithium-ion battery.
4. Battery model

A second-order equivalent circuit model (ECM), as shown in Fig. 2b,
is employed to predict the dynamics of a lithium-ion battery.

The model is composed of an open circuit voltage source (𝑉𝑂𝐶 )
connected in series with a high-frequency internal resistance (𝑅0), and
two RC pairs (𝑅1, 𝐶1; 𝑅2, 𝐶2) that replicate the charge transfer and
diffusion dynamics of the battery. The internal resistance 𝑅0 is assumed
to depend on the battery SOC, whereas the remaining model parameters
are assumed constant across the entire operating range of the battery
SOC [25]. The SOC is computed using the Coulomb counting method.
It is worth noting that the internal resistance 𝑅0 of the battery model
is known to be higher at lower temperatures. However, in the present
work the temperature dependence is not explicitly accounted for due
to lack of experimental data. Instead, this work focuses on establishing
an estimation framework for a battery model to aid the stochastic
prediction of SOH and RUL. The battery model used in this paper
can be updated with explicit temperature dependencies in its model
parameters if experimental data at various temperatures is available,
without making changes to the scheme proposed in Section 3. The
discrete-time equations describing the dynamics of the second-order
ECM are given below
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(5)

where 𝑄0 is the battery nominal capacity, 𝛥𝑡 is the sampling time, 𝐼(𝑘)
is the input current, and 𝑘 is the discrete time step. Using Kirchhoff’s
voltage law, the terminal voltage of the battery is expressed as:

𝑉 (𝑘) = 𝑉 (𝑆𝑂𝐶(𝑘)) − 𝑉 (𝑘) − 𝑉 (𝑘) − 𝑅 (𝑆𝑂𝐶(𝑘))𝐼(𝑘). (6)
4

𝑐𝑒𝑙𝑙 𝑂𝐶 1 2 0
The discrete-time nonlinear state-space representation of the above
equivalent circuit model is then given by
{

𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐵𝑢(𝑘)
𝑦(𝑘) = 𝑔 (𝑥(𝑘), 𝑢(𝑘)) ,

(7)

where the state vector is 𝑥(𝑘) = [𝑆𝑂𝐶(𝑘) 𝑉1(𝑘) 𝑉2(𝑘)]𝑇 , the input
is 𝑢(𝑘) = 𝐼(𝑘), the output variable is 𝑦(𝑘) = 𝑉𝑐𝑒𝑙𝑙(𝑘), 𝑔(𝑥(𝑘), 𝑢(𝑘)) is
the nonlinear function expressed in the right hand side of (6), and the
matrix 𝐴 ∈ R3×3 and column vector 𝐵 ∈ R3×1 are as given below
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4.1. Identification and validation results

The model parameters are identified by fitting the model’s output
voltage to the experimentally measured voltage data. A Hybrid Pulse
Power Characterization (HPPC) profile is used for the identification
procedure. The cell is fully charged to 100% SOC before subjecting
it to the HPPC profile at a temperature of 30 ◦C. The HPPC profile is
composed of a train of discharge and charge pulses at every 10% SOC
interval. The cell is discharged all the way down to approximately 7%
SOC. A global optimization algorithm, the Particle Swarm Optimiza-
tion, is utilized to minimize the objective function, which is the RMSE
between the model-predicted and measured voltage. The identification
results are shown in Fig. 3a with a voltage RMSE of 10.6 mV.
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Fig. 3. Identification and validation results for the (a) HPPC, (b) charge sustaining, and (c) charge depleting current profiles. The plots contain: measured current, SOC profile,
voltage response comparison between model and measured data, identified internal resistance 𝑅0 as a function of SOC, zoom-in of the current and voltage profiles, and the
percentage voltage error plot.
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Further, to verify the performance of the battery model, its pre-
dictive performance is validated against two dynamic current profiles.
First is a charge-sustaining current profile that has minimal deviation
in terms of SOC. The voltage RMSE reported for this profile is 15.6 mV,
and the plots are shown in Fig. 3b. Next, the model is validated
against a charge depleting profile, spanning a larger range of SOC. The
corresponding current profile and voltage response validation plots are
shown in Fig. 3c, and the voltage RMSE is calculated to be 26.2 mV.

5. Particle filter

Particle filters [26,27] are well suited for the estimation of state
variables of nonlinear and non-Gaussian systems. The particle filter
used in this work is based on a Sequential Monte Carlo method that uses
recursive Bayesian filtering to estimate the internal states/parameters
of a system modeled as below
{

𝑥(𝑘) = 𝑓 (𝑥(𝑘 − 1), 𝑢(𝑘 − 1)) +𝑤(𝑘)
𝑦(𝑘) = 𝑔(𝑥(𝑘), 𝑢(𝑘)) + 𝑣(𝑘),

(9)

where 𝑥(𝑘) ∈ R𝑛, 𝑢(𝑘) ∈ R𝑝, 𝑦(𝑘) ∈ R𝑚 are the state, input, and output
variables, respectively. Further, 𝑤(𝑘) ∈ R𝑛 and 𝑣(𝑘) ∈ R𝑚 are the
process and measurement noise, respectively. The nonlinear function
mapping is described as 𝑓 ∶ R𝑛 × R𝑝 → R𝑛 and 𝑔 ∶ R𝑛 × R𝑝 → R𝑚.

Most of the estimation work found in the literature makes use of
Kalman filters, such as the Sigma-point Kalman Filter or the Extended
Kalman Filter (EKF), where the process and measurement noise are
assumed to be Gaussian [28]. The EKF, which is widely used in the
literature for battery state estimation, utilizes the Jacobian to linearize
the nonlinear dynamics thereby introducing approximation errors. On
the other hand, the particle filter handles non-Gaussian noise and
preserves the system nonlinearities. Despite providing accurate esti-
mates, the particle filter is known to be computationally intensive.
However, in this work, given that the number of states and parameters
to be estimated are only four, coupled with the fact that advancement
in micro-controllers and computing speeds has enabled designers to
use computationally expensive algorithms, the proposed methodology
employs a particle filter with the knowledge that it can be substituted
by other estimation algorithms in the presence of computational con-
straints with a trade-off in accuracy. The design steps of a particle filter
for a general nonlinear system given in (9) are illustrated below:

1. Initialization: Randomly draw 𝑁 particles of the state vector
𝑥1(𝑘), 𝑥2(𝑘),… , 𝑥𝑁 (𝑘) at time step 𝑘, where each particle 𝑥𝑖 ∈ R𝑛

and 𝑖 = 1 to 𝑁 denotes the particle number.
2. Prediction: Each particle 𝑥𝑖(𝑘) is passed through a nonlinear

stochastic state transition and measurement model (such as the
one in (9)) to predict the state and output for the next time step.
Let the predicted state vector and output be denoted as 𝑥̂−𝑖 (𝑘) and
𝑦̂𝑖(𝑘) given by
{

𝑥̂−𝑖 (𝑘) = 𝑓 (𝑥𝑖(𝑘 − 1), 𝑢(𝑘 − 1)) +𝑤(𝑘)
𝑦̂𝑖(𝑘) = 𝑔(𝑥𝑖(𝑘), 𝑢(𝑘)) + 𝑣(𝑘).

(10)

3. Correction: The predicted outputs 𝑦̂𝑖(𝑘) are compared with the
experimentally measured value 𝑦(𝑘) to determine which particles
are more likely to represent the true value. This is equivalent to
assessing the conditional probability of seeing the measurement
𝑦(𝑘) given the predicted state 𝑥̂−𝑖 (𝑘) and output 𝑦̂𝑖(𝑘), respec-
tively, are the true values. The conditional probability 𝑞𝑖(𝑘) is
expressed as

𝑞𝑖(𝑘) = 𝑝
(

𝑦(𝑘)|𝑥̂−𝑖 (𝑘)
)

, (11)

wherein, under the assumption of a Gaussian sensor measure-
ment noise given by 𝑣 ∼ 

(

0, 𝜎2
)

, the conditional probability
is

𝑞𝑖(𝑘) =
1
√

exp

[

−

(

𝑦(𝑘) − 𝑦̂𝑖(𝑘)
)2

2

]

. (12)
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In addition, based on the conditional probability, a normalized
weight 𝑊𝑖(𝑘) is assigned to each particle to indicate the likeli-
hood that the particle represents the real values. This is given
as:

𝑊𝑖(𝑘) =
𝑞𝑖(𝑘)

∑𝑁
𝑖=1 𝑞𝑖(𝑘)

, (13)

where ∑𝑁
𝑖=1 𝑊𝑖(𝑘) = 1.

4. Resampling and State Estimation: The particles are then re-
sampled based on the normalized weights to generate a new
set of N state particles 𝑥1(𝑘), 𝑥2(𝑘),… , 𝑥𝑁 (𝑘), wherein the highly
weighted particles are chosen repeatedly. The corrected state
estimate is denoted as 𝑥̂+𝑖 (𝑘) and computed by taking the mean
of the resampled particles as expressed below

𝑥̂+𝑖 (𝑘) =
1
𝑁

𝑁
∑

𝑖=1
𝑥𝑖(𝑘). (14)

5. Iteration: The set of new resampled particles 𝑥1(𝑘), 𝑥2(𝑘),… ,
𝑥𝑁 (𝑘) are then propagated to the next time step by setting the
time step as 𝑘 = 𝑘 + 1, and returning to step 2.

.1. Particle filter implementation

In this work, the particle filter is employed for the combined es-
imation of state and parameter of the battery model described in
ection 4. The main objective of the particle filter is to estimate the SOC
state) and the internal resistance 𝑅0 (parameter). The particle filter is

developed for an augmented state-space representation of the model
given by
{

𝑥𝑎𝑢𝑔(𝑘) = 𝐴𝑎𝑢𝑔𝑥𝑎𝑢𝑔(𝑘) + 𝐵𝑎𝑢𝑔𝑢(𝑘) +𝑤(𝑘)
𝑦(𝑘) = 𝑔(𝑥𝑎𝑢𝑔(𝑘), 𝑢(𝑘)) + 𝑣(𝑘),

(15)

here the augmented state vector is 𝑥𝑎𝑢𝑔(𝑘) = [𝑆𝑂𝐶(𝑘) 𝑉1(𝑘) 𝑉2(𝑘)
0]𝑇 , 𝑤(𝑘) = [𝑤1(𝑘) 𝑤2(𝑘) 𝑤3(𝑘) 𝑤4(𝑘)]𝑇 , 𝑣(𝑘) ∈ R, and the matrices
re expressed as

𝐴𝑎𝑢𝑔 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0 0 0

0 𝑒

−𝛥𝑡
𝑅1𝐶1 0 0

0 0 𝑒

−𝛥𝑡
𝑅2𝐶2 0

0 0 0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

𝐵𝑎𝑢𝑔 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−𝛥𝑡
𝑄

𝑅1

⎛

⎜

⎜

⎝

1 − 𝑒

−𝛥𝑡
𝑅1𝐶1

⎞

⎟

⎟

⎠

𝑅2

⎛

⎜

⎜

⎝

1 − 𝑒

−𝛥𝑡
𝑅2𝐶2

⎞

⎟

⎟

⎠

0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

(16)

he dynamics of the parameter is considered to be slowly varying such
hat: 𝑅0(𝑘+1) = 𝑅0(𝑘)+𝑤4(𝑘). This assumption is valid since the internal
esistance varies slowly over the course of battery’s lifetime.

The performance of the model-based estimator is verified against
he dynamic charge depleting current profile. Since the internal resis-
ance of the cell increases as the battery ages, the performance is tested
ver the entire lifespan of the battery at different Ah throughput values.
ell #7 from Table 1 is chosen to validate the estimator’s performance.
he operating conditions for Cell # 7 are: Ratio = 1; minimum SOC =
5%; Charging Rate (CR) = 3C/2. The combined estimation of SOC and
0 is shown in 4a for a charge depleting current profile. The results

re for a stage when the cell has been significantly aged, wherein
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Table 4
Comparison of estimated increase in resistance 𝑅̂𝑖𝑛𝑐 with the resistance increase 𝑅𝑖𝑛𝑐
from the aging model in [1] for Cell # 7.

Data point Amperehour throughput [Ah] Model 𝑅𝑖𝑛𝑐 [%] Estimated 𝑅̂𝑖𝑛𝑐 [%]

1 3791.6 2.39 2.97
2 9807 6.19 6.79
3 21921.3 13.84 12.22
4 24 000 15.15 16.58

an Ampere-hour throughput of 24 000 Ah has been extracted from the
cell. The estimated SOC is compared with the reference SOC computed
using the Coulomb counting method. It is observed that the estimated
SOC tracks the reference SOC despite an incorrect initialization. On
the other hand, the estimated resistance is filtered to smooth out the
transients and plotted against the reference resistance computed by
scaling the identified 𝑅0(𝑆𝑂𝐶) in Fig. 3a by 𝑅𝑖𝑛𝑐[%] from the aging
model in [1]. Further, the SOC and resistance 𝑅0 estimation plots at
various Ampere-hour throughput are shown in 4b demonstrate a good
performance over the entire lifespan of the battery. Note that in a real
BMS, the final SOC at the end of the drive cycle may vary, and hence
the average of the estimated resistance over an entire drive cycle can
also be used as good estimate. In addition, at the end of the drive cycle,
the increase in estimated resistance (𝑅̂𝑖𝑛𝑐 [%]) of the cell is computed
using (3), which is compared to the 𝑅𝑖𝑛𝑐[%] from the model in [1]
nd presented in Table 4. The estimated 𝑅̂𝑖𝑛𝑐 values are then fed to
he stochastic capacity loss model described in the next section.

. Capacity loss model

The proposed model predicts capacity loss as the sum of a deter-
inistic and a stochastic term. The deterministic term is in the form of
square-root equation derived from an initial data fitting of capacity

oss with respect to resistance increase, whereas the stochastic term is
rom fitting a Gaussian distribution to the error of this square-root fit.

Capacity loss and internal resistance growth are conventionally
iewed as independent functions of time, ampere-hour throughput or
ertain operating conditions such as depth of discharge [29]. In this
tudy, we exploit the functional relationship between capacity and
esistance and use it to predict capacity loss primarily from dynamic
nline estimation of resistance increase through the particle filter. Ex-
erimental data were used to generate a capacity loss against resistance
lot, which exhibited clear square root trends as shown in Fig. 5a.

In developing the proposed prognostic algorithm, grouping the data
y cell Ratio was shown to be a promising approach for more accurate
stimates of capacity loss. MATLAB’s 𝑝𝑜𝑙𝑦𝑓𝑖𝑡 function was used to
alculate the best fit square root equations for capacity loss data,
𝑒𝑥𝑝, grouped by Ratio, along with the 95% confidence error bound

alculated using MATLAB’s 𝑝𝑜𝑙𝑦𝑣𝑎𝑙 function, describing the range that
pproximately 95% of the data is estimated to be within. The prediction
f capacity loss using the square-root fitted equation is a relatively
ccurate initial, non-stochastic estimate defined as

𝑟𝑎𝑡𝑖𝑜 =

⎧

⎪

⎨

⎪

⎩

2.6964
√

(𝑅𝑠𝑦𝑛) + 0.5403, 𝑅𝑎𝑡𝑖𝑜 = 1
2.2870

√

(𝑅𝑠𝑦𝑛) + 0.4467, 𝑅𝑎𝑡𝑖𝑜 = 1∕2
1.9636

√

(𝑅𝑠𝑦𝑛) + 0.3726, 𝑅𝑎𝑡𝑖𝑜 = 1∕4.
(17)

In the prediction model development stage, the raw error 𝐸𝑟𝑎𝑤, defined
s 𝐸𝑟𝑎𝑤 = 𝑄𝑟𝑎𝑡𝑖𝑜(𝑅𝑠𝑦𝑛) − 𝑄𝑠𝑦𝑛, is used which indicates the difference
etween the deterministic prediction 𝑄𝑟𝑎𝑡𝑖𝑜 as given by (17) and the
𝑠𝑦𝑛.

75% of the generated data for each Ratio was used to train the
odel, while the other 25% was used to test it. All of the experimental
ata available for each Ratio was used to train the model. Table 5
etails how the experimental and generated data were used to build
he proposed model.
7

d

The overall stochastic life prediction model is given by

𝑝𝑟𝑒𝑑 = 𝑄𝑟𝑎𝑡𝑖𝑜(𝑅𝑠𝑦𝑛) + 𝜔, (18)

where 𝜔 is the stochastic term with normal distribution, i.e. 𝜔 ∼
 (𝜇, 𝜎2), with

=

⎧

⎪

⎨

⎪

⎩

0.6015, 𝑅𝑎𝑡𝑖𝑜 = 1
0.4943, 𝑅𝑎𝑡𝑖𝑜 = 1∕2
0.4139, 𝑅𝑎𝑡𝑖𝑜 = 1∕4

(19)

𝜎 =

⎧

⎪

⎨

⎪

⎩

0.4652, 𝑅𝑎𝑡𝑖𝑜 = 1
0.3906, 𝑅𝑎𝑡𝑖𝑜 = 1∕2
0.3336, 𝑅𝑎𝑡𝑖𝑜 = 1∕4.

(20)

The stochastic feature of the model is expressed in terms of the mean
and standard deviation of the error normal distribution which is fitted
to the 𝐸𝑟𝑎𝑤 for an initial prediction of capacity loss using (17). The
𝐸𝑟𝑎𝑤 is plotted as a histogram (grouped by Ratio), and shown in Fig. 6
for 𝑅𝑎𝑡𝑖𝑜 = 1. A normal distribution for each Ratio is fitted to these
histograms, and its mean (𝜇) and standard deviation (𝜎) are calculated
as specified in (19) and (20).

Thus, the final capacity loss model equations are characterized as
per the Ratios, and the Gaussian noise (mean and standard deviation),
too, are described as a function of Ratios.

Since (18) predicts a small percent capacity loss (between 0.3% and
0.6%) at the beginning of life when resistance has not increased, the use
of the stochastic term serves to mitigate this effect by subtracting away
the majority of this initial error.

6.1. Capacity loss model validation

The accuracy of the capacity loss model is assessed via the modeling
error:

𝐸𝑚𝑜𝑑 (𝑄𝑝𝑟𝑒𝑑 , 𝑄𝑠𝑦𝑛) = 𝑄𝑝𝑟𝑒𝑑 −𝑄𝑠𝑦𝑛. (21)

The RMSE of 𝐸𝑚𝑜𝑑 is calculated as 𝑅𝑀𝑆𝐸 =

√

∑𝑗
𝑖=1 𝐸

2
𝑚𝑜𝑑,𝑖

𝑗
, where 𝑗 is

the total number of synthetic data used to validate the model, wherein
𝐸𝑚𝑜𝑑 ∈ R𝑗 .2

The model has an average RMSE of 0.9124 percent capacity loss
when tested on the validation data (see Table 5), with the RMSE for
each Ratio being: 1.0707 for Ratio 1, 0.8886 for Ratio 1∕2 and 0.7490
for Ratio 1∕4.

The difference in RMSE between Ratios can likely be explained by
the variation of the experimental 𝑄𝑒𝑥𝑝 data, which contained 8 cells of
data for Ratio 1 but only 3 cells total for both Ratio 1∕2 and Ratio 1∕4.
The Ratio 1 data set naturally had a larger amount of noise than those
of the other Ratios, which could have led the model which was used to
generate 𝑄𝑠𝑦𝑛 data to produce a greater spread of values for Ratio 1.

To summarize, the proposed capacity loss model is able to ac-
curately predict capacity loss within one percent capacity loss, from
resistance and Ratio data. In an on-board application, resistance can
be calculated using model-based adaptive observers, while Ratio can
be tracked using the vehicle’s battery management system.

7. Remaining useful life model

In addition to the capacity loss model, a separate model for the pre-
diction of RUL was developed on the same data sets (see Table 5). Since
charge throughput can be calculated on-board via current integration,
the objective of this model is to estimate the charge throughput at the

2 𝑗 is 25% of the overall synthetic data set, which is approximately 64,000
ata points.
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Fig. 4. The combined estimation results from the particle filter for Cell # 7 for a charge depleting current profile : (a) after extracting an Ampere-hour throughput of 24 000 Ah,
with plots for voltage estimation (top right), SOC estimation (bottom left), and 𝑅0 estimation (bottom right), and (b) at different Ah throughput during different stages of Cell #
’s lifespan.
Table 5
Description of the data used in the capacity loss model development and validation. Data for building the model is generally referred to as 𝑄𝑠𝑦𝑛
even though it includes some 𝑄𝑒𝑥𝑝 data.

Ratio Data for building model Data for validating model

𝑅𝑎𝑡𝑖𝑜 = 1 8 cells of 𝑄𝑒𝑥𝑝 data with Ratio 1 and 75% of the 𝑄𝑠𝑦𝑛 data with Ratio 1 25% of 𝑄𝑠𝑦𝑛 data with Ratio 1

𝑅𝑎𝑡𝑖𝑜 = 1∕2 2 cells of 𝑄𝑒𝑥𝑝 data with Ratio 1/2 and 75% of 𝑄𝑠𝑦𝑛 data with Ratio 1/2 25% of 𝑄𝑠𝑦𝑛 data with Ratio 1/2

𝑅𝑎𝑡𝑖𝑜 = 1 1 cell of 𝑄𝑒𝑥𝑝 data with Ratio 1/4 and 75% of the 𝑄𝑠𝑦𝑛 data with Ratio 1/4 25% of 𝑄𝑠𝑦𝑛 data with Ratio 1/4
h
i
c
r

EOL. With this estimate, RUL (measured in Ah), can then be calculated
dynamically and on-board using the equation

𝑅𝑈𝐿 = 𝐴𝑚𝑝ℎ𝐸𝑂𝐿 − 𝐴𝑚𝑝ℎ(𝑡), (22)

where 𝐴𝑚𝑝ℎ𝐸𝑂𝐿 is the charge throughput at EOL and 𝐴𝑚𝑝ℎ(𝑡) is the
harge throughput value at time 𝑡.

After testing for trends between operating conditions, capacity loss,
nd charge throughput, it was found that temperature had a statistically
8

ignificant correlation with capacity loss and charge throughput. The t
data was separated by Ratio, as also done for the development of the
capacity loss model. Of the two other operating conditions which were
analyzed, C-rate had no correlation whatsoever, while 𝑆𝑂𝐶𝑚𝑖𝑛 only
ad minimal correlation (but not statistically significant enough for
t to be included in the model). The three plots in Fig. 7 describe
apacity loss as a function of charge throughput and 𝑆𝑂𝐶𝑚𝑖𝑛 (top), C-
ate (middle) and Temperature (bottom), respectively. It is observed

hat temperature has a clear relationship with capacity loss and charge
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Fig. 5. (a) Experimental capacity loss (𝑄𝑒𝑥𝑝) plotted against resistance increase, color-coded by Ratio: Ratio 1 in black, Ratio 1/2 in red, and Ratio 1/4 in blue for the experiments
of Table 1; 𝑄𝑒𝑥𝑝 data with best-fit square root equations and error bounds for Ratio 1 (b), Ratio 1/2 (c), and Ratio 1/4 (d). (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
Fig. 6. The histogram of raw error for Ratio 1 data.

throughput, while the trajectories of charge throughput vs. capacity
loss are almost completely independent of 𝑆𝑂𝐶𝑚𝑖𝑛 and C-rate.

The predicted RUL, denoted as 𝑅𝑈𝐿𝑝𝑟𝑒𝑑 , is defined through the
polynomial function 𝑃𝑟𝑎𝑡𝑖𝑜 expressed as 𝑃𝑟𝑎𝑡𝑖𝑜

(

𝑄̂𝑠𝑦𝑛, 𝑇̂
)

, where 𝑄̂𝑠𝑦𝑛 and
𝑇̂ are the normalized values of 𝑄𝑠𝑦𝑛 and 𝑇 , respectively. Note that
normalizing the data by its mean and standard deviation avoids com-
putational burden associated with extremely small or large numbers,
and provides accurate estimates of the coefficients for the equation of
the fitted surface. In particular, 𝑇̂ is computed as

𝑇̂ = 𝑇 − 310
4.546

, (23)

for all Ratios given that the range of temperature data is always
the same. Conversely, 𝑄 values vary across Ratios and thus are
9

𝑠𝑦𝑛
normalized differently based on the fitting used, producing different
𝑄̂𝑠𝑦𝑛 values for each Ratio given by

𝑄̂𝑠𝑦𝑛 =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑄𝑠𝑦𝑛 − 9.243
3.564

, 𝑅𝑎𝑡𝑖𝑜 = 1

𝑄𝑠𝑦𝑛 − 7.833
3.029

, 𝑅𝑎𝑡𝑖𝑜 = 1∕2

𝑄𝑠𝑦𝑛 − 6.719
2.607

, 𝑅𝑎𝑡𝑖𝑜 = 1∕4.

(24)

It follows that the predicted RUL can be expressed as

𝑅𝑈𝐿𝑝𝑟𝑒𝑑 = 𝑃𝑟𝑎𝑡𝑖𝑜
(

𝑄̂𝑠𝑦𝑛, 𝑇̂
)

, (25)

where the polynomial model 𝑃𝑟𝑎𝑡𝑖𝑜 for different Ratios are given below

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝑃𝑟𝑎𝑡𝑖𝑜
(

𝑄̂𝑠𝑦𝑛, 𝑇̂
)

|𝑅𝑎𝑡𝑖𝑜=1 = 13750 + 10760𝑄̂𝑠𝑦𝑛 − 3548𝑇̂ + 1442𝑄̂2
𝑠𝑦𝑛−

2109𝑄̂𝑠𝑦𝑛𝑇̂ + 441.3𝑇̂ 2 − 307.4𝑄̂3
𝑠𝑦𝑛−

188.7𝑄̂2
𝑠𝑦𝑛𝑇̂ + 245.8𝑄̂𝑠𝑦𝑛𝑇̂ 2

𝑃𝑟𝑎𝑡𝑖𝑜
(

𝑄̂𝑠𝑦𝑛, 𝑇̂
)

|𝑅𝑎𝑡𝑖𝑜=1∕2 = 13910 + 10790𝑄̂𝑠𝑦𝑛 − 3528𝑇̂ + 1195𝑄̂2
𝑠𝑦𝑛−

1882𝑄̂𝑠𝑦𝑛𝑇̂ + 394.7𝑇̂ 2 − 408.1𝑄̂3
𝑠𝑦𝑛−

70.6𝑄̂2
𝑠𝑦𝑛𝑇̂ + 213.6𝑄̂𝑠𝑦𝑛𝑇̂ 2

𝑃𝑟𝑎𝑡𝑖𝑜
(

𝑄̂𝑠𝑦𝑛, 𝑇̂
)

|𝑅𝑎𝑡𝑖𝑜=1∕4 = 14090 + 10830𝑄̂𝑠𝑦𝑛 − 3507𝑇̂ + 932𝑄̂2
𝑠𝑦𝑛−

1634𝑄̂𝑠𝑦𝑛𝑇̂ + 342.1𝑇̂ 2 − 514.4𝑄̂3
𝑠𝑦𝑛−

60.5𝑄̂2
𝑠𝑦𝑛𝑇̂ + 176.3𝑄̂𝑠𝑦𝑛𝑇̂ 2.

(26)

The RUL model was tested on the 𝑄𝑠𝑦𝑛 training data set and the error,
i.e. 𝐸𝑅𝑈𝐿 = 𝑅𝑈𝐿𝑝𝑟𝑒𝑑 − 𝑅𝑈𝐿𝑠𝑦𝑛, where 𝑅𝑈𝐿𝑠𝑦𝑛 is the RUL of the
experimental or synthetic data point. The histogram of the RUL error,
shown in Fig. 8, does not fit any known distribution to properly capture
the spread of the data. Clearly, the model underestimates RUL leading



Journal of Power Sources 478 (2020) 228991A. Chu et al.
Fig. 7. Capacity loss and charge throughput correlation with 𝑆𝑂𝐶𝑚𝑖𝑛 (top), C-rate
(middle), and Temperature (bottom). Temperature shows a clear relationship with those
two variables—as temperature increases, capacity is lost at a faster rate. Shown here
is the data for Ratio 1, but other Ratios had very similar results.

to a significant bias as observed from the negative raw error values in
Fig. 8.

To offset this bias, the mean raw error, referred to as 𝑒, is calculated
and subtracted from all predictions as

𝑅𝑈𝐿𝑝𝑟𝑒𝑑 = 𝑃𝑟𝑎𝑡𝑖𝑜
(

𝑄̂𝑠𝑦𝑛, 𝑇̂
)

− 𝑒, (27)

where the values of 𝑒 are reported below

𝑒 =

⎧

⎪

⎨

⎪

−1045 Ah, 𝑅𝑎𝑡𝑖𝑜 = 1
−1341 Ah, 𝑅𝑎𝑡𝑖𝑜 = 1∕2 (28)
10

⎩

−1644 Ah, 𝑅𝑎𝑡𝑖𝑜 = 1∕4.
Fig. 8. The histogram of the raw error of the RUL model in (23)–(26), which
demonstrates how the model consistently underpredicts RUL.

The RUL model’s error improved significantly producing an RMSE of
1984 Ah when validated on the 𝑄𝑠𝑦𝑛 validation data set using the model
in (23)–(26), while the RMSE of RUL prediction decreased to 1604 Ah.
Normalizing the latter RMSE with respect to the average life of a cell in
the data (roughly 30,000 Ah), the new percentage RMSE for predicting
RUL is 5.33%.

In summary, the RUL model accurately estimates the remaining
charge throughput until EOL, given percent capacity loss and temper-
ature as inputs. The former may be calculated through the aforemen-
tioned stochastic capacity loss model, while the latter is easy to measure
online. The exclusion of operating conditions 𝑆𝑂𝐶𝑚𝑖𝑛 and C-rate from
this model aligns with the experimental data and literature, as the
model that was used to generate synthetic data behaves similarly and
also exhibits low C-rates (see (4)).

8. Combined results: Model-based estimator, stochastic capacity
loss and RUL model

The proposed estimation scheme, which combines the strengths of
model-based estimation with data-driven stochastic health prediction,
is validated for Cell #7 (see Table 6) through different stage of its life.

As described in Section 5, the battery is subjected to a dynamic
current profile during the different stages of health, and the resulting
current and voltage measurements are used as an input to the model-
based estimator. Four data points at different battery Ampere-hour
throughput are selected as shown in column 2 of Table 6. The particle
filter developed for the equivalent circuit model uses the measured
current and voltage data to estimate the battery SOC and resistance
increase. The resistance increase values from the aging model in [1] and
the estimated values from the particle filter are compared in columns
3 and 4 of Table 6. Next, the estimated resistance increase values
are input to the stochastic model to predict the capacity loss values.
The measured capacity loss values and the predicted values from the
stochastic model are listed in columns 5 and 6 of Table 6. Further, the
model and estimated RUL values are listed in column 7. As observed
in Table 6, the accuracy of the estimated capacity loss and RUL values
improves as the battery ages.

9. Conclusions

A stochastic prognostic model for capacity loss and remaining use-
ful life in lithium-ion batteries with NMC–LMO chemistry has been
developed. The stochastic health prediction model works in conjunc-
tion with a model-based estimator, developed using a particle filter
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Table 6
Comparison of predicted 𝑅𝑖𝑛𝑐 , 𝑄𝑙𝑜𝑠𝑠, and RUL with experimental results. Predictions are from the holistic proposed model, including the particle filter, stochastic capacity loss
lgorithm, and RUL model.
Data point Ah throughput [Ah] Model 𝑅𝑖𝑛𝑐 [%] Estimated 𝑅̂𝑖𝑛𝑐 [%] Measured 𝑄𝑙𝑜𝑠𝑠 [%] Estimated 𝑄𝑙𝑜𝑠𝑠 [%] Measured RUL [Ah] Estimated RUL [Ah]

1 3791.6 2.39 2.97 5.74 5.69 20208.4 20533.9
2 9807 6.19 6.79 8.34 8.83 14 193 15312.2
3 21921.3 13.84 12.22 10.52 10.14 2078.7 2476.3
4 24 000 15.15 16.58 10.62 10.78 0 48.2
for an equivalent circuit battery model, which estimates SOC and
increasing resistance of the battery as it ages. The stochastic prognos-
tic model was developed and validated on 11 cells of experimental
data and over 250,000 synthetic data points. The model uses readily-
measurable/estimated parameters or predetermined battery operating
conditions such as Ratio, temperature, and resistance and thus offers
a convenient method for prediction. The particle filter estimates SOC
and resistance, and the stochastic state of health algorithms are able to
predict capacity loss within 1% and RUL within 1.6 kAh.

The stochastic aspect of the capacity fade model provides a mean
to describe the variation of the capacity and resistance relationship
via the Gaussian distribution and the calculation of the mean and
standard deviation of error. The proposed methodology is computation-
ally simple, probabilistic in nature (also providing error bounds), and
offers room for physical explanation of the observed phenomena (as
opposed to black box machine learning-based estimators). However, it
should be noted that the scope of this model may be limited to the
aging conditions used in the data. Nonetheless, the range of parameters
used in this study were chosen to encompass the most common aging
conditions. Moreover, the broader results of this work, such as the novel
relationship between capacity and resistance as well as the finding
that temperature influences EOL much more than C-rate or 𝑆𝑂𝐶𝑚𝑖𝑛,
re valuable in and of themselves and merit further investigation. It
hould also be recognized that phenomena such as reversible capacity
oss are not accounted for in this work [30–33]. Furthermore, since
he proposed model provides error bounds which may encompass these
ncertainties, the model holistically maintains its integrity.

Such a model, which can accurately predict capacity loss, can be
sed to estimate when to replace lithium-ion batteries in PHEVs and
ffectively extend the lives of these batteries. In addition, this model
ould also be incorporated into on-board battery management systems
o provide drivers with real-time feedback on how to mitigate aging by
hanging their driving behavior.

Future work includes extending the proposed model to the pack
evel by accounting for cell-to-cell interactions and incorporating Arrhe-
ius equation relating aging and temperature. Moreover, generalization
f the aging conditions used in the data would help expand the utility
f the model.
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