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a b s t r a c t 

We provide two nonlinear solutions to the model recovery anti-windup (MRAW) design problem, both of 

them relying on the definition of a set of nested ellipsoids in the state space of the anti-windup dynam- 

ics. Each ellipsoidal set arises from a convenient trade-off between size of the ellipsoid and guaranteed 

exponential convergence rate induced by the corresponding saturated feedback. The first solution is given 

by a hybrid selection of the MRAW stabilizer, relying on a natural hysteresis switching mechanism. The 

second solution corresponds to a Lipschitz but non-differentiable scheduled selection, which essentially 

smoothens out the discontinuous nature of the nested ellipsoids. We discuss the role of our design ar- 

chitecture and establish a number of important properties induced by the proposed controllers. Their 

effectiveness is comparatively illustrated on a few example studies. 

© 2018 European Control Association. Published by Elsevier Ltd. All rights reserved. 
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. Introduction 

Actuator saturation is one of the most frequent hard nonlinear-

ties encountered in control system implementation. When apply-

ng any type of control design to a real plant, the control engineer

eeds to account for the effects of the maximum and minimum

ontrol effort allowable for the actuator available on the experi-

ental system. It was observed already from the 1940s that the

resence of saturation often caused undesirable behavior and that

uitable fixes were necessary to address the arising problem (this

act was actually one of the main motivations for the absolute sta-
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ility results of the 1950s and the sector properties of static non-

inearities). 

A popular approach to deal with saturation, which dates back

o the 1960s (see, e.g., [9] ), is the so-called anti-windup approach,

herein an “unconstrained controller” is assumed to perform de-

irably in the absence of saturation (equivalently, when signals are

mall enough on the saturated closed-loop) and “anti-windup” cor-

ections are necessary for larger signals that would interest the

at region of the saturation, thereby causing performance loss

nd often instability. The ultimate goals of anti-windup designs

re that: (1) the unconstrained behavior imposed by the “uncon-

trained controller” on the plant is fully reproduced whenever sat-

ration is not activated (namely for small enough signals); (2) for

arger signals the performance is close (as close as possible) to the

nconstrained one, and stability is retained as much as possible

iven the hard limits imposed by the presence of saturation. Ini-

ially, anti-windup control was mainly an application driven dis-

ipline and most of the results available in the literature were

ot applicable to general classes of control systems, rather be-

ng specific naive solutions for some experimental problems. To-

ard the end of the 1980s, this lack of formality in the field has

een pointed out (see, [8] ) and the need of general solutions to

he anti-windup augmentation problem led to in an increase of
rved. 
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the research effort in the following years. Comprehensive surveys

of the first anti-windup solutions are given in [2,21,28] . Starting

from the mid 1990s, several high performance solutions to the

anti-windup problem started to appear. Many of these rely on the

so-called reference governor or command governor scheme which

is most directly applicable to discrete-time control systems (see,

e.g., [1,16] and references therein). Other ones are mostly related to

continuous-time cases and rely on the use of linear matrix inequal-

ities (LMIs) together with absolute stability and generalized abso-

lute stability concepts (see, e.g., [18,25,31] and references therein).

Some very detailed presentations of the above historical overview

of anti-windup can be found in the surveys [14,36] and in the two

books [35,57] . 

Among the many aspects that make the anti-windup design

challenging is that it inherits well-known intrinsic limitations al-

ready known for bounded stabilization. In particular, it was al-

ready proved in [34] that global bounded asymptotic stabilization

of a linear plant can only be obtained if the plant has eigenval-

ues in the closed left half plane. Global exponential stabilization

via bounded input can then only be obtained if the plant is al-

ready globally exponentially stable to begin with. Due to this rea-

son, much of the research effort has gone in the direction of giv-

ing local guarantees with an intrinsic trade-off between size of the

operating region and the aggressiveness of the control law (a no-

table alternative approach being the one where global nonlinear

stabilizers were designed [30,38] ). In this regard, interpolation of

controllers has been recognized as a fruitful approach for achiev-

ing better regional performances, using e.g. parameterized Riccati

equations or switching laws [6,22,50] . From the early years of the

21 st century, the idea of scheduling different stabilizers was pur-

sued in a number of works [26,27,32,33,48] , and this type of so-

phisticated generalization of the standard anti-windup paradigm

(the one where a simple gain modifies the controller dynamics,

driven by the excess of saturation) also led to some different type

of anticipatory/delayed anti-windup actions (which can be seen

as some kind of multi-stage nonlinear compensation) reported in

[32,46,47,51,52] and references therein. 

A relevant general approach to the solution of the anti-windup

problem is that proposed in the pioneering paper [42] (and the

twin paper [43] ). In that paper, the authors proposed a framework

for anti-windup design wherein the solution to the anti-windup

problem (comprising the two properties qualitatively stated above)

was obtained from the solution of a simpler external stabiliza-

tion problem from an input-matched disturbance consisting in the

energy that the unconstrained response would have spent out-

side of the saturation if the saturation limits were not there. That

framework was therein denoted as “L 2 anti-windup solution” and

was shown to solve a specific characterization of the qualitative

anti-windup goals listed above, called “L 2 anti-windup problem”.

The parallel thread of work reported in [18,25,31] and commented

above, aimed indeed at minimizing the input-output L 2 gain of

the closed loop with anti-windup augmentation, therefore more

recently (and also in the book [57] ) it was decided to rename this

approach “model recovery anti-windup” (MRAW) because through

a model-based compensation MRAW is effective at recovering the

unconstrained response. 

In [42] , a preliminary solution was given to the MRAW prob-

lem, while indicating that many improvements upon that solution

would have been possible via the many degrees of freedom still

available in the proposed framework. Then, several extensions have

been proposed in later years each of them having different perfor-

mance and stability guarantees and being applicable to different

classes of systems. Among these, [7,40,41,44,45,58] report some ap-

plication studies illustrating the effectiveness of MRAW on practi-

cal engineering problems, while in [15,39] , the approach was ex-

tended to give a nonlinear solution when dealing with exponen-
Please cite this article as: A. Cristofaro et al., A switched and scheduled
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ially unstable plants, that inevitably lead to non-global results due

o the above mentioned intrinsic limitations. MRAW was also ex-

ended to rate-saturated plants and applied to relevant flight con-

rol problems in [3,10,40] . In [54] , the same framework was applied

o bumpless transfer and this idea was further extended and bet-

er characterized in [56] . In [20] the ideas in [42] were extended to

he discrete-time case while in [53] they were extended to dead-

ime plants. A sampled-data implementation of the general ap-

roach in [42] was proposed in [4] , based on a suitable MPC solu-

ion of a discrete-time problem associated to the continuous-time

lant. Moreover, a nonlinear scheduled implementation based on

ysteresis switching was proposed in [55] , although no guarantees

ere given there on the size of the switching regions. 

In this paper, we show that it is possible to adopt multi-

tage designs within the MRAW framework, thereby obtaining high

erformance unconstrained response recovery through the aris-

ng aggressive nonlinear anti-windup action. Mimicking the ap-

roach in [26,27,32,33] , we base the switching/scheduling mech-

nism on the definition of a suitable set of nested ellipsoids, each

f them associated to a choice of stabilizing gains, and then we

ropose: 

(1) A hybrid reformulation of the hysteresis switching solution

rst proposed in [55] and then revised and improved in our pre-

iminary conference paper [12] ; as compared to those preliminary

esults the hybrid formulation provides robust versions of the es-

ablished asymptotic stability, that stems from the structural prop-

rties of the formulation, in addition to a clearer description of the

ysteresis mechanism. 

(2) A scheduling mechanism corresponding to an improved ver-

ion of the approach proposed in our preliminary work [11,13] . In

articular, as compared to those results, here we choose the feed-

ack gains based on a desirable trade-off between speed of con-

ergence and size of the region of attraction, in addition to well

haracterizing the nonlinear algebraic loop, already introduced in

54] , but assuming a slightly different expression in this new for-

ulation. 

Different from [11,13] where we mainly focus on anti-windup

oals, we clarify here that the proposed construction is best char-

cterized as a state-feedback bounded stabilizer, whose ideal ap-

lication context is the anti-windup one, because in nonlinear

odel recovery anti-windup, the state of the dynamic augmen-

ation (which must be driven to zero) is available for feedback.

e regard this solution as the most advanced MRAW design strat-

gy in terms of trade-off between size of the region of attraction

nd performance of the control design (which is characterized here

n terms of the exponential rate of convergence of the response).

s compared to our preliminary results in [11–13] , we also re-

ort here missing proofs, we revise and improve the generation of

he ellipsoids that depends here on more intuitive parameters for

hich we provide a tuning rationale, and the design of the switch-

ng/scheduling law. Finally, we illustrate the results on novel exam-

les. 

The paper is organized as follows. In Section 2 we propose

he construction of the nested ellipsoids establishing the switch-

ng/scheduling mechanism proposed subsequently. In Section 3 we

how how those ellipsoids can be used for the design of a hystere-

is switching stabilizer. Parallel results are given in Section 4 that

resents a Lipschitz scheduled stabilizer. All these ingredients are

ombined in Section 5 that explains how these designs should

e incorporated in the MRAW architecture. Finally, Section 6 dis-

usses a few simulation examples with the switching and schedul-

ng approaches. Conclusions and future works are reported in

ection 7 , while a few technical proofs are reported in the

ppendix. 

Notation : Given a square matrix M , He M := M + M 

T 
 design for model recovery anti-windup of linear plants, European 
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1 Since λ≥ 0, this implies that A has no eigenvalues with positive real part. 
. A family of stabilizers in nested stability regions 

.1. Global or regional bounded state feedback stabilization of a 

inear plant 

Consider the following linear plant: 

˙ 
 = Ax + B sat ū (u ) , (1) 

ith state x ∈ R 

n and input u ∈ R 

n u and subject to the

ymmetric decentralized magnitude saturation nonlinearity 

at ū with saturation limits ū = 

[
ū 1 · · · ū n u 

]T 
, defined as

at ū (u ) = 

[
sat ū 1 (u 1 ) · · · sat ū n u (u n u ) 

]T 
, where sat ū i (s ) =

ax {−ū i , min { ̄u i , s }} , i = 1 , . . . , n u , is the scalar symmetric satura-

ion function with limit ū i . 

In this paper, we are interested in designing nonlinear switched

nd scheduled state-feedback control laws for plant (1) capable of

nducing high-performance of the arising closed loop. It is well

nown (see, e.g., [34] ) that plant (1) is globally stabilizable from

he bounded input if and only if A has no eigenvalue with positive

eal part (namely, the open-loop dynamics is not exponentially un-

table). Due to this reason, we start off our design by focusing on

 suitable stabilizer taking the form 

 = Kx + L sat m 

(u ) , (2) 

nd ensuring a reasonably large domain of attraction, depending

n the open-loop dynamics of (1) . Stabilizer (2) requires the solu-

ion of a nonlinear algebraic loop, which is rather simple with a

mall number of inputs is at hand but may become rather com-

licated in the presence of many saturated inputs (see [57, Sec-

ion 2.3.7] for a discussion about how to solve these algebraic

oops). The algebraic loop has been shown to generally lead to im-

roved responses (see, e.g., [31] ) but can be easily avoided (at the

xpense of a potentially deteriorated performance) by fixing X 2 = 0

n the conditions presented below in (3). In this special case, vari-

nts of the corresponding results have been presented in [19] (see

lso [35] ). The following proposition provides a design guideline

or the selection of the gains in (2) . 

roposition 1. Consider the dynamical system (1) , a scalar λ≥ 0,

nd the following set of LMIs in the variables { Q, X 1 , X 2 , U, Y, ρ−2 } : 
 = Q 

T ≥ ρ2 I, U > 0 diagonal (3a) 

e 

[
(A + λI) Q + BX 1 B (X 2 − U) 

X 1 + Y X 2 − U 

]
< 0 , (3b) 

m 

2 
k 

Y (k ) 

Y (k ) ′ Q 

]
≥ 0 , k = 1 , . . . , n u , (3c) 

here Y ( k ) denotes the kth row of matrix Y. 

Then given any solution to (3), the feedback stabilizer (2) with pa-

ameters (K, L ) = (K 1 , L 1 ) with 

 1 = (I − X 2 U 

−1 ) −1 X 1 Q 

−1 , 

L 1 = −(I − X 2 U 

−1 ) −1 X 2 U 

−1 , (4) 

uarantees (a) well-posedness of the algebraic loop in (2) , namely ex-

stence of a unique (nonlinear) globally Lipschitz function ϕ such that

 = ϕ(x ) ; (b) exponential stability of the origin with exponential rate

1 = λ for (1) , (2) with basin of attraction larger than the set (where

e use Q 1 = Q): 

 1 := E(Q 

−1 
1 ) := { x T Q 

−1 
1 x ≤ 1 } , (5) 

hich is forward invariant and contains the ball ρB = {| x | ≤ ρ} ; 3)

lobal exponential stability of the origin with exponential rate λ, if

 = 0 . 

Moreover, the following can be proven about the feasibility of (3): 
Please cite this article as: A. Cristofaro et al., A switched and scheduled 
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1. If the open-loop dynamics (1) is exponentially stable with expo-

nential rate larger than λ (namely all eigenvalues of A have real

part strictly smaller than −λ), then LMIs (3) are feasible with

Y = 0 , which guarantees global exponential stability. 

2. If the open-loop dynamics (1) has exponential rate not smaller

than λ (namely all eigenvalues of A have real part smaller than

or equal to −λ) 1 , then LMIs (3) are feasible for any (arbitrarily

large) value of ρ . 

3. In all cases, LMIs (3) are feasible for a sufficiently small value of

ρ . 

emark 1. (Different optimization goals) While the focus of

roposition 1 is mostly on the size of the domain of attraction

stimate (called stability region henceforth), it should be recog-

ized that increasing the value of the certified exponential rate

will in general reduce the size of the stability region so that

 suitable trade-off should be performed. The goal of the switch-

ng and scheduled solutions in this paper is to partially overcome

his trade-off by suitably increasing the performance level λ as the

lant state gets closer to the origin. 

In conditions (3) and throughout the rest of this paper, we fo-

us on the optimality criterion associated to the exponential rate λ
n (3b) . However, different performance metrics can be also opti-

ized using the approach proposed here. For example, in [12] the

oal was the minimization of the L 2 gain from an exogenous input

 to a performance output z of an extended plant dynamics of the

orm: 

˙ 
 = Ax + B sat ū (u ) + B w 

w, 

z = Cx + D sat ū (u ) + D w 

w. 

his different performance goal can then be optimized by mini-

izing the L 2 gain estimate γ and replacing condition (3) by the

onditions in [12, Eq. (7)] . This modification affects many of the

erivations in the rest of this section, but the corresponding re-

ults are a straightforward extension of the techniques developed

ere. 

roof. Proof of Proposition 1 . Proposition 1 is a slight modification

f the results presented in [12, Section II.B] and then recalled in

13, Prop. 2] . The proof follows standard LMI derivations based on

he generalized sector conditions proposed in [19,24] and corre-

ponding to the fact that for any pair of inputs u, w ∈ R 

n u and any

iagonal positive matrix W > 0, the following holds: 

z (w ) = 0 ⇒ dz (u ) T W (u − dz (u ) + w ) ≥ 0 , (6) 

here dz (u ) := u − sat (u ) . In order to exploit condition (6) , we

ay rewrite the plant input selection in (2) as follows: 

 = (I − L ) −1 Kx − (I − L ) −1 L dz (u ) 

= X 1 Q 

−1 x + X 2 U 

−1 dz (u ) , (7) 

here the second equality can be verified by inverting (4) and do-

ng some straightforward simplifications. The following relation is

hen straightforward from (7) : 

˙ 
 = Ax + B sat ū (u ) 

= (A + BX 1 Q 

−1 ) x + B (X 2 U 

−1 − I) dz (u ) . (8) 

onsider now formulation (7), (8) of the closed loop and notice

hat using the Lyapunov function candidate V (x ) = x T Q 

−1 x and se-

ecting w = Hx, with H to be specified, and W = U 

−1 in (6) , we

ay write: 

z (Hx ) = 0 ⇒ 

˙ V (x ) ≤ ˙ V (x ) + 2 dz (u ) T U 

−1 (u − dz (u ) + Hx ) , (9)
design for model recovery anti-windup of linear plants, European 
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whose rightmost term can be written as: 

2 

[
x 

dz (u ) 

]T [
Q 

−1 (A + BX 1 Q 

−1 ) Q 

−1 B (X 2 U 

−1 − I) 
U 

−1 (X 1 Q 

−1 + H) U 

−1 (X 2 U 

−1 − I) 

][
x 

dz (u ) 

]
(10)

where the first block line contains terms arising from 

˙ V and

the second block line contains terms from the generalized sec-

tor conditions. Pre- and post-multiplying the matrix appearing in

(10) by diag Q, U and selecting H = Y Q 

−1 , we obtain that inequality

(3b) implies 

dz (Y Q 

−1 x ) = 0 ⇒ 

˙ V (x ) ≤ −2 γV (x ) . (11)

Consider now inequality (3c) , and note that, with the selections

above, it implies: 

| m 

−1 
k 

H 

(k ) x | 2 ≤ x T Q 

−1 x, ∀ k = 1 , . . . , n u , 

which, combined with (11) , implies 

 (x ) ≤ 1 ⇒ dz (Hx ) = 0 ⇒ 

˙ V (x ) ≤ −2 γV (x ) , (12)

thus clearly proving items (2) and (3) of the statement from stan-

dard comparison and Lyapunov theorems. Moreover, let x belong

to ρB, i.e. | x | 2 ≤ρ2 . Then, from Q 

−1 ≤ ρ−2 I, the following chain of

inequalities holds 

x T Q 

−1 x ≤ x T ρ−2 Ix = ρ−2 | x | 2 ≤ 1 , 

thus showing the inclusion ρB ⊆ E 1 . 
Regarding item (1), the proof is based on the following techni-

cal results 

Lemma 1. Given a positive-definite diagonal matrix W ∈ R 

n u ×n u and

a square matrix S ∈ R 

n u ×n u with det (I − S) 
 = 0 , if 2 W + W S(I −
S) −1 + (I − S T ) −1 S T W > 0 , then I − S� is nonsingular for all matri-

ces � included in the set 

O n u := { � : � = diag(δ1 , . . . , δn u ) , δk ∈ [0 , 1] ∀ k } . 
Lemma 2. Consider a locally Lipschitz map F : R 

n → R 

n and assume

that the differential inclusion JF (z) ∈ M holds for a.e. z ∈ R 

n , where

JF ( z ) denotes the Jacobian of F and M ⊂ R 

n ×n is a compact and con-

vex subset such that det (M) 
 = 0 ∀ M ∈ M . Then there exists a unique

globally Lipschitz function G : R 

n → R 

n with F (G (z)) = z ∀ z ∈ R 

n . 

The proof of Lemma 1 is given in Appendix A , while the proof

of Lemma 2 can be found in [ 54 , Prop. 2]. Let us focus now on

item (1). From the LMI (3b) one can infer that 

X 2 + X 

T 
2 − 2 U < 0 (13)

as the bottom right term of the matrix must be negative-definite.

On the other hand, it follows from (4) that the matrix X 2 satisfies 

X 2 = −L 1 (I − L 1 ) 
−1 U, 

and hence inequality (13) can be rewritten in terms of L 1 as 

−L 1 (I − L 1 ) 
−1 U − U(I − L T 1 ) 

−1 L T 1 − 2 U < 0 

or equivalently as 

−W L 1 (I − L 1 ) 
−1 − (I − L T 1 ) 

−1 L T 1 W − 2 W < 0 (14)

where we have set W = U 

−1 . Consider the map F (u ) := u −
L 1 sat ū (u ) and observe that, since the derivative of each component

of the saturation function is either 0 or 1 a.e., the inclusion 

JF (u ) ∈ co ({ I − L 1 diag(δ1 , . . . , δn u ) , δk ∈ { 0 , 1 } ∀ k } ) 
= { I − L 1 �, � ∈ O n u } =: M 

holds, where co (E ) denotes the closed convex hull of the set E
and O n u is defined in Lemma 1 . Due to (14) , the conditions of

Lemma 1 are met and thus the set M , which is compact and con-

vex by construction, contains nonsingular matrices only. The con-

clusion follows then by applying Lemma 2 , which establishes that
Please cite this article as: A. Cristofaro et al., A switched and scheduled
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here exists a unique globally Lipschitz map G ( z ) with F (G (z)) = z

nd 

(x ) − L 1 ϕ(x ) = K 1 x, 

here we have set ϕ(x ) = G (K 1 x ) . 

Only the feasibility of the LMIs remains to be addressed. Since

y assumption the plant is stabilizable, there exist a feedback gain

 0 and two positive definite matrices, Q 0 = Q 

T 
0 

> 0 , R 0 = R T 
0 

> 0 ,

ith 

e [(A + λI) Q 0 + BK 0 Q 0 ] = −R 0 . 

electing Q = υQ 0 , Y = K 0 Q = υK 0 Q 0 , X 1 = −Y + (X 2 − U) T B T and

 U > X T 2 + X 2 , it can be easily seen that inequality (3b) is satisfied

or any υ > 0 because the left-hand side matrix becomes block di-

gonal. In the case of open-loop exponential stability (item (1)),

he inequalities are trivially satisfied with the choice 

 = 0 , X 

T 
1 = −B (X 2 − U) , ρ2 = σmin (Q ) , 

2 U > X 2 + X 

T 
2 , He [(A + λI) Q] < 0 . 

egarding item (3), observe that condition (3c) is equivalent to 

 

2 
k − υY (k ) 

0 
Q 

−1 
0 Y (k ) ′ 

0 
≥ 0 k = 1 , . . . , n u 

here we have denoted by Y (k ) 
0 

the k th −row of Y 0 . Then, it is suf-

cient to pick 

≤ υ := min 

k =1 , ... ,n u 

m 

2 
k 

Y (k ) 
0 

Q 

−1 
0 

Y (k ) ′ 
0 

hich indeed implies the feasibility for any ρ2 ≤ υσmin (Q 0 ) . 

Item (2) corresponds to semi-global stabilization, and requires

 few more manipulations. Define A λ = A + λI and note that by as-

umption it has eigenvalues in the closed left half plane. Following

25, Proposition 2] , it can be proven that there exists γ 0 > 0 such

hat, for any ζ > 0 there exists Q = Q 

T > ζ I with 

e 

⎡ 

⎢ ⎣ 

A λQ − γ 2 
0 

2 

BB 

T −B 

2 

0 − I 

2 

⎤ 

⎥ ⎦ 

< 0 . (15)

herefore, setting Y = −(γ 2 
0 

/ 2) B T , X 1 = −Y, U = X 2 + I/ 2 , where X 2

s an arbitrary diagonal matrix with X 2 > −I/ 2 , it is easily checked

hat (3b) is satisfied because it coincides with (15) . Moreover, also

nequalities (3a) and (3c) are satisfied by selecting 

≥ max 

{
ρ2 , max 

k ∈{ 1 , ... ,n u } 

( | Y (k ) | 
m k 

)}
n (15) . �

.2. Generation of nested stabilizers 

Proposition 1 is used in this section as a starting point for the

eneration of a family of N nested ellipsoids E 1 ⊃ · · · ⊃ E N , each

ne of them associated with a pair of gains ( K i , L i ) to be used

n control law (2) , and ensuring exponential stability of the ori-

in from the corresponding ellipsoid. In particular, the region E 1 
n (5) corresponds to the largest of these ellipsoids and an algo-

ithm is proposed to generate a number of nested ellipsoids within

 1 . The reason for designing several gains in nested sets is that

he closer the trajectory is to the origin, the higher gain can be

sed with stability guarantees, thereby improving the small and

edium signal performance of the stabilizer. The solid and bold

evel sets in Fig. 1 represent an example of two nested sets aris-

ng from the algorithm proposed in this section. This construction

as common features with that of [55] , even though no general-

zed sector conditions where used in that work, thereby resulting
 design for model recovery anti-windup of linear plants, European 
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Fig. 1. Two nested level sets arising from Algorithm 1 . 

Algorithm 1. Nested regions and stabilizers generation. 
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n  
n a conservative design. Moreover, the construction is a suitable

ombination of our preliminary results in [12] (where a switching

aw was used) and [11,13] (where scheduled laws were used and

 similar algorithm to the one reported here is proposed). Here,

nce the family of nested sets with the corresponding gains is in

lace, we present switched and scheduled nonlinear stabilizers in

ections 3 and 4 , respectively. 

Given the outer ellipsoid E 1 as per (5) , the proposed nested re-

ions construction is given in Algorithm 1 , which is based on two

ey parameters: 

1. a shrinking factor β ∈ (0, 1) providing outer and inner con-

straints for set E i graphically represented in Fig. 1 , based on

set E i −1 and corresponding to (16c) for the outer constraint

(dashed-dotted boundary in Fig. 1 ) and to (16d) for the inner

constraint (dashed boundary in Fig. 1 ). Fig. 1 reports in bold

the shape of set E i that respects these constraints, given the set

E i −1 reported in thin solid line; 
Please cite this article as: A. Cristofaro et al., A switched and scheduled 
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2. a linearity radius η > 0 specifying a ball ηB = {| x | ≤ η} , where

the nested control design should provide a linear feedback.

For the algorithm to make sense it is necessary that ηB is

contained in the interior of E 1 , which holds if and only if

η2 < σ min ( Q 1 ). 

The following result establishes desirable features of

lgorithm 1 . 

roposition 2. Consider any solution ( λ1 , Q 1 , K 1 , L 1 ) arising from the

onstruction in Proposition 1 (see (4) and (5) ), any shrinking factor

∈ (0, 1) and any η > 0 satisfying η2 ≤σ min ( Q 1 ) . 

Then Algorithm 1 always terminates in a finite number N of steps

nd guarantees: 

 1 ⊃ E 2 · · · ⊃ E N , (18) 

1 ≤ λ2 · · · ≤ λN . (19) 

oreover, for each i ∈ { 1 , . . . , N} , the closed loop (1) , (2) with K = K i 

nd L = L i has a well posed algebraic loop, is exponentially stable to

he origin, with basin of attraction containing the set 

 i = { x T Q 

−1 
i 

x ≤ 1 } , 
nd is also such that the set E i is forward invariant. 

Finally, for a fixed value of η, integer N is a function of scalar β
atisfying: 

lim 

→ 0 
N = 1 , lim 

β→ 1 
N = + ∞ . (20)

roof. From the feasibility conditions of the LMIs established in

roposition 1 , it follows that the optimization problem in the algo-

ithm is well-posed, in the sense that it always admits a solution

i ≥ λi −1 . Moreover, the strict inclusion E i ⊂ E i −1 is guaranteed by

16c): 

 i = { x T Q 

−1 
i 

x ≤ 1 } ⊂ { x T β−1 Q 

−1 
i −1 

x ≤ 1 } ⊂ { x T Q 

−1 
i −1 

x ≤ 1 } = E i −1 . 

onditions (16c) and (16d) ensure that the algorithm terminates

fter N steps. Indeed one has β2 σi −1 < σi < βσi −1 , and hence 

2 i −2 σ1 < σi < β i −1 σ1 . (21) 

aking logarithms of both sides of η2 ≤ σN < βN−1 σ1 , we get that

he largest integer N with η2 ≤σ N (which comes from the termi-

ation condition) must satisfy the estimate 

 < 

log η2 − log σ1 

log β
+ 1 , 

hich implies the left limit in (20) because η2 < σ 1 by defini-

ion. Consider now again the termination condition and the left in-

quality in (21) , which yields β2((N+1) −1) < σN+1 ≤ η2 . Taking log-

rithms again, we get 

 > 

log η2 − log σ1 

2 log β
, 

hich implies the right limit in (20) . �

emark 2. In light of Proposition 2 , from a practical point of view,

lgorithm 1 should be applied by first fixing the local convergence

ate λ1 and solving the LMIs (3) in Proposition 1 with the goal

f maximizing the size of Q 1 (e.g., maximizing its trace). Alterna-

ively, if a certain size ᾱ of the outer region is required, one may

x Q 1 ≥α2 I and then maximize λ1 by solving a generalized eigen-

alue problem. Then the linearity radius η is typically selected as

ignificantly smaller than 

√ 

σmin (Q 1 ) (so as to leave a large enough

oughnut for the nesting of the ellipsoidal sets before the termi-

ation condition), and then the shrinking factor β is adjusted by
design for model recovery anti-windup of linear plants, European 
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Fig. 2. The hysteresis switching mechanism behind control law (22) and (23). 
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running the algorithm for several values of it with the goal of ob-

taining a reasonable number N of ellipsoids. In particular, the re-

sult (20) clarifies that increasing β one expects an increase of N ,

while decreasing β one expects a decrease of N . A larger N leads

to improved performance, due to a more sophisticated control so-

lution, but also increases the computational complexity in terms of

the number of gains that need to be stored in the control system. 

3. Hysteresis switching stabilization 

In the previous two sections, a sequence of nested sets E 1 ⊃
· · · ⊃ E N has been determined by way of Algorithm 1 , each of them

associate with a pair of gains ( K i , L i ) and with a guaranteed con-

vergence rate λi ≥ 0 satisfying the non-decreasing condition (19) . 

Here, generalizing the approach of [55] and [12] , in light of the

recent formalism in [17] for the representation of hybrid dynam-

ical systems, we propose a hysteresis switching law that exploits

the fact that by construction, for each q = 2 , . . . , N, set E q (see the

outer bold gray level set in Fig. 1 for an example) is a subset of the

β-restriction (see the dashed level set in Fig. 1 for an example) of

set E q −1 (see the inner bold gray level set in Fig. 1 for an example).

The intuitive idea behind the hysteresis switching law is to switch

to less aggressive control gains (that is, from the gains associated

to E q +1 to the gains associated to E q ) when the state x crosses the

boundary of E q +1 , but to allow a switch to more aggressive gains

(that is, from the gains associated to E q to the gains associated to

E q +1 ) only when the state x crosses the boundary of βE q +1 ; the

finite separation between the boundaries of E q +1 and βE q +1 pro-

vides some level of robustness to noise and prevents chattering

problems. 

To this aim, we introduce a logic state variable q ∈ { 1 , . . . , N}
in our control algorithm, and implement a q -dependent version of

the linear stabilizer (2) , as follows: 

u = K q x + L q sat m 

(u ) , (22a)

where state q evolves according to the following hybrid dynam-

ics: 

˙ q = 0 , x ∈ C q 
q + = q + 1 , x ∈ D 

+ 
q 

q + = q − 1 , x ∈ D 

−
q , 

(22b)

where, according to the intuitive representation in Fig. 2 , increase

and decrease of q is enabled, respectively, whenever the state ( x ,

q ) belongs to the following sets: 

D 

−
q := { x ∈ R 

n : x T Q 

−1 
q x ≥ 1 } , q ∈ { 2 , . . . , N} 

D 

+ 
q := { x ∈ R 

n : x T Q 

−1 
q +1 

x ≤ β} , q ∈ { 1 , . . . , N − 1 } , 
D 

−
1 

:= ∅ , D 

+ 
N 

:= ∅ , 
(23a)

and the set C q in (22b) is selected as the closure of the set where

jumps (or updates) of q are not allowed: 

C q = R 

n \ (D 

+ 
q ∪ D 

−
q 

)
. (23b)
Please cite this article as: A. Cristofaro et al., A switched and scheduled
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As customary with the representation in [17] for hybrid sys-

ems, the so-called flow set of the hybrid dynamics corresponds to

he subset of the state space � = R 

n × { 1 , . . . , N} where flow of the

olutions is allowed, and the so-called jump set of the hybrid dy-

amics corresponds to the subset of the state space � where jump

f the solutions is allowed. Taking a similar approach to [17, Eq.

1.10)] , they correspond to: 

C = 

⋃ 

q ∈{ 1 , ... ,N} 
C q × { q } 

 = 

⋃ 

q ∈{ 1 , ... ,N} 
(D 

−
q ∪ D 

+ 
q ) × { q } , (23c)

nd the flow and jump maps are directly derived from (22b) due

o the fact that the sets D 

−
q , D 

+ 
q , q = 1 , . . . , N are all disjoint. 

The next result is the first main theorem of this paper estab-

ishing useful properties of the hysteresis switching stabilizer. An

ppealing feature of this theorem, as compared to previous ap-

roaches, such as those in [12,55] is that the well posedness of

he hybrid formulation in (22) and (23) allows obtaining intrinsic

obustness of the stated stability results, by way of the general re-

ults in [17, Thm 7.21] . 

heorem 1. Consider plant (1) , a set of initial parameters ( Q 1 , K 1 , L 1 ,

1 ) coming from Proposition 1 and a family of nested sets ( Q i , K i , L i ,

i ), i = 1 , . . . , N coming from Algorithm 1 . 

Then the hybrid hysteresis switching state-feedback control law

22), (23) for plant (1) is such that 

1. complete solutions exist for all initial conditions, and are all even-

tually continuous; 

2. if parameters ( Q 1 , K 1 , L 1 , λ1 ) came from a solution to (3) of

Proposition 1 with Y = 0 , then the origin is globally exponentially

stable; 

3. the exponential convergence rate increases as the solution ap-

proaches the origin. In particular, there exists a scalar M ≥ 1, such

that, for all solutions, the following holds: 

x (0 , 0) ∈ βE k ⇒ | x (t, j) | ≤ M exp (−λk t) | x (0 , 0) | , (24)

for all (t, j) ∈ dom x ; 

4. the origin is exponentially stable for the closed loop with region of

attraction including the set E 1 . 

roof. First note that dynamics (1) , (22), (23) satisfies the hy-

rid basic conditions in [ 17 , Assumption 6.5] because C and D
re closed, the flow map is continuous and the jump map can be

ontinuously extended. Then existence and completeness of max-

mal solutions are guaranteed by [ 17 , Proposition 6.10] and the

ell posedness of (1), (2) established in Proposition 1 (guarantee-

ng that item (b) of Proposition 6.10 in [17] never occurs), together

ith the fact that item (c) of Proposition 6.10 never occurs because

 ∪ D = R 

n × { 1 , . . . , N} . The fact that all solutions are eventually

ontinuous is proved below. 

Consider now any solution ξ = (x, q ) to (1) , (22), (23). Let

(0 , 0) = (x 0 , q 0 ) and denote by R 1 the region of attraction of the

losed-loop system with (K, L ) = (K 1 , L 1 ) which, by construction,

ontains the ellipsoid E 1 (see Proposition 1 ). Two cases can be con-

idered: 

a) x 0 ∈ C q 0 
b) x 0 / ∈ C q 0 

In case (a), the initial state belongs to the set E q 0 which is for-

ard invariant for the closed-loop dynamics with gains (K, L ) =
(K q 0 , L q 0 ) (again from Proposition 1 ). As a consequence, introduc-

ng the coefficients 

 i := 

√ 

λmax (Q i ) 

λmin (Q i ) 
≥ 1 ∀ i = 1 , . . . , N, 
 design for model recovery anti-windup of linear plants, European 
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Fig. 3. The nested sets and their interpolation. 
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he following exponential estimate is in force 

 x (t, 0) | ≤ c q 0 exp ( −λq 0 t ) | x (0 , 0) | (25)

or any t ≥ 0 such that ( t , 0) ∈ dom ξ (because this means that the

olution never jumps thereby remaining in C q 0 ). If the supremum

f such t is ∞ , then bound (25) proves the claim. Otherwise, the

olution reaches the boundary ∂(βE q 0 +1 ) at some finite time ( t 1 ,

) ∈ dom ξ such that ( t 1 , 1) ∈ dom ξ and q (t 1 , 1) = q 0 + 1 , x (t 1 , 1) ∈
(βE q 0 +1 ) ⊂ E q 0 +1 because q jumps from q (t 1 , 0) = q 0 to q (t 1 , 1) =
 0 + 1 . 

Since E q 0 +1 is forward invariant for continuous dynamics with

ains (K, L ) = (K q 0 +1 , L q 0 +1 ) , one has 

 x (t, 1) | ≤ c q 0 +1 exp ( −λq 0 +1 (t − t 1 ) ) | x (t 1 , 0) | 
or any t ≥ t 1 satisfying ( t , 1) ∈ dom ξ , and thus, incorporating

25) and using (19) , 

 x (t, j) | ≤ c q 0 +1 c q 0 exp ( −λq 0 t ) | x (0 , 0) | (26)

or any t ≥ 0 such that x ( t , j ) ∈ dom ξ with j ∈ {0, 1}. 

The above argument can be repeated � ≤ N − 1 times, thus

roving items (2) and (3) of the theorem. Moreover, note that all

elections of K q and L q exponentially stabilize the origin. Then all

olutions evolving in E q , q < N , eventually reach the neighborhood

f the origin βE q and jump, eventually reaching βE N−1 ⊂ int E N .
rom there the evolution is continuous, thus proving item (1).

ummarizing, it has been shown that 

 x (t, j) | ≤ M exp ( −λq 0 t ) | x (0 , 0) | ∀ t ≥ 0 , j = 0 , 1 , . . . , �, (27)

here the constant M is given by 

 = �N 
i =1 c i . (28) 

et us consider now case (b). If x (0 , 0) ∈ E q̄ for some q̄ ∈ { 1 , . . . , N} ,
he jump map (22b) guarantees that after, � ≤ | q 0 − q̄ | ≤ N − 1

umps, the hybrid state ξ (0, � ) is such that 

 (0 , � ) ∈ C q̄ , q (0 , � ) = q̄ . 

herefore one turns back to the scenario of case a), with x (0, 0)

eplaced by x (0, � ). This shows that (24) is fulfilled with M given by

28) . We point out that clearly it is possible to find some sharper

stimates on the bound M . 

The only case that has not been addressed yet is x (0 , 0) / ∈ E 1 ,
hich is considered in item (4) for the case where ( K 1 , L 1 ) are

lobally exponentially stabilizing. In this case, it is trivial to see

hat the solution performs a finite number of jumps until q be-

omes 1. From there, Proposition 1 gives an exponential bound un-

il x ∈ ∂(βE 1 ) , and then the analysis above applies. �

emark 3. (Global, semi-global and regional results)

heorem 1 (as well as Theorem 2 given in the next section)

uarantees different stability properties on the closed loop, de-

ending on how the family of solutions to (3) were determined.

n particular, according to the results of Proposition 1 (applied

ith λ = 0 ), for exponentially stable plants it will be possible to

hoose the 1st solution in such a way that the corresponding gains

re globally exponentially stabilizing (namely with Y = 0 ), so that

lobal exponential stability will hold for the hysteresis switching

eedback scheme. Alternatively, for marginally stable/unstable

lants it is possible to achieve semi-global exponential stability by

hoosing the largest invariant set (corresponding to the 1st solu-

ion) arbitrarily large. Finally, for exponentially unstable plants, it

ill only be possible to achieve regional exponential stability, pos-

ibly maximizing the size of the largest invariant set E 1 : indeed, it

s well known (see, e.g., [34] ) that exponentially unstable plants

ith bounded control inputs have null controllability regions that

re bounded in the exponentially unstable directions, so that they
annot be globally nor semiglobally stabilized. 
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. Scheduled stabilization 

As opposed to the switching solution proposed in the previ-

us section, we now use a different strategy for exploiting the

ested family of stabilizers determined in Section 2.2 , which does

ot require any switching (thus avoiding discontinuities in the con-

rol input). This solution is based on interpolating the control law

s suggested in [11,13] , which is resemblant of the techniques in

27,29] . To this aim, the integer logic variable q of the previous

ection is here converted into a scheduling parameter belonging to

he real interval [1, N ] (see Fig. 3 ). In particular, the matrices X 1, i ,

 2, i and Q i , i = 1 , . . . , N obtained from Algorithm 1 can be used to

efine a Lipschitz nonlinear control law as follows. Let 

 q � := max { 1 , floor (q ) } 
 q � := min { N, ceil (q ) } , (29) 

so that for q ∈ [1, N ], � q � denotes the smallest integer larger than

 , whereas � q � denotes the largest integer smaller than q ), and de-

ne interpolated variables through convex combination: 

(q ) = (� q � − q ) Q � q � + (q − � q � ) Q � q � (30a) 

(q ) = (� q � − q ) U � q � + (q − � q � ) U � q � (30b) 

 1 (q ) = (� q � − q ) X 1 � q � + (q − � q � ) X 1 � q � (30c) 

 2 (q ) = (� q � − q ) X 2 � q � + (q − � q � ) X 2 � q � . (30d) 

Then we may use the real parameters q ∈ [1, N ] (whose selection

s specified below), to define an implicit, nonlinear state-feedback

ontrol law 

 = K s (q (x )) x + L s (q (x )) sat m 

(u ) (31) 

here subscript “s” stands for “scheduled” and we define, similar

o (4) , 

 s (q ) = (I − X 2 (q ) U(q ) −1 ) X 1 (q ) Q(q ) −1 

L s (q ) = −(I − X 2 (q ) U(q ) −1 ) X 2 (q ) U(q ) −1 . (32) 

inally, the function x �→ q ( x ) is selected as follows: 

 (x ) = 

{ 

1 if x / ∈ E 1 
N if x ∈ E N 
q ∗(x ) if x ∈ E 1 \ E N , 

(33a) 
design for model recovery anti-windup of linear plants, European 
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where x �→ q ∗( x ) is the unique solution to the following implicit

equation, whose existence and properties are guaranteed by the

next lemma (whose proof is given in the appendix): 

x T Q 

−1 (q ∗(x )) x = 1 , x ∈ E 1 \ E N . (33b)

Lemma 3. Eq .(33b) implicitly defines a unique, bounded and Lips-

chitz continuous function q ∗( x ) in E 1 \ E N . 
We are now ready to state our second main result, establishing

desirable properties of the Lipschitz nonlinear scheduled stabilizer.

Theorem 2. Consider plant (1) , a set of initial parameters ( Q 1 , X 11 ,

X 21 , U 1 , λ1 ) coming from Proposition 1 and a family of nested sets

( Q i , X 1 i , X 2 i , U i , λi ), i = 2 , . . . , N coming from Algorithm 1 . 

Then the Lipschitz nonlinear state-feedback control law (30)–(33)

is such that: 

1. the origin is exponentially stable for the closed loop with region of

attraction including the set E 1 ; 
2. if parameters ( Q 1 , X 1 , X 2 , U 1 , λ1 ) came from a solution to (3) of

Proposition 1 with Y = 0 , then the origin is globally exponentially

stable; 

3. the exponential convergence rate increases as the solution ap-

proaches the origin. In particular, there exists a positive scalar M

such that, for all solutions, the following holds: 

x (0) ∈ E k ⇒ | x (t) | ≤ M exp (−λk t) | x (0) | , (34)

for all t ≥ 0 . 

Proof. Consider the Lipschitz Lyapunov function candidate 

 (x, q (x )) := 

˜ V (x, q (x )) + N − q (x ) , 

where ˜ V (x, q (x )) = x T Q 

−1 (q (x )) x and q ( x ) is assigned by (33) and

is Lipschitz thanks to Lemma 3 . From (33), the scheduling parame-

ter q ( x ) is constant in E c 
1 

:= R 

n \ E 1 and in E N , where it is equal to

1 and N, respectively. Hence one has 

˙ 
 (x, q (x )) = 

˙ ˜ V (x, q (x )) 

for almost all x ∈ E c 
1 

∪ E N . Moreover, following the derivations lead-

ing to (12) , there exists γ > 0 satisfying for almost all x ∈ E N 

˙ 
 (x, q (x )) = 

˙ ˜ V (x, q (x )) ≤ −2 γ ˜ V (x, q (x )) . (35)

On the other hand, from (33b) the identity 

˜ 
 (x, q (x )) = 

˜ V (x, q ∗(x )) = 1 (36)

holds whenever x ∈ E 1 \ E N , and therefore, if the state x belongs

to such set, the derivative of V ( x , q ( x )) reduces to ˙ V (x, q (x )) =
− ˙ q (x ) = − ˙ q ∗(x ) , where we also used the definition in (33). 

Differentiating both sides of (36) , we obtain ∇ x ̃  V (x, q ∗(x )) = 0 ,

which can be developed to get 

˙ q ∗(x ) = −
(

x T 
∂Q 

−1 (q ) 

∂q 

∣∣∣
q = q ∗(x ) 

x 

)−1 

2 x T Q 

−1 (q ∗(x )) ̇ x . 

As a consequence we obtain: 

˙ 
 (x, q (x )) = − ˙ q ∗(x ) = 

2 x T Q 

−1 (q ∗(x ))(Ax + B sat m 

(u )) 

x T M(q ∗(x )) x 
, (37)

where for almost all q ∈ [1, N ] (namely for all non-integer values of

q in that interval) 2 

M(q ) := Q 

−1 (q )(Q � q � − Q � q � ) Q 

−1 (q ) > 0 . (38)
2 One clearly sees that M(q ) = 

dQ −1 (q ) 
dq 

: this identity follows from (30) and keep- 

ing in mind that for a matrix function q �→ P ( q ), we have that P (q ) P −1 (q ) = 1 , im- 

plies ∂P(q ) 
∂q 

= −P (q ) ∂P −1 (q ) 
∂q 

P (q ) . See the proof of Lemma 3 for further details about 

identity (37) and positive definiteness of M ( q ). 

o

t
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ue to convexity, LMIs (3) are still satisfied by the interpolated

ariables (30), hence, selecting the control input as the scheduled

eedback (31) and adapting the proof of item (2) in Proposition 1 to

ound the numerator in (37) , we obtain for some scalar ˜ γ > 0 

˙ 
 (x, q (x )) ≤ −2 

˜ γ

˜ M 

˜ V (x, q (x )) (39)

or almost all x ∈ E 1 \ E N , where 

˜ 
 := sup 

x ∈ E 1 \ E N 
q ∈ [1 , N] 

x T M(q ) x. 

he existence of a uniformly negative upper bound for ˙ V (x, q (x ))

or almost all x ∈ E 1 implies exponential stability of the origin with

egion of attraction containing E 1 , by following the derivations in

37, p. 99] , thus proving item (1). 

Item (2) follows very similar steps. Indeed, from item (1) of

roposition 1 , we have that bound (35) also holds for almost all

 ∈ E c 
1 
, and therefore the negative upper bound for ˙ V (x, q (x )) holds

lmost globally. The argument in [37] then implies global expo-

ential stability of the origin. Consider now item (3). To prove the

ncreasing behavior of convergence rate one can make the prelimi-

ary observation that, given the sequence of solutions ( Q i , X 1 i , X 2 i ,

 i , λi ) of (16) for i = 1 , . . . , N coming from Algorithm 1 , inequality

16e) with Q = Q i is still satisfied by any λk with i ≥ k ≥ 1. By con-

exity, the same feature is transferred to the interpolated variables

30), i.e. 

e 

[
(A + λk I) Q(q ) + BX 1 (q ) B (X 2 (q ) − U(q )) 

X 1 (q ) + Y X 2 (q ) − U(q ) 

]
< 0 (40)

or any q ≥ k ≥ 1. On the other hand, the function q ∗( x ) defining the

cheduled parameter has been proven to be nondecreasing along

he solution (see conditions (37) and (39) ). This property together

ith inequality (40) guarantees that, if the initial state x (0) belongs

o the ellipsoid E k for some k ∈ { 1 , . . . , N} , then the convergence

ate of the solution x ( t ) is not smaller than λk by condition (19) ,

hus also proving item (3). �

emark 4. (Computation of the scheduling parameter q ∗) Since

he algebraic solution of Eq. (33b) (namely, the function x �→ q ∗( x ))

oes not appear to be easy to find, 3 a dynamic selection for q can

e employed, which integrates the plant dynamics to asymptoti-

ally estimate the correct value of q ∗. While this can be done e.g.

y bisection methods, in [11,13] a dynamical approach was sug-

ested, which is based on suitably integrating the dynamics of

 

∗( x ) implicitly defined by condition (33b) . In particular, condition

33b) can be first derived with respect to time, to obtain 

d 

dt 
x T Q 

−1 (q ) x = 2 x T Q 

−1 (q ) ̇ x + 

(
x T 

dQ 

−1 (q ) 

dq 
x 

)
˙ q = 0 , (∗) 

rom which it is possible to compute ˙ q and write a dynamic equa-

ion governing a new state q . In particular, taking M ( q ) as in

38) and defining 

(x, q ) := � (x T Q 

−1 (q ) x − 1) , 

 robust implementation of dynamics ˙ q with feedback injection

 ( x , q ), where scalar � > 0 is arbitrary and may be tuned for op-

imized performance, is given by 

˙ 
 = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

max { 0 , −g(x, q ) } , if q ≤ 1 

2 x T Q 

−1 (q )(Ax + B sat m 

(u )) 

x T M(q ) x 
− g(x, q ) , if q ∈ (1 , N) 

min { 0 , −g(x, q ) } , if q ≥ N , 

(41)
3 Several solutions have been proposed to determine α by on line search meth- 

ds and other computationally intensive approaches; see e.g. [27,30] and references 

herein. 
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4 We assume here that controller (43) be linear but our results extend straight- 

forwardly to the case of nonlinear controllers. 
ith initial state q (0) ∈ [1, N ]. It can be shown that, under the

tated assumptions, the right hand side of (41) is bounded and well

efined almost everywhere, and that the interval [1, N ] is forward

nvariant for q (that is, the state q never leaves such interval). In

act, a more precise description of the q dynamics would require

he use of differential inclusions because Q ( · ) in (30) is Lipschitz

o that its generalized derivative should be used in place of matrix

 . To keep the discussion simple, we abuse notation and treat the

 dynamics as a differential equation. To better appreciate how the

lgorithm works in practice, few more comments are in order. 

First, the computations in (41) require the knowledge of the state

 , which might appear limiting; however, in the anti-windup appli-

ation such state x is exactly the state of the anti-windup compen-

ator, and then it is explicitly available. 

Next, the role of the terms appearing in the right hand side of

41) can be explained as follows. In all cases, the term −g(x, q ) has

he role of correcting a “wrong” initialization of the state q in (41) ,

ince the initial value of q (0) usually does not satisfy the condition

 

T (0) Q 

−1 (q (0)) x (0) = 1 (the “correct” initialization would require

he solution of (33b) to be already known); the term −g(x, q ) is

 stabilizing feedback which disappears as x T Q 

−1 (q ) x gets closer

nd closer to 1. For the case q ∈ (1, N ), the other term appearing

n the right hand side of (41) is exactly the dynamics that, accord-

ng to equation ( ∗) above, ensures forward invariance of the set

 (x, q ) : x T Q 

−1 (q ) x = 1 } , namely, it ensures that if x T Q 

−1 (q ) x = 1

t some time t 0 , then the motion of q is suitably coordinated with

he motion of x so to keep the relation x T Q 

−1 (q ) x = 1 satisfied also

or all t ≥ t 0 . Now, recalling that by (29) the value of q is assumed

o range in the interval [1, N ], the max operator is used in the

ase q ≤ 1 to avoid that the value of q decreases below 1 once it

as reached such a lower bound, and similarly the min operator is

sed in the case q ≥ N to avoid that the value of q increases above

 (as mentioned, the discontinuity introduced by such terms can

e formally dealt with by using differential inclusions). Note that,

lthough the set [1, N ] can be formally shown to be forward in-

ariant under (41) , allowing q < 1 or q > N in the right hand side of

41) ensures robustness to numerical errors. 

Finally, from the above discussion it is clear that the role of the

arameter � in g ( x , q ) is to make the feedback action exerted by

 ( x , q ) in (41) more or less aggressive, thus influencing how fast the

ondition x T Q 

−1 (q ) x = 1 is achieved. Hence, in practice the value

f � should be chosen large enough to ensure that q quickly be-

omes a good solution of x T Q 

−1 (q ) x = 1 ; practical limits on how

arge the value of � can be taken are clearly given by the possible

umerical integration problems that might arise due to excessively

arge values. Note that, since � only affects a fast initial transient,

ts effect on the performance of the anti-windup compensation are

uite negligible. 

. Application to nonlinear model recovery anti-windup 

In this section, similar to [11–13] , and following the paradigm

n [42] and [57, Part II] , we apply the proposed constructions to

odel recovery anti-windup design, which is capable of transform-

ng a stability and performance recovery problem into a stabiliza-

ion problem (applied to the mismatch dynamics). To this end, we

onsider a linear plant given by: 

 

{ 

˙ x p = Ax p + Bu p + B w 

w 

y = C y x p + D y u p + D yw 

w 

z = C z x p + D z u p + D zw 

w 

(42) 

here x p ∈ R 

n p is the plant state, u p ∈ R 

n u is the control input,

 ∈ R 

n w is an exogenous input (possibly containing disturbances,

eferences and measurement noise), y ∈ R 

n y is the measurement

utput and z ∈ R 

n z is the performance output. 
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As customary in the anti-windup setting, we assume that a (lin-

ar) controller 4 has been designed to induce desirable performance

hen interconnected to the plant without saturation: 

 

{
˙ x c = A c x c + B cu u c + B cw 

w 

y c = C c x c + D cu u c + D cw 

w 

(43) 

here x c ∈ R 

n c is the controller state and y c ∈ R 

n u is the controller

utput. 

In the case without input saturation, we call unconstrained

losed-loop system the direct feedback interconnection between the

ontroller (43) and the plant (42) via the equations 

 = y c , u c = y. (44) 

 necessary assumption for anti-windup design is that the uncon-

trained closed-loop system (42) –(44) is well posed and internally

table. 

The so-called saturated closed-loop system corresponds to the in-

erconnection between (42), (43) and the level ū ∈ R 

n u 
> 0 

saturated

nterconnection 

 = sat ū (y c ) , u c = y, (45) 

here each element of ū indicates the (symmetric) saturation level

f the corresponding input channel. 

The MRAW compensation scheme first proposed in [42] , later

evisited in [54] (therein it was called “L 2 anti-windup”) and fi-

ally well surveyed in [57, Part II] , corresponds to inserting the

ollowing anti-windup filter, or mismatch dynamics, in the closed

oop: 

W 

{ 

˙ x aw 

= Ax aw 

+ B 

(
sat m 

(y c + v ) − y c 
)
, 

y aw 

= C y x aw 

+ D y ( sat m 

(y c + v ) − y c 
)
, 

(46) 

ith x aw 

(0) = 0 and where v is a signal to be designed. The satu-

ation level m is defined as 

 := (1 − ε) ̄u , (47) 

here ε ∈ (0, 1) is a given arbitrarily small constant, so that sat m 

orresponds to a restricted saturation with respect to sat ū . The re-

triction of the saturation level by an (arbitrarily small) quantity

is actually a necessary condition for stabilization and is there-

ore key to being able to prove Lemma 4 below. See [42, Re-

ark 2.2] for an example where this assumption is necessary. Note

hat this may appear somewhat close in spirit to the recent works

n anticipatory anti-windup designs (see, e.g., [51] ), but its spirit is

ctually different because one typically selects ε as a small positive

calar. 

The interconnection of (46) to the closed loop system (42),

43) via the anti-windup interconnection 

 c = y − y aw 

, u = sat m 

(y c + v ) (48) 

ields the so called anti-windup closed-loop system , shown in Fig. 4 .

In [42,54] the anti-windup design goals were formally stated as

ollows. Denote by u l , z l the linear controller output and the plant

erformance output of the unconstrained closed-loop system and

y u a , z a the corresponding signals of the anti-windup closed-loop

ystem. Then the signal v should be selected in such a way that

he following two properties hold: 

1. if u l never exceeds the saturation bounds ū , then z a coincides

with z l (shortly, u l ≡ sat ū (u l ) ⇒ z a ≡ z l ); 

2. if dz m 

(u l ) ( i.e. u l − sat m 

(u l ) , the portion of the control input

in the linear closed loop exceeding the restricted saturation
design for model recovery anti-windup of linear plants, European 
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Fig. 4. The anti-windup closed loop system. 
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s  
bounds 5 m ) is an L 2 signal then the difference between z a and

z l is an L 2 signal (shortly, dz m 

(u l ) ∈ L 2 ⇒ (z a − z l ) ∈ L 2 ). 

In the past decade, several papers have been published describ-

ing different selections for the signal v inducing various levels of

stability and performance on the anti-windup closed-loop system.

In particular, the first technique proposed in [42] corresponded

to selecting v = k (x aw 

) as a static nonlinear function of the anti-

windup compensator state. In the special case where the plant

was not unstable, this selection was linear and corresponded to

v = Kx aw 

with K selected based on suitable passivity properties to

ensure stability (note that this selections had interesting connec-

tions with the scheme proposed in [49] ). Later on, in [54] , which

dealt with exponentially stable plants, for performance improve-

ment this selection was chosen as v = Kx aw 

+ L ( sat m 

(y c + v ) − y c ) ,

thus introducing a nonlinear algebraic loop in the scheme, and de-

termining L so that this loop was well posed (this improved selec-

tion has interesting connections with the work in [23] ). Nonlinear

selections of the signal v within the MRAW framework were also

proposed later. In particular, in [4] , v was a sampled data signal

chosen as a piecewise affine function of the state x aw 

by relying

on explicit solutions to the discrete-time Receding Horizon Control

(RHC) strategy. In [39] and [15] , a nonlinear function also involving

measurements of some plant states was used to obtain large op-

erating regions in the presence of exponentially unstable modes in

the plant dynamics. Finally, in [55] , a hysteresis switching approach

was proposed to enforce improved transients when the plant is ex-

ponentially stable. This follow-up approaches are those of [11–13] ,

partly reorganized and presented in this paper. 

The following lemma shows that the stability properties of the

anti-windup closed-loop are equivalent to the stability properties

of a simpler, input saturated system. 

Lemma 4. Given m as in (47) , if the system 

˙ x aw 

= Ax aw 

+ B sat m 

(v ) (49)

with the (nonlinear and implicit) selection 

v = f (x aw 

, sat m 

(v )) , (50)

is well posed, has a globally Lipschitz right hand side and is globally

(respectively, regionally) asymptotically stable, then the anti-windup

closed-loop system (46) , (42) , (43) and (48) is well-posed and globally

(respectively, regionally) asymptotically stable. 

Proof. The proof is similar to the proofs in [42] and [54] , and is

based on the fact that rewriting the anti-windup closed-loop sys-

tem dynamics (46), (42), (43) and (48) in the coordinates (x −
x aw 

, x c , x aw 

) , a cascade structure is revealed where a first subsys-

tem (with state (x − x aw 

, x c ) ) reproducing the linear unconstrained

closed-loop system drives the anti-windup compensator dynamics

(46) and (50) , via the controller output y c . This second subsystem
5 As shown in [42] , it is necessary to consider such a restriction to correctly char- 

acterize the marginally stable/unstable case. 

S  

p  

t  

w  
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which may be nonlinear due to the nonlinear nature of v 1 in (50) )

an be written as in (49) with a disturbance signal whose norm

an be bounded by a constant times 
∥∥dz η(y c ) 

∥∥ (see [42] for de-

ails). Global (respectively, regional) stability of the cascaded sys-

em then follows from the forward completeness of each subsys-

em which, in turns, derives from the global Lipschitz property of

he right hand side. �

orollary 1. Selecting the auxiliary input v as the solution of one of

he algebraic loops 

 = K q x aw 

+ L q sat m 

(v ) , 
 = K s (q (x aw 

)) x aw 

+ L s (q (x aw 

)) sat m 

(v ) 

ith gains assigned either by the hysteresis switching scheme as in

22) and (23) or by the scheduled scheme as in (31) –(33), the anti-

indup closed-loop system (46) , (42) , (43) and (48) is guaranteed to

e well-posed and regionally asymptotically stable. Moreover, if the

pen-loop plant is exponentially stable, then the anti-windup closed-

oop system is globally asymptotically stable. 

emark 5. The performance improvement guaranteed by the pro-

osed design of v in Corollary 1 corresponds to establishing suit-

ble increasingly fast convergence rates of x aw 

to zero, that can be

stablished because the results of Theorems 1 and 2 carry over to

he anti-windup dynamics. Following the derivations in [42] and

he later work [54] , it is possible indeed to relate the anti-windup

tate x aw 

to the mismatch x − x l between the actual plant response

nd the “unconstrained” response that would have been experi-

nced in the absence of saturation (the information about this un-

onstrained response is actually stored in the anti-windup dynam-

cs (46) ). While it is beyond the scope of this paper to precisely

haracterize such a performance improvement, it is worth men-

ioning that proceeding in similar ways to [42,54,55] (see also [57,

art 3] ) it is possible to relate the estimate of the domain of attrac-

ion provided by Theorems 1 and 2 to the energy spent by the un-

onstrained input u l outside the restricted saturation bounds (i.e.,

he L 2 norm of u l − sat (u l ) ). This characterization is beyond the

cope of this paper, which instead is mainly focused on the design

f the stabilizer v and its qualitative properties. 

. Examples 

.1. Mass-spring-damper system 

We consider the same exponentially stable example used in

12] , i.e. a mass-spring system whose equations of motion are 

˙ 
 = 

[
1 0 

−k/m − f/m 

]
x + 

[
0 

1 /m 

]
sat 1 (u ) 

 = z = [1 0] x 

here x = (ξ , ˙ ξ ) are the position and speed of the body of mass

 = 1 , and the elastic and damping coefficients are k = 1 and

f = 0 . 005 . The a priori given unconstrained controller in [54] is

 c = C f b (s )(C f f (s ) r − u c ) with C f f (s ) = 

5 
2 s +5 , C f b = 500 (s +15) 2 

s (s +80) 
. We

ollow the strategy suggested in Remark 2 , we fix λ1 = 1 . 2670 and

hen select the linear feedback radius η = 0 . 01 . Setting the shrink-

ng factor β = 0 . 6 , a family of N = 11 nested ellipsoids has been

enerated using Algorithm 1 , with associated exponential conver-

ence rates λi ranging from λ1 = 1 . 2670 to λN = 13 . 6 6 63 . The con-

truction of ellipsoids has been performed in Matlab using the

olver SeDuMi, and the total elapsed time of computation was 17 s.

witched and scheduled anti-windup compensators have been im-

lemented as illustrated in Corollary 1 . For the scheduled solu-

ion, the value � = 60 has been used. As a comparison, an L 2 anti-

indup compensator has also been considered using the gains K ,
1 
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Fig. 5. Results for the mass-spring-damper system. 
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Fig. 6. Results for the TAFA system. 

Table 1 

Exponential rates from Algorithm 1 . 

i 1 2 3 4 5 

λi 0.3447 3.3173 4.6630 6.7759 10.1065 

T  

s  

t

y

w  

c  

s

 

o  

c  

l  

a

 1 given by the algorithm. Fig. 5 reports the arising responses. The

witched and the scheduled constructions significantly outperform

he linear anti-windup scheme. Moreover, from the middle plot it

an be appreciated that the scheduled strategy reduces the un-

leasant discontinuities at the plant input which characterize the

witching technique. The lower plot compares the switching signal

o the scheduling signal. 

.2. TAFA system 

The example of an exponentially unstable system is also consid-

red to further validate the proposed constructions. The linearized

odel of the short period longitudinal dynamics of TAFA (Tailless

dvanced Fighter Aircraft) [3] is given by 

˙ x = Ax + B sat m v (u ) , 
 = z, z = [0 1] x, 

here 

 = 

[
−0 . 9 1 . 0 

5 . 9375 −2 . 1 

]
, B = 

[
0 

8 

]
. 
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he state x = (α, δ) coincides with the measured output, and the

aturation level is m v = 0 . 35 rad. For a given reference signal r ∈ R ,

he unconstrained controller is assigned by 

 c = C f b (s )(C f f (s ) r − δ) + K s x, 

ith C f f (s ) = 

1 . 4 s +1 
1 . 5 s +1 , C f b(s ) = 

1 . 5 s +1 
8 s , K s = − 1 

8 [5 . 9375 − 2 . 1] . Such

ontroller is designed with the aim of achieving the prescribed

pecification 

δ(s ) 
δd (s ) 

= 

1 . 4 s +1 
s 2 +1 . 5 s +1 

. 

Setting β = 0 . 3 , η = 0 . 01 and running Algorithm 1 , a family

f N = 5 nested ellipsoids is found. The corresponding exponential

onvergence rates are reported in Table 1 . The construction of el-

ipsoids has been performed in Matlab using the solver SeDuMi,

nd the total elapsed time of computation was 8 s. 
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The results obtained with switched, scheduled and linear anti-

windup compensators are reported in Fig. 6 . For the scheduled so-

lution, the value � = 40 has been used. It can be seen from the

upper plot that both the switched and the scheduled scheme are

characterized by improved performances with respect to the stan-

dard L 2 anti-windup, while the response of the saturated plant

without compensation is divergent due to exponential instability.

Middle and lower plots illustrate the behavior of control inputs and

switching/scheduling signals, respectively. 

7. Conclusions 

We addressed model recovery anti-windup design with extreme

performance induced by switching or scheduling anti-windup

gains. The variations of the anti-windup gains was induced by a

synthesis of a finite number of nested ellipsoidal sets, each of them

associated to a pair of gains, and characterizing a suitable trade-

off between exponential convergence rate and size of the ellipsoid.

The switched solution is based on hybrid formalism involving a

logic variable indicating what set of gain is active at each time,

while the scheduled solution is based on a Lipschitz continuous

scheduling among the finite set of available gains. Both approaches

have been shown to lead to desirable closed-loop properties when

combined with the anti-windup architecture, and the comparative

effectiveness of the control solution has been shown on a few sim-

ulation studies. 

Appendix A. Proof of Lemma 1 

The proof is adapted from [54, Prop. 1] . Let us proceed by con-

tradiction and suppose that � ∈ O n u exists such that I − S� is sin-

gular, e.g. 

(I − S�) z = 0 (A.1)

for some z 
 = 0. Define z̄ := (I − S)�z; we claim that, since z 
 = 0 and

(I − S) is invertible, one has necessarily z̄ 
 = 0 . Moreover, the fol-

lowing identity holds 

z̄ = �z − S�z = z + (� − I) z − S�z = (� − I) z + (I − S�) z = �c z, 

with �c = � − I. Identity (A.1) yields z̄ T W (I − S�) z = 0 , or equiv-

alently 

z̄ T W z − 1 

2 

z̄ T W S(I − S) −1 z̄ − 1 

2 

z̄ T (I − S T ) −1 S T W ̄z = 0 . 

Observing that both W and �c are diagonal, and that the entries

of �c are δc 
k 

∈ [ −1 , 0] for any k , one has 

z̄ T W z = 

n u ∑ 

k =1 

δc 
k w k z 

2 
k ≤ −

n u ∑ 

k =1 

(δc 
k ) 

2 w k z 
2 
k = −z̄ T W ̄z 

and hence 

−z̄ T W ̄z − 1 

2 

z̄ T W S(I − S) −1 z̄ − 1 

2 

z̄ T (I − S T ) −1 S T W ̄z ≥ 0 . 

However, as long as z̄ 
 = 0 , this contradicts the assumption 2 W +
 S(I − S) −1 + (I − S T ) −1 S T W > 0 . 

Appendix B. Proof of Lemma 3 

Set H(x, q ) := x T Q 

−1 (q ) x and observe that, by definition (30a) ,

the mapping H(x, q ) : R 

n × R → R is smooth everywhere except for

integer values of q . In particular, the derivative ∂H(x,q ) 
∂q 

exists almost

everywhere and verifies 

∂H(x, q ) 

∂q 
= x T Q 

−1 (q ) 
dQ(q ) 

dq 
Q 

−1 (q ) x 

= x T Q 

−1 (q )[ Q � q � − Q � q � ] Q 

−1 (q ) x > 0 
Please cite this article as: A. Cristofaro et al., A switched and scheduled
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lmost everywhere in E 1 \ E N × [1 , N] , because by construction

 q 1 > Q q 2 for any 1 ≤ q 1 < q 2 ≤ N (see inequality (16c)). Then, by the

onsmooth implicit function theorem [ 5 , Section 7.1], the equation

(x, q ) = 1 defines a unique bounded and globally Lipschitz func-

ion q ∗( x ) in E 1 \ E N , whose gradient exists almost everywhere and

atisfies the identity 

 x q 
∗(x ) = −

(
∂H(x, q ∗(x )) 

∂x 

)/ 

(
∂H(x, q ∗(x )) 

∂q 

)

= − 2 x T Q 

−1 (q ∗(x )) 

x T Q 

−1 (q ∗(x ))[ Q � q ∗(x ) � − Q � q ∗(x ) � ] Q 

−1 (q ∗(x )) x 
. 

inally one can observe that, for any integer q ∈ { 1 , . . . , N} and x ∈
E q , the identity q ∗(x ) = q must hold thanks to uniqueness of the

nverse function. 
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